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——— Abstract

Wiehagen’s Thesis in Inductive Inference (1991) essentially states that, for each learning criterion,
learning can be done in a normalized, enumerative way. The thesis was not a formal statement
and thus did not allow for a formal proof, but support was given by examples of a number of
different learning criteria that can be learned enumeratively.

Building on recent formalizations of learning criteria, we are now able to formalize Wiehagen’s
Thesis. We prove the thesis for a wide range of learning criteria, including many popular criteria
from the literature. We also show the limitations of the thesis by giving four learning criteria for
which the thesis does not hold (and, in two cases, was probably not meant to hold). Beyond the
original formulation of the thesis, we also prove stronger versions which allow for many corollaries
relating to strongly decisive and conservative learning.
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1 Introduction

In Gold-style learning [10] (also known as inductive inference) a learner tries to learn
an infinite sequence, given more and more finite information about this sequence. For
example, a learner h might be presented longer and longer initial segments of the sequence
g=1,4,9,16,.... After each new datum of g, h may output a description of a function (for
example a Turing machine program computing that function) as its conjecture. h might
output a program for the constantly-1 function after seeing the first element of this sequence
g, and then, as soon as more data is available, a program for the squaring function. Many
criteria for saying whether h is successful on g have been proposed in the literature. Gold, in
his seminal paper [10], gave a first, simple learning criterion, later called Ez-learning!, where
a learner is successful iff it eventually stops changing its conjectures, and its final conjecture
is a correct program (computing the input sequence).

Trivially, each single, describable sequence g has a suitable constant function as an
Ex-learner (this learner constantly outputs a description for g). Thus, we are interested
in sets of total computable functions S for which there is a single learner h learning each
member of S (those sets S are then called Ez-learnable).

Gold [10] showed an important class of sets of functions to be Ex-learnable:? each

We would like to thank Sandra Zilles for bringing Wiehagen’s Thesis in connection with the approach
of abstractly defining learning criteria, as well as the anonymous reviewers for their friendly and helpful
suggestions.

“Ex” stands for explanatory.

We let N = {0,1,2,...} be the set of natural numbers and we fix a coding for programs based on Turing
machines letting, for any program (code) p € N, ¢, be the function computed by the Turing machine
coded to p.
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uniformly computable set of total functions is Ex-learnable; a set of functions S is uniformly
computable iff there is a computable function e such that & = {¢.) | n € N}. The
corresponding learner learns by enumeration: in every iteration, it finds the first index n
such that o,y is consistent with all known data, and outputs e(n) as the conjecture.

However, it is well-known that there are sets which are not uniformly computable, yet
Ex-learnable. Blum and Blum [6] gave the following example. Let e be a total computable
listing of programs such that the predicate . (,)(x) = y is decidable in n, x and y. Crucially,
some of the ¢ (,) may be undefined on some arguments; these functions are not required
to be learned, but the set of all the total functions enumerated is Ex-learnable. This uses
the same strategy as for uniformly computable sets of functions, but this learning already
goes beyond enumeration of all and only the learned functions, as there are sets which are so
learnable, but not uniformly computable. The price is that the learner may give intermediate
conjectures e(n) which are programs for partial functions; this is necessarily so, as noted
in [9].

As already shown by Wiehagen [16], there are Ex-learnable sets of functions that cannot
be learned while always having a hypothesis that is consistent with the known data. Thus,
the above strategy for learning employed by Blum and Blum [6] is not applicable for all
learning tasks. In [17, 18] Wiehagen was looking for whether there is a more general strategy
which also enumerates a list of candidate conjectures and is applicable to all Ex-learnable sets.
He showed that this is indeed possible, giving an insightful characterization of Ex-learning.

A main focus of the research in inductive inference defines learning criteria that are
different from (but usually similar in flavor to) Ex-learning. For example, consistent learning
requires that each conjecture is consistent with the known data; monotone learning requires
the sequence of conjectures to be monotone with respect to inclusion of the graphs of the
computed functions. Wiehagen also gives characterizations for these learning criteria and
more. Other researchers give similar characterizations; recent work in this area includes, for
example, [1]. For any learning criterion I we are again interested in sets of total computable
functions S for which there is a single learner h which learns every function in S in the sense
specified by I; we call such S I-learnable.

