
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014 643

Convergence of Hypervolume-Based
Archiving Algorithms

Karl Bringmann and Tobias Friedrich

Abstract—Multiobjective evolutionary algorithms typically
maintain a set of solutions. A crucial part of these algorithms is
the archiving, which decides what solutions to keep. A (μ + λ)-
archiving algorithm defines how to choose in each generation
μ children from μ parents and λ offspring together. We study
mathematically the convergence behavior of hypervolume-based
archiving algorithms. We distinguish two cases for the offspring
generation. A best-case view leads to a study of the effectiveness
of archiving algorithms. It was known that all (μ + 1)-archiving
algorithms are ineffective, which means that a set with maximum
hypervolume is not necessarily reached. We prove that for λ < μ,
all archiving algorithms are ineffective. We also present upper
and lower bounds for the achievable hypervolume for different
classes of archiving algorithms. On the other hand, a worst-
case view on the offspring generation leads to a study of the
competitive ratio of archiving algorithms. This measures how
much smaller hypervolumes are achieved due to not knowing the
future offspring in advance. We present upper and lower bounds
on the competitive ratio of different archiving algorithms and
present an archiving algorithm, which is the first known compu-
tationally efficient archiving algorithm with constant competitive
ratio.

Index Terms—Hypervolume indicator, multiobjective optimiza-
tion, optimization methods, performance measures, selection.

I. INTRODUCTION

MANY real-world optimization problems have multiple
objectives such as time versus cost. This implies that

in general there is no unique optimum, but an often very large
(or even infinite) set of incomparable solutions that form the
Pareto front. Multiobjective optimizers deal with this by try-
ing to find a small set of trade-off solutions that approximate
the Pareto front. They typically keep a bounded archive of μ

points (population) in order to capture the output of the search
process. In each round they generate λ new points (offspring)
by mutation and crossover. The key question is then how to
select μ individuals from a larger population. We consider the
so-called plus selection strategy, in which the next population
is chosen out of the λ offspring and μ parents together. We call
a specific replacement strategy a (μ+λ)-archiving algorithm,

Manuscript received December 3, 2013; revised April 9, 2014 and
July 8, 2014; accepted July 10, 2014. Date of publication July 22, 2014;
date of current version September 29, 2014. This work was supported in
part by a Google European Doctoral Fellowship and in part by the European
Union Seventh Framework Programme under Grants FP7/2007-2013 and
618091 (SAGE).

K. Bringmann is with the Max Planck Institute for Informatics, 66123
Saarbrücken, Germany (e-mail: karl.lastname@mpi-inf.mpg.de).

T. Friedrich is with the Friedrich-Schiller-Universität Jena, 07743 Jena,
Germany (e-mail: lastname@uni-jena.de).

Digital Object Identifier 10.1109/TEVC.2014.2341711

which defines how to choose a new population of μ children
from the union of μ parents and λ offspring.

The goal for hypervolume-based multiobjective evolution-
ary algorithms (MOEAs) is to maximize the hypervolume
indicator of the output population, which is the volume of
the dominated portion of the objective space (see Section II
for a formal definition). For this type of MOEA, two archiving
algorithms are known in the literature.

1) A locally optimal archiving algorithm returns a subset
of μ points from the given μ + λ points such that the
hypervolume indicator is maximized.

2) A greedy archiving algorithm deletes a point such that
the hypervolume of the remaining points is maximal.
This is repeated until only μ points are left.

Many hypervolume-based algorithms such as SIBEA [17],
SMS-EMOA [1], or the generational MO-CMA-ES [10], [11]
use greedy archiving algorithms. As locally optimal algorithms
have to choose the best out of a large number,

(
μ+λ
μ

)
, of subsets

of the given points, they are generally considered to be com-
putationally infeasible. Note that a locally optimal archiving
algorithm in general does not maximize the hypervolume over
multiple generations. However, it still seems to have superior
theoretical properties. It has long been known that the result-
ing point sets of both algorithms differ [3], and that the deleted
hypervolume (the contribution of the deleted points) can even
be arbitrarily larger for greedy archiving algorithms compared
to locally optimal algorithms [6]. We prove in this paper that
all locally optimal and all greedy archiving algorithms have to
solve NP-hard problems (see Theorem 1 and Observation 1).
Hence, such algorithms are not computationally efficient
unless P = NP.

We want to study the intrinsic limitations of and the poten-
tial provided by hypervolume-based archiving algorithms.
Beyond the smaller classes of locally optimal and greedy
archiving algorithms we thus also consider the following two
natural classes of archiving algorithms.

1) A nondecreasing archiving algorithm chooses the popu-
lation of children such that the dominated hypervolume
does not decrease compared to the parent generation.

2) An increasing archiving algorithm chooses the popula-
tion of children such that the dominated hypervolume
increases compared to the parent generation, unless there
is no subset of population and offspring with a larger
dominated hypervolume.

Both are intuitively desirable properties for hypervolume-
based archiving algorithms. We will see that there are
algorithms which are nondecreasing, but not increasing

1089-778X c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

644 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

(see Algorithms 4 and 5). Moreover, we prove that both
classes significantly differ. There are nondecreasing archiv-
ing algorithms which are better and faster than all increasing
archiving algorithms (see Sections I-B and I-C for more
detailed statements).

To rigorously study the impact of archiving algorithms on
convergence, we cannot concentrate only on single iterations,
but have to consider multiple generations of populations. We
model this long run behavior with the initial population being
the worst-case input to the archiving algorithm, followed by
some kind of offspring generation, and we then ask whether
we arrive at a population with a large hypervolume. Note that
it makes no sense to take a best-case view on the initial pop-
ulation as then the initial population already maximizes the
hypervolume. It is also not meaningful to take a best-case
view on the objective space as this implies that it contains
only the population maximizing the hypervolume. There are
two natural assumptions on the offspring generation: best-case
and worst-case. A best-case offspring generation is always
“lucky,” that is, we ask whether there exists a sequence of
offspring sets such that the archiving algorithm ends up in a
population maximizing the hypervolume. On the other hand, a
worst-case offspring generation is always “unlucky,” that is, we
assume an adversary selects the offspring and ask how close
the achieved hypervolume of an archiving algorithm gets com-
pared to the achievable hypervolume if we had known which
offspring would come in the future.

Assuming a best-case or worst-case view allows us study-
ing archiving algorithms independent of specific variation
operators. Both assumptions give rise to interesting results
(see Sections I-A and I-B). Negative results for the best-
case are very general as they show the limitations of all
archiving algorithms. On the other hand, an algorithm with
proven worst-case performance works for every offspring
generation and therefore has a guarantee for all possible
scenarios.

We summarize our results in Section I-A–I-C. In Section II
we introduce the basic concepts and notation. Section III gives
some technical basics regarding the hypervolume. Section IV
studies the computational complexity of increasing archiv-
ing algorithms. The main results are afterwards presented in
Sections V and VI. In Section V we consider a best-case
choice of the offspring and analyze which archiving algo-
rithms are effective. In Section VI we consider a worst-case
view on offspring generation and study the competitiveness of
archiving algorithms.

This paper extends previous results of two conference
papers of the authors [8], [9] in several directions. We
present in Section III several new basic properties of the
hypervolume indicator. We also introduce in Section VI-D a
new technique for transferring approximation lower bounds
to lower bounds for competitiveness, and present a num-
ber of other new results (e.g. Theorem 4). Moreover, after
the publication of [8], Ulrich and Thiele [15] presented an
improved upper bound on the approximation achieved by
increasing archiving algorithms. We now prove in Theorem 7
an upper bound which is again stronger than the one of
Ulrich and Thiele [15].

A. Results on Effectiveness

Most previous work in this setting [15], [18] assumes a best-
case perspective on the offspring generation. This means that
we ask whether, for each population, there exists a sequence
of offspring sets such that the archiving algorithm ends up
in a population maximizing the hypervolume. This can be
formalized with the notion of effectiveness. An archiving algo-
rithm is effective if there is a sequence of offspring such
that the algorithm reaches an optimum. Zitzler et al. [18]
proved that all nondecreasing (μ+ 1)-archiving strategies are
ineffective (see Theorem 2) while there are effective nonde-
creasing (μ + μ)-archiving algorithms (see Theorem 3). We
additionally prove in Theorem 4 that all increasing (μ + μ)-
archiving strategies are effective. Zitzler et al. [18] left open
what happens for general (μ + λ)-archiving algorithms. We
answer this with Theorem 5 and prove that all nondecreasing
(μ+ λ)-archiving strategies are ineffective for λ < μ.

In order to measure how close to an optimal set the best
reachable sets for λ < μ are, we call an archiving algorithm
α-approximate if it can always reach a set with a hypervolume
at least 1/α times the largest possible hypervolume. We prove
in Theorem 6 that no nondecreasing (μ + λ)-archiving algo-
rithm can be better than

(
1+0.1338

(1
λ
− 1

μ

)−ε
)
-approximate

for any ε > 0. This bound can be tightened for a relaxed vari-
ant of the hypervolume, which is defined relative to a reference
set instead of a single reference point. For this less restrictive
setting, Ulrich and Thiele [15] showed a lower bound of 1+ 1

2λ
for λ < μ.

On the other hand, the authors [8, Th. 4.3] showed
that every increasing (μ + λ)-archiving algorithm reaches a
(2 + ε)-approximation for any ε > 0. Using that the
hypervolume indicator is nondecreasing submodular, this
upper bound was improved by Ulrich and Thiele [15]. We
now again improve their results and show in Theorem 7
that every increasing (μ + λ)-archiving algorithm reaches a(
2− λ

μ
+ ε

)
-approximation for any ε > 0.

B. Results on Competitiveness

We can also assume a worst-case perspective on both the
initial population and offspring generation. This corresponds
to the well-known concept of competitive analysis. It has
already been observed that archiving algorithms fit nicely
in this classical theory developed for online algorithms [2].
López-Ibáñez et al. [12, p. 59] suggested it as an open prob-
lem “to use competitive analysis techniques from the field of
online algorithms to obtain worst-case bounds, in terms of a
measure of ‘regret’ for archivers.”

We consider the initial population and offspring as worst-
case input and ask again how large a hypervolume we can get.
In this case, however, the adversary, who selects the offspring,
can limit the search to a very small part of the search space,
and it is therefore impossible in general to reach the optimum
hypervolume. This motivates the following definition. We say
an archiving algorithm is α-competitive if for all initial popu-
lations and offspring it reaches a hypervolume which is only a
factor 1/α smaller than the hypervolume of the best μ points
seen (see Definition 10).

