ON THE STRUCTURE OF SEQUENTIALLY COHEN–MACAULAY BIGRADED MODULES

LEILA PARSAEI MAJD, AHAD RAHIMI

ABSTRACT. Let K be a field and $S = K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ be the standard bigraded polynomial ring over K. In this paper, we explicitly describe the structure of finitely generated bigraded "sequentially Cohen-Macaulay" S-modules with respect to $Q = (y_1, \ldots, y_n)$. Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to Q are considered.

INTRODUCTION

Let K be a field and $S = K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ be the standard bigraded K-algebra with deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$ for all i and j. We set the bigraded irrelevant ideals $P = (x_1, \ldots, x_m)$ and $Q = (y_1, \ldots, y_n)$. Let M be a finitely generated bigraded S-module. The largest integer k for which $H_Q^k(M) \neq 0$, is called the cohomological dimension of M with respect to Q and denoted by cd(Q, M). A finite filtration $\mathcal{D}: 0 = D_0 \subsetneq D_1 \subsetneq \cdots \subsetneq D_r = M$ of bigraded submodules of M, is called the dimension filtration of M with respect to Q if D_{i-1} is the largest bigraded submodule of D_i for which $cd(Q, D_{i-1}) < cd(Q, D_i)$ for all $i = 1, \ldots, r$, see [9]. In Section 1, we explicitly describe the structure of the submodules D_i that extends [11, Proposition 2.2]. In fact, it is shown that $D_i = \bigcap_{\mathfrak{p}_j \notin B_{i,Q}} N_j$ for $i = 1, \ldots, r-1$ where $0 = \bigcap_{j=1}^s N_j$ is a reduced primary decomposition of 0 in M with N_j is \mathfrak{p}_j -primary for $j = 1, \ldots, s$ and

$$B_{i,Q} = \{ \mathfrak{p} \in \operatorname{Ass}(M) : \operatorname{cd}(Q, S/\mathfrak{p}) \le \operatorname{cd}(Q, D_i) \}.$$

In [10], we say M is Cohen–Macaulay with respect to Q, if $\operatorname{grade}(Q, M) = \operatorname{cd}(Q, M)$. A finite filtration $\mathcal{F}: 0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_r = M$ of M by bigraded submodules M, is called a Cohen–Macaulay filtration with respect to Q if each quotient M_i/M_{i-1} is Cohen–Macaulay with respect to Q and

$$0 \leq \operatorname{cd}(Q, M_1/M_0) < \operatorname{cd}(Q, M_2/M_1) < \cdots < \operatorname{cd}(Q, M_r/M_{r-1}).$$

If M admits a Cohen-Macaulay filtration with respect to Q, then we say M is sequentially Cohen-Macaulay with respect to Q, see [9]. Note that if M is sequentially Cohen-Macaulay with respect to Q, then the filtration \mathcal{F} is uniquely determined and it is just the dimension filtration of M with respect to Q, that is, $\mathcal{F} = \mathcal{D}$. In

²⁰⁰⁰ Mathematics Subject Classification. 16W50, 13C14, 13D45, 16W70.

Key words and phrases. Dimension filtration, Sequentially Cohen–Macaulay, Cohomological dimension, Bigraded modules, Cohen–Macaulay.

Section 2, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules which extends [4, Corollary 4.4] and [5, Corollary 3.10]. We apply this result and the description of the submodules M_i mentioned earlier, showing that S/I is sequentially Cohen-Macaulay with respect to P and Q where I is the Stanley-Reisner ideal that corresponds to the natural triangulation of the projective plane \mathbb{P}^2 . Here $S = K[x_1, x_2, x_3, y_1, y_2, y_3]$, $P = (x_1, x_2, x_3)$ and $Q = (y_1, y_2, y_3)$. Note that S/I is Cohen-Macaulay of dimension 3, if char $K \neq 2$.

In [10] we have shown that if M is a finitely generated bigraded Cohen–Macaulay S-module which is Cohen–Macaulay with respect to P, then M is Cohen–Macaulay with respect to Q. Inspired by this fact and the above example we have the following question: Let $I \subseteq S$ be a monomial ideal. Suppose S/I is Cohen–Macaulay. If S/I is sequentially Cohen–Macauly with respect to P, is S/I sequentially Cohen–Macauly with respect to P, is S/I sequentially Cohen–Macauly with respect to Q? We do not know the answer of this question yet, however in the last section, we obtain some properties of a Cohen–Macaulay filtration with respect to Q in general provided that the module itself is Cohen–Macaulay, see Propositions 3.3 and 3.4. Inspired by Proposition 3.4, we make the following question: Let M be a finitely generated bigraded Cohen–Macaulay S-module such that $H_Q^k(M) \neq 0$ for all grade $(Q, M) \leq k \leq \operatorname{cd}(Q, M)$. Is $H_P^s(M) \neq 0$ for all grade $(P, M) \leq s \leq \operatorname{cd}(P, M)$? Of course the question has positive answer in the case that M has only one(two) non-vanishing local cohomology with respect to Q. The projective plane \mathbb{P}^2 would also be the case as module with three non-vanishing local cohomology.