Wiehagen was inspired by his work to conjecture a general structure of learning, as stated
in his Thesis in Inductive Inference [18], which we rephrase in the language of this paper:

Let Z be any learning criterion. Then for any Z-learnable class S, an enumeration
of programs e can be constructed such that S is Z-learnable with respect to e
by an enumerative learner.

Note that [18] called a learning criterion an “inference type” and a learner an “inference
strategy”. About his thesis, Wiehagen [18] wrote that “We do not exclude that one nice day
a formal proof of this thesis will be presented. This would require ‘only’ to formalize the
notions of ‘inference type’ and ‘enumerative inference strategy’ which does not seem to be
hopeless. But up to this moment we prefer ‘verifying’ our thesis analogously as it has been
done with ‘verifying’” Church’s thesis, namely by formally proving it for ‘real’, reasonable,
distinct inference types.”

Recently, the notion of a learning criterion was formalized in [13] (see Section 2.1 for the
formal notions relevant to this paper). Our first contribution in this paper is a formalization
of “enumeration learner” in Definition 2. It is in the nature of the very general thesis that any
formalization may be too broad in some respects and too narrow in other. For example, our
formalizations exclude some learning criteria, such as finite learning, learning by non-total
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learners, and criteria featuring global restrictions on the learner. However, for the scope of
our definitions, we already get very strong and insightful results in this paper.

In Theorem 3 we discuss four different learning criteria in which the thesis does not hold.
The first one is prediction, which attaches a totally different meaning to the “conjectures”
than Ex-learning (the thesis was probably never meant to hold for such learning criteria).
The second criterion involves mandatory oscillation between (correct) conjectures, which is in
immediate contradiction to enumerative learning. The third learning criterion is transductive
learning, where the learner has very little information in each iteration. The fourth is
learning in a non-standard hypothesis space. The last two learning criteria do not contradict
enumerative learning directly, but still demand too much for learning by enumeration.

In Section 4 we show that there is a broad core of learning criteria for which Wiehagen'’s
Thesis holds. For this we introduce the notion of a pseudo-semantic restriction, where only
the semantics of conjectures and possibly the occurrence of mind changes matter, but not
other parts of their syntax. Theorem 10 shows that Wiehagen’s Thesis holds in the case of
full information learning (like in Ex-learning given above, where the learner only gets more
information in each iteration) when all restrictions are pseudo-semantic, and in Theorem 16
we see that the same holds in the case of iterative learning (a learning model in which a
learner has a restricted memory). Note that these two theorems already cover a very wide
range of learning criteria from the literature, including all given by Wiehagen [18].

Finally, going beyond the scope of Wiehagen’s Thesis, we show that we can assume the
enumeration e of programs to be semantically 1-1 (each e(n) codes for a different function)
if we assume a little bit more about the learning criteria, namely that their restrictions allow
for patching and erasing (see Definition 11). This is formally shown in Theorem 13 (for
the case of full information learning) and in Theorem 17 (for the case of iterative learning).
Example criteria to which these theorems apply include Ex-learning, as well as consistent
and monotone learning. Wiehagen [18] already pointed out in special cases that one can get
such semantically 1-1 enumerations. From these results on learning with a semantically 1-1
enumeration we can derive corollaries to conclude that the learning criteria, to which the
theorems apply, allow for strongly decisive and conservative learning (see Definition 1); for
example, for plain Ex-learning, this proves (a stronger version of) a result from [15] (which
showed that Ex-learning can be done decisively). Note that all positive results are sufficient
conditions for enumerative learnability; except for the (weak) condition given in Remark 9,
we could not find interesting necessary conditions.

The benefits of this work are threefold. First, we address a long-open problem in its
essential parts. Second, we derive results about (strongly) decisive and conservative learning
in many different settings. Finally, we further develop general techniques to derive powerful
theorems applicable to many different learning criteria, thanks to general notions such as
“pseudo-semantic restriction”.

Note that we omit a number of nontrivial proofs due to space constraints.

