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Abstract. We consider Upper Domination, the problem of finding a
maximum cardinality minimal dominating set in a graph. We show that
this problem does not admit an n1−ε approximation for any ε > 0, mak-
ing it significantly harder than Dominating Set, while it remains hard
even on severely restricted special cases, such as cubic graphs (APX-
hard), and planar subcubic graphs (NP-hard). We complement our neg-
ative results by showing that the problem admits an O(Δ) approxima-
tion on graphs of maximum degree Δ, as well as an EPTAS on planar

graphs. Along the way, we also derive essentially tight n1− 1
d upper and

lower bounds on the approximability of the related problem Maximum

Minimal Hitting Set on d-uniform hypergraphs, generalising known
results for Maximum Minimal Vertex Cover.

1 Introduction

A dominating set of an undirected graph G = (V,E) is a set of vertices S ⊆ V
such that all vertices outside of S have a neighbour in S. The problem of finding
the smallest dominating set of a given graph is one of the most widely studied
problems in computational complexity. In this paper, we focus on a related
problem that “flips” the optimisation objective. In Upper Domination we are
given a graph and we are asked to find a maximum cardinality dominating set
that is still minimal. A dominating set is minimal if any proper subset of it is no
longer dominating, that is, if it does not contain obviously redundant vertices.

Considering a MaxMin or MinMax version of a problem by “flipping” the
objective is not a new idea; in fact, such questions have been posed before for
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many classical optimisation problems. Some of the most well-known examples
include the Minimum Maximal Independent Set problem [9,10,14,19] (also
known as Minimum Independent Dominating Set), the Maximum Mini-

mal Vertex Cover problem [7,26] and the Lazy Bureaucrat problem [2,4],
which is a MinMax version of Knapsack. The initial motivation for this type of
question was rather straightforward: most classical optimisation problems admit
an easy, naive heuristic algorithm which starts with a trivial solution and then
gradually tries to improve it in an obvious way until it gets stuck. For example,
one can produce a (maximal) independent set of a graph by starting with a
single vertex and then adding vertices to the current solution while maintaining
an independent set. What can we say about the worst-case performance of such
a basic algorithm? Motivated by this initial question the study of MaxMin and
MinMax versions of standard optimisation problems has gradually grown into a
sub-field with its own interest, often revealing new insights on the structure of
the original problems. Upper Domination is a natural example of this family
of problems, on which somewhat fewer results are currently known. A typical
pattern that often shows up in this line of research is that MaxMin versions
of classical problems turn out to be much harder than the originals, especially
when one considers approximation. For example, Maximum Minimal Vertex

Cover does not admit any n
1
2−ε approximation, while Vertex Cover admits a

2-approximation [7]; Lazy Bureaucrat is APX-hard while Knapsack admits
a PTAS [2]; and though Minimum Maximal Independent Set and Indepen-

dent Set share the same (inapproximable) status, the proof of inapproximabil-
ity of the MinMax version is considerably simpler, and was known long before
the corresponding hardness results for Independent Set [14].

Our first contribution is to show that this pattern also holds for Upper Dom-

ination: while Dominating Set admits a greedy ln n approximation, Upper

Domination does not admit an n1−ε approximation for any ε > 0, unless P=NP.
We establish this by considering the related Maximum Minimal Hitting Set

problem: given a d-uniform hypergraph, find the largest minimal set of vertices
that intersects all hyperedges. Observe that the previously studied Maximum

Minimal Vertex Cover problem is a special case of this problem for d = 2.
We show, for any d, an approximation algorithm with ratio n1− 1

d , for Maximum

Minimal Hitting Set on d-uniform hypergraphs, as well as a tight n1− 1
d −ε

inapproximability bound, exactly matching, and subsuming, the corresponding
tight

√
n approximation results for Maximum Minimal Vertex Cover given

in [7]. We then obtain the inapproximability of Upper Domination by per-
forming a reduction from an instance with sufficiently large d. We also show
that Upper Domination remains hard on two restricted cases: the problem is
still APX-hard on cubic graphs, and NP-hard on planar subcubic graphs. Since
the problem is easy on graphs of maximum degree 2, our results completely char-
acterise the complexity of the problem in terms of maximum degree (the best
previously known result was NP-hardness for planar graphs of maximum degree
6 [1]). Given the general behavior of this type of problem, and the above results
on Upper Domination in particular, the questions remains why are such prob-
lems typically so much harder than their original versions. Consider the following
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extension problem: Given a graph G = (V,E) and a set S ⊆ V , does there exist
a minimal dominating set of any size that contains S? Even though questions of
this type are typically trivial for problems such as Independent Set and Lazy

Bureaucrat, it can be shown by a more or less easy modification of the proof
of analogous results in [8,22] that in the case of Upper Domination, deciding
the existence of such a minimal dominating set is NP-hard in general graphs.
This helps explain the added difficulty of this problem, and more generally of
problems of this type, since any natural algorithm that gradually builds a solu-
tion would have to contend with (some version of) this extension problem. In
this paper we show that the extension problem for Upper Domination remains
hard even for planar cubic graphs.

