
Theoretical Computer Science 576 (2015) 18–29
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the average-case complexity of parameterized clique

Nikolaos Fountoulakis a, Tobias Friedrich b,∗, Danny Hermelin c

a University of Birmingham, Edgbaston, United Kingdom
b Hasso Plattner Institute, Potsdam, Germany
c Ben-Gurion University, Beer-Sheva, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 February 2013
Received in revised form 23 October 2014
Accepted 23 January 2015
Available online 19 February 2015
Communicated by V.Th. Paschos

Keywords:
Parameterized complexity
Computational complexity
Average-case
Clique

The k-Clique problem is a fundamental combinatorial problem that plays a prominent role
in classical as well as in parameterized complexity theory. It is among the most well-
known NP-complete and W[1]-complete problems. Moreover, its average-case complexity
analysis has created a long thread of research already since the 1970s. Here, we continue
this line of research by studying the dependence of the average-case complexity of the
k-Clique problem on the parameter k. To this end, we define two natural parameterized
analogs of efficient average-case algorithms. We then show that k-Clique admits both
analogues for Erdős–Rényi random graphs of arbitrary density. We also show that k-Clique

is unlikely to admit either of these analogs for some specific computable input distribution.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The k-Clique problem is one of the most fundamental combinatorial problems in graph theory and computer science.
This problem asks to determine whether a given graph contains a clique of size k, i.e. a complete subgraph on k vertices.
The k-Clique problem forms the groundwork for many worst-case hardness frameworks: It is one of Karp’s famous initial
lists of NP-complete problems [11], and its optimization variant is a classical example of a problem that is NP-hard to
approximate within a factor of n1−ε for any ε > 0 [20]. In parameterized complexity theory [4], the k-Clique problem is
textbook example complete for the class W[1], the parameterized analogue of NP, playing a prominent role in W[1]-hardness
results very much akin to the role 3-SAT plays in the classical complexity.

In this paper we are interested in the parameterized complexity of the k-Clique problem on “average” inputs. For our
purposes, an average k-Clique instance can be naturally and conveniently modeled using the thoroughly-studied Erdős–
Rényi distributions on graphs. The class of these distributions is typically denoted by G(n, p), with n ∈ N and p ∈ [0, 1],
where on a graph with n vertices each pair of vertices are adjacent independently with probability p. Such random graphs
have approximate density p, and it is well-known (see e.g. [1,10]) that the typical properties of these random graphs are es-
sentially the typical properties of a random graph that is uniformly selected among all graphs on n vertices and p

(n
2

)
edges.

The question of finding cliques in G(n, p) random graphs has been raised by Karp [12] already in 1976. Karp observed
that in G(n, 1/2) (note that this is in fact the uniform distribution over all graphs on n vertices) the maximum size of
a clique is about 2 log n with high probability, but the greedy algorithm only finds with high probability a clique that is
approximately half this size. Karp asked whether in fact there is any polynomial-time algorithm that finds a clique of size
(1 + ε) log n, for some ε > 0. This question remains open until today.

* Corresponding author.
http://dx.doi.org/10.1016/j.tcs.2015.01.042
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.01.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://dx.doi.org/10.1016/j.tcs.2015.01.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.01.042&domain=pdf

N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29 19
Finding cliques in G(n, p) random has also been considered when the clique sought after have small size, which is the
main theme of our paper. For a fixed integer k ≥ 3, the random graph G(n, p) undergoes a phase transition regarding the
(almost sure) existence of cliques of size k (cf. [1] or [10]) as the edge probability p grows. More specifically, it is known that
when p � n−2/(k−1) , then G(n, p) does not contain any cliques of size k, with high probability, but when p � n−2/(k−1) , then
in fact there are many k-cliques with high probability. However, inside the “critical window”, that is when p = �(n−2/(k−1)),
the maximum size of a clique could be either k − 1 or k each one occurring with probability that is bounded away from 0
as n grows to infinity. More precisely, the number of cliques of size k follows asymptotically a Poisson distribution with
parameter that depends on k. In this range, the greedy algorithm finds a clique of size � k

2 � or 	 k
2
, with high probability.

Rossman [17, Remark 35] remarks that repeating the greedy algorithm nk/4+O (1) times, we can enumerate all the maximal
cliques with high probability. This gives a randomized algorithm with runtime nk/4+O (1) for solving k-Clique with high
probability.

Since the above algorithm is the fastest algorithm known, it seems that a typical instance of G(n, p) with p =
�(n−2/(k−1)) is in fact a hard instance for k-Clique. This is also suggested by the lower bounds on the size of monotone
circuits for k-Clique derived recently by Rossman [17] (see also [16]) for p in this range. Thus any substantial improve-
ment to the nk/4+O (1) algorithm above would be a major breakthrough result; not to mention an FPT algorithm running
in f (k) · nO (1) time, which is perhaps far too much of an improvement than we can expect.1 To avoid this obstacle, we
consider distributions G(n, p) where p does not depend on k (but may depend on n). Apart from the obvious advantage
that this gives a real chance at obtaining positive results, we also believe that this a very natural model of practical settings.
Indeed, in many cases the distribution of the graphs we are interested in is fixed, while the size of the cliques we are
looking for may vary.

We consider two types of algorithms running in FPT time on average. The first is an avgFPT-algorithm, which is an
algorithm with expected f (k) ·nO (1) run-time. Thus, an avgFPT-algorithm is required to run in FPT-time on average according
to the given input distribution. This means that the algorithm is allowed to be slow on some instances, so long as that its
efficient on average. The notion of avgFPT-time is a natural parameterized analogue of an avgP-time algorithm (see e.g. [7]),
and is perhaps the most natural definition of the notion “FPT on average”.

We present a very simple avgFPT algorithm for k-Clique for essentially all distributions p := p(n). By essentially, we
mean all natural distributions that have typical properties, such as certain limit properties (this is made precise in Defini-
tion 5). The first result of this paper is thus the following theorem.

Theorem 1. Let p := p(n) denote a natural distribution function. There is an avgFPT-algorithm for k-Clique on graphs G ∈ G(n, p).

The second type of average-case FPT algorithms we consider are algorithms that run in typical FPT (typFPT) time. By this
we mean a running time of f (k) ·nO (1) with high probability, where high probability means that the algorithm is allowed to
be slower only with probability smaller than any polynomial in n. Thus, one may view the difference between a typFPT-time
algorithm and an avgFPT-time algorithm is that an avgFPT-time algorithm is allowed to be slightly slow on relatively many
instances, while a typFPT-time algorithm is allowed to be extremely slow on relatively few instances. In stochastic terms,
this is precisely the difference between bounding the expected value of a random variable and showing that it is bounded
with high probability. Again, the analogous notion in classical complexity is typical P-time [7].