1. The dimension filtration with respect to Q

Let K be a field and $S = K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ the standard bigraded polynomial ring over K. In other words, deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$ for all i and j. We set the bigraded irrelevant ideals $P = (x_1, \ldots, x_m)$ and $Q = (y_1, \ldots, y_n)$, and let M be a finitely generated bigraded S-module. We denote by cd(Q, M) the cohomological dimension of M with respect to Q which is the largest integer i for which $H^i_Q(M) \neq 0$. Notice that $0 \leq cd(Q, M) \leq n$.

We recall the following facts which will be used in the sequel.

Fact 1.1.

$$\operatorname{grade}(P, M) \le \dim M - \operatorname{cd}(Q, M),$$

and the equality holds if M is Cohen–Macaulay, see [10, Formula 5].

Let $q \in \mathbb{Z}$. In [10], we say M is relative Cohen–Macaulay with respect to Q if $H^i_Q(M) = 0$ for all $i \neq q$. In other words, $\operatorname{grade}(Q, M) = \operatorname{cd}(Q, M) = q$. From now on, we omit the word "relative" for simplicity and say M is Cohen–Macaulay with respect to Q.

Fact 1.2. If M is Cohen–Macaulay with respect to Q with $|K| = \infty$, then

$$\operatorname{cd}(P, M) + \operatorname{cd}(Q, M) = \dim M,$$

see [10, Theorem 3.6].

Fact 1.3. The exact sequence $0 \to M' \to M \to M'' \to 0$ of finitely generated bigraded S-modules yields

$$\operatorname{cd}(Q, M) = \max\{\operatorname{cd}(Q, M'), \operatorname{cd}(Q, M'')\},\$$

see the general version of [2, Proposition 4.4].

Fact 1.4.

$$cd(Q, M) = \max\{cd(Q, S/\mathfrak{p}) : \mathfrak{p} \in Ass(M)\},\$$

see the general version of [2, Corollary 4.6].

For a finitely generated bigraded S-module M, there is a unique largest bigraded submodule N of M for which cd(Q, N) < cd(Q, M), see [9, Lemma 1.9]. We recall the following definition from [9].

Definition 1.5. We call a filtration $\mathcal{D}: 0 = D_0 \subsetneq D_1 \subsetneq \cdots \subsetneq D_r = M$ of bigraded submodules of M the dimension filtration of M with respect to Q if D_{i-1} is the largest bigraded submodule of D_i for which $cd(Q, D_{i-1}) < cd(Q, D_i)$ for all $i = 1, \ldots, r$.

Remark 1.6. Let \mathcal{D} be the dimension filtration of M with respect to Q. For all i, the exact sequence $0 \to D_{i-1} \to D_i \to D_i/D_{i-1} \to 0$ by using Fact 1.3 yields

 $cd(Q, D_i) = max\{cd(Q, D_{i-1}), cd(Q, D_i/D_{i-1})\} = cd(Q, D_i/D_{i-1}).$

Thus, $cd(Q, D_{i-1}/D_{i-2}) < cd(Q, D_i/D_{i-1})$ for all *i*.

Let \mathcal{D} be the dimension filtration of M with respect to Q. We set

$$B_{i,Q} = \{ \mathfrak{p} \in \operatorname{Ass}(M) : \operatorname{cd}(Q, S/\mathfrak{p}) \le \operatorname{cd}(Q, D_i) \}, \ I_{i,Q} = \prod_{\mathfrak{p} \in B_{i,Q}} \mathfrak{p}$$

and

$$A_{i,Q} = \{ \mathfrak{p} \in \operatorname{Ass}(M) : \mathfrak{p} \in V(I_{i,Q}) \} \text{ for } i = 1, \dots, r$$

Lemma 1.7. Let the notation be as above. Then the following statements hold

$$A_{i,Q} = B_{i,Q} = \operatorname{Ass}(D_i) \quad for \quad i = 1, \dots, r_i$$

Consequently,

$$\operatorname{Supp}(D_i) \subseteq V(I_{i,Q}) \quad for \quad i = 1, \dots, r.$$

Proof. In order to show the first equality, we note that $B_{i,Q} \subseteq A_{i,Q}$ for $i = 1, \ldots, r$. Now let $\mathfrak{p} \in A_{i,Q}$. Then $\mathfrak{p} \in \operatorname{Ass}(M)$ with $I_{i,Q} \subseteq \mathfrak{p}$. Hence $\mathfrak{q} \subseteq \mathfrak{p}$ for some $\mathfrak{q} \in \operatorname{Ass}(M)$ with $\operatorname{cd}(Q, S/\mathfrak{q}) \leq \operatorname{cd}(Q, D_i)$. The canonical epimorphism $S/\mathfrak{q} \to S/\mathfrak{p}$ yields $\operatorname{cd}(Q, S/\mathfrak{p}) \leq \operatorname{cd}(Q, S/\mathfrak{q})$ by Fact 1.3. It follows that $\mathfrak{p} \in B_{i,Q}$ and hence $A_{i,Q} \subseteq B_{i,Q}$.