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 645

On the negative side, we prove that all increasing archiv-
ing algorithms are at best μ-competitive (see Theorem 10).
This means that there is a sequence of offspring such that
the hypervolume of the μ individuals chosen iteratively by
an algorithm which maximizes the hypervolume in each step
is μ times larger than the maximum hypervolume achiev-
able by another choice of μ individuals. This lower bound
of μ on the competitive ratio is in fact tight for all locally
optimal algorithms and all increasing (μ+ 1)-archiving algo-
rithms (see Theorem 9). This implies that the notion of
competitiveness measures no difference between all archiving
algorithms of these two classes as they meet exactly the same
bound.

However, on the positive side, we are able to design
an archiving algorithm that is 4 + 2/μ-competitive
(see Theorem 11), which implies a constant competitive
ratio compared to the unbounded ratio of μ from above. It is
a nondecreasing archiving algorithm which is not increasing,
i.e., there are populations and offspring where we stay with
the current population, although the offspring allows an
increase in hypervolume. This proves that significantly better
competitive ratios can be achieved for archiving algorithms
which are not increasing compared to the typically used
increasing archiving algorithms. The algorithm works as
follows (for details see Algorithm 4). It adds offspring
one by one to the current population. Considering the
population and an offspring, we compute the hypervolume
for exchanging the offspring with any other point in the
population. We take the best exchange only if it increases
the population’s hypervolume by at least a certain minimal
factor.

C. Results on Computational Efficiency

We prove that all increasing archiving algorithms solve
an NP-hard problem (see Theorem 1), assuming that the
number of dimensions is part of the input. This implies
that all common greedy archiving algorithms are not com-
putationally efficient for unbounded dimension unless P = NP
(see Observation 1). This still allows archiving algorithms
which are not increasing to be computationally efficient.
Indeed, we also prove that a randomized variant of our afore-
mentioned 4 + 2/μ-competitive archiving algorithm can be
made to run efficiently (see Theorem 12). Note that this
is in sharp contrast to the large set of increasing archiv-
ing algorithms, which all have a worse competitive ratio
(see Theorem 10) and a worse computational complexity
(see Theorem 1) compared to the proposed new archiving
algorithm. The underlying reason why the new algorithm can
beat all increasing archiving algorithms is that approximating
the hypervolume is tractable even in high dimensions [5] and
for the new algorithm it is sufficient only to approximate the
hypervolume, as it checks only for constant factor increases.
Although the new archiving algorithm might not be used as-is
in any practical MOEAs, it is a proof of concept that there
are computationally efficient archiving algorithms which can
beat the competitive ratio of the thus far typically used locally
optimal and greedy archiving algorithms.

Algorithm 1: General (μ+ λ)-MOEA

1 P0 ← initialize with μ individuals;
2 for i← 1 to N do
3 Qi ← generate λ offspring ;
4 Pi ← select μ individuals from Pi−1 ∪ Qi

II. PRELIMINARIES

This section formally introduces all necessary notation. The
two most fundamental concepts are the hypervolume indica-
tor (Section II-A) and archiving algorithms (Section II-B).
The combination of both, i.e., hypervolume-based archiving
algorithms, are introduced in Section II-C.

We consider maximization problems with vector-valued
objective functions

f : X → R
d

where X denotes an arbitrary search space. The feasible points
Y : = f (X) are called the objective space. Consider the
following abstract framework of a MOEA.

We want to make no assumptions about the specific search
space X , nor an assumption on how the points are initial-
ized (see line 1 of Algorithm 1), nor an assumption how
offspring is generated (see line 3 of Algorithm 1). Therefore,
we assume that both the search space and the initialization
are the worst case, and we assume that offspring genera-
tion is either the best case (see Section V) or worst case
(see Section VI). Our main concern is how the population
of children is chosen (see line 4 of Algorithm 1). We will
formally define and discuss different archiving algorithms in
Sections II-B and II-C.

We use the terms archive and population synonymously for
the set of current solutions Pi of Algorithm 1. In concrete
MOEAs, populations are subsets of the search space. As we
do not want to assume any structural properties of the search
space, we abstract from the search space and will only work on
the objective space Y ⊆ R

d in the remainder. We therefore also
identify individuals with points in the d-dimensional Euclidean
space.

Definition 1: A population P is a finite multiset and a sub-
set of R

d. If an objective space Y ⊆ R
d is fixed, we require

P ⊆ Y . We call P a μ-population if |P| � μ.

A. Hypervolume Indicator

The hypervolume indicator HYP(P) [16] of a finite set P ⊂
R

d is the volume of the union of regions of the objective space
which are dominated by P and bounded by a reference point
r = (r1, . . . , rd). More precisely, for p = (p1, . . . , pd) ∈ P
define box(p) := [r1, p1]×. . .×[rd, pd] (which is only defined
if pi � ri for all i). Then

HYP(P) := VOL

(⋃

p∈P

box(p)

)

where VOL is the usual Lebesgue measure in R
d. Computing

HYP(P) requires time n�(d) [4] (unless the exponential time
hypothesis fails), but can be approximated very efficiently in
polynomial time [5].

646 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Algorithm 2: General (μ+ λ)-Archiving Algorithm
input : μ-population P, λ-population Q
output: μ-population P′ with P′ ⊆ P ∪ Q

We fix the reference point w.l.o.g. to r = 0d, since trans-
lations do not change any of our results. This means that the
reference point is globally fixed and known to the archiving
algorithm. Additionally, HYP is now defined for any finite
point set P ⊂ R

d+. Here and throughout the paper, we denote
by R+ the positive real numbers, and we will assume that the
objective space Y is a subset of R

d+ from now on.
The aim of a hypervolume-based MOEA is to find a set P∗

of size μ which maximizes the hypervolume, that is

HYP(P∗) = maxHYPμ(Y)

where we define for all Y ⊆ R
d+

maxHYPμ(Y) := sup
P⊆Y
|P|�μ

HYP(P).

In the remainder of the paper, the set Y will often be
finite. In these cases, the supremum in the definition of
maxHYPμ(Y) becomes a maximum. However, for infinite sets
the supremum is necessary in general.

The contribution of a point p to a population P is

CONP(p) := HYP(P+ p)− HYP(P− p).

Here and throughout the paper, we use the notation P + p
for P ∪ {p} and P − p for P \ {p}. Note that this definition
of the contribution makes sense for p ∈ P (in which case it
is the hypervolume we lose by deleting p from P) as well
as for p �∈ P (in which case it is the hypervolume we gain
by adding p to P). Also note that according to the definition
of CONP(p), the contributing hypervolume of a dominated
individual is zero. We further generalize CON for any finite
P, Q ⊂ R

d+ by setting

CONP(Q) := HYP(P ∪ Q)− HYP(P \ Q).

B. Archiving Algorithms

We now specify more formally how to choose the μ indi-
viduals of the succeeding population in line 4 of Algorithm 1.
For this, we consider the following general framework of an
archiving (see Algorithm 2).

Note that any (μ+λ)-archiving algorithm is also a (μ+λ′)-
archiving algorithm for any λ′ < λ, as we then allow only a
subset of the inputs, namely with smaller offspring popula-
tion Q. We do not make any assumptions on the runtime of
an archiving algorithm. In fact, as hypervolume computation is
#P-hard [5], most hypervolume-based archiving algorithms are
not computable in polynomial time in the number of objec-
tives d. We will use the following notation to describe an
archiving algorithm.

Definition 2: A (μ+ λ)-archiving algorithm A is a partial
mapping A : 2R

d+ × 2R
d+ �→ 2R

d+ such that for a μ-population
P and a λ-population Q, A(P, Q) is a μ-population and
A(P, Q) ⊆ P ∪ Q.

For convenience, we sometimes drop the prefix (μ+λ) and
just refer to an archiving algorithm (or even shorter: algorithm)
without specifying μ and λ. With this notation, we can now
formally describe the generation process of Algorithm 1 as
follows.

Definition 3: Let P0 be a μ-population and Q1, . . . , QN a
sequence of λ-populations. Then we set

Pi := A(Pi−1, Qi) for all i = 1, . . . , N.

With slight abuse of notation we also set

A(P0, Q1, . . . , Qi) := Pi for all i = 1, . . . , N.

C. Hypervolume-Based Archiving Algorithms

We now specify four classes of hypervolume-based archiv-
ing algorithms. The first one only requires the archiving
algorithms to never return a solution with a smaller hyper-
volume

Definition 4: A (μ + λ)-archiving algorithm A is nonde-
creasing, if for all inputs P and Q we have

HYP(A(P, Q)) � HYP(P).

Most hypervolume-based archiving algorithms are nonde-
creasing. However, the class also contains ineffective algo-
rithms such as the algorithm which always returns P.

The second, slightly smaller class of hypervolume-based
archiving algorithms is defined as follows.

Definition 5: A (μ+ λ)-archiving algorithm A is increas-
ing, if it is nondecreasing and for all inputs P and Q
with

maxHYPμ(P ∪ Q) > HYP(P)

we have

HYP(A(P, Q)) > HYP(P).

Moreover, we define locally optimal and greedy archiving
algorithms. Note that for both classes there is more than one
archiving algorithm fulfilling the respective definition, as ties
may be broken arbitrarily.

Definition 6: A (μ + λ)-archiving algorithm A is locally
optimal, if for all inputs P and Q we have

HYP(A(P, Q)) = maxHYPμ(P ∪ Q).

Definition 7: A (μ + λ)-archiving algorithm A is greedy,
if there are functions A′, a′, A′(P) = P − a′(P) with
a′(P) ∈ argminp∈P CONP(p) such that for all inputs P and Q
we have

A(P, Q) = A′ ◦ . . . ◦A′︸ ︷︷ ︸
λ times

(P ∪ Q).

The rest of the paper focuses on increasing and nondecreas-
ing archiving algorithms. Their relation to locally optimal and
greedy archiving algorithms is as follows.

Observation 1: Greedy (μ + 1)-archiving algorithms and
locally-optimal (μ + λ)-archiving algorithms are increas-
ing archiving algorithms. Greedy (μ + λ)-archiving algo-
rithms are not necessarily nondecreasing archiving algorithms
for λ > 1.