We show that the same algorithm used in Theorem 1 is actually a typFPT algorithm for k-Clique for any natural p :=
p(n). However, the proof of this result is more involved than the former and requires a rather sophisticated tail bound
argument.

Theorem 2. Let p := p(n) denote a natural distribution function. There is a typFPT-algorithm for k-Clique on graphs G ∈ G(n, p).

It is worth mentioning that in both theorems above, our algorithms are completely deterministic and always correctly
decide whether their input graph contains a clique of size k. This makes the proofs more challenging, since the algorithms
cannot only assume that a k-clique is unlikely to exist in the input, but they must also certify this somehow. Furthermore,
our algorithms can easily be modified to determining whether a G(n, p) random graph has an independent set of size k.
Moritz Müller’s PhD thesis [15] provides the first attempt at setting up a framework of parameterized average case com-
plexity. In particular, he defined a notion very much similar to our avgFPT-algorithm, except that in his case the algorithm
is allowed to have one-sides errors with constant probability. The notion of typFPT has not appeared elsewhere to the best
of our knowledge. The distinction between these two types of average-case tractability notions is standard in the classical
world, and in Section 2 we briefly argue why this distinction makes even more sense in the parameterized world. Müller
also defined an average-case analogue of W[1], and showed that there is some (artificial) problem which is complete for
it. We discuss this result in the last part of the paper, and show that the k-Clique problem is hard for this average-case
analogue of W[1] on a specific distribution.

1 Note that f (k) · nO (1) � nk for any function f , when k is fixed and n tends to infinity.

20 N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29
2. Average case parameterized algorithms

In this section we define our two average-case analogues of FPT algorithms. We begin by some necessary terminology
which follows the terminology used in Goldreich [7] for classical average-case analysis. A distribution ensemble X is an
infinite sequence of probability spaces, one for each n ∈ N, such that the n-th space is defined over {0, 1}n . We will associate
with X a sequence of random variables {Xn}∞n=1, where Xn is assigned strings in {0, 1}n according to the corresponding
distribution in X (thus, formally Xn maps strings from {0, 1}n to strings from {0, 1}n). For example, we will write Pr[Xn = x]
for the probability that Xn equals a specific x ∈ {0, 1}∗ when drawn at random according to X . A distributional parameterized
problem is a pair (L, X), where L ⊆ {0, 1}∗ × N is a parameterized problem, and X is a distribution ensemble over strings
in {0, 1}∗ .

Next let us consider avgFPT-time algorithms. Informally, we would like this class of algorithms to contain all algorithms
running in FPT-time on average according to the distribution of their inputs. However, similar to the classical world, there
are some technical problems with simply requiring that the corresponding algorithms run in expected FPT-time (e.g. this
does not allow for robustness in the computation model, see [7]). Thus, as is done in the classical setting, we will require
some sort of normalized expected running time. Furthermore, we require that our algorithms always output the correct
solution, or in other words, they must be able to decide the given problem.

Definition 3. Let (L, X) be a distributional parameterized problem. We say that an algorithm A deciding L runs in avgFPT-
time if there exists a constant c and a function f : N →N such that for all k ∈ N:

∑
n∈N

E

[
tA(Xn,k)

nc

]
< f (k).

Here, and elsewhere, the random variable tA(Xn, k) denotes the running time of an algorithm A on input (x, k), where x is
chosen with probability Pr[Xn = x].

Observe that an avgFPT-time algorithm may run the brute-force procedure, which typically runs in O(nk) time, with
probability n−k . This, as we will see further on, allows for a very simple analysis in some cases. A more stringent require-
ment of an efficient algorithm for parameterized distributional problems is to insist that it typically runs in FPT-time. That
is, that it runs in FPT-time with high probability, where high probability means that the algorithm is allowed to be too slow
only with probability super-polynomially small. Thus, a probability of n−k will not suffice. This indicates that the distinction
between the two average-case classes might be more apparent in the parameterized world than it is in classical complexity
theory.

Definition 4. Let (L, X) be a distributional parameterized problem. We say that an algorithm A deciding L runs in typFPT-
time if there exists a function f and a polynomial p, such that for all k ∈ N and polynomials q there is an n0 ∈ N such that
for all n > n0:

Pr[tA(Xn,k) > f (k) · p(n)] <
1

q(n)
.

It is important to note that in the probability bound of the definition above we can equivalently use f (k)/q(n) instead
of 1/q(n). It is obvious that a 1/q(n) bound implies an f (k)/q(n) bound (for f (k) ≥ 1). To see the opposite direction,
let us denote θ := Pr[tA(Xn, k) > f (k) · p(n)], and assume there exists a function f and polynomial p, such that for all
parameters k and polynomials q there is an n0 such that θ < f (k)/q(n) for all n > n0. Then observe that at the time when
the polynomial q is chosen, f (k) is a fixed constant. Hence if θ < f (k)/q(n) holds for all polynomials q, then θ < f (k)/q̃(n)

also holds for the polynomial q̃(n) with q̃(n) = f (k) · q(n), which implies θ < 1/q(n) as required by Definition 4.

3. k-CLIQUE is FPT on average

In this section we present an avgFPT-time algorithm for the k-Clique problem coupled with distribution ensembles
defined via the Erdős–Rényi random graph model G(n, p) [5]. Recall that in G(n, p), a random graph on the vertex set V :=
{1, . . . , n}, is constructed by connecting each pair of vertices independently with probability p := p(n). We will show that
for any natural function p, where the precise meaning of natural is given in Definition 5 below, there is an avgFPT-algorithm
for k-Clique under G(n, p), providing the first part of the proof for Theorem 1.

Definition 5. A function p: N → [0, 1] is natural if p either equals 0 for all n ∈ N, or p(n) := n−g(n) for a non-negative
function g(n) where the limit cg := limn→∞ g(n) exists.

N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29 21
The reader should observe that most commonly used functions p are natural or super-polynomially small.2 For example,
when p(n) := 1/2 we have g(n) := 1/ lg n which is non-negative and cg = 0, when p(n) := 1/ lg n we have g(n) = lg lgn/ lg n,
and for p(n) := 1/nc we have g(n) = c.