2 Mathematical Preliminaries

We fix any computable 1-1 and onto pairing function (-,-) : N x N — N; Whenever we
consider tuples of natural numbers as input to a function, it is understood that the general
coding function (-, -) is used to code the tuples into a single natural number. We similarly fix
a coding for finite sets and sequences, so that we can use those as input as well. We use ) to
denote the empty sequence; for every non-empty sequence o we let 0~ denote the sequence
derived from ¢ by dropping the last listed element.



T. Kotzing

If a function f is not defined for some argument x, then we denote this fact by f(x)T,
and we say that f on x diverges; the opposite is denoted by f(x){, and we say that f on «
converges. If f on x converges to p, then we denote this fact by f(x)] = p. For any total
computable predicate P, we use pz.P(z) to denote the minimal 2 such that P(x) (undefined,
if no such z exists). The special symbol 7 is used as a possible hypothesis (meaning “no
change of hypothesis”).

Unintroduced notation for computability theory follows [14]. P and R denote, respectively,

the set of all partial computable and the set of all computable functions (mapping N — N).

For any function f : N — N and all 4, we use f[i] to denote the sequence f(0), ..., f(i — 1)
(undefined, if any one of these values is undefined).

We will use a number of basic computability-theoretic results in this paper. First, we
fix a padding function, a 1-1 function pad € R such that ¥p,n,2 : @paap,n)(T) = ©p(x).
Intuitively, pad generates infinitely many syntactically different copies of the semantically
same program. We require that pad is monotone increasing in both arguments. The S-m-n
Theorem states that there is a 1-1 function s € R such that Vp,n,z : ©s;.0) () = ©p(n, 2).
Intuitively, s-m-n allows for “hard-coding” arguments to a program.

2.1 Learning Criteria

In this section we formally introduce our setting of learning in the limit and associated

learning criteria. We follow [13] in its “building-blocks” approach for defining learning criteria.

A learner is a partial computable function from N to NU{?}. A sequence generating operator
is a function § taking as arguments a function h (the learner) and a function g (the learnee)
and that outputs a function p. We call p the conjecture sequence of h given g. Intuitively, g
defines how a learner can interact with a given learnee to produce a sequence of conjectures.

The most important sequence generating operator is G (which stands for “Gold”, who
first studied it [10]), which gives the learner full information about the learning process so
far; this corresponds to the examples of learning criteria given in the introduction. Formally,
G is defined such that

Vh,g,i: G(h,g)(i) = h(g[i]).
We define two additional sequence generating operators It (iterative learning, [16]) and Td
(transductive learning, [8]) as follows. For all learners h, learnees g and all 4,

 [h), if i = 0;3
It(h,g)(i) = {h(It(h,g)(i —1),i—1,9(i — 1)), otherwise;
h(0), if i = 0;
Td(h,g)(i) = {Td(h,g)(i—1), else,if h(i —1,g(i—1)) =7

h(i—1,9(i — 1)), otherwise.

For both of iterative and transductive learning, the learner is presented with a new datum

each turn (argument/value pair from the learnee in complete and argument-increasing order).

Furthermore, in iterative learning, the learner has access to the previous conjecture, but not
so in transductive learning; however, in transductive learning, the learner can implicitly take
over the previous conjecture by outputting “?”.

Successful learning requires the learner to observe certain restrictions, for example
convergence to a correct index. These restrictions are formalized in our next definition. A

3 h(0) denotes the instial conjecture (based on no data) made by h.
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sequence acceptance criterion is a predicate ¢ on a learning sequence and a learnee. The most
important sequence acceptance criterion is denoted Ex (which stands for “Explanatory”),
already studied by Gold [10]. The requirement is that the conjecture sequence converges (in
the limit) to a correct hypothesis for the learnee (we met this requirement already in the
introduction). Formally, for any programming system? ¢, we define Ex,, as a predicate such
that

Exy = {(p,g9) € R?* | Ing,q:V¥n >ng:p(n) =g A, = g}

Standardly we use Ex = Ex,. We will meet many more sequence acceptance criteria below.
We combine any two sequence acceptance criteria § and ¢’ by intersecting them; we denote
this by juxtaposition (for example, the sequence acceptance criteria given below are meant
to be always used together with Ex).