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 647

This observation allows us to translate all forthcoming
bounds for increasing (or nondecreasing) archiving algorithms
to locally-optimal archiving algorithms and greedy (μ + 1)-
archiving algorithms. Moreover, since the computational hard-
ness (see Theorem 1) and the lower bound for the competitive
ratio (see Theorem 10) apply to the restriction of a greedy
algorithm to λ = 1, they also apply to greedy algorithms in
general. However, some of our results do not hold for greedy
algorithms when λ > 1.

Consider the following variant of greedy algorithms. A
nondecreasing greedy archiving algorithm takes the output
P′ = A(P, Q) of a greedy archiving algorithm A and returns
either P′ or P, whichever set has higher hypervolume (where
ties may be broken arbitrarily). This postprocessing makes
much sense, as it prohibits decreasing the hypervolume of our
population. In fact, all of our results for increasing or nonde-
creasing archiving algorithms also hold for such nondecreasing
greedy archiving algorithms, except for the upper bounds in
Theorems 3, 4, and 7. Since we are more interested in lower
bounds for (nondecreasing) greedy algorithms, we did not try
to reprove these upper bounds.

III. TECHNICAL BASICS

In this section we show basic properties of HYP and CON
that will be used in later proofs. We start with some very basic
facts.

Lemma 1: For any finite P ⊆ P′ ⊂ R
d+ we have:

1) (nonnegativity) HYP(P) � 0;
2) (monotonicity) HYP(P) � HYP(P′);
3) (empty set) HYP(∅) = 0.
Proof: Recall that HYP(P) = VOL(

⋃
p∈P box(p)). Since

volume in R
d is nonnegative, so is HYP. Moreover, for P ⊆ P′

we have
⋃

p∈P box(p) ⊆ ⋃
p∈P′ box(p), so that HYP(P) �

HYP(P′). Lastly, HYP(∅) = VOL(∅) = 0.
From the above facts and the definition of CON we directly

obtain similar facts about CON.
Lemma 2: For any finite Q, P ⊂ R

d+ we have:
1) CONP(Q) � 0;
2) CONP(∅) = 0 and CON∅(Q) = HYP(Q);
3) CONP(Q) = CONP∪Q(Q) = CONP\Q(Q).
Proof: For CONP(Q) = HYP(P ∪ Q)− HYP(P \ Q) non-

negativity follows from P \ Q ⊆ P ∪ Q and monotonicity of
HYP.

Note that CONP(∅) = HYP(P ∪ ∅) − HYP(P \ ∅) = 0.
Furthermore, CON∅(P) = HYP(∅ ∪ P) − HYP(∅ \ P) =
HYP(P).

Lastly, since P ∪ Q = (P ∪ Q) ∪ Q = (P \ Q) ∪ Q and
P \ Q = (P ∪ Q) \ Q = (P \ Q) \ Q we have CONP(Q) =
HYP(P ∪ Q)− HYP(P \ Q) = CONP∪Q(Q) = CONP\Q(Q).

We will often make use of telescoping sums such as the
following.

Lemma 3: Let P = {p1, . . . , pμ} ⊂ R
d+ and set Pi : =

{p1, . . . , pi}. Then we have for any 0 � i � μ

HYP(P) = HYP(Pi)+
μ∑

j=i+1

CONPj(pj).

Proof: Follows from CONPj(pj) = HYP(Pj + pj) −
HYP(Pj − pj) = HYP(Pj)− HYP(Pj−1).

One of the most fundamental facts about HYP is that it is
submodular [13], as has been observed by Ulrich and Thiele
[15, Th. 1]. The following Lemma 4 presents a short proof of
this property.

Lemma 4: (Submodularity) For any finite P ⊆ P′ ⊂ R
d+

and Q ⊂ R
d+ we have

CONP(Q) � CONP′(Q).

Proof: Recall that HYP(T) = VOL(
⋃

p∈T box(p)) for
any finite T ⊂ R

d+. Let BT : = ⋃
p∈T box(p) so that

HYP(T) = VOL(BT). Using the definitions of CON and BT

and the facts BP\Q ⊆ BP∪Q and (P ∪ Q) \ (P \ Q) = Q
we obtain CONP(Q) = HYP(P ∪ Q) − HYP(P \ Q) =
VOL(BP∪Q)−VOL(BP\Q) = VOL(BP∪Q \BP\Q) = VOL(BQ \
BP\Q), and similarly for P′. Now, since P ⊆ P′ we have
BP\Q ⊆ BP′\Q, so that BQ \ BP\Q ⊇ BQ \ BP′\Q. Hence,
CONP(Q) � CONP′(Q).

We need a simple lower bound for HYP in terms of CON.
Lemma 5: For any finite P ⊂ R

d+ we have

HYP(P) �
∑

p∈P

CONP(p).

Proof: It follows from Lemma 6 below by setting λ = 1.

More generally, we have the following lower bound.
Lemma 6: For any P ⊂ R

d+ of size μ and λ � μ we have

HYP(P) � 1
(
μ−1
λ−1

)
∑

T⊆P
|T|=λ

CONP(T).

Proof: For ε > 0 and x̄ = (x1, . . . , xd) ∈ N
d
0 let Aε

x̄ : =
[x1ε, (x1 + 1)ε]× . . .× [xdε, (xd + 1)ε]. We call Aε

x̄ (or x̄) an
atom. For p ∈ P let Iε(p) := {x̄ ∈ N

d
0 | Aε

x̄ ⊆ box(p)} and for
T ⊆ P let Iε(T) := ⋃p∈T Iε(p). Since (the indicator function
of) a box is Riemann-integrable and since VOL(Aε

x̄) = εd we
have

VOL(box(p)) = lim
ε→0

VOL

(⋃

x̄∈Iε(p)

Aε
x̄

)
= lim

ε→0
εd|Iε(p)|.

For the same reasons, we have HYP(P) =
limε→0 εd|Iε(P)|, which implies for any T ⊆ P that
CONP(T) = limε→0 εd|Iε(P) \ Iε(P \ T)|. Hence, it suffices
to show

|Iε(P)| � 1
(
μ−1
λ−1

)
∑

T⊆P
|T|=λ

|Iε(P) \ Iε(P \ T)| (1)

then the claim follows by letting ε→ 0. To this end, consider
any atom x̄ ∈ Iε(P). Note that all atoms that are counted in
any term of inequality (1) are in Iε(P). Let Z = {p ∈ P |
x̄ ∈ Iε(p)}. Then x̄ ∈ Iε(P) \ Iε(P \ T) if and only if T ⊇ Z
(since x̄ ∈ Iε(p) ⊆ Iε(P \ T) for any p ∈ Z \ T). Hence, Aε

x̄
appears in

(
μ−|Z|
λ−|Z|

)
�
(
μ−1
λ−1

)
summands on the right hand side

of inequality (1), while it appears exactly once on the left hand
side. This proves the claim.

648 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

We remark that instead of using atoms one could also phrase
this proof using volume elements known from mathematical
analysis.

Alternatively, we can bound HYP from above in terms of
the hypervolumes of the single points.

Lemma 7: For any finite P ⊂ R
d+ we have

HYP(P) �
∑

p∈P

HYP({p}).

Proof: Follows from Lemma 8 below if we set A = ∅.
We can slightly generalize the above bound as

follows.
Lemma 8: Let A, B ⊂ R

d+ be finite and set P := A ∪ B.
Then we have

HYP(P) � HYP(A)+
∑

b∈B

CONA(b).

Proof: Follows from Lemma 9 below by setting λ = 1.
Even more general, we can prove an upper bound as

follows.
Lemma 9: Let A, B ⊂ R

d+ be finite and set P := A ∪ B.
Let |B| = μ and λ � μ. Then we have

HYP(P) � HYP(A)+ 1
(
μ−1
λ−1

)
∑

T⊆B
|T|=λ

CONA(T).

Proof: Since HYP(P) − HYP(A) = HYP(A ∪ (B \ A)) −
HYP(A \ (B \ A)) = CONA(B \ A), we may prove instead the
equivalent statement

CONA(B \ A) � 1
(
μ−1
λ−1

)
∑

T⊆B
|T|=λ

CONA(T). (2)

As in the proof of Lemma 6 we use atoms as follows. For
ε > 0 and x̄ = (x1, . . . , xd) ∈ N

d
0 we let Aε

x̄ := [x1ε, (x1 +
1)ε] × . . . × [xdε, (xd + 1)ε] be an atom. For p ∈ P we let
Iε(p) : = {x̄ ∈ N

d
0 | Aε

x̄ ⊆ box(p)} and for T ⊆ P we let
Iε(T) :=⋃p∈T Iε(p). As in the proof of Lemma 6, we obtain
for any T ⊆ B

CONA(T) = lim
ε→0

εd|Iε(A ∪ T) \ Iε(A \ T)|.
Since (A ∪ T) \ (A \ T) = T , this can be simplifed to

CONA(T) = lim
ε→0

εd|Iε(T) \ Iε(A \ T)|.
Hence, it suffices to show

|Iε(B \ A) \ Iε(A \ (B \ A))| =
|Iε(B \ A) \ Iε(A)| � 1

(
μ−1
λ−1

)
∑

T⊆B
|T|=λ

|Iε(T) \ Iε(A \ T)|

(3)

then statement (2) follows by letting ε → 0. Consider any
atom x̄ ∈ Iε(B \ A) \ Iε(A) [i.e., that appears on the left hand
side of inequality (3)] and let b ∈ B \ A with x̄ ∈ Iε(b).
Then for any T with b ∈ T ⊆ B and |T| = λ we have x̄ ∈
Iε(T) \ Iε(A) ⊆ Iε(T) \ Iε(A \T). As there are

(
μ−1
λ−1

)
such sets

T , the atom Aε
x̄ is counted at least

(
μ−1
λ−1

)
times on the right

hand side of inequality (3). This proves inequality (3) and,
thus, the claim.

IV. COMPUTATIONAL COMPLEXITY

We first study the computational complexity of the large
class of increasing archiving algorithms. This includes locally
optimal and greedy archiving algorithms (see Observation 1).
We prove that all increasing archiving algorithms solve an
NP-hard problem and are thus not computationally efficient
unless P = NP. By reduction from the known hardness of com-
puting a least contributor of a set of points, we show the
following theorem.

Theorem 1: All increasing archiving algorithms solve an
NP-hard problem (if d is part of the input).
Proof: We reduce from the problem of computing a least con-
tributor of a set of points. Given P ⊆ R

d+ of size n, compute
a point p ∈ P with CONP(p) minimal (see Section II-A for
the definition). This problem is NP-hard according to [7].