Our proof is split into two cases, one for dense graphs with cg = 0 (Section 3.1), and the other for sparse graphs where
cg > 0 (Section 3.2). Clearly, showing that both the sparse and dense cases are in avgFPT shows that k-Clique is in avgFPT
for all natural edge probabilities p.

Our algorithm is very simple in both the sparse and the dense case. In the dense case, with high probability we can
find a k-clique among a linear number of k-subsets of vertices. If a solution is not found amongst these vertex subsets,
we can exhaustively search through all k-subsets of vertices in the graph since this happens with very small probability.
In the sparse case, we show that the expected number of maximal cliques is polynomial, and so we can use one of many
algorithms (e.g. Tsukiyama et al. [18]) to compute all maximal cliques in our input.

3.1. The dense case

Let G ∈ G(n, p) where p := n−g(n) with cg := limn→∞ g(n) = 0, and n sufficiently large. Also, let k ∈ N. Our algorithm for
determining whether G has a k-clique, which we refer to as algorithm A, is very simple: Let us call a clique of size k on
a set of vertices { jk + 1, . . . , (j + 1) k} ⊆ V , for j ∈ {0, . . . , �n/k� − 1}, an elementary k-clique. Algorithm A first checks if G
has an elementary k-clique. If so, it reports yes. Otherwise, it tries out all

(n
k

)
subsets of k vertices in G , reporting yes if and

only if one of these is a clique.
It is clear that algorithm A correctly determines whether G has a k-clique in worst-case running-time O(k2nk). Fur-

thermore, as there are at most �n/k� elementary k-cliques in G , checking whether elementary k-cliques are present in G
requires O(k2n) time. Thus, if G contains an elementary k-clique, the running time of A is only O(k2n). The next lemma
shows that for all interesting values of k, the probability that this event does not occur is exponentially small.

Lemma 6. Let k ≤ min{n1/4, g(n)−1/4}. Then

Pr[G(n, p) contains no elementary k-clique] ≤ exp
(− n1/2).

Proof. Let EK(G) denote the number of elementary k-cliques in G . Observe that the probability that the vertex-subset
{ jk +1, . . . , (j +1)k} ⊆ V , for a specific j ∈ {0, . . . , �n/k� −1}, is not a k-clique is 1 − p

(k
2

)
, and this probability is independent

of any other vertex-subset { j′k + 1, . . . , (j′ + 1)k} ⊆ V , j′ �= j, being a k-clique. Thus, using the fact that �n/k� ≥ n/k − 1 ≥
n/(2k), we get for sufficiently large n:

Pr[EK(G) = 0] =
(

1 − p
(k

2

))�n/k� ≤ exp
(
−

⌊n

k

⌋
p

(k
2

))

≤ exp
(
− n

2k
p

(k
2

))
= exp

(
−n1−g(n)

(k
2

)
2k

)
.

Since k ≤ g(n)−1/4, we have g(n)
(k

2

) ≤ 1/4 for sufficiently large n. Thus, since we also assume k ≤ n1/4, the right-hand side
above can be bounded by exp

(− n1/2
)

for sufficiently large n. �
Lemma 6 gives us an easy way to bound the expected running-time of algorithm A. Let h(n) := g(n)−1/4. Observe that

the worst case running-time of algorithm A is O(k2nk). Let h(n) := g(n)−1/4. Then h(n) tends to infinity as n grows since
limn→∞ g(n)1/4 = 0. Thus, for every k there exists a κ(k) for which k ≤ h(n) for all n ≥ κ(k). If n < κ(k), the worst-case
running time of algorithm A can be bounded by O(k2nk) = O(k2(κ(k))k). This means that when k > h(n) = g(n)−1/4 (and
so n ≤ κ(k)), the worst-case running-time of algorithm A can be bounded by a function in k. Similarly, if k ≥ n1/4, the
worst-case running-time of A can also be bounded by a function in k. Therefore, letting f (k) denote a bound on the
running-time of A in case k > min{n1/4, g(n)−1/4}, we get by Lemma 6 above that

E[tA(G(n, p),k)] = O
(

f (k) + exp(−n1/2) · k2nk + (1 − exp(−n1/2)) · k2n
)

= O(f (k) · n),

and so∑
n∈N

E [tA(G(n, p),k)]

n
= O(f (k)),

proving that algorithm A runs in avgFPT-time.

2 Note that for super-polynomially small p the k-Clique problem has trivial avgFPT and typFPT algorithms, since with super-polynomially high probability
the input graph has no edges.

22 N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29
3.2. The sparse case

Let G ∈ G(n, p) where p := n−g(n) with cg := limn→∞ g(n) > 0, and let k ∈ N. Our algorithm for this case, which we
refer to as algorithm B, is even simpler than algorithm A: Algorithm B simply computes all maximal (with respect to set
inclusion) cliques in G , using the classical algorithm of Tsukiyama et al. [18], and outputs yes if and only if one of the
maximal cliques is of size at least k. Clearly, algorithm B correctly decides whether G has a k-clique.

The algorithm of Tsukiyama et al. [18] runs in O(n3MK(G)) time, where MK(G) denotes the number of maximal cliques
in G . This is also the time complexity of algorithm B. Thus, to bound the expected running time of B on G(n, p), it suffices
to bound the expected number of maximal cliques that a graph in G(n, p) contains. To ease the analysis, we actually bound
the number K (G) of cliques in G , for which we always have MK(G) ≤ K (G).

For a graph G and a positive integer s, let Ks(G) denote the number of cliques of size s in G . For any s ≥ 2, the expected
number of cliques of size s in G ∈ G(n, p) with p = n−g(n) is

μs := E [Ks(G(n, p))] =
(

n

s

)
p

(s
2

)
≤ ns−g(n)

(s
2

)
. (1)

Let s0 := 2	 4
cg

 + 1. If n is sufficiently large, then g(n) > cg/2. A simple calculation then shows that if s ≥ s0, then s −
g(n)

(s
2

) ≤ s − cg
2

(s
2

) ≤ −3s ≤ −3. Thereby, for any s ≥ s0 we have μs ≤ n−3. Using this, we can easily bound E [K (G(n, p))]
for n large enough:

E [K (G(n, p))] =
∑
s≥2

μs =
∑
s<s0

μs +
∑
s≥s0

μs ≤ ns0 + n · n−3 ≤ ns0+1.