To show the second equality, let $\mathfrak{p} \in B_{i,Q}$. Then there is a submodule $N \subseteq M$ such that $N \cong S/\mathfrak{p}$ and $\mathrm{cd}(Q, S/\mathfrak{p}) \leq \mathrm{cd}(Q, D_i)$. Using Fact 1.3 we have

$$\operatorname{cd}(Q, N + D_i) = \max\{\operatorname{cd}(Q, D_i), \operatorname{cd}(Q, N/(N \cap D_i))\} = \operatorname{cd}(Q, D_i),$$

and hence $N \subseteq D_i$. This shows $\mathfrak{p} \in \operatorname{Ass}(D_i)$ and therefore $B_{i,Q} \subseteq \operatorname{Ass}(D_i)$. Now let $\mathfrak{p} \in \operatorname{Ass}(D_i)$. Then $\mathfrak{p} \in \operatorname{Ass}(M)$ and $\operatorname{cd}(Q, S/\mathfrak{p}) \leq \operatorname{cd}(Q, D_i)$ by Fact 1.4. This shows $\mathfrak{p} \in B_{i,Q}$ and hence $\operatorname{Ass}(D_i) \subseteq B_{i,Q}$. In the following we describe the structure of the submodules D_i in the dimension filtration of \mathcal{D} with respect to Q which extends [11, Proposition 2.2].

Proposition 1.8. Let \mathcal{D} be the dimension filtration of M with respect to Q. Then

$$D_i = H^0_{I_{i,Q}}(M) = \bigcap_{\mathfrak{p}_j \notin B_{i,Q}} N_j$$

for i = 1, ..., r - 1 where $0 = \bigcap_{j=1}^{s} N_j$ is a reduced primary decomposition of 0 in M with N_j is \mathfrak{p}_j -primary for j = 1, ..., s.

Proof. In order to prove the first equality, we have $V(\operatorname{Ann}(D_i)) = \operatorname{Supp}(D_i) \subseteq V(I_{i,Q})$ for $i = 1, \ldots, r-1$ by Lemma 1.7. Since $I_{i,Q}$ is finitely generated, it follows that $I_{i,Q}^{k_i} \subseteq \operatorname{Ann}(D_i)$ for some integer k_i and hence $I_{i,Q}^{k_i}D_i = 0$ for some k_i . Thus $D_i = H^0_{I_{i,Q}}(D_i) \subseteq H^0_{I_{i,Q}}(M)$ for $i = 1, \ldots, r-1$.

Now we prove the equality by decreasing induction on i. For i = r - 1, we assume that $D_{r-1} \subsetneq H^0_{I_{r-1,Q}}(M) \subseteq D_r = M$. It follows from the definition dimension filtration that $\operatorname{cd}(Q, H^0_{I_{r-1,Q}}(M)) = \operatorname{cd}(Q, M)$. Note that

Ass
$$H^0_{I_{i,Q}}(M) = A_{i,Q} = \operatorname{Ass}(D_i)$$
 for $i = 1, \dots, r-1$

by [7, Proposition 3.13](c) and Lemma 1.7. It follows that $cd(Q, H^0_{I_{r-1,Q}}(M)) = cd(Q, D_{r-1,Q})$, and hence $cd(Q, D_{r-1,Q}) = cd(Q, M)$, a contradiction. Thus $D_{r-1,Q} = H^0_{I_{r-1,Q}}(M)$. Now let 1 < i < r-1, and assume that $D_i = H^0_{I_{i,Q}}(M)$. We show $D_{i-1} = H^0_{I_{i-1,Q}}(M)$. Assume $D_{i-1} \subsetneq H^0_{I_{i-1,Q}}(M)$. As $H^0_{I_{i-1,Q}}(M) \subseteq H^0_{I_{i,Q}}(M) = D_i$, we have $cd(Q, H^0_{I_{i-1,Q}}(M)) \ge cd(Q, D_i)$. Since $Ass H^0_{I_{i-1,Q}}(M) = Ass(D_{i-1})$, it follows that $cd(Q, D_{i-1}) = cd(Q, H^0_{I_{i-1,Q}}(M)) \ge cd(Q, D_i)$, a contradiction. Therefore, $D_{i-1} = H^0_{I_{i-1,Q}}(M)$. The second equality follows from Lemma 1.7 and [7, Proposition 3.13](a).