We complement the above negative results by giving some approximation
algorithms for the problem in restricted cases. Specifically, we show that the
problem admits an O(Δ)-approximation on graphs with maximum degree Δ, as
well as an EPTAS on planar graphs.

Previous results. It has long been known that Upper Domination is NP-
complete in general [11], and even for graphs of maximum degree 6 [1]. Some
polynomial-time solvable graph classes are also known. This is mainly due to
the fact that on certain graph classes (like bipartite graphs) the independence
number and upper domination number coincide and for those graph classes,
the independence number can be computed in polynomial-time. We refer to the
textbook on domination [16] for further details. We mention that the problem
is polynomial for bipartite graphs [12], chordal graphs [20], generalised series-
parallel graphs [15] and graphs with bounded clique-width [13]. Recently, the
complexity of Upper Domination in monogenic classes of graphs defined by
a single forbidden induced subgraph has led to a complexity dichotomy: if the
unique forbidden induced subgraph is a P4 or a 2K2 (or an induced subgraph of
these), then Upper Domination is polynomial; otherwise, it is NP-complete [1].

2 Preliminaries and Combinatorial Bounds on Γ (G)

We only deal with undirected simple connected graphs G = (V,E). The number
of vertices n = |V | is known as the order of G. As usual, N(v) denotes the open
neighbourhood of v, and N [v] is the closed neighbourhood of v, i.e., N [v] =
N(v) ∪ {v}, which easily extendeds to vertex sets X, i.e., N(X) =

⋃
x∈X N(x)

and N [X] = N(X) ∪ X. The cardinality of N(v) is known as the degree of v,
denoted as deg(v). The maximum degree in a graph is written as Δ. A graph
of maximum degree three is called subcubic, and if all degrees equal three, it is
called cubic.

Given a graph G = (V,E), a subset S of V is a dominating set if every vertex
v ∈ V \ S has at least one neighbour in S, i.e., if N [S] = V . A dominating set
is minimal if no proper subset of it is a dominating set. Likewise, a vertex set
I is independent if N(I) ∩ I = ∅. An independent set is maximal if no proper
superset is independent. In the following we use classical notations: γ(G) and
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Γ (G) are the minimum and maximum cardinalities over all minimal dominating
sets in G, α(G) and i(G) are the maximum and minimum cardinalities over
all maximal independent sets, and τ(G) is the size of a minimum vertex cover,
which equals |V | − α(G) by Gallai’s identity. A minimal dominating set D of G
with |D| = Γ (G) is also known as an upper dominating set of G.

For any subset S ⊆ V and v ∈ S we define the private neighbourhood of v
with respect to S as pn(v, S) := N [v] \ N [S \ {v}]. Any w ∈ pn(v, S) is called a
private neighbour of v with respect to S. S is called irredundant if every vertex
in S has at least one private neighbour, i.e., if |pn(v, S)| > 0 for every v ∈ S.
IR(G) denotes the cardinality of the largest irredundant set in G, while ir(G)
is the cardinality of the smallest maximal irredundant set in G. We can now
observe the validity of the well-known domination chain.

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G)

The domination chain is largely due to the following two combinatorial prop-
erties: (1) Every maximal independent set is a minimal dominating set. (2) A
dominating set S ⊆ V is minimal if and only if |pn(v, S)| > 0 for every v ∈ S.
Observe that v can be a private neighbour of itself, i.e., a dominating set is
minimal if and only if it is also an irredundant set. Actually, every minimal
dominating set is also a maximal irredundant set.

Any minimal dominating set D for a graph G = (V,E) can be associated with
a partition of V into four sets F, I, P,O given by: I := {v ∈ D : v ∈ pn(v,D)},
F := D \ I, P ∈ {B ⊆ N(F ) \ D : |pn(v,D) ∩ B| = 1 for all v ∈ F} with
|F | = |P |, O = V \ (D ∪ P ). This representation is not necessarily unique since
there might be different choices for P and O, but for every partition of this
kind, the following properties hold: (1) Every vertex v ∈ F has at least one
neighbour in F , called a friend. (2) The set I is an independent set in G. (3)
The subgraph induced by F ∪ P has an edge cut set separating F and P that is
also a perfect matching; hence, P is a set of private neighbours for F . (4) The
neighbourhood of a vertex in I is always a subset of O, which are otherwise the
outsiders. This partition is also related to a different characterisation of Γ (G)
in terms of so-called upper perfect neighbourhoods [16].