Hence, the expected running time of B is O(ns0+4), whence

∑
n∈N

E [tB(G(n, p),k)]

ns0+4
= O(1),

shows that it indeed runs in avgFPT-time.
We want to point out that it is not hard to adjust the proof for the sparse case under the weaker assumption that the

limit of g(n) does not exist, but 0 < lim infn→∞ g(n) < lim supn→∞ g(n). However, if 0 = lim infn→∞ g(n) < lim supn→∞ g(n),
then the density of the random graph varies substantially along appropriately chosen subsequences. In particular, one can
find a subsequence over which the random graph has very slowly decaying density and another subsequence in which
the random graph is sparse. In these cases, the proofs that are presented in this and the previous section can be applied
over these subsequences. Thus, effectively one could combine the two algorithms into a single algorithm. However, such an
algorithm would have expected running time which is far from the expected running time that one could achieve for dense
random graphs.

4. k-CLIQUE is typically FPT

In this section we argue that the k-Clique problem is in typFPT for all natural G(n, p) distributions, completing the proof
of Theorem 1. As in Section 3, our proof will split into two cases: The dense case with cg = 0, and the sparse case with
cg > 0, where cg is the limit of the function g(n) defining the edge-probability p := n−g(n) . Moreover, the algorithms used
in each case will be algorithms A and B of Section 3.

Observe that Lemma 6 shows that in the dense case with cg = 0, algorithm A runs in f (k) · n time, with f as given in
Section 3.1, with probability at least 1 − exp(−n1/2). Thus, for dense edge probabilities, algorithm A runs in typFTP-time.
The main challenge here is showing that algorithm B also runs in typFPT-time. Here, applying a simple tail bound such as
Markov’s inequality, allows us to show that algorithm B is too slow with only polynomially small probability. To show that
it is in fact slow only with super-polynomially small probability requires a slightly more involved argument.

So let p := n−g(n) be such that cg := limn→∞ g(n) > 0. Recall that the running-time of algorithm B on a graph G with n
vertices is O(n3MK(G)) =O(n3 K (G)). For an integer s ≥ 2, we let Ks(G) denote the number of cliques of size s in a graph G .
Then K (G) = ∑n

s=2 Ks(G). To bound K (G(n, p)) with high probability, we show that there exists an s1 ∈ N depending only
on cg (and thus on p) such that with very high probability the total number of cliques of size at least s1 in G(n, p) is at
most logarithmic.

Lemma 7. Let p := p(n) := n−g(n) , with g(n) such that cg := limn→∞ g(n) > 0. Then there exists an s1 ∈ N such that for any
n sufficiently large with probability at least 1 − exp(−n log n), we have∑

s≥s1

Ks(G(n, p)) ≤ log n.

N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29 23
Proof. We begin with giving a tail bound on the probability that Ks(G(n, p)) is large for an arbitrary integer s ≥ 2. Recall
that by (1), for any such s ≥ 2, the expected number μs of cliques of size s is bounded, for all s ≥ 2, by μs ≤ ns−g(n)

(s
2

)
for n

sufficiently large. We now give an upper-tail bound on the number of cliques of size s in G(n, p) through which we will
determine s. To this end, we will use an upper-tail inequality for sums of dependent random variables due to Janson and
Ruciński [9]. Let K be a non-empty set and {X S }S∈K denote a family of non-negative random variables defined on the same
probability space. For S, S ′ ∈ K, we write X S ∼ X S ′ to denote that these random variables are dependent. For S ∈ K, we let
�S := |{S ′: X ′

S ∼ X S}| and � = maxS∈K �S . Assume also that for all S ∈K, we have X S ≤ 1. Now, let X := ∑
S∈K X S and let

μ := E[X]. Corollary 2.6 in [9] states that for any t ≥ 0,

Pr[X ≥ μ + t] ≤
(

1 + t

μ

)− t
4�

. (2)

In our application, the probability space is induced by the G(n, p) model of random graphs and K is the collection of all
subsets of s vertices of G . For each such subset S ∈ K, let X S ∈ {0, 1} be the indicator random variable which equals 1 if
and only if G[S] is a clique. As far as the quantity � is concerned, for any S ∈K with |S| < n we have

�S =
s∑

i=2

(
s

i

)(
n − s

s − i

)
≤

s∑
i=2

sins−i = ns
s∑

i=2

(s

n

)i ≤ ns
∞∑

i=2

(s

n

)i ≤ 2s2ns−2,

and therefore � ≤ 2s2ns−2, as when |S| = n then �S = 0. Since
∑

S∈K X S = Ks(G) and letting t = log n/2s2, inequality (2)
yields

Pr
[

Ks(G) ≥ μs + log n/2s2
]

≤
(

1 + log n

2s2μs

)− log n
8s2� ≤ exp

(
−ng(n)

(s
2

)
log2 n

32nss6ns−2

)

= exp

(
−ng(n)

(s
2

)−2s+2 log2 n

32s6

)
. (3)

Now recall that cg = limn→∞ g(n) > 0. Thus, for any n sufficiently large we have g(n) > 8cg/10. Since s ≥ 2, we also have (s
2

) ≥ s2/4, and therefore,

g(n)

(
s

2

)
− 2s + 2 > cg

s2

5
− 2s + 2.

Let us set s1 := max
{	 25

cg

, 3}

. We will show that for any s ≥ s1 we have cg s2/5 − 2s0 + 2 ≥ 7. That is, s
(
cg s/5 − 2

) ≥ 3.
Indeed, s

(
cg s/5 − 2

) ≥ s1
(
cg s1/5 − 2

) ≥ s1 (5 − 2) > 7.
As s ≥ s1 ≥ 3, for n sufficiently large, this implies that g(n)

(s
2

) − s > s − 1 ≥ 2, and therefore μs1 ≤ n−2. Thus if n is
sufficiently large, for all s ≥ s1 we have

Pr

[
Ks(G(n, p)) ≥ log n

s2

]
≤ e−n log2 n/16.

So applying the union bound we deduce that, if n is sufficiently large, with probability at least 1 − e−n log n we have

n∑
s=s1

Ks(G(n, p)) ≤ logn
∞∑

s=s1

1

s2
≤ log n. �

Alternatively, we could derive a weaker bound with the use of large deviation inequalities for subgraph statistics in a
random graph (see for example Theorem 2.2 in [19]).

The above lemma provides the existence of a constant s1 depending on g(n) such that for any n sufficiently large
K (G(n, p)) ≤ ns1 + log n with probability at least 1 − exp(−n log n). Thus the running time of algorithm B on sparse graphs
is O(ns1+3) with probability at least 1 − exp(−n log n), i.e., it runs in typFPT-time.