Remark 1.9. Let \mathcal{D} be the dimension filtration of M with respect to Q with cd(Q, M) = q. We call the submodule

$$D_{r-1} = \bigcap_{\mathfrak{p}_j \notin B_{r-1,Q}} N_j = \bigcap_{\operatorname{cd}(Q,S/\mathfrak{p}_j)=q} N_j,$$

the unmixed component of M with respect to Q and denote it by $u_{Q,M}(0)$. Notice that $u_{\mathfrak{m},M}(0) = u_M(0)$ introduced by Schenzel in [11]. If M is relatively unmixed with respect to Q, that is, $\operatorname{cd}(Q, M) = \operatorname{cd}(Q, S/\mathfrak{p})$ for all $\mathfrak{p} \in \operatorname{Ass}(M)$, then by Proposition 1.8 we have

$$D_i = \bigcap_{\mathfrak{p}_j \notin B_{i,Q}} N_j = \bigcap_{j=1}^s N_j = 0 \quad \text{for all} \quad i < r.$$

Corollary 1.10. Let \mathcal{D} be the dimension filtration of M with respect to Q. Then for $i = 1, \ldots, r$ we have

$$\operatorname{Ass}(M/D_i) = \operatorname{Ass}(M) - \operatorname{Ass}(D_i).$$

Proof. The assertion follows from Proposition 1.8, Lemma 1.7 and the fact that $\operatorname{Ass} M/H^0_{I_{i,Q}}(M) = \operatorname{Ass}(M) - A_{i,Q}$, see [7, Proposition 3.13](c).

2. Sequentially Cohen–Macaulay with respect to Q

We recall the following definition from [9].

Definition 2.1. Let M be a finitely generated bigraded S-module. We call a finite filtration $\mathcal{F}: 0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_r = M$ of M by bigraded submodules M a Cohen–Macaulay filtration with respect to Q if

- (a) Each quotient M_i/M_{i-1} is Cohen–Macaulay with respect to Q;
- (b) $0 \le \operatorname{cd}(Q, M_1/M_0) < \operatorname{cd}(Q, M_2/M_1) < \cdots < \operatorname{cd}(Q, M_r/M_{r-1}).$

We call M to be sequentially Cohen-Macaulay with respect to Q if M admits a Cohen-Macaulay filtration with respect to Q.

Note that if M is sequentially Cohen–Macaulay with respect to Q, then the filtration \mathcal{F} in the definition above is uniquely determined and it is just the dimension filtration of M with respect to Q defined in Definition 1.5, see [9, Proposision 1.12].

We have the following characterization of sequentially Cohen–Macaulay modules with respect to Q in terms of local cohomology modules which extends [4, Corollary 4.4] and [5, Corollary 3.10].

Proposition 2.2. Let $\mathcal{D}: 0 = D_0 \subsetneq D_1 \subsetneq \cdots \subsetneq D_r = M$ be the dimension filtration of M with respect to Q. Then the following statements are equivalent:

- (a) M is sequentially Cohen–Macaulay with respect to Q;
- (b) $H^k_Q(M/D_{i-1}) = 0$ for i = 1, ..., r and $k < cd(Q, D_i)$;
- (c) grade $(Q, M/D_{i-1}) = cd(Q, D_i)$ for i = 1, ..., r.

Proof. $(a) \Rightarrow (b)$: We proceed by decreasing induction on *i*. As D_i/D_{i-1} is Cohen–Macaulay with respect to Q for all *i*, thus for i = r we have $H^k_Q(M/D_{r-1}) = 0$ for $k < \operatorname{cd}(Q, M)$. Now let 1 < i < r, and assume that $H^k_Q(M/D_{i-1}) = 0$ for $k < \operatorname{cd}(Q, D_i)$. The exact sequence

$$0 \to D_{i-1}/D_{i-2} \to M/D_{i-2} \to M/D_{i-1} \to 0,$$

induces the following long exact sequence

(1)
$$\cdots \to H^k_Q(D_{i-1}/D_{i-2}) \to H^k_Q(M/D_{i-2}) \to H^k_Q(M/D_{i-1}) \to \cdots$$

As D_{i-1}/D_{i-2} is Cohen–Macaulay with respect to Q, we have $H_Q^k(D_{i-1}/D_{i-2}) = 0$ for $k < \operatorname{cd}(Q, D_{i-1})$. By Remark 1.6, we have $\operatorname{cd}(Q, D_{i-1}) = \operatorname{cd}(Q, D_{i-1}/D_{i-2}) < \operatorname{cd}(Q, D_i)$. Hence by using (1) and the induction hypothesis, we have $H_Q^k(M/D_{i-2}) = 0$ for $k < \operatorname{cd}(Q, D_{i-1})$, as desired.