Let P be an instance to the least contributor problem, and let
A be an increasing archiving algorithm. We compute A(p) :=
P \A(P− p, {p}) for each p ∈ P. This is the point with which
the archiving algorithm A exchanges p given population P−p
and offspring {p}.

Consider the graph with vertex set P and directed edges
(p, A(p)) for each p ∈ P. This graph may have self-loops.
It includes a directed cycle as a subgraph. Starting at any
point and always following the unique out-edge we will at
some point see an already visited point again; this means we
traversed a cycle (after some initial path).

Let (p0, . . . , pk−1) be such a cycle. It can have length k = 1,
if the cycle is a self-loop. Since A(pi) = pi+1 (with indices
modulo k) and the archiving algorithm is increasing—thus also
nondecreasing—we have HYP(P− pi+1) � HYP(P− pi) for
all i ∈ {0, . . . , k − 1}. Hence, all HYP(P − pi) are equal;
in particular HYP(P − p0) = HYP(P − A(p0)). Since the
archiving algorithm is increasing, this means that no increase
was possible given population P− p0 and offspring {p0}, and,
hence, that HYP(P − p0) = HYP(P) − CONP(p0) is max-
imal among all HYP(P − p). In other words, CONP(p0) is
minimal and p0 is a least contributor. The same holds for
all other points p ∈ P that lie on a directed cycle in the con-
structed graph. Thus, we can compute a least contributor using
any increasing archiving algorithm. This reduction proves
that all increasing archiving algorithms solve an NP-hard
problem.

Theorem 1 above shows that only archiving algorithms
which are not increasing in the meaning of Definition 5 might
be computationally efficient (unless P = NP). In Section VI-C
we indeed present such a nondecreasing archiving algorithm,
which is not increasing, but has a polynomial runtime.

V. EFFECTIVENESS

Without any additional assumptions on the specific MOEA
and problem at hand, we can only assume the initial popula-
tion to be the worst case. A best-case view makes no sense,
as then the initial population already maximizes the hypervol-
ume. On the other hand, there are two possible ways to choose
offspring: worst-case and best-case options. In this section
we consider the best-case choice of the offspring and ana-
lyze which archiving algorithms are effective, that is, are able

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 649

to reach the optimum. This is complemented by a worst-case
perspective on the choice of the offspring in Section VI.

More formally, this section elaborates whether for a given
archiving algorithm A and all finite objective spaces Y and
initial populations P0 ⊆ Y , there is a sequence of off-
spring such that the archiving algorithm runs on P0 and
the sequence of offspring generates a population maximizing
the hypervolume on Y . As discussed above, this corre-
sponds to a worst-case view on the problem (i.e., objective
space Y and initial population P0), but a best-case view on
the drawn offspring. This is summarized in the following
definition.

Definition 8: A (μ + λ)-archiving algorithm A is effec-
tive, if for all finite sets Y ⊂ R

d+ and μ-populations P0 ⊆ Y
there exists an N ∈ N and a sequence of λ-populations
Q1, . . . , QN ⊆ Y such that

HYP(A(P0, Q1, . . . , QN)) = maxHYPμ(Y).

Here, we require the objective spaces Y to be finite, as
infinite objective spaces do not necessarily have a hypervolume
maximizing μ-population. This is no real restriction as for
infinite objective spaces the following negative result of Zitzler
et al. [18] remains valid.

Theorem 2: There is no effective nondecreasing (μ + 1)-
archiving algorithm (for μ > 1).

Note that we have reformulated the statement of
[18, Cor. 4.6] in our notation defined above. We do not
give a separate proof for Theorem 2 as it directly follows
from Theorem 5 below. Theorem 2 assumes λ = 1. The
corresponding result for λ = μ follows from [18, Th. 4.4].

Theorem 3: There is an effective nondecreasing (μ+ μ)-
archiving algorithm.

We do not give a direct proof for Theorem 3 as it fol-
lows from Theorem 4 below. In order to show Theorem 3,
observe that there is an increasing (μ+μ)-archiving algorithm.
Theorem 4 below shows that this increasing (μ+μ)-archiving
algorithm is also effective. As every increasing archiving
algorithm is also nondecreasing, this proves Theorem 3.

Since Theorem 3 is only an existential statement, it is nat-
ural to ask what effective nondecreasing (μ + μ)-archiving
algorithms look like. The authors showed in [8, Th. 3.4] that
all (μ + μ)-archiving algorithms A with HYP(A(P, Q)) �
HYP(Q) for all P, Q are effective. This implies that all locally
optimal (μ + μ)-archiving algorithms are effective. The fol-
lowing Theorem 4 shows another generalization of Theorem 3,
which also implies that all locally optimal (μ+ μ)-archiving
algorithms are effective.

Theorem 4: All increasing (μ + μ)-archiving algorithms
are effective.

Proof: Let Y be any finite objective space and P0 ⊂ Y of
size μ. Moreover, let P∗ maximize the hypervolume on Y ,
i.e., HYP(P∗) = maxHYPμ(Y). We set Qi : = P∗ for i =
1, . . . , N and N sufficiently large. Then all populations satisfy
Pi ⊆ P0∪P∗ for i = 0, . . . , N. Note that as long as HYP(Pi) <

HYP(P∗) we have maxHYPμ(Pi ∪ Qi+1) = HYP(Qi+1) =
HYP(P∗) > HYP(Pi), so an improvement is possible. Hence,
any increasing archiving algorithm will choose a subset Pi+1 ⊆
Pi∪Qi+1 with HYP(Pi+1) > HYP(Pi). Since there are at most

(2μ
μ

)
different subsets of P0 ∪ P∗, at the latest after N = (2μ

μ

)

iterations we reach PN = P∗.
Note that Theorem 4 for finite objective spaces also

holds for infinite objective spaces that have a hypervolume
maximizing μ-population. In general, however, there is no
μ-population maximizing the hypervolume on an infinite
objective space. Hence Theorem 4 does not hold for all infinite
objective spaces.

Zitzler et al. [18, p. 71] pointed out that it is open whether
there are effective nondecreasing (μ+λ)-archiving algorithms
for 1 < λ < μ. We answer this question in the negative and
prove the following theorem.

Theorem 5: There is no effective nondecreasing (μ + λ)-
archiving algorithm for λ < μ.

Again, we do not give a separate proof for Theorem 5 as
it follows from its stronger counterpart Theorem 6 below. In
order to prove Theorem 5 directly, one would construct an
objective space and a suboptimal initial population P0 such
that any change of less than μ points of P0 decreases the
hypervolume indicator. However, the populations constructed
that way have a hypervolume which is very close to the opti-
mal one. Hence, the question arises of whether we at least
arrive at a good approximation of the maximum hypervolume.
We study this question in the following Section V-A.

A. Approximate Effectiveness

The above negative results on the effectiveness raise the
question of approximate effectiveness. To study this, we apply
the following definition.

Definition 9: Let α � 1. A (μ + λ)-archiving algorithm
A is α-approximate if for all sets Y ⊂ R

d+ with finite
maxHYPμ(Y) and μ-populations P0 ⊆ Y there is an N ∈ N

and a sequence of λ-populations Q1, . . . , QN ⊆ Y such that

HYP(A(P0, Q1, . . . , QN)) � 1

α
maxHYPμ(Y).

We first examine what is the best approximation ratio we
can hope for and prove a lower bound for the approxima-
tion ratio of all nondecreasing algorithms. Note that this also
implies that there is no effective nondecreasing (μ + λ)-
archiving algorithm for λ < μ as stated in Theorem 5. In
the proof we explicitly construct an objective space with
two unconnected local maxima that have sufficiently different
hypervolume.

Theorem 6: There is no
(
1+ 0.1338

(1
λ
− 1

μ

)− ε
)
-

approximate nondecreasing (μ + λ)-archiving algorithm for
any ε > 0.

Proof: Let μ, λ ∈ N, λ < μ. We construct an objec-
tive space Y and initial population P0 as follows. Set Y =
{p1, . . . , p2μ+1} with pi = (xi, yi) and

xi = αi − 1, for i even

yi = α2μ+2−i − 1, for i even

xi = γαi − 1, for i odd

yi = γα2μ+2−i − 1, for i odd

where 1 < γ < α. Fig. 1 on the next page shows
an illustration of the points for μ = 3. Additionally, set

650 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

P0 = {p2, p4, . . . , p2μ}. It is easy to see (but not needed for
the proof) that P∗ = {p1, p3, . . . , p2μ−1} maximizes the hyper-
volume on Y . Alternatively, one could look at P∗−p1+p2μ+1.

We want to choose γ and α in such a way that P0 is a
local maximum from which one cannot escape exchanging
only λ points. Thus, no nondecreasing selection policy with
offspring size λ finds a better population than P0. We then
continue with proving that HYP(P∗) is sufficiently larger than
the hypervolume of P0.

For showing this, define A : = CONY (p2i) and B : =
CONY (p2i+1). Observe that this is independent of the choice
of i and that A < B. Moreover, we consider the area dominated
by both, p2i and p2i+1, namely C := HYP(Y) − HYP(Y −
p2i−p2i+1)−A−B. Those areas are depicted in Fig. 1. Observe
that this is again independent of i and one gets the same area
considering p2i and p2i−1.

Now, let Q1 ⊆ Y be a λ-population and consider any
μ-population P1 ⊆ P0 ∪ Q1 with P0 �= P1. We want to
choose α and γ in such a way that �HYP1 := HYP(P1) −
HYP(P0) < 0, so that we have to stick to P0. For this, let
H := HYP(Y), so that we have HYP(P0) = H − (μ + 1)B.
For P1, observe that there is an index i with pi, pi+1 �∈ P1

(as otherwise P1 = P0). These two points dominate together
an area of C that is not dominated by P1. Moreover, every
point pi ∈ Y , pi �∈ P1 adds another A or B to H − HYP(P1),
depending on i being even or odd. Letting k be the number of
points of odd index in P1 we hence have HYP(P1) � H−C−
(μ+ 1− k) B− k A. Thus, we have �HYP1 � k(B− A)−C.
As the offspring size |Q1| � λ we have k � λ and thus
�HYP1 � λ(B− A)− C.