For any set C C P of possible learners, any sequence generating operator § and any
sequence acceptance criterion 8, (C,,9) (or, for short, C39) is a learning criterion. A
learner h € C CBd-learns the set CBI(h) = {g € R|d(B(h,g),9)}. A set S C R of possible
learnees is called C3d-learnable iff there is a function h € C which CB4§-learns all elements of
S (possibly more). Abusing notation, we also use C36 to denote the set of all C3d-learnable
sets (learnable by some learner).

Next we define a number of further sequence acceptance criteria which are of interest for
this paper.

» Definition 1. With Cons we denote the restriction of consistent learning [4, 6] (being
correct on all known data); with Conf the restriction of conformal learning [17] (being
correct or divergent on known data); with Conv we denote the restriction of conservative
learning [2] (never abandoning a conjecture which is correct on all known data); with Mon
we denote the restriction of monotone learning [12] (conjectures make all the outputs that
previous conjectures made — monotonicity in the graphs); finally, with PMon we denote the
restriction of pseudo-monotone learning [18] (conjectures make all the correct outputs that
previous conjectures made). The following definitions formalize these restrictions.

Conf = { b, R? ‘ VnVa <n: Pp(n) (.I‘)\L = ©p(n) (33) = g(x)};

(p,9) €
Cons = {(p,g) € R? | VnVz < n : 0p(n)(z) = g(2)};
Conv = {(p,g) € R* |Vn:p(n) #p(n+1) = 3z <n+1: oy () # g(z)};
Mon = {(p,g) € R* | Vi < j Vz : 0,0y (x)) = @pi) (@) = @piy (2) 1}

PMon = {(p.g) € R? | Vi < j ¥ : 0y (2)) = 9(2) = 0005 (2)) = #p00(2)}-

An example of a well-studied learning criterion is RGConsEx, requiring convergence of the
learner to a correct conjecture, as well as consistent conjectures along the way.
Furthermore, we are interested in a number of restrictions which disallow certain kinds
of returning to abandoned conjectures. We say that a learner exhibits a U-shape when it
first outputs a correct conjecture, abandons this, and then returns to a correct conjecture.
We distinguish between syntactic U-shapes (returning to the syntactically same conjecture),
semantic U-shapes (returning to the semantically same conjecture, after semantically aban-
doning it; note that we drop the qualifier “semantic” in this case) and strong U-shapes
(outputting a semantically same conjecture after syntactically abandoning it; this is called
strong, because it leads to the stronger restriction). Forbidding these kinds of U-shapes leads

4 We call o a programming system iff, for all p, 1, is a computable function, and the function mapping
any p and x to ¥, (z) is also (partial) computable.
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to the respective non-U-shapedness restrictions SynNU, NU and SNU. If we consider
forbidding returning to abandoned conjectures more generally, we get three corresponding
restrictions of decisiveness. We give the formal definitions here.

SynNU = {(p,g) € R* | Vi < j <k : (¢pi) = 9 Ap(i) = p(k)) = p(j) = p(i)};
NU = {(p,g9) ER* | Vi < j <k opi) =9 = k) = Pp() = Pp(i) 13
SNU = {(p,g) € R* | Vi <j <k : 0p) = 9 = ppey = (1) = p(i)};
SynDec = {(p,g) € R* | Vi < j < k: p(i) = p(k) = p(j) = p(i) };
Dec = {(p,g) € R* | Vi < j <k 9p) = 9pk) = Pp(s) = Po(i) 1
={(p.9)

€ER?|Vi<j<k:pyu = epm = p(i) =p(i)}.

Of these variations of disallowing returning to abandoned conjectures, mostly NU [3] and
Dec [15] are well-studied, but also SNU [5, 18] drew some attention; however, almost all of
this work was done for the case of learning of languages (with the exception of [15]).

Note that the literature knows many more learning criteria than those constructible from
the parts given in this section (see the text book [11] or the survey [19] for an overview).

3 Learning by Enumeration

In this section we formally introduce our notions of learning by enumeration and derive some
easy statements from these definitions. We start with the general definition of learning by
enumeration.