 $(b) \Rightarrow (a)$: By Remark 1.6 we have $\operatorname{cd}(Q, D_i/D_{i-1}) < \operatorname{cd}(Q, D_{i+1}/D_i)$ for all *i*. Thus it suffices to show that D_i/D_{i-1} is Cohen–Macaulay with respect to Q for all *i*. We prove this statement by decreasing induction on *i*. In condition (b), we first assume i = r. It follows that M/D_{r-1} is Cohen–Macaulay with respect to Q. Now let 1 < i < r, and assume that D_i/D_{i-1} is Cohen-Macaulay with respect to Q. The exact sequence

$$0 \to D_i/D_{i-1} \to M/D_{i-1} \to M/D_i \to 0,$$

induces the following long exact sequence

(2)
$$\cdots \to H^{k-1}_Q(D_i/D_{i-1}) \to H^{k-1}_Q(M/D_{i-1}) \to H^{k-1}_Q(M/D_i) \to \cdots$$

Suppose $k < cd(Q, D_{i-1})$. Induction hypothesis and our assumption say that $H_Q^{k-1}(D_i/D_{i-1}) = H_Q^{k-1}(M/D_i) = 0.$ Hence $H_Q^{k-1}(M/D_{i-1}) = 0$ by (2). We have $H_Q^{\vec{k}}(M/D_{i-2}) = 0$ for $k < cd(Q, D_{i-1})$ because of our assumption again. Thus $H_Q^k(D_{i-1}/D_{i-2}) = 0$ for $k < cd(Q, D_{i-1})$ by (1). Therefore D_{i-1}/D_{i-2} is Cohen-Macaulay with respect to Q, as desired.

 $(b) \Rightarrow (c)$: We set $\operatorname{cd}(Q, D_i) = \operatorname{cd}(Q, D_i/D_{i-1}) = q_i$ for $i = 1, \ldots, r$. Our assumption says that $grade(Q, M/D_{i-1}) \ge q_i$ for $i = 1, \ldots, r$. We only need to know $H_O^{q_i}(M/D_{i-1}) \neq 0$. Consider the long exact sequence

(3)
$$\cdots \to H_Q^{q_i-1}(M/D_i) \to H_Q^{q_i}(D_i/D_{i-1}) \to H_Q^{q_i}(M/D_{i-1}) \to \cdots$$

Since $q_i - 1 < q_i < q_{i+1}$, it follows from our assumption that $H_Q^{q_i-1}(M/D_i) = 0$. If $H_Q^{q_i}(M/D_{i-1}) = 0$, then by (3) we have $H_Q^{q_i}(D_i/D_{i-1}) = 0$, a contradiction. The implication $(c) \Rightarrow (b)$ is obvious.

As an application of Proposition 1.8 and Proposition 2.2 we have

Example 2.3. Let I be the Stanley-Reisner ideal that corresponds to the natural triangulation of the projective plane \mathbb{P}^2 . Then

$$I = (x_1 x_2 x_3, x_1 x_2 y_1, x_1 x_3 y_2, x_1 y_1 y_3, x_1 y_2 y_3, x_2 x_3 y_3, x_2 y_1 y_2, x_2 y_2 y_3, x_3 y_1 y_2, x_3 y_1 y_3).$$

We set R = S/I where $S = K[x_1, x_2, x_3, y_1, y_2, y_3]$, $P = (x_1, x_2, x_3)$ and Q = (y_1, y_2, y_3) . Our aim is to show that R is sequentially Cohen-Macaulay with respect to P and Q. Note that R is Cohen–Macaulay of dimension 3 if char $K \neq 2$. The ideal I has the minimal primary decomposition $I = \bigcap_{i=1}^{10} \mathfrak{p}_i$ where $\mathfrak{p}_1 =$ $(x_3, y_1, y_3), \mathfrak{p}_2 = (x_1, y_1, y_3), \mathfrak{p}_3 = (x_2, y_1, y_2), \mathfrak{p}_4 = (x_3, y_1, y_2), \mathfrak{p}_5 = (x_1, y_2, y_3), \mathfrak{p}_6 = (x_2, y_2, y_3), \mathfrak{p}_7 = (x_2, x_3, y_3), \mathfrak{p}_8 = (x_1, x_2, y_1), \mathfrak{p}_9 = (x_1, x_3, y_2), \mathfrak{p}_{10} = (x_1, x_2, x_3).$ As $P = \mathfrak{p}_{10} \in \operatorname{Ass}(R)$, we have grade(P, R) = 0. By Fact 1.4 we have $\operatorname{cd}(P, R) = 2$ and cd(Q, R) = 3. Since R is Cohen-Macaulay, it follows from Fact 1.1 that $\operatorname{grade}(Q,R) = 1$. We first show that R is sequentially Cohen-Macaulay with respect to P. By Proposition 1.8, R has the dimension filtration

$$0 = R_0 \subsetneq R_1 \subsetneq R_2 \subsetneq R_3 = R,$$

with respect to P where

$$R_1 = \bigcap_{i=1}^9 \mathfrak{p}_i / I$$
 and $R_2 = \bigcap_{i=1}^6 \mathfrak{p}_i / I$.