5. A hard distribution for k-CLIQUE

In the following section we show that there exists a certain distributional ensemble for which k-Clique coupled with
this distribution is unlikely to have an avgFPT-algorithm, nor a typFPT-algorithm. We build on the theory developed by
Müller [15], and use techniques developed in [8,13] and [14] to prove our argument.

24 N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29
We begin by defining our average-case analogue of W[1]. A distribution ensemble X is said to be simple3 if there
is a polynomial algorithm that on input x ∈ {0, 1}∗ , outputs the probability Pr[X|x| ≤ x], where ≤ denotes the standard
lexicographic order on strings. In the classical world, the standard definition of the average-case analogue of NP is defined
as all NP problems coupled with simple distributions. The restriction to simple distributions is done in order to avoid trivial
hardness results. Thus, adapting the same line of discourse to the parameterized world, we define the class distW[1] as the
set

distW[1] := {
(L, X): X is a simple distribution ensemble and L ∈ W[1]

}
.

Note that this definition easily extends to any other parameterized class besides W[1]. The main working conjecture we
propose for average-case parameterized analysis is distW[1] � avgFPT ∪ typFPT.

We next define a reduction that preserves average-case parameterized tractability. The notion of a reduction we use here
is essentially a hybrid of the two corresponding notions in classical average-case complexity and parameterized complexity.

Definition 8. A distributional parameterized problem (L1, X) reduces to another distributional parameterized prob-
lem (L2, Y), if there exists an algorithm A, a function f , and a polynomial p, such that A on input (x, k) ∈ �∗ × N
outputs in time f (k) · p(|x|) a pair (y, �) ∈ �∗ ×N satisfying:

• (x, k) ∈ L1 ⇐⇒ (y, �) ∈ L2.
• � ≤ f (k).
• |x| ≤ |y|.
• Pr[A(X|x|, k) = (y, �)] ≤ f (k) · p(|x|) · Pr[Y |y| = y].

Observe that the first two requirements in Definition 8 are the usual requirements of a parameterized reduction. The
third requirement is a technical requirement used also in non-parameterized distributional reductions that can typically be
satisfied by a straightforward padding argument, yet it is necessary for the composition of our reductions (see Lemma 9).
We note that this requirement is missing in Müller’s work [15] since he was not interested in composing reductions. The
last requirement, often referred to as the domination property, ensures that an infrequent input of L1 does not get mapped
to a frequent input of L2. We let (L1, X) ≤ (L2, Y) denote the fact that (L1, X) reduces, as per Definition 8, to (L2, X).

Lemma 9. ≤ is transitive.

Proof. Let (L1, X), (L2, Y), and (L3, Z) be three distributional parameterized problems with (L1, X) ≤ (L2, Y) and (L2, Y) ≤
(L3, Z), and let A1 and A2 respectively be the algorithms showing that (L1, X) ≤ (L2, Y) and (L2, Y) ≤ (L3, Z), as required
by Definition 8. We prove that (L1, X) ≤ (L3, Z), by showing that the composition of A2 and A1 gives an algorithm that
satisfies the conditions of Definition 8. It is easy to verify that the first three requirements of Definition 8 hold. In particular,
for any (x, k) ∈ �∗ × N, the running-time of A2(A1(x, k)) (and hence, also its output size) is bounded by f (k) · p(|x|)
for some computable f () and polynomial p(), and moreover we have m ≤ f (k). To prove the lemma, we show that the
probability that A2(A1(X|x|, k)) outputs and (z, m) ∈ �∗ ×N is bounded by above by the probability of z according to Z |z| ,
modulo some FPT-factor in |x| and k.

For this, note that all four requirements of Definition 8 for A1 and A2 hold with f () and p(), and write

Pr[A2(A1(X|x|,k)) = (z,m)] =
∑

�

∑
n

∑
y s.t. |y|=n,

A2(y,�)=(z,m)

Pr[A1(X|x|,k)) = (y, �)].

Let n∗ and �∗ denote the values of n and � that maximize the rightmost sum above. Since there are only f (k) · p(|x|) choices
for pairs (�, n), we can restrict ourselves to bounding the rightmost sum above in terms of n∗ and �∗ . By definition of A1,
we have ∑

y∗ s.t. |y∗|=n∗,
A2(y∗,�∗)=(z,m)

Pr[A1(X|x|,k)) = (y, �∗)] ≤ f (k) · p(|x|) ·
∑

y s.t. |y|=n∗,
A2(y,�∗)=(z,m)

Pr[Yn∗ = y].

Thus it suffices to bound the sum of probabilities in the rightmost sum above. Observe that this sum is precisely the
probability that A2(Yn∗ , �∗) = (z, m). By definition of A2, we get that

Pr[A2(Yn∗ , �∗) = (z,m)] ≤ f (�∗) · p(n∗) · Pr[Z |z| = z].
Now, recall that �∗ ≤ f (k), and that n∗ = |y| ≤ |z| ≤ f (k) · p(|x|) for every y as above (by the third requirement of Defini-
tion 8). Thus, f (�∗) · p(n∗) ≤ f (f (k))p(f (k)) · p(p(|x|)), and the lemma is proven. �

3 Müller [15] uses here the term polynomial-time distributed.

N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29 25
The next lemma shows the most important property of our reductions: For any pair of distributional parameterized
problems (L1, X) and (L2, Y) with (L1, X) ≤ (L2, Y), the question of whether (L1, X) is tractable in the average-case param-
eterized sense reduces to same question regarding (L2, Y). This has been shown for avgFPT-algorithms by Müller [15].4 We
complement this result by showing that the same holds for typFPT-algorithms. For completeness, we also provide a proof
for avgFPT in Section 6.

Lemma 10. If (L1, X) ≤ (L2, Y) and (L2, Y) has a typFPT-algorithm, then (L1, X) also has a typFPT-algorithm.

Proof. Let A be a typFPT algorithm for (L2, Y) running in fA(�) · pA(|y|) time with high probability, and let R denote
a reduction from (L1, X) to (L2, Y), as required by Definition 8, running in fR(k) · pR(|x|) time. We argue that the al-
gorithm B which outputs B(x, k) := A(R(x, k)) for all (x, k) ∈ �∗ × N is a typFPT-algorithm for (L1, X). By definitions
of R and A, it is clear that B correctly decides (L1, X). We show that algorithm B runs in more than f (k) · p(|x|)
time with super-polynomially small probability, for f () and p() chosen such that f (k) · p(n) is sufficiently larger than
fR(k) · pR(n) + fA(k) · pR(n) for all k and sufficiently large n.