» Definition 2. Let Z be a learning criterion and let S C R be Z-learnable by some learner
h € R. We say that h learns by enumeration iff there is a 1-1 enumeration e € R of possible
conjectures such that, for each g € R, there is a monotonically non-decreasing function r
such that e o r is the conjecture sequence of h on g. We say that a learning criterion Z allows
for learning by enumeration iff each Z-learnable set is Z-learnable by a learner learning by
enumeration. We call e the enumeration of conjectures.

Note that, since e is required to be 1-1 and r non-decreasing, in any learning sequence of
an enumeration learner h, no once abandoned hypothesis will be returned to; such abandoned
hypotheses we call refuted. This immediately gives the following remark.

» Remark. Let h learn by enumeration. Then h learns syntactically decisively. In particular,
for any learning criterion Z allowing for learning by enumeration, every Z-learnable set is
Z-learnable by a syntactically decisive learner.

From the wealth of (theoretically possible) learning criteria we quickly see that there are
learning criteria which do not allow for learning by enumeration. For example, the task of
prediction is typically modeled by using the sequence acceptance criterion M (for matching)
defined as {(p,g) | Ino¥n > ng : p(n) = g(n)}; in this case, the output of the learner is
interpreted as the prediction for the next element in the sequence, instead of as a program
(we consider the learning criterion RGM). A relaxation of the strict convergence required by
Ex is given by Fex<y, (k > 0), where a learner may oscillate between at most & different (but
correct!) hypotheses in the limit; as a somewhat unnatural variant, we let Fex_j; require
oscillation between ezactly k different (and correct) hypotheses. With these definitions, we
get the follwing theorem.
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» Theorem 3. The following learning criteria do not allow for learning by enumeration.

1. RGM.

2. RGFex_s.

3. RTdEx.

4. For some programming systems 1, RGEx,,.

In fact, all these learning criteria do not even allow for syntactically decisive learning; in the
case of all items except (3) not even for syntactically non-U-shaped learning.

At the side we remark that Theorem 3, (3) cannot be strengthened in the same way as
the other items: RTdEx-learning does allow for strongly non-U-shaped learning, as the next
theorem shows.

» Theorem 4. We have that every RTdEx-learnable set is so learnable by a strongly
non-U-shaped learner, i.e.

RTASNUEx = RTdEx.

We will see in Theorem 10 that many learning criteria allow for learning by enumeration
because of a simple padding trick, by semantically (but not syntactically) repeating any
relevant conjecture infinitely in the enumeration (see below for details). In the following defi-
nition we strengthen the definition of learning by enumeration by requiring the enumeration
of hypothesis to never semantically repeat a hypothesis.

» Definition 5. A function e € R is called semantically 1-1 iff, for all 7,7, Yei) = Pe(y)
implies ¢ = j. That is (by taking the contrapositive), different pre-images under e not only
give different images, but even semantically different images.

A learner h which learns by enumeration using some e € R as the enumeration of
conjectures is said to learn by semantically 1-1 enumeration iff e is semantically 1-1. For 7 a
learning criterion, a set S C R is said to be Z-learnable by semantically 1-1 enumeration
iff there is an Z-learner h for S learning by semantically 1-1 enumeration. We say that a
learning criterion Z allows for learning by semantically 1-1 enumeration iff each Z-learnable
set S is Z-learnable by semantically 1-1 enumeration.

Some of the power of learning by semantically 1-1 enumeration is shown in the following
remark, strengthening the conclusion of Remark 3.

» Remark. Let h learn by semantically 1-1 enumeration. Then h learns strongly decisively. In
particular, for any learning criterion Z allowing for learning by semantically 1-1 enumeration,
every Z-learnable set is Z-learnable by a strongly decisive learner.

4 The Power of Enumeration Learning

In this section we give our theorems confirming Wiehagen’s Thesis for a wide range of learning
criteria. First we look at the very important family of learning criteria which use G as their
sequence generating operator (full information learning). Note that all examples given in
[18] were from this family (but did not require total learners).