By Corollary 1.10 we have

$$\operatorname{Ass}(R_1) = \operatorname{Ass}(R) - \operatorname{Ass}(R/R_1) = \{\mathfrak{p}_{10}\}.$$

and

$$\operatorname{Ass}(R_2) = \operatorname{Ass}(R) - \operatorname{Ass}(R/R_2) = \{\mathfrak{p}_7, \mathfrak{p}_8, \mathfrak{p}_9, \mathfrak{p}_{10}\}.$$

It follows that $cd(P, R_1) = 0$ and $cd(P, R_2) = 1$. We set $I_1 = \bigcap_{i=1}^{9} \mathfrak{p}_i$ and $I_2 =$ $\bigcap_{i=1}^{6} \mathfrak{p}_i$. In view of Proposition 2.2, we need to show

$$\operatorname{grade}(P, R_3/R_0) = \operatorname{grade}(P, R) = \operatorname{cd}(P, R_1) = 0,$$

$$\operatorname{grade}(P, R_3/R_1) = \operatorname{grade}(P, S/I_1) = \operatorname{cd}(P, R_2) = 1$$

and

$$\operatorname{grade}(P, R_3/R_2) = \operatorname{grade}(P, S/I_2) = \operatorname{cd}(P, R) = 2.$$

The first equality is obvious. As $P \not\subseteq \mathfrak{p}_i$ for $i = 1, \ldots, 9$, we have $\operatorname{grade}(P, S/I_1) \ge 1$. On the other hand, $\operatorname{grade}(P, S/I_1) \leq \dim S/I_1 - \operatorname{cd}(Q, S/I_1) = 3 - 2 = 1$. Thus the second equality holds. In order to show the third equality, we note that S/I_2 has dimension 3 and by using CoCoA [3] depth 2. Thus Fact 1.1 can not be used to compute grade $(P, S/I_2)$. We set $\mathfrak{q}_1 = \mathfrak{p}_1 \cap \mathfrak{p}_2 = (x_1x_3, y_1, y_3), \mathfrak{q}_2 = \mathfrak{p}_3 \cap \mathfrak{p}_4 =$ (x_2x_3, y_1, y_2) and $\mathfrak{q}_3 = \mathfrak{p}_5 \cap \mathfrak{p}_6 = (x_1x_2, y_2, y_3)$. Consider the exact sequence

$$0 \to S/\mathfrak{q}_1 \cap \mathfrak{q}_2 \to S/\mathfrak{q}_1 \oplus S/\mathfrak{q}_2 \to S/(\mathfrak{q}_1 + \mathfrak{q}_2) \to 0.$$

Since grade $(P, S/\mathfrak{q}_1 \oplus S/\mathfrak{q}_2) = 2$ and grade $(P, S/(\mathfrak{q}_1 + \mathfrak{q}_2)) = 1$, it follows that $\operatorname{grade}(P, S/(\mathfrak{q}_1 \cap \mathfrak{q}_2)) \geq 2$. As $\operatorname{cd}(P, S/(\mathfrak{q}_1 \cap \mathfrak{q}_2)) = 2$, we have $\operatorname{grade}(P, S/(\mathfrak{q}_1 \cap \mathfrak{q}_2)) = 2$ 2. Consider the exact sequence

(4)
$$0 \to S/I_2 \to S/\mathfrak{q}_1 \cap \mathfrak{q}_2 \oplus S/\mathfrak{q}_3 \to S/(\mathfrak{q}_1 + \mathfrak{q}_3) \cap (\mathfrak{q}_2 + \mathfrak{q}_3) \to 0.$$

The exact sequence

$$0 \to S/(\mathfrak{q}_1 + \mathfrak{q}_3) \cap (\mathfrak{q}_2 + \mathfrak{q}_3) \to S/(\mathfrak{q}_1 + \mathfrak{q}_3) \oplus S/(\mathfrak{q}_2 + \mathfrak{q}_3) \to S/(\mathfrak{q}_1 + \mathfrak{q}_2 + \mathfrak{q}_3) \to 0$$

yields that grade $(P, S/(\mathfrak{q}_1 + \mathfrak{q}_3) \cap (\mathfrak{q}_2 + \mathfrak{q}_3)) \ge 1$. Hence by (4) we have grade $(P, S/I_2) \ge 2$. As $\operatorname{cd}(P, S/I_2) = 2$, we conclude that grade $(P, S/I_2) = 2$, as desired.