Fix k ∈N, and let q() be an arbitrary polynomial. By our choice of f () and p(), we can bound the probability that B runs
in more than f (k) · p(|x|) time by

Pr[tB(X|x|,k) > f (k) · p(|x|)] ≤
∑

�

∑
n

∑
y s.t. |y|=n,

tA(y,�) > fA(�)·pA(n)

Pr[R(X|x|,k) = (y, �)].

Note that there are at most fR(k) · pR(|x|) pairs of (�, n) in the right-hand side above. Thus, we can bound the total
summation on the right-hand side in terms of �∗ and n∗ which are the values of � and n that maximize the rightmost sum
in this summation. Due to the requirements on R, we get∑

y s.t. |y|=n∗,
tA(y,�∗) > fA(�∗)·pA(n∗)

Pr[R(X|x|,k) = (y, �∗)] ≤ fR(k) · pR(|x|) ·
∑

y s.t. |y|=n∗,
tA(y,�∗) > fA(�∗)·pA(n∗)

Pr[Yn∗ = y].

Note that the rightmost sum is just the probability that A(Yn∗ , �∗) runs in more than fA(�∗) · pA(n∗) time. Since A is
a typFPT-algorithm for (L2, Y), this probability is super-polynomially small. In particular, it smaller than 1/q′(n), where
q′(n) := (fR(k) · pR(n))2 · q(n). Note that q′(n) is indeed a polynomial, as pR() and q() are polynomials, and f (k) is fixed.
Thus, we have

Pr[tB(X|x|,k) > f (k) · p(|x|)]
≤ (fR(k) · pR(|x|))2 · Pr[tA(Yn∗ , �∗) > fA(�∗) · pA(n∗)]
≤ (fR(k) · pR(|x|))2

q′(|x|) = 1

q(|x|) ,

and the lemma is proven. �
By distW[1]-complete we will mean, as usual, a problem (L, X) ∈ distW[1] with (L′, Y) ≤ (L, X) for every problem (L′, Y)

in distW[1]. Note that an avgFPT algorithm or a typFPT algorithm for a distW[1]-complete problem would falsify our working
conjecture of distW[1] � avgFPT ∪ typFPT. We therefore argue that showing that a problem is distW[1]-complete is strong
evidence against the existence of such algorithms. In the remainder of the section we prove the following theorem:

Theorem 11. Let L denote the k-Clique problem. There exists a simple distribution Y for which (L, Y) is distW[1]-complete.

For proving Theorem 11, we need two initial results. The first states that there exists some (artificial) distW[1]-complete
problem. This has been shown by Müller [15] using the same ideas as in [8,13]. While Müller uses a slightly different
notion of reduction than ours (his definition lacks the third requirement of Definition 8), his proof can easily be adopted to
accommodate also our definition by a straightforward padding argument.

Theorem 12. (See [15].) There is a distributional parameterized problem (U , X) which is distW[1]-complete.

The following lemma by Livne [14] (see also [7]) gives the necessary technical tool for reducing the (U , X) problem
above to some distributional k-Clique. We assume some natural encoding of graphs into binary strings, and let 〈G〉 denote
the encoding of a given graph G .

4 In fact, [15] shows this for a more relaxed notion of reduction where the third requirement does not exist.

26 N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29
Lemma 13. (See [14].) There is a polynomial-time algorithm that given a graph G and an x ∈ {0, 1}∗ , computes a graph Gx such that:

• x = x′ and G = G ′ ⇐⇒ 〈Gx〉 = 〈Gx′ 〉.
• |x| = |x′| ⇐⇒ |〈Gx〉| = |〈Gx′ 〉|.
• |x| ≤ |〈Gx〉|.
• G has a k-clique ⇐⇒ Gx has a k-clique, for any k �= 2.
• If X is a simple distribution ensemble then the distribution ensemble Y defined by

Pr[Y |y| = y] =
⎧⎨
⎩

Pr[X|x| = x] : y = 〈Gx〉
0 : y �= 〈Gx〉 for all x and ∃x s.t. 〈Gx〉 ∈ {0,1}|y|
1/2|y| : otherwise (�x s.t. 〈Gx〉 ∈ {0,1}|y|)

is also simple.

Proof of Theorem 1.1. Let (U , X) denote the distW[1]-complete problem of Theorem 12, and let L denote the k-Clique

problem. Since U ∈ W[1], and L is W[1]-complete, there exists a parameterized reduction A from U to L. We construct an
alternative reduction A∗ which works as follows:

(1) It first computes A(x, k) = (G, �).
(2) It then checks if � = 2:

(a) If so, it sets �∗ := 3 if G has no edges, and otherwise it sets �∗ := 1.
(b) If � �= 2, it sets �∗ := �.

(3) It then computes Gx , and outputs the pair (Gx, �∗).

Clearly, A∗ runs in FPT-time. Moreover, A∗ is a reduction, as required by Definition 8, from (U , X) to (L, Y), where Y is the
distribution defined in the last item of Lemma 13 above. Indeed, it is easy to see that

(x,k) ∈ U ⇐⇒ (G, �) ∈ L ⇐⇒ (Gx, �
∗) ∈ L

by Lemma 13 and the definition of A. Furthermore, since � ≤ f (k) for some f , we have �∗ ≤ f (k) + 1, and |x| ≤ |〈Gx〉| by
Lemma 13. Finally, by our construction and Lemma 13,

Pr[A∗(X|x|,k) = (Gx, �
∗)] = Pr[X|x| = x] = Pr[Y |〈Gx〉| = 〈Gx〉].

Thus (U , X) ≤ (L, Y). Since Y is simple, (L, Y) ∈ distW[1], and so by Lemma 9 we get that (L, Y) is distW[1]-complete. �
6. Appendix

In this section we provide proofs for claims used in Section 5 which are proven in Müller’s thesis [15] for definitions
which are slightly different then ours. In particular we provide a proof for the avgFPT analog for Lemma 10, and a proof for
Theorem 12. Our proofs here use the same techniques as in [15].

Lemma 14. If (L1, X) ≤ (L2, Y) and (L2, Y) has an avgFPT-algorithm, then (L1, X) also has an avgFPT-algorithm.

Proof. Let A be the algorithm as in Definition 3 showing that (L2, Y) ∈ avgFPT, and let R denote the reduction from (L1, X)

to (L2, Y), as required by Definition 8. Also, let fA and pA be the computable function and polynomial associated with A,
and let fR and pR be the computable function and polynomial associated with R. We show that the algorithm B which
outputs B(x, k) :=A(R(x, k)) for all (x, k) ∈ �∗ ×N gives an avgFPT algorithm for (L1, X).