We start by giving a definition for enumerative learning in the G-setting (Definition 6)
and that of pseudo-semantic restrictions (Definition 8). After this we are ready for the first
main theorem of the paper, Theorem 10, which shows that Wiehagen’s Thesis holds for
many learning criteria using G as their sequence generating operator. With Definition 11 we
introduce patching and erasing, which will allow for us to give the second main theorem of
the paper, Theorem 13, which shows that many learning criteria with G as their sequence
generating operator even allow for semantically 1-1 enumeration.
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At the end of this section, with Theorems 16 and 17 and Corollary 18 we show that all
results carry over to It as sequence generating operator.

» Definition 6. A pair (R, ¢) where R is a total computable predicate over pairs of numbers
and (finite) data sequences and e € R is a 1-1 computable function, is called a G-style
enumeration by refutation pair iff, for all i, 0,y, R(i,c) implies R(i,oy) (i.e., R is monotone
in the second argument, any conjecture, once refuted, stays refuted) and, for all o, there is i
such that R(i,0). The associated enumeration learner h(g.) is defined such that

Vo : h(ge) (o) = e(ui.~R(i,0)).
The following theorem is straightforward to verify.

» Theorem 7. For every §, if h is a learner RGd-learning by enumeration according to
Definition 2 with some enumeration of hypotheses e, then there is some R such that h = h(g ).

In order to exclude the examples given in Theorem 3 we now make some definitions for
learning criteria which allow for learning by enumeration. Intuitively, we focus our attention
on learning criteria which consider all conjectures as ¢-conjectures, and are only interested
in syntactic properties as far as mind changes are concerned.

» Definition 8. For all p € R, we let

Sem(p) = {p'€R|Vi:ppu) =¢ph
Mc(p) = {p'€R|Vi:(p(i)=pli+1)=p'(i) =p'(i+1))}
A sequence acceptance criterion 4 is said to be a semantic restriction iff, for all (p, g) € &

and p’ € Sem(p), (p’, g) € 0. A sequence acceptance criterion ¢ is said to be a pseudo-semantic
restriction iff, for all (p,g) € 6 and p’ € Sem(p) N Mc(p), (p’, g) € 4.

Intuitively, semantic restrictions allow for arbitrarily changing the syntax of the conjec-
tures, as long as the semantics stay the same. Pseudo-semantic restrictions further require
that no additional mind changes are introduced this way.

» Example 9. Any intersection of two (pseudo-) semantic restrictions is a (pseudo-) semantic
restriction. Example semantic restrictions include Conf, Cons, Mon, PMon, NU, Dec;
pseudo-semantic restrictions include Ex, Conv, SNU and SDec. Many more learning
criteria from the literature could be added to these lists.

Example sequence acceptance criteria which are not pseudo-semantic restrictions include
M (prediction), SynNU, SynDec and several more from the literature.

With these definitions we can now formulate the first main theorem of the paper, con-
firming Wiehagen’s Thesis for a large family of G-style learning criteria.

» Theorem 10. Let § be a pseudo-semantic restriction. Then RGJI allows for learning by
enumeration.

Proof. The proof is based on a “padding trick”: we can safely refute any hypothesis as
long as we make sure that a (syntactically different) copy of the refuted hypothesis is still
available. Formally, let S € RGJ, as witnessed by a learner h € R. We define a computable
predicate R and ¢, e € R such that

)y = 0
Vo#D:clo) = pn.(h(o7),c(o7)) < (h(o),n);
Vm,n:e(m,n) = pad(m,n);>
Vi,o: R(i,o) < {(h(o),c(o)) > 1.
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Clearly, e is 1-1 and R is monotone in the second component (as ¢ is monotone). Let
g € S. Let p = G(h,g) be the conjecture sequence of h on g and p’ = G(h(g,e),9) the
conjecture sequence of h(g ) on g. It remains to show that p’ € Sem(p) N Mc(p). We start
with p’ € Sem(p). For all j, z we have®

e(@'(G),x) = olhrelgli),)

Hence, p’ € Sem(p).