As $\operatorname{cd}(P, S/I_2) = 2$, we conclude that $\operatorname{grade}(P, S/I_2) = 2$, as desired. Next, we show that R is sequentially Cohen–Macaulay with respect to Q. By Proposition 1.8, R has the dimension filtration $0 = R_0 \subsetneq R_1 \subsetneq R_2 \subsetneq R_3 = R$ with respect to Q where $R_1 = \bigcap_{i=7}^{10} \mathfrak{p}_i / I$ and $R_2 = \mathfrak{p}_{10} / I$. By Corollary 1.10 we have $\operatorname{cd}(Q, R_1) = 1$ and $\operatorname{cd}(Q, R_2) = 2$. We set $J = \bigcap_{i=7}^{10} \mathfrak{p}_i$. In view of Proposition 2.2, we need to show

$$\operatorname{grade}(Q, R_3/R_0) = \operatorname{grade}(Q, R) = \operatorname{cd}(Q, R_1) = 1,$$

 $\operatorname{grade}(Q, R_3/R_1) = \operatorname{grade}(Q, S/J) = \operatorname{cd}(Q, R_2) = 2$

and

$$\operatorname{grade}(Q, R_3/R_2) = \operatorname{grade}(Q, S/\mathfrak{p}_{10}) = \operatorname{cd}(Q, R) = 3$$

The first and the third statements are obvious. In order to prove the second equality, consider the exact sequence

(5)
$$0 \to S/J \to S/ \cap_{i=7}^{9} \mathfrak{p}_i \oplus S/\mathfrak{p}_{10} \to S/ \cap_{i=7}^{9} (\mathfrak{p}_i + \mathfrak{p}_{10}) \to 0.$$

An exact sequence argument shows that

$$\operatorname{grade}(Q, S/ \cap_{i=7}^{9} \mathfrak{p}_i) = \operatorname{grade}(Q, S/ \cap_{i=7}^{9} (\mathfrak{p}_i + \mathfrak{p}_{10})) = 2.$$

Thus it follows from (5) that $grade(Q, S/J) \ge 2$. On the other hand,

$$grade(Q, S/J) \le \dim S/J - cd(P, S/J) = 3 - 1 = 2.$$

Therefore, $\operatorname{grade}(Q, S/J) = 2$, as desired.

3. COHEN-MACAULAY MODULES THAT ARE SEQUENTIALLY COHEN-MACAULAY WITH RESPECT TO Q

In [10] we have shown that if M is a finitely generated bigraded Cohen-Macaulay S-module which is Cohen–Macaulay with respect to P, then M is Cohen–Macaulay with respect to Q. Inspired by this fact and Example 2.3 we have the following question

Question 3.1. Let $I \subseteq S$ be a monomial ideal. Suppose S/I is Cohen-Macaulay. If S/I is sequentially Cohen-Macauly with respect to P, is S/I sequentially Cohen-Macaulay with respect to Q?

We do not know the answer of this question yet, however in this section, we obtain some properties of a Cohen–Macaulay filtration with respect to Q in general provided that the module itself is Cohen–Macaulay.

Fact 3.2. For a Cohen–Macaulay filtration \mathcal{F} with respect to Q we recall the following fact from [9, Corollary 1.8]

$$\operatorname{grade}(Q, M_i) = \operatorname{grade}(Q, M) \quad \text{for} \quad i = 1, \dots, r.$$

Proposition 3.3. Let M be a finitely generated bigraded Cohen-Macaulay S-module with $|K| = \infty$. Suppose M is sequentially Cohen-Macaulay with respect to Q with the Cohen-Macaulay filtration $0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_r = M$ with respect to Q. Then

(a) $cd(P, M_i) = cd(P, M)$ for i = 1, ..., r.

(b) grade (Q, M_i) + cd (P, M_i) = dim M_i for i = 1, ..., r.

Proof. In order to prove (a), since M_1 is Cohen-Macaulay with respect to Q, it follows from Fact 1.2 that $cd(P, M_1) + cd(Q, M_1) = \dim M_1$. By Fact 3.2 we have $cd(Q, M_1) = grade(Q, M_1) = grade(Q, M)$. Since M is Cohen-Macaulay, it follows from [9, Lemma 1.11] that dim $M_1 = \dim M$ and $\operatorname{cd}(P, M) = \dim M - \operatorname{grade}(Q, M)$ by Fact 1.1. Thus we conclude that $cd(P, M_1) = cd(P, M)$. As by Fact 1.3 we have $cd(P, M_{i-1}) \leq cd(P, M_i)$ for all *i*, the first equality follows.

For the proof (b), by [9, Lemma 1.11] we have dim $M_i = \dim M$ for $i = 1, \ldots, r$. Thus the second equalities follow from Fact 1.1, Fact 3.2 and part (a).

Proposition 3.4. Let the assumptions and the notation be as in Proposition 3.3. Then the following statements are equivalent:

- (a) $\operatorname{cd}(P, M) + \operatorname{cd}(Q, M) = \dim M + r 1;$ (b) $H_Q^s(M) \neq 0$ for all $\operatorname{grade}(Q, M) \leq s \leq \operatorname{cd}(Q, M).$

Proof. We first assume that r = 1. As M is Cohen-Macaulay, by Fact 1.1 and Fact 1.2 we have $cd(P, M) + cd(Q, M) = \dim M$ if and only if M is Cohen-Macaulay with respect to Q. Thus the claim holds in this case. Now let $r \geq 2$. By Fact 1.1 we have $\operatorname{cd}(P, M) + \operatorname{cd}(Q, M) = \dim M + r - 1$ if and only if $\operatorname{cd}(Q, M) - \operatorname{grade}(Q, M) = r - 1$. This is equivalent to saying that $\operatorname{cd}(Q, M_{i+1}) = \operatorname{cd}(Q, M_i) + 1$ for $i = 1, \ldots, r - 1$ by Fact 3.2. By [9, Proposition 1.7] this is equivalent to saying that $H^s_Q(M) \neq 0$ for all $\operatorname{grade}(Q, M) \leq s \leq \operatorname{cd}(Q, M)$.