By definitions of R and A, it is clear that B correctly decides (L1, X). Furthermore, since for any (x, k) ∈ �∗ × N, we
have tB(x, k) = tR(x, k) + tA(R(x, k)) + O (1), by linearity of expectation, we have

∑
n∈N

E

[
tB(Xn,k)

nc

]
≤

∑
n∈N

E

[
tR(Xn,k)

nc

]
+

∑
n∈N

E

[
tA(R(Xn,k))

nc

]
,

for any c ∈N. As tR(x, k) ≤ fR(k) · pR(|x|) for all (x, k) ∈ �∗ ×N, we have for any k ∈N

∑
n∈N

E

[
tR(Xn,k)

nc

]
= O (fR(k))

for some sufficiently large c. Thus, to prove the lemma it suffices to bound the second summation above for every k ∈ N.
Fix k ∈N. Due to the requirements on R, we have for every x ∈ �∗

N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29 27
E[tA(R(X|x|,k))] =
∑

�

∑
n

∑
|y|=n

tA(y, �) · Pr[R(X|x|,k) = (y, �)]

≤ fR(k) · pR(|x|) ·
∑

�

∑
n

∑
|y|=n

tA(y, �) · Pr[Yn = y]

= fR(k) · pR(|x|) ·
∑

�

∑
n

E[tA(Yn, �)].

Now observe, that the number of summands on the right-hand side of the above inequality is finite, and, therefore, there
exist n∗, �∗ that maximize the summands. In particular, observe that the number of summands is at most fA(k) · pA(n).
Thus,

E[tA(R(X|x|,k))] ≤ fR(k) · fA(k) · pR(|x|) · pA(|x|) · E[tA(Yn∗ , �∗)].
But n∗ ≤ fA(k) · pA(n), which, in turn, implies that for any c > 0 we have

(n∗)c ≤ (fA(k) · pA(|x|))c |x|c .
Thus, for any positive c we have

E

[
tA(R(X|x|,k))

|x|c
]

≤ fR(k) · fA(k)

f c
A(k)

pR(|x|) · pA(|x|)
pc
A(|x|) E

[
tA(Yn∗ , �∗)

(n∗)c

]
.

As we need to take the sum of the above over all n ∈ N, observe that on the right-hand side the same value of n∗ can be
repeated at most n∗ times. Thus, we obtain

∑
n∈N

E

[
tA(R(Xn,k))

nc

]
≤ fR(k) f c

A(k)

f c
A(k)

∑
n∈N

n
pR(n)pA(n)

pc
A(n)

E

[
tA(Yn, �

∗(n))

nc

]

≤ fR(k)

f c−1
A (k)

∑
n∈N

n
pR(n)

pc−1
A (n)

E

[
tA(Yn, fA(k))]

nc

]
.

Choosing c large enough, concludes the proof of the lemma. �
Before providing the proof of Theorem 12, we need to describe the machine characterization for W[1] of Chen, Flum, and

Grohe [3]. The characterization is based on a nondeterministic version of random access machines (RAM) which are a more
accurate model of real-life computation than Turing machines. A RAM consists of an infinite set of registers {r0, r1, r2, . . .},
a program counter x, and an instruction set. The instructions are of the form STORE i or ADD i, j, and so forth (see [3] for
details). A nondeterministic RAM (NRAM) consists of an additional instruction of the form GUESS i, j, which results in the
machine “guessing” a number less than or equal to the number stored in register ri , and storing this number in r j [3]. Chen
et al. used the following type of NRAM programs to characterize W[1]:

Definition 15. A NRAM program P is a W[1]-program if there exists a computable function f and a polynomial p such that
on every input (x, k), the program P on every run

• performs at most f (k) · p(|x|) instructions, storing numbers which are ≤ f (k) · p(|x|) only in the first f (k) · p(|x|)
registers;

• in every run of P , all nondeterministic instructions are among the last f (k) instructions of the computation.

In this case, we say that P accepts (x, k) using (f (k), p(|x|)) resources.

Theorem 16. (See [3].) A parameterized problem L is in W[1] iff there exists a W[1]-program P deciding L.

Theorem 16 above suggests the following universal problem U for W[1]: Given an NRAM program P , an input (x, �) ∈ �∗ ,
a unary integer t , and a parameter k, decide whether P accepts (x, �) using (t, k) resources. It is clear that U is in W[1]: On
input (〈P , (x, �), t〉, k), a W[1]-program Q can simulate, using (O(t), O(k)) resources, all runs of P on (x, �) that use (t, k)

resources. We next define a simple uniform distribution ensemble Y for U given by

Pr[Yn = 〈P , (x, �), t〉] := 1

2|P |+|x| · (� + t)
,

where n := |P | + |x| + � + t . It is not difficult to verify that under a suitable encoding of NRAM programs, the above
distribution is simple. Thus, (U , Y) ∈ distW[1]. We will show that (U , Y) is in fact distW[1]-complete, using the following
lemma initially proved by Levin [13].

28 N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29
Lemma 17. (See [13].) Let X be a simple distribution ensemble. Then there exists a polynomial-time computable, and polynomial-time
invertible, injective function 	: �∗ → �∗ , such that for all x ∈ �∗ we have Pr[X|x| = x] ≤ 2−(|	(x)|+1) .

Proof of Theorem 12. Let (L, X) be a problem in distW[1]. We reduce (L, X) to (U , Y) by mapping an instance (x, k) ∈
{0, 1}∗ × N to an instance (〈P , (x′, k), t〉, �) as follows: Denote by 	 the function given in Lemma 17, and let p	 be the
polynomial bounding the running-time of computing and inverting 	 . Since (L, X) ∈ distW[1], L ∈ W[1], and so by Theo-
rem 16 there is a W[1]-program Q deciding L. Let f Q and p Q denote the computable function and polynomial associated
with Q as in Theorem 16. Define P to be the program that gets x′ := 	(x) as input, computes x = 	−1(x′), and then
simulates Q on (x, k) (accepting iff Q accepts). Finally, define t := p	(|x′|) + p Q (|x| + �) + c, where c is the overhead time
required to simulate 	−1 and Q , and let � := f Q (k).