We want to choose α and γ such that the right hand side
from above is less than 0. We compute

A = (x2i − x2i−1)(y2i − y2i+1)

= (α2i − γα2i−1)(α2μ+2−2i − γα2μ+2−2i−1)

= α2μ+2(1− γ /α)2.

Similarly, we see that

B = α2μ+2(γ − 1/α)2

B− A = α2μ+2(γ 2 − 1)(1− 1/α2)

C = α2μ+1(1− γ /α)(γ − 1/α).

Now, λ(B − A) − C < 0 turns into a quadratic inequality
in γ . We solve it and get

γ <
α2 + 1+ (α2 − 1)

√
4α2λ2 + 1

2α (λ (α2 − 1)+ 1)
. (4)

Simple calculations show that this bound is always greater
than 1 and less than or equal α (at least for α � 2, λ � 1 this
is easy to show). Hence, there is no contradiction to γ > 1
and we can choose γ arbitrarily close to the right hand side
from above. Thus, for α � 2 and γ > 1 satisfying equation (4)
no (μ+ λ)-archiving algorithm can escape from P0.

All that is left to show is that HYP(P∗) is sufficiently
greater than HYP(P0). Above we saw that HYP(P0) =
H − (μ + 1)B, where H = HYP(Y). Now, observe that
HYP(P∗) = H−μA−B−C, where the B stems from p2μ+1

Fig. 1. Schematic log-log plot of the example used in the proof of Theorem 6.
The considered areas A, B, C are indicated.

not being in P∗ and the C from p2μ+1 and p2μ not being in
P∗. We, thus, have

�HYP∗ := HYP(P∗)− HYP(P0) = μ(B− A)− C.

Let ε > 0. By choosing γ (dependent on α) sufficiently
near to the right hand side of equation (4) we have 0 > λ(B−
A)− C � −ε and, hence

�HYP∗ � (μ− λ)(B− A)− ε

= (μ− λ)α2μ+2(γ 2 − 1)(1− 1/α2)− ε.

We compute HYP(P0) as follows, where we set x0 := 0:

HYP(P0) =
μ∑

i=1

(x2i − x2(i−1)) y2i

=
μ∑

i=1

(α2i − α2(i−1)) α2μ+2−2i

= μα2μ+2(1− 1/α2).

Now, the approximation ratio of any (μ + λ)-archiving
algorithm on Y with initial population P0 is, as it cannot
escape P0

maxHYPμ(Y)

HYP(P0)
� HYP(P∗)

HYP(P0)

= 1+ �HYP∗
HYP(P0)

� 1+ (1− λ
μ
)(γ 2 − 1)− ε

for α �
√

2 and, thus, HYP(P0) � 1, so that we can bound
ε/HYP(P0) � ε. For maximizing the right hand side we will
plug in α = 1 + √6 , so that γ is bounded from above and
below by constants. This way, choosing γ sufficiently near to
the right hand side of equation (4), we get

maxHYPμ(Y)

HYP(P0)
� 1− 2ε +

(
1− λ

μ

)

×
⎛

⎝
(

α2 + 1+ (α2 − 1)
√

4α2λ2 + 1

2α(λ(α2 − 1)+ 1)

)2

− 1

⎞

⎠ .

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 651

We consider the bracket on the right hand side separately.
This is
(

α2 + 1+ (α2 − 1)
√

4α2λ2 + 1

2α(λ(α2 − 1)+ 1)

)2

− 1

= (α2 + 1+ (α2 − 1)
√

4α2λ2 + 1)2 − 4α2(λ(α2 − 1)+ 1)2

4α2(λ(α2 − 1)+ 1)2

� (α2 + 1+ (α2 − 1)
√

4α2λ2)2 − 4α2(λ(α2 − 1)+ 1)2

4α2(λ(α2 − 1)+ λ)2

= (α2 − 1)2 + 4(α − 1)3α(α + 1)λ

4α6λ2
.

Plugging this in and simplifying, we get

maxHYPμ(Y)

HYP(P0)

� 1− 2ε + (μ− λ)(α − 1)2(α + 1)(α + 1+ 4(α − 1)αλ)

4α6λ2μ

� 1− 2ε + (μ− λ)(α − 1)2(α + 1)(4(α − 1)αλ)

4α6λ2μ
.

Now, the right hand side gets maximal for α = 1 + √6 .
Plugging this in we get

maxHYPμ(Y)

HYP(P0)
� 1+ 12(3+√6)

(1+√6)5

(
1

λ
− 1

μ

)
− 2ε

� 1+ 0.1338 ·
(

1

λ
− 1

μ

)
− 2ε.

This finishes the proof.
A bound of the form 1 + c(1/λ − 1/μ) is very natural, as

for λ = μ we get 1, and there is indeed an effective archiving
algorithm in this case by Theorem 4. The proven constant,
however, may be far from being tight. Maybe surprisingly,
Theorem 6 indeed does not hold without the restriction to
nondecreasing archiving algorithms. Theorem 8 in Section V-B
shows that for all μ and λ there are archiving algorithms which
are not nondecreasing, but effective.

Complementing the lower bound of Theorem 6, the
authors [8, Th. 4.3] proved for all ε > 0 an upper bound
of 2 + ε on the approximation ratio achieved by all increas-
ing (μ + λ)-archiving algorithms. This was improved by
Ulrich and Thiele [15], who showed that every increasing
(μ+1)-archiving algorithm reaches a

(
2− 1

μ

)
-approximation.

More precisely, they showed that every increasing (μ + λ)-
archiving algorithm reaches a

(
2− λ−p

μ

)
-approximation, where

μ = q λ−p with p < λ and p, q ∈ N�0. We can now improve
both results and prove the following theorem.

Theorem 7: Let A be an increasing (μ+λ)-archiving algo-
rithm, λ � μ. Then A is

(
2 − λ

μ
+ ε

)
-approximate for any

ε > 0. If the objective space is finite we can even set ε = 0.
This is better than the bound of [15] if λ does not divide μ.

For λ→ μ it approaches 1 and for λ = μ it attains 1.
Proof of Theorem 7: Let ε > 0, Y ⊂ R

d+ with
maxHYPμ(Y) <∞ and P0 ⊆ Y be a μ-population. By defi-
nition of maxHYP as a supremum, there exists a μ-population
P∗ ⊆ Y with HYP(P∗) � (1+ ε/2)−1 maxHYPμ(Y). If Y is
finite we even have ε = 0.

As (best-case) offspring we choose the size-λ subsets of P∗.
This we do until the current population P = PN is stable
under insertions of such sets, i.e., until maxHYPμ(P ∪ Q) =
HYP(P) for all Q ⊆ P∗, |Q| = λ.

We show that for any such stable solution P we have
(2− λ

μ
)HYP(P) � HYP(P∗), so that (2− λ

μ
+ ε)HYP(P) �

maxHYPμ(Y), proving the result. To this end, let S ⊂ P,
|S| = λ with CONP(S) minimal among all such sets, and set
P′ := P \ S. By monotonicity of HYP and Lemma 9 we have

HYP(P∗) � HYP(P∗ ∪ P′)

� HYP(P′)+ 1
(
μ−1
λ−1

)
∑

T⊆P∗
|T|=λ

CONP′(T). (5)

Observe that P′ ∪ T is reachable from P by exchanging S
with T , where T ⊆ P∗, |T| = λ. Thus, by stability of P

HYP(P′ ∪ T) � HYP(P) = HYP(P′ ∪ S)

implying

CONP′(T) � CONP′(S).

Together with inequality (5) we get

HYP(P∗) � HYP(P′)+
(
μ
λ

)

(
μ−1
λ−1

) CONP′(S)

= HYP(P′)+ μ
λ

CONP′(S)

= HYP(P)+ (μ
λ
− 1

)
CONP′(S). (6)

Note that CONP′(S) = CONP(S) [by Lemma 2 (3), and
P′ = P \ S]. As S minimizes the contribution, we have

CONP(S) � 1
(
μ
λ

)
∑

T⊆P
|T|=λ

CONP(T).

Moreover, by Lemma 6 we have
∑

T⊆P
|T|=λ

CONP(T) �
(

μ− 1

λ− 1

)
HYP(P).

Together, we obtain

CONP′(S) �
(
μ−1
λ−1

)

(
μ
λ

) HYP(P) = λ
μ

HYP(P).

Plugging this into inequality (6) yields the desired bound.

B. Effectiveness and Decreasing Algorithms

We now briefly discuss why the previous results required
all archiving algorithms to be nondecreasing. The reason is
that otherwise none of the negative results and lower bounds
from above hold, as there is an effective (μ + λ)-archiving
algorithm for all μ, λ ∈ N. Such an algorithm is very simple.
Given an ancestral population P and an offspring population Q,
it returns the symmetric difference of both sets if this is not
larger than μ and otherwise returns P directly. The algorithm
is described in more detail in Algorithm 3. This algorithm
is not nondecreasing, very unnatural, and does not guide in
a sensible direction. However, for technical reasons one can
prove the following statement.

652 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Algorithm 3: Effective (μ+ λ)-Archiving Algorithm

1 P′ := (P \ Q) ∪ (Q \ P);
2 if |P′| � μ then
3 return P′;
4 else
5 return P;

Theorem 8: For any μ, λ ∈ N there is an effective (not
necessarily nondecreasing) (μ+ λ)-archiving algorithm.
Proof: We study the following (μ + λ)-archiving algorithm
and prove that it is indeed effective.

To show that Algorithm 3 is effective, let Y ⊂ R
d+ be

finite and P0 ⊆ Y a μ-population. Moreover, let P∗ ⊆ Y
be a μ-population with HYP(P∗) = maxHYPμ(Y). Write
P0 \ P∗ = {p0

1, . . . , p0
μ} (with possibly some of the p0

i being
equal) and P∗ \ P0 = {p∗1, . . . , p∗μ}. Let Q2i−1 = {p0

i } and
Q2i = {p∗i } for i = 1, . . . , μ. Algorithm 3 works as desired
on this offspring. After every second offspring generation one
point of P0 is replaced by a point from P∗ so that after 2μ

generations we arrive at P∗.
On the way there we even always have populations of size

μ or μ − 1 (as long as |P| = |P∗| = μ). If we have λ � 2,
we can even stick to populations of size μ by inserting every
two offspring generations at once, i.e., Q1∪Q2, then Q3∪Q4,
and so on.