Suppose j € N such that h(g[j]) = h(g[j + 1]). Then, c(g[j + 1]) = c(g[j]); hence,
for all i, R(i,g[j]) < R(i,g[j + 1]) (there are no new hypotheses rejected). Therefore,
h(r.e)(9li]) = hr.e) (gl + 1]). This shows p" € Mc(p). <

We are now interested in strengthening the conclusion of Theorem 10 by restricting the
family of learning criteria under consideration. For this we introduce variations on the notion
of a pseudo-semantic restriction.

» Definition 11. Let ¢ be a sequence acceptance criterion. We say that § allows for patching
iff, for all (p,g) € 6 and p’ € Mc(p) such that all conjectures of p’ are just as the corresponding
conjectures of p, only possibly corrected for some arguments (these corrections are called
patches); we say 0 allows for monotone patching if this holds for all p’ € Mc(p) which patch
later conjectures in all the places that earlier conjectures are patched at. Formally, § allows
for monotone patching iff, for all (p,g) € § and all p’ € Mc(p) where there is (A4, )nen such
that

Yn <m: A, C A,

Opm) (@), ifx & Ay;
@p’(n)(x) = { P

Vn,z :
g(x), ifx e A,.

we have (p/, g) € . If we drop the first requirement of monotonicity of (A, )nen, we get the
formal definition for ¢ allowing for patching.

We say that & allows for erasing iff, for all (p,g) € 6 and p’ € Mc(p) such that all
conjectures of p’ are just as the corresponding conjectures of p, only possibly made divergent
for some arguments for which no data is known (the arguments set to diverge are called
erased); we say 0 allows for monotone erasing if this holds for all p’ € Mc(p) which erase in
later conjectures at at most the places that earlier conjectures were erased at (and only on
unknown data). Finally, we say 0 allows for almost-monotone erasing iff monotone erasing
is violated only when the new conjecture corrects an earlier mistake; formally: § allows for
almost-monotone erasing iff for all (p,g) € 6 and p’ € Mc(p) we have (p/, g) € 4 if there is a

5 The function pad was defined in Section 2.
5 For convenience we write, for all a, z, ¢(a, z) instead of @, (z).
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sequence (A, )nen of subsets of N such that the following hold.
Vn A, NnA{0,...n—1} = 0;
Vn,m : n<m= (Am CA,V3dx: (Pp(m)(m) = g(m) # @p(n)(x)\lr)a

@p(n)(x)a if z §_ZA,,“
Vn,x : oy () =
#r (@) {T, itz e A,

Intuitively, an almost-monotone erasing erases less and less except when the new conjecture
corrects a convergent mistake, and only erases where no data is available.

For example, if some ¢ allows for (monotone) patching, then a RGd-learner can always
patch all known data into the conjecture (up to the last mind change — otherwise p’ € Mc(p)
will be violated). We use almost-monotone erasing in Theorem 13, where we need something
more than just monotone erasing, and do not require full erasing power for the sake of
generality. Note that any ¢ allowing for (monotone) patching or erasing is a pseudo-semantic
restriction.

» Example 12. Any intersection of two sequence acceptance criteria allowing for (monotone)
patching or erasing again allows for (monotone) patching or erasing, respectively; the same
holds for almost-monotone erasing. Examples of sequence acceptance criteria allowing for
patching and erasing are Conf, Cons and Ex; Mon and PMon allow for monotone patching
and monotone erasing. Mon, but not PMon, allows for almost-monotone erasing.

With the definition of a patching and erasing we can now give another main theorem of
the paper. The proof uses ideas from proofs in [18] (where, implicitly, special cases of this
theorem have been proven), as well as from [7], which gives a general technique for avoiding
U-shapes in language learning.

» Theorem 13. Let § allow for monotone patching and almost-monotone erasing. Then RGd
allows for learning by semantically 1-1 enumeration. Furthermore, there is an enumeration
learner which learns conservatively.

Proof. Let S € RGJ as witnessed by some learner h € R. As § allows for monotone patching,
we can assume, without loss of generality, that h patches each new conjecture with the known
data at every mind change.

Let M be the set of all finite sequences o such that either o = () or h(c~) # h(c). Note
that M is a decidable set. We can assume, without loss of generality, that M is infinite; as

otherwise we can introduce dummy members into M which will not invalidate the proof.