Observe that our construction can be carried out in FPT-time, since writing down P is done in time independent of (x, k).
Furthermore, clearly � ≤ f Q (k), and since Q decides L, we have (x, k) ∈ L ⇐⇒ (〈P , (x′, k), t〉, �) ∈ U . Thus, the first two
requirements of Definition 8 are satisfied by the construction. The third requirement can be satisfied by padding P as
necessary. Finally, to see that the last requirement is also satisfied, observe that the probability of y := 〈P , (x′, k), t〉 in Y is
at least

Pr[Y |y| = y] := 1

2|P |+|	(x)| · (k + t)
≥ 1

c′ · |y| · 1

2|	(x)| ,

where c′ is a constant depending only on P and 	 , and not on (x, k). On the other hand, according to Lemma 17 we have

Pr[X|x| = x] ≤ 1

2|	(x)|+1
.

Thus, by letting p denote the polynomial p(n) := c′n/2, combining these two inequalities gives

Pr[X|x| = x] ≤ p(|y|) · Pr[Y |y| = y].
Noting that (x, k) is the only pair that gets mapped to (y, �) by our construction, the theorem follows. �
7. Discussion

In this paper we considered the average-case parameterized complexity of the fundamental k-Clique problem. We
showed that when restricted to Erdős–Rényi random graphs of arbitrary density p := p(n), the problem admits two types
of natural average-case analogues of FPT algorithms: An avgFPT algorithm and a typFPT algorithm. Thus, in this sense, the
worst-case W[1]-complete k-Clique problem is easy on average. Furthermore, by adaptation of arguments from classical
average-case analysis due to Livne [14], it can also be shown that for specific distributions k-Clique is unlikely to be FPT
on average (unless any problem in W[1] under any computable distribution is easy). k-Clique is also known to be easy for
scale-free random graphs [6]. It would be interesting to characterize graph distributions for which k-Clique becomes easy,
i.e., avgFPT or typFPT.

It would be interesting to see which other W[1]-hard problems are easy on Erdős–Rényi random graphs of arbitrary
density p := p(n). Here it is important to require that the algorithms are deterministic and always correct, to avoid trivial
results. We remark that many of the arguments used for k-Clique do not seem to carry through easily to other problems.
A particularly interesting case is the k-Dominating Set problem, the W[1]-hard problem of determining whether a given
graph has a dominating set of size k. The hard instances for this problem seem to be G(n, 1/2).

We finally point out that studying the average-case behavior of W[1]-hard problems might not only be interesting for
graph problems. Bringmann and Friedrich [2] study a variant of the well-known Klee’s measure problem, which asks for the
volume of a number of boxes in d-dimensional space. This problem is known to be W[1]-hard for the parameter d, but it
becomes FPT on average if the input points are uniformly distributed on the standard simplex. We expect similar results to
hold for other geometric W[1]-hard problems.

Acknowledgements

The research leading to these results has received funding from the German Research Foundation (DFG) and the German–
Israeli Foundation for Scientific Research and Development (GIF).

References

[1] B. Bollobás, Random Graphs, Cambridge University Press, 2001.
[2] K. Bringmann, T. Friedrich, Parameterized average-case complexity of the hypervolume indicator, in: ACM Genetic and Evolutionary Computation

Conference, GECCO, 2013, pp. 575–582.
[3] Y. Chen, J. Flum, M. Grohe, Bounded nondeterminism and alternation in parameterized complexity theory, in: 18th Annual IEEE Conference on Com-

putational Complexity, CCC, 2003, pp. 13–29.
[4] R. Downey, M. Fellows, Parameterized Complexity, Springer-Verlag, 1999.

http://refhub.elsevier.com/S0304-3975(15)00089-4/bib426F6Cs1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib32303133474543434Fs1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib32303133474543434Fs1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4368656E466C756D47726F68653033s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4368656E466C756D47726F68653033s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib446F776E657946656C6C6F777331393939s1

N. Fountoulakis et al. / Theoretical Computer Science 576 (2015) 18–29 29
[5] P. Erdős, A. Rényi, On random graphs, Publ. Math. Debrecen 6 (1959) 290–297.
[6] T. Friedrich, A. Krohmer, Parameterized clique on scale-free networks, in: 23rd International Symposium on Algorithms and Computation, ISAAC, 2012,

pp. 659–668.
[7] O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008.
[8] Y. Gurevich, Average case completeness, J. Comput. System Sci. 42 (1991) 346–398.
[9] S. Janson, A. Ruciński, The deletion method for upper tail estimates, Combinatorica 4 (2004) 615–640.

[10] S. Janson, T. Łuczak, A. Ruciński, Random Graphs, Wiley, 2000.
[11] R. Karp, Reducibility among combinatorial problems, in: J.F. Traub (Ed.), Complexity of Computer Computations, Academic Press, 1972, pp. 85–103.
[12] R. Karp, Probabilistic analysis of some combinatorial search problems, in: Algorithms and Complexity: New Directions and Recent Results, 1976,

pp. 1–19.
[13] L. Levin, Average case complete problems, SIAM J. Comput. 15 (1986) 285–286.
[14] N. Livne, All natural NP-complete problems have average-case complete versions, J. Comput. Complex. 19 (2010) 477–499.
[15] M. Müller, Parameterized randomization, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2008.
[16] B. Rossman, Average-case complexity of detecting cliques, PhD thesis, Massachusetts Institute of Technology, 2010.
[17] B. Rossman, The monotone complexity of k-clique on random graphs, SIAM J. Comput. 43 (1) (2014) 256–279.
[18] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for generating all the maximum independent sets, SIAM J. Comput. 6 (1977) 505–517.
[19] V.H. Vu, A large deviation result on the number of small subgraphs of a random graph, Combin. Probab. Comput. 10 (2001) 79–94.
[20] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number, Theory Comput. 3 (1) (2007) 103–128.

http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4572646F657331s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib323031324953414143s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib323031324953414143s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib476F6C647265696368s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib477572657669636831393931s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4A616E5275633035s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4A4C52s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4B6172703732s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4B6172703736s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4B6172703736s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4C6576696E31393836s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4C69766E6532303036s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib4D756C6C657232303038s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib526F73736D616E32303130s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib526F73736D616E3134s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib5473756B6979616D612D65742D616C31393737s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib56753031s1
http://refhub.elsevier.com/S0304-3975(15)00089-4/bib5A75636B65726D616E3037s1

	On the average-case complexity of parameterized clique
	1 Introduction
	2 Average case parameterized algorithms
	3 k-Clique is FPT on average
	3.1 The dense case
	3.2 The sparse case

	4 k-Clique is typically FPT
	5 A hard distribution for k-Clique
	6 Appendix
	7 Discussion
	Acknowledgements
	References