This justifies why we assumed the archiving algorithms
to be nondecreasing in this Section V. Theorem 8 shows
that Theorems 2, 5, and 6 do not hold for general archiving
algorithms, which are not required to be nondecreasing.

VI. COMPETITIVENESS

In contrast to the last section, we now take a worst-case view
on offspring generation (as well as the initial population), so
we want to bound A(P0, Q1, . . . , QN) for any initial popula-
tion P0 and any offspring generations Q1, . . . , QN . Observe
that in this setting all results have to be independent of
the specific objective space Y and we cannot hope to reach
maxHYPμ(Y) in general. The only aim can be achieving a
hypervolume as good as the maximum hypervolume among all
μ-populations which are subsets of the points we have seen
so far, that is

maxHYPμ

(
P0 ∪

N⋃

i=1

Qi
)

which can be arbitrarily smaller than maxHYPμ(Y).
This allows us to view archiving algorithms as an online

problem where the algorithm is fed with new offspring in a
serial fashion and has to decide which individual it should
keep in the population without knowing the entire input. To
measure the “regret” of an archiving algorithm we define its
competitive ratio α as follows.

Definition 10: Let P0 be a μ-population and Qi be λ-
populations for 1 � i � N. Then I : = (P0, Q1, . . . , QN)

is an instance. We also set

Obs(I): = P0 ∪
N⋃

i=1

Qi.

An archiving algorithm A is α-competitive (for some α � 1)
if for all instances I = (P0, Q1, . . . , QN) we have

A(P0, Q1, . . . , QN) � 1

α
maxHYPμ(Obs(I)).

A. Increasing Algorithms Are at Best μ-Competitive

It is easy to show an upper bound on the competitive ratio
of μ for a very large class of archiving algorithms. It applies
to all nondecreasing archiving algorithms with the following
property. If a single offspring point q ∈ Q alone dominates a
larger hypervolume than all points in the current population
together, then the algorithm should take this point q (or do
something even better). Note that all locally optimal archiving
algorithms satisfy this condition.

Theorem 9: Let A be a nondecreasing archiving algorithm
such that for all inputs P and Q and points q ∈ Q we have

HYP(A(P, Q)) � HYP({q}).
Then A is μ-competitive.
In particular, all locally optimal (μ + λ)-archiving algo-

rithms and all increasing (μ + 1)-archiving algorithms are
μ-competitive.
Proof: Let I : = (P0, Q1, . . . , QN) be an instance and
P∗ ⊆ Obs(I) be a μ-population with HYP(P∗) =
maxHYPμ(Obs(I)). By Lemma 7 we have HYP(P∗) �∑

p∈P∗ HYP({p}), so there is a point p∗ ∈ P∗ with
HYP({p∗}) � 1

|P∗|HYP(P∗) � 1
μ

HYP(P∗).
Either p∗ ∈ P0 (in which case we set r : = 0) or

p∗ ∈ Qr for some r. Consider Pi = A(P0, Q1, . . . , Qi). We
have HYP(Pr) � HYP({p∗}) by the extra assumption and
HYP(Pr) � HYP(Pr+1) � . . . � HYP(PN) by A being
nondecreasing. Taken together these prove the claim.

Observe that even a very simple algorithm fulfills the
premises of the above theorem. It considers the offspring
one-by-one and replaces its current population Pi with {q},
if the offspring point q has greater hypervolume than Pi. This
requires only one costly computation of HYP(P0); all other
populations consist of only a single point in the objective
space.

Perhaps surprisingly, no increasing archiving algorithm is
better than this simple algorithm in the worst case. For them,
the bound of Theorem 9 is tight.

Theorem 10: No increasing (μ+λ)-archiving algorithm is
(μ− ε)-competitive for any ε > 0.

In the proof of this theorem, we explicitly construct a bad
2-dimensional instance; see Fig. 2 for an example with μ = 5.
The initial population consists of the points p1, . . . , p4 and
the rightmost point of the qi’s. Then every offspring consists
of (λ copies of) a qi slightly to the left and above the old
one, so that any increasing algorithm has to exchange the two
points. This way, the population will always consist of the
points p1, . . . , p4 and one of the qi’s, with the latter point
being dragged to the left. The optimal population, however,
consists of five nicely spaced qi’s, which has (by choosing
the free parameters correctly) a hypervolume that is nearly a
factor μ larger than the hypervolume of the population of the
increasing algorithm.

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 653

Fig. 2. Illustration of the proof of Theorem 10.

Proof: We construct an instance I = (P0, Q1, . . . , QN)

as follows. For reals a, A > 0 to be chosen later and
j ∈ {1, . . . , μ − 1}, we set pj : = (A + j a, (μ − j)a), and
B := (μ− 1)a. Moreover, for δ > 0, 0 < ρ < 1 to be chosen
later and i ∈ {0, . . . , N}, we set qi = (xi, yi) with xi := Aρi,
and yi := B+ 1+δ i

xi
.

These points are depicted in Fig. 2. Setting P0 : =
{q0, p1, . . . , pμ−1} and Qi : = {qi} (or λ copies of qi), we
get an instance I.

We show that A(Pi−1, Qi) = Pi with Pi =
{qi, p1, . . . , pμ−1} for A being an increasing archiving algo-
rithm. To do this, we have to show that the exchange of qi−1
with qi increases the hypervolume and is the only increas-
ing exchange. This means we have to show HYP(Pi) >

HYP(Pi−1) and HYP(Pi−1) � HYP(Pi−1 + qi − pj) for any
1 � j � μ − 1, as those are the only possible exchanges.
We have HYP(Pi) = HYP({p1, . . . , pμ−1}) + CONPi(qi),

where CONPi(qi) = xi(yi − B) = 1 + δi, and p1, . . . , pμ−1
are collinear points, so that their hypervolume can easily be
calculated, yielding

HYP(Pi) = A B+ (μ2
)
a2 + 1+ δ i. (7)

This gives HYP(Pi) > HYP(Pi−1) right away. Moreover,
by inspection of the constructed instance we have

HYP(Pi−1 + qi − pj)

= HYP(Pi−1)− CONPi−1(pj)+ CONPi−1(qi)

with CONPi−1(pj) � a2 and

CONPi−1(qi) = xi(yi − yi−1)

= 1+ δ i− ρ(1+ δ(i− 1))

= (1− ρ)(1+ δ(i− 1))+ δ.

Hence, for

a2 � (1− ρ)(1+ δ N)+ δ (8)

we have HYP(Pi−1) � HYP(Pi−1 + qi − pj) for any 1 � j �
μ− 1, and Pi = A(Pi−1, Qi) indeed holds.

Lastly, we need a lower bound on maxHYPμ(Obs(I)). For
this we require that μ divides N and consider P = {qiN/μ |
0 � i � μ − 1}. If we consider instead P′ = {q′iN/μ | 0 �
i � μ− 1}, with q′i = (xi, y′i), y′i = B+ 1/xi, the hypervolume
decreases only, as we decrease the y-coordinates. Hence, we
have maxHYPμ(Obs(I)) � HYP(P) � HYP(P′). All that is
left to show is

HYP(P′) > (μ− ε)HYP(PN). (9)

We compute HYP(P′) to be

HYP(P′) = HYP({q′0})+
μ−1∑

i=1

xiN/μ(y′iN/μ − y′(i−1)N/μ)

= A(B+ 1/A)+
μ−1∑

i=1

(1− ρN/μ)

= A B+ μ− (μ− 1)ρN/μ. (10)

Then (9) is fulfilled [using (7) and (10)] if

A B+ μ− (μ− 1)ρN/μ

> (μ− ε)
(

A B+ (μ2
)
a2 + 1+ δ N

)
.

Rearranging this, we get

ε > (μ− 1− ε)A B+ (μ− ε)
(
μ
2

)
a2

+ (μ− 1)ρN/μ + (μ− ε)δ N.

This inequality is fulfilled by setting A : = ε/(4μB),

a2 : = ε/(4μ3), δ : = min{ε/(4μN), a2/2}, and N : =
μ �logρ(ε/(4μ))�. As we can assume ε � 1, we have
δ � min{1/N, a2/2}, so that requirement (8) can be simplified
to a2 � 2(1− ρ)+ a2/2. We set ρ := 1− a2/4 to satisfy it.
Noting that there is no cyclic dependence in these definitions,
we conclude the proof.

B. Competitive Nondecreasing Algorithm

We showed in the preceding Section VI-A that increasing
archiving algorithms only achieve an unbounded competitive
ratio of � μ. This result implies that the notion of competitive-
ness is not suited for comparing different increasing archiving
algorithms. All of them have an unbounded competitiveness of
at least μ and this is tight even for very simple algorithms. This
leaves open whether there are nondecreasing, but not increas-
ing archiving algorithms with better, e.g., constant competitive
ratio. This would imply that some archiving algorithm that is
not locally optimal achieves a better competitive ratio than all
locally optimal archiving algorithms.

In this section, we present a nondecreasing (and not increas-
ing) archiving algorithm which indeed achieves constant
competitiveness. In Section VI-C we will present a random-
ized variant of the algorithm which is also computationally
efficient.

Theorem 11: There is a (4+2/μ)-competitive nondecreas-
ing (μ+ 1)-archiving algorithm.

Note that we can easily build a (μ+λ)-archiving algorithm
with the same competitiveness from the (μ+1)-archiving algo-
rithm guaranteed by Theorem 11 by feeding the λ offspring
one by one to the (μ+ 1)-archiving algorithm.

654 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Algorithm 4: Competitive (μ + 1)-Archiving algorithm
Acomp

input : μ-population P, offspring {q}
output: μ-population P′

1 foreach p ∈ P+ q do
2 Hp ← HYP(P+ q− p)

3 p′ ← argmax{Hp | p ∈ P};
4 if Hp′ > (1+ 1/μ) Hq then
5 return P+ q− p′;
6 else
7 return P;

We do not prove Theorem 11 directly, as it follows from the
proof of Theorem 12 below. However, one such archiving algo-
rithm Acomp is given in Algorithm 4. This nonlocally-optimal
algorithm improves on the locally optimal algorithms with
respect to the competitive ratio and hence is better suited for
hypervolume-based selection in the worst case. Note that this
does not imply that this algorithm should be used in practice,
as worst-case optimality is usually not needed.

Unfortunately, the runtime of Acomp cannot be polynomial
in μ + d (unless P = NP) as the exact hypervolume calcu-
lation in line 2 of Algorithm 4 is #P-hard [5]. However, this
also holds for all increasing archiving algorithms as shown in
Theorem 1.