Thus, there is a 1-1 total computable enumeration (7;);en of all and only the elements in M
respecting the order on finite sequences (i.e., for all 4, j, if 7; C 75, then ¢ < j; in particular,
70 = 0). For all 4, we let 2(i) = h(7;) be the conjecture after the ith listed sequence and
n(i) = len(7;) the length of the ith sequence. We define e with s-m-n such that, for all ¢
and z,

@.y(x), if x <n(i) or, for all y with n(i) <y <z :

Pe(iy (@) = @z ()4 and h(pi)[y +1]) = 2(9);
T, otherwise.

Note that, for all 4, ¢.(;)[n(i)]{ = 7, as we assumed that h patches all known data into the
new conjecture at each mind change. In particular, this shows that e is semantically 1-1. We
define R as follows.

R(i,0) < 7; and o are C-incomparable or 7; C o and 3o’ : 7; C 0’ C o A h(0o') # h(r).
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A Solution to Wiehagen’s Thesis

Note that R is total computable and monotone in its second argument. Intuitively, we
always use the conjecture that A would have used, modified appropriately to ensure that the
enumeration is semantically 1-1. Clearly, (R, e) is an G-style enumeration by refutation pair.
We show that h(g ) RGd-learns S.

Let g € S. Let p = G(h,g) be the conjecture sequence of h on g and p’ = G(h(g,e), 9)
the conjecture sequence of h(g ) on g. From the order of listing of the 7; and the definition
of R we get that, for all n, p’(n) = e(i) for i such that 7; is the C-maximal element of M
with 7; C g[n]; this also gives that h made no mind change between 7; and g[n]. Thus,
we get p' € Mc(p) and, for all n, p(n) and p’(n) are semantically equivalent apart from
possibly erased arguments; let (A, )nen be the corresponding sequence of erased sets of
arguments (which are thus exactly the arguments on which the corresponding conjecture
p'(n) is undefined). Let now n < m be such that A4,, Z A,. Without loss of generality, n = 0
or p(n) # p(n — 1) and p(m) # p(m — 1). Thus, p'(n) = e(i) with 7, = g[n] and p'(m) = e(4)
with 7; = g[m]. Then we get from patching that ¢, (m)(m — 1) = g(m — 1). Furthermore,
A,, contains only numbers > m, and since A,, is closed upwards and A,, € A,, we get
m —1¢ A,. This shows that @, (,,)(m — 1) = @) (m — 1) converges; thus, it converges to
the same value as ¢,y on m — 1. However, this value cannot equal g(n), as this value leads
to a mind change (this we get from 7; € M), and any value leading to a mind change would
be erased by the definition of e. <

We can see the deep power and versatility of Theorem 13 in connection with Remark 3 and
the various examples of sequence acceptance criteria fulfilling the prerequisites of Theorem 13,
which leads, for example, to the following corollary.

» Corollary 14. The following learning criteria allow for learning strongly decisively and
conservatively. RGEx; RGConfEx; RGConsEx; RGMonEx; RGConsMonEx.

At the side we remark that Theorem 13 cannot be improved to apply also to pseudo-monotone
learning, as the following Theorem shows.

» Theorem 15. There is a RGPMonEx-learnable set of functions which cannot be so
learned strongly non-U-shapedly.

Finally, we show that analogous theorems can also be derived for iterative learning.
Theorem 16 is analogous to Theorem 10, and Theorem 17 is analogous to Theorem 13; both
proofs are also analogous, but different in some details.

» Theorem 16. Let 6 be a pseudo-semantic restriction. Then RItd allows for learning by
enumeration.

» Theorem 17. Let § allow for monotone patching and almost-monotone erasing. Then RItd
allows for learning by semantically 1-1 enumeration. Furthermore, there is an enumeration
learner which learns conservatively.

Just as in the case of G-style learning, were we got a powerful corollary (Corollary 14),
we get the analogous corollary also for It-style learning.

» Corollary 18. The following learning criteria allow for learning strongly decisively and
conservatively. RItEx; RItConfEx; RItConsEx; RItMonEx; RItConsMonEx.
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