The following example shows that the condition that "M is Cohen–Macaulay" is required for Proposition 3.4.

Example 3.5. We set $K[x] = K[x_1, \ldots, x_m]$ and $K[y] = K[y_1, \ldots, y_n]$. Let L be a non-zero finitely generated graded K[x]-module of depth 0 and dimension 1, and N a non-zero finitely generated graded K[y]-module of depth 0 and dimension 1. We set $M = L \otimes_K N$ and consider it as S-module. One has depth M = 0 and dim M = 2. Hence M is not Cohen-Macaulay. On the other hand, $\operatorname{grade}(Q, M) = \operatorname{depth} N = 0$ and $\operatorname{cd}(Q, M) = \dim N = 1 = \dim L = \operatorname{cd}(P, M)$. Hence M is sequentially Cohen-Macaulay with respect to Q which satisfies condition (b) in Proposition 3.4, while the equality (a) does not hold.

The following question is inspired by Proposition 3.4.

Question 3.6. Let M be a finitely generated bigraded Cohen–Macaulay S-module such that $H^k_Q(M) \neq 0$ for all grade $(Q, M) \leq k \leq \operatorname{cd}(Q, M)$. Is $H^s_P(M) \neq 0$ for all grade $(P, M) \leq s \leq \operatorname{cd}(P, M)$?

Remark 3.7. Of course the question has positive answer in the following cases, namely, if M has only one(two) non-vanishing local cohomology with respect to Q. This immediately follows by Fact 1.1. The projective plane \mathbb{P}^2 given in Example 2.3 is also the case as module with three non-vanishing local cohomology.

References

- W. Bruns and J. Herzog, "Cohen–Macaulay rings" (Revised edition), Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998. Zbl 0788.13005, MR1251956
- [2] M. Chardin, J. P. Jouanolou, A. Rahimi, The eventual stability of depth, associated primes and cohomology of a graded module, J. Commut. Algebra 5(2013), 63-92. Zbl 1275.13014, MR 3084122
- [3] CoCoATeam, CoCoA: A system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it.
- [4] N. T. Cuong, D. T. Cuong, On the structure of sequentially generalized Cohen-Macaulay modules, J. Algebra 317(2007), 714–742. Zbl 1137.13010, MR 2362938 (2009b:13026)
- [5] N. T. Cuong, D. T. Cuong, On the sequentially Cohen–Macaulay modules. Kodai Math. J. 30(2007), 409–428. Zbl 1139.13011, MR 2372128 (2009a:13016)
- [6] N. T. Cuong, L. T. Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra 267 (2003), 156–177. Zbl 1068.13009, MR 1993472 (2004f:13012)
- [7] D. Eisenbud, "Commutative Algebra with a view to Algebraic geometry", Springer Verlag, 1995. Zbl 0819.13001, MR 1322960
- [8] M. Jahangiri, A. Rahimi, Relative Cohen-Macaulayness and relative unmixedness of bigraded modules, J. Commut. Algebra, 4(2012), 551-575. Zbl 1266.13011, MR 3053452
- [9] A. Rahimi, Sequentially Cohen–Macaulayness of bigraded modules, Rocky Mountain J. Math., to appear.
- [10] A. Rahimi, Relative Cohen-Macaulayness of bigraded modules, J. Algebra **323**(2010), 1745-1757. Zbl 1184.13053, MR 2588136 (2011f:13016)

[11] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Commutative algebra and algebraic geometry (Ferrara), Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, New York, (1999), 245-264. Zbl 0942.13015, MR 1702109

LEILA PARSAEI MAJD, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, RAZI UNI-VERSITY, BAGHE ABRISHAM, KERMANSHAH, IRAN AND, DEPARTMENT OF MATHEMATICS, FAC-ULTY OF SCIENCE, SHAHID RAJAEE TEACHER TRAINING UNIVERSITY, P. O. BOX: 16785-136, TEHRAN, IRAN.

E-mail address: leila.parsaei84@yahoo.com

AHAD RAHIMI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, RAZI UNIVERSITY, BAGHE ABRISHAM, KERMANSHAH, IRAN AND, SCHOOL OF MATHEMATICS, INSTITUTE FOR RE-SEARCH IN FUNDAMENTAL SCIENCES (IPM), P. O. BOX: 19395-5746, TEHRAN, IRAN.

 $E\text{-}mail\ address: \texttt{ahad.rahimi@razi.ac.ir}$