C. Computationally Efficient Randomized Competitive
Nondecreasing Archiving Algorithm

We now propose a randomized variant of Acomp which
improves on all increasing algorithms not only with respect
to the competitive ratio, but also the runtime. It is a random-
ized algorithm which meets the competitive ratio bound only
with a certain high probability. Hence, we need to redefine
competitiveness (and nondecreasing) to include randomized
algorithms.

Definition 11: Let α � 1 and p : N → [0, 1]. A random-
ized archiving algorithm A is α-competitive with probability
p if for all instances I = (P0, Q1, . . . , QN) we have

A(P0, Q1, . . . , QN) � 1

α
maxHYPμ(Obs(I))

with probability at least p(N).
We call a randomized archiving algorithm A nonde-

creasing with probability p if for all instances I =
(P0, Q1, . . . , QN) we have HYP(A(P0, Q1, . . . , Qi)) �
HYP(A(P0, Q1, . . . , Qi−1)) for all i ∈ {1, . . . , N} with prob-
ability at least p(N).

Our proposed algorithm Aeff is given in Algorithm 5. It
takes additional parameters ε, δ > 0 and is (4 + 2/μ + ε)-
competitive with probability p(N) = 1− Nδ.

The critical feature of Aeff is line 4. It makes use of
the hypervolume approximation scheme of Bringmann and
Friedrich [5] which computes with probability at least 1 − δ

a (1+ ε)-approximation of the hypervolume of a given set of
μ points in R

d+ in time O(log(1/δ)μd/ε2). It is clear from

Algorithm 5: Randomized Efficient Competitive (μ+ 1)-
Archiving Algorithm Aeff

input : μ-population P, offspring {q},
error bound ε, error probability δ

output: μ-population P′

1 ε′ ← ε/104;
2 c ← 1+ 2ε′;
3 foreach p ∈ P+ q do
4 Hp ← compute (1+ ε′/μ)-approximation of

HYP(P+ q− p) with error probability δ/(μ+ 1)

5 p′ ← argmax{Hp | p ∈ P};
6 if Hp′ > (1+ c

μ
) Hq then

7 return P+ q− p′;
8 else
9 return P;

the hypervolume approximation algorithm used here that Aeff
is efficiently computable, namely with a run-time of at most
O(log(μ/δ)μ4d/ε2). Note that we aimed only for a polyno-
mial runtime and did not try to optimize the algorithm for a
better runtime bound.

We can prove that Aeff is competitive. The following
theorem states our result.

Theorem 12: Let 0 < ε � 1. Algorithm Aeff is a random-
ized (μ+ 1)-archiving algorithm which is nondecreasing and
(4 + 2/μ + ε)-competitive with probability p(N) = 1 − Nδ.
Moreover, it has a deterministic runtime polynomial in μ, λ,
d, log(1/δ), and 1/ε.

Observe that by setting ε = 0, so that all hypervolume
approximations are in fact exact computations, Algorithm 5
becomes the same as Algorithm 4. This implies that the proof
of Theorem 12 is a proof of Theorem 11, too.

The perhaps surprising probability bound is caused by
the (necessary) assumption that every call to the hypervol-
ume approximation algorithm indeed returns a (1 + ε′/μ)-
approximation. The factor N in the probability can easily be
canceled out by a sufficiently small δ, as the runtime depends
only logarithmically on 1/δ.

Proof: Let I = (P0, Q1, . . . , QN) be an instance. Consider
the probability that every hypervolume approximation of Aeff
on I indeed lies in the specified bounds, i.e., we have
(1−ε′/μ)HYP(P+q−p) � Hp � (1+ε′/μ)HYP(P+q−p)

for every computation of Hp in Aeff. For a single call, this
happens with probability at least 1− δ/(μ+ 1). Furthermore,
we have at most N(μ+ 1) hypervolume approximations run-
ning Aeff on I, as in every invocation of Aeff, at most μ+ 1
hypervolume approximations are computed. With the union
bound, we arrive at a probability of at least p(N) = 1 − Nδ

that all the hypervolume approximations lie within the spec-
ified bounds. Thus, in the remainder we can assume that all
hypervolume approximations of Aeff indeed lie in the specified
bounds.

To show that Aeff is nondecreasing, note that in every
iteration either we stay with the current population or the
hypervolume increases by a constant factor, in which case

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 655

(
1 + ε′

μ

)
HYP(Pi) � Hp′ �

(
1 + c

μ

)
Hq �

(
1 − ε′

μ

)(
1 +

c
μ

)
HYP(Pi−1). For c = 1 + 2ε′ � 1, μ � 1 and ε′ � 1/3,

which is true by assumption, we have
(
1 − ε′

μ

)(
1 + c

μ

)
�

(
1+ ε′

μ

)
, implying that the algorithm is nondecreasing.

It remains to prove that Aeff is (4+ 2/μ+ ε)-competitive.
To this end, let Pi = Aeff(Pi−1, Qi) for i = 1, . . . , N. Consider
P̂ :=⋃N

i=0 Pi, the set of all points in Obs(I) that were taken by
Aeff at some point. Let P∗ ⊆ Obs(I) be a μ-population with
HYP(P∗) = maxHYPμ(Obs(I)). By monotonicity of HYP
and Lemma 8 we have

maxHYPμ(Obs(I)) = HYP(P∗) � HYP(P̂ ∪ P∗)
� HYP(P̂)+

∑

q∈P∗\P̂
CONP̂(q). (11)

To continue, we bound HYP(P̂) as well as the contribution
of any point q ∈ P∗ \ P̂ to P̂ in terms of HYP(PN). This will
yield the desired bound for HYP(PN). We start with the latter.

Consider a point not chosen by the algorithm, q ∈ Obs(I)\P̂.
We have Qi = {q} for some 1 � i � N. Let p̃ ∈ Pi−1+ q with
CONPi−1+q(p̃) minimal among all p ∈ Pi−1+ q. Note that we
can have p̃ = q, if q has the least contribution, but choosing
q does not decrease the hypervolume enough, i.e., by a factor
1+ c

μ
. Using Lemma 5 we have

CONPi−1+q(p̃) � 1

μ+ 1

∑

p∈Pi−1+q

CONPi−1+q(p)

� 1

μ+ 1
HYP(Pi−1 + q)

= 1

μ+ 1

(
HYP(Pi−1)+ CONPi−1(q)

)
. (12)

Let p′ = argmax{Hp | p ∈ Pi−1}, see Algorithm 5. The
point q was not taken by the algorithm, so we have

(
1− ε′

μ

)
HYP(Pi−1 + q− p̃)

� Hp̃ � Hp′ �
(

1+ c

μ

)
Hq

�
(

1+ c

μ

) (
1+ ε′

μ

)
HYP(Pi−1) (13)

where the factors (1± ε′/μ) stem from the Hp being approx-
imations. The equality HYP(Pi−1 + q − p̃) = HYP(Pi−1) +
CONPi−1(q)− CONPi−1+q(p̃) can be seen by replacing CON
by its definition. Using this, inequality (12), and 1

1−ε′/μ �
1+ 2ε′

μ
for ε′ � 1/2, we can simplify inequality (13) to

CONPi−1(q) � βHYP(Pi−1)

where

β =
(

1+ 1

μ

)(
1+ c

μ

)(
1+ ε′

μ

)(
1+ 2ε′

μ

)
− 1.

Together with submodularity (Lemma 4) and using P̂ ⊇
Pi−1 and HYP(PN) � HYP(Pi−1) we obtain

CONP̂(q) � CONPi−1(q) � βHYP(Pi−1) � βHYP(PN).

(14)

Plugging in the definition of c = 1 + 2ε′, simplifying and
roughly bounding the number of terms involving ε′/μ together
with their coefficients, and using μ � 1, yields

β � 2

μ
+ 1

μ2
+ 64

ε′

μ
. (15)

Now we bound HYP(P̂). Consider I = {i | Pi �= Pi−1,

1 � i � N}, the indices where Pi changed, and let pi be the
unique point in Pi−1 \ Pi, i.e., the point we deleted in round
i ∈ I. Then we have for i ∈ I and every p ∈ Pi + pi

(
1+ ε′

μ

)
HYP(Pi) � Hpi � Hp

�
(

1− ε′

μ

)
HYP(Pi + pi − p).

Since HYP(Pi + pi − p) = HYP(Pi) + CONPi(pi) −
CONPi+pi(p), this is equivalent to

2ε′

μ

(
1− ε′

μ

)−1

HYP(Pi)+ CONPi+pi(p) � CONPi(pi).

Summing over all p ∈ Pi + pi and using HYP(P) �∑
p∈P CONP(p) (Lemma 5) we get

2ε′
(

1+ 1

μ

)(
1− ε′

μ

)−1

HYP(Pi)+ HYP(Pi + pi)

� (μ+ 1)CONPi(pi).

This yields, after substituting HYP(Pi + pi) = HYP(Pi)+
CONPi(pi) again, CONPi(pi) � γ HYP(Pi), with γ =
1
μ

(
1 + 2ε′

(
1 + 1

μ

)(
1 − ε′

μ

)−1). Now, by a telescoping sum
and submodularity (Lemma 4) we have

HYP(P̂) = HYP(PN)+
∑

i∈I

CONPN∪...∪Pi(pi)

� HYP(PN)+
∑

i∈I

CONPi(pi)

� HYP(PN)+ γ
∑

i∈I

HYP(Pi).

As we go to a new population only if we have an improve-
ment of a factor of at least (1 + c/μ), but we deal with
approximations, we get δ · HYP(Pi) � HYP(Pi−1) for i ∈ I
and δ := (1 + c/μ)−1(1 − ε′/μ)−1(1 + ε′/μ). Plugging this
into the above inequality yields

HYP(P̂) � HYP(PN)

(

1+ γ

N−1∑

i=0

δi

)

� HYP(PN)

(
1+ γ

1− δ

)
. (16)

Plugging in the definitions of c = 1+ 2ε′, δ and γ , simple
calculations and rough estimations using μ � 1 and ε′ � 1/6
show that

γ

1− δ
� 1+ 1

μ
+ 40ε′. (17)

656 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Now we can take equation (11), plug in equations (14)
and (16), and simplify using equations (15) and (17) to get

HYP(P∗) � HYP(P̂)+
∑

q∈P∗\P̂
CONP̂(q)

�
(

1+ γ

1− δ
+ μβ

)
HYP(PN)

�
(

4+ 2

μ
+ 104ε′

)
HYP(PN)

=
(

4+ 2

μ
+ ε

)
HYP(PN).

D. Lower Bound for Competitiveness

It is useful to relate the notion of approximation from
Section V with the notion of competitiveness introduced in
Section VI-A. The following lemma shows that competitive-
ness implies approximation.

Lemma 10: If A is an α-competitive (μ + λ)-archiving
algorithm, then A is also an (α + ε)-approximate (μ + 1)-
archiving algorithm for all ε > 0.

To ease the application of Lemma 10, we first state a direct
implication of its contraposition in the following Lemma 11. It
allows us to transfer lower bounds for approximation to lower
bounds for competitiveness.

Lemma 11: If there is no α-approximate nondecreasing
(μ + 1)-archiving algorithm, then there is no (α − ε)-
competitive nondecreasing (μ+λ)-archiving algorithm for any
ε > 0 and λ � 1.

We can now easily combine Theorem 6 and Lemma 11 and
get the following corollary.

Theorem 13: There is no
(
1.1338 − 0.1338/μ − ε

)
-

competitive nondecreasing (μ+ λ)-archiving algorithm.
Observe that the structure of the bound shown in

Theorem 13 is natural as for μ = 1 it proves that there is
no (1− ε)-competitive nondecreasing (1+ 1)-archiving algo-
rithm while a greedy (1+ 1)-archiving algorithm is obviously
1-competitive. For μ � 2, Theorem 13 implies that there is no
(μ + λ)-archiving algorithm with a competitive ratio of 1.06
or less.

Proof of Lemma 10: Let A be an α-competitive (μ + λ)-
archiving algorithm. Let Y ⊂ R

d+ with finite maxHYPμ(Y)

and P0 ⊆ Y a μ-population. Since Y may be infi-
nite there may not be a hypervolume maximizing set in
it. However, the supremum in the definition of maxHYP
guarantees the existence of a μ-population P∗ ⊆ Y with
HYP(P∗) � α

α+ε
maxHYPμ(Y). For P∗ = {p∗1, . . . , p∗μ} we

set Qi : = {p∗i } for i = 1, . . . , μ. Consider the instance
I = (P0, Q1, . . . , Qμ). A is α-competitive, so we have
A(P0, Q1, . . . , Qμ) � 1

α
maxHYPμ(Obs(I)), but Obs(I) con-

tains P∗, so maxHYPμ(Obs(I)) � HYP(P∗). Putting every-
thing together we see that there exists a sequence of offspring
such that A(P0, Q1, . . . , Qμ) � 1

α+ε
maxHYPμ(Y), so A is

an (α + ε)-approximate (μ+ 1)-archiving algorithm.

VII. CONCLUSION

The first question when theoretically analyzing evolu-
tionary algorithms is typically convergence. We considered

an abstract hypervolume-based multiobjective evolutionary
algorithm (MOEA) without problem-specific assumptions
on the structure of the search space or algorithm-specific
assumptions on the generation of the initial and offspring
population.

Assuming the offspring generation to be the best case, we
proved that nondecreasing (μ + λ)-archiving algorithms can
only be effective for λ � μ and that they cannot achieve
an approximation of the maximum hypervolume by a factor
of more than 1/(1 + 0.1338 (1/λ − 1/μ)). On the positive
side, we proved that the popular (but computationally very
expensive) locally optimal algorithms are effective for λ = μ

and can always find a population with hypervolume at least
half the optimum for λ < μ. We conjecture that the lower
bound of one half can be improved to a value which is
asymptotically one (for any λ → ∞, even if μ � λ), but
leave this as an open question. For practically used archiving
algorithms our results suggest using λ � μ as this is nec-
essary for being able to end up in a population maximizing
the hypervolume even when assuming an optimal offspring
generation.

We also studied the behavior of archiving algorithms
assuming the offspring generation to be the worst case. For
this setting, we have proven that increasing archiving algo-
rithms are computationally inefficient and achieve only an
unbounded competitive ratio of μ. The same holds for greedy
archiving algorithms used in hypervolume-based MOEAs
such as SIBEA [17], SMS-EMOA [1], and the generational
MO-CMA-ES [10], [11]. In sharp contrast to this, we pre-
sented a nondecreasing archiving algorithm that not only
achieves a constant competitive ratio of 4 + 2/μ, but is also
efficiently computable. This new archiving algorithm can be
implemented efficiently, but it remains open to find a practical
and computationally efficient archiving algorithm which is at
the same time effective and competitive, that is, performing
well for best-case and worst-case offspring generation.

We focused on best-case and worst-case offspring gener-
ation. Another interesting option would be an average-case
offspring generation. It might be the case that in this setting
locally optimal archiving algorithms show a better perfor-
mance, as results such as Theorem 10 might do not hold in the
average-case. The disadvantage of such a model would be the
necessity of modeling other parts of the (until now) abstract
MOEA, namely the generation of the initial population and
offspring as well as the structure of the search space. Such
average-case results would therefore be necessarily less gen-
eral. It might be possible to compensate this by considering a
smoothed model [14] instead.

While this paper solely focused on hypervolume-based
MOEAs, it is worth studying the convergence behavior of
other MOEAs which are, e.g., based on the ε-indicator.
This might yield interesting results for comparing different
indicators.

ACKNOWLEDGMENT

The authors would like to thank L. Thiele, who directed
them to Theorem 2 and posed the question of whether or not
Theorem 5 holds.

BRINGMANN AND FRIEDRICH: CONVERGENCE OF HYPERVOLUME-BASED ARCHIVING ALGORITHMS 657

REFERENCES

[1] N. Beume, B. Naujoks, and M. T. M. Emmerich, “SMS-EMOA:
Multiobjective selection based on dominated hypervolume,” Eur. J. Oper.
Res., vol. 181, no. 3, pp. 1653–1669, 2007.

[2] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis, vol. 2. Cambridge, U.K.: Cambridge University Press, 1998.

[3] L. Bradstreet, L. Barone, and L. While, “Maximising hypervolume
for selection in multiobjective evolutionary algorithms,” in Proc. IEEE
Congr. Evol. Comput. (CEC), 2006, pp. 6208–6215.

[4] K. Bringmann and T. Friedrich, “Parameterized average-case complex-
ity of the hypervolume indicator,” in Proc. Genet. Evol. Comput. Conf.
(GECCO), 2013, pp. 575–582.

[5] K. Bringmann and T. Friedrich, “Approximating the volume of unions
and intersections of high-dimensional geometric objects,” Comput.
Geometry Theory Appl., vol. 43, nos. 6–7, pp. 601–610, 2010.

[6] K. Bringmann and T. Friedrich, “An efficient algorithm for computing
hypervolume contributions,” Evol. Comput., vol. 18, no. 3, pp. 383–402,
2010.

[7] K. Bringmann and T. Friedrich, “Approximating the least hypervolume
contributor: NP-hard in general, but fast in practice,” Theor. Comput.
Sci., vol. 425, pp. 104–116, Mar. 2012.

[8] K. Bringmann and T. Friedrich, “Convergence of hypervolume-based
archiving algorithms I: Effectiveness,” in Proc. Genet. Evol. Comput.
Conf. (GECCO), 2011, pp. 745–752.

[9] K. Bringmann and T. Friedrich, “Convergence of hypervolume-based
archiving algorithms II: Competitiveness,” in Proc. Genet. Evol. Comput.
Conf. (GECCO), 2012, pp. 457–464.

[10] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for
multi-objective optimization,” Evol. Comput., vol. 15, no. 1, pp. 1–28,
2007.

[11] C. Igel, T. Suttorp, and N. Hansen, “Steady-state selection and efficient
covariance matrix update in the multi-objective CMA-ES,” in Proc. 4th
Int. Conf. Evol. Multi-Criterion Optim., vol. 4403. 2007, pp. 171–185.

[12] M. López-Ibáñez, J. D. Knowles, and M. Laumanns, “On sequential
online archiving of objective vectors,” in Proc. 6th Int. Conf. Evol. Multi-
Criterion Optim. (EMO), vol. 6576. 2011, pp. 46–60.

[13] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions—I,” Math. Program., vol. 14,
no. 1, pp. 265–294, 1978.

[14] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time,” J. ACM, vol. 51,
no. 3, pp. 385–463, 2004.

[15] T. Ulrich and L. Thiele, “Bounding the effectiveness of hypervolume-
based (μ + λ)-archiving algorithms,” in Proc. 6th Int. Conf. Learning
Intell. Optim. (LION), pp. 235–249, 2012.

[16] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach,” IEEE
Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[17] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of Pareto-compliant indicators via weighted
integration,” in Proc. 4th Int. Conf. Evol. Multi-Criterion Optim. (EMO),
vol. 4403. 2007, pp. 862–876.

[18] E. Zitzler, L. Thiele, and J. Bader, “On set-based multiobjective opti-
mization,” IEEE Trans. Evol. Comput., vol. 14, no. 1, pp. 58–79,
Feb. 2010.

Karl Bringmann received the M.Sc. degree in
computer science and mathematics from Saarland
University, Saarbrücken, Germany, in 2011. He
is currently working toward the Ph.D. degree at
Algorithms and Complexity Group, Max Planck
Institute for Informatics, Saarbrücken.

His research interests include randomized algo-
rithms (including sampling algorithms and evolu-
tionary algorithms), computational geometry, and
lower bounds.

Mr. Bringmann received the Google Europe
Fellowship in Randomized Algorithms in 2012.

Tobias Friedrich received the M.Sc. degree in com-
puter science from University of Sheffield, Sheffield,
U.K., in 2003; the Diploma degree in mathemat-
ics from University of Jena, Jena, Germany, in
2005; and the Ph.D. degree in computer science
from Saarland University, Saarbrücken, Germany, in
2007.

After receiving his degrees, he held a post-
doctoral position with the Algorithms Group,
International Computer Science Institute, Berkeley,
CA, USA. From 2011 to 2012, he was a Senior

Researcher at the Max Planck Institute for Informatics and an Independent
Research Group Leader with the Cluster of Excellence on “Multimodal
Computing and Interaction,” Saarbrücken. Since 2012 he has been Full
Professor and Chair of theoretical computer science at University of Jena. His
research interests include randomized methods in mathematics and computer
science and randomized algorithms (both classical and evolutionary).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