Lemma 1. For any connected graph G with n > 0 vertices we have:

α(G) ≤ Γ (G) ≤ max
{

α(G),
n

2
+

α(G)
2

− 1
}

(1)

Lemma 2. For any connected graph G with n > 0 vertices, minimum degree
δ and maximum degree Δ, we have:

α(G) ≤ Γ (G) ≤ max
{

α(G),
n

2
+

α(G)(Δ − δ)
2Δ

− Δ − δ

Δ

}

(2)

Note that Lemma 2 generalises the earlier result of Henning and Slater on
upper bounds on IR(G) (and hence on Γ (G)) for Δ-regular graphs G [17].
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3 Hardness Results for Upper Domination

In this section we demonstrate several results that indicate that Upper Domina-

tion is a rather hard problem: it does not admit any non-trivial approximation
in polynomial time, and it remains hard even in quite restricted cases.

3.1 Hardness of Approximation on General Graphs

We show that Upper Domination is hard to approximate in two steps: first, we
show that a related natural problem, Maximum Minimal Hitting Set, is hard
to approximate, and then we show that this problem is essentially equivalent to
Upper Domination.

The Maximum Minimal Hitting Set problem is the following: we are given
a hypergraph, that is, a base set V and a collection F of subsets of V . We wish to
find a set H ⊆ V such that: (1) For all e ∈ F we have e∩H 	= ∅ (i.e., H is a hitting
set) (2) For all v ∈ H there exists e ∈ F such that e∩H = {v} (i.e., H is minimal)
(3) H is as large as possible. This problem generalises Upper Domination:
given a graph G = (V,E), we can produce a hypergraph by keeping the same set
of vertices and creating a hyperedge for each closed neighbourhood N [v] of G.
An upper dominating set of the original graph is now exactly a minimal hitting
set of the constructed hypergraph. We will also show that Maximum Minimal

Hitting Set can be reduced to Upper Domination.
Let us note that Maximum Minimal Hitting Set, as defined here, also gen-

eralises Maximum Minimal Vertex Cover, which corresponds to instances
where the input hypergraph is actually a graph. We recall that for this problem
there exists a n1/2-approximation algorithm, while it is known to be n1/2−ε-
inapproximable [7]. Here, we generalise this result to arbitrary hypergraphs,
taking into account the sizes of the hyperedges allowed.

Theorem 1. For all ε > 0, d ≥ 2, if there exists a polynomial-time approxi-
mation algorithm for Maximum Minimal Hitting Set which on hypergraphs
G = (V, F ) where hyperedges have size exactly d has approximation ratio n

d−1
d −ε,

where |V | = n, then P=NP. This is still true for hypergraphs where |F | ∈ O(|V |).
Proof. Fix some constant hyperedge size d. We will present a reduction from
Maximum Independent Set, which is known to be inapproximable [18].
Specifically, for all ε > 0, it is known to be NP-hard to distinguish for an n-
vertex graph G if α(G) > n1−ε or α(G) < nε.

Take an instance G = (V,E) of Maximum Independent Set. If d > 2
we begin by turning G into a d-uniform hypergraph G′ = (V,H) such that any
(non-trivial) hitting set of G′ is a vertex cover of G and vice-versa (for d = 2
we simply set G′ = G). We proceed as follows: for every edge e ∈ E and every
S ⊆ V \ e with |S| = d − 2 we construct in H the hyperedge e ∪ S (with size
exactly d). Thus, |H| = O(nd). Any vertex cover of G is also a hitting set of
G′. For the converse, we only want to prove that any hitting set of G′ of size at
most n − d is also a vertex cover of G (this is without loss of generality, since d
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is a constant, so we will assume α(G) > d). Take a hitting set C of G′ with at
most n − d vertices; take any edge e ∈ E and a set S with S ⊆ V \ (C ∪ e) and
|S| = d−2 (such a set S exists since |V \C| ≥ d). Now, (e∪S) ∈ H, therefore C
must contain a vertex of e. We thus conclude that the maximum size of V \ C,
where C is a hitting set of G′ is either at least n1−ε or at most nε, that is, the
maximum size of V \ C is α(G).

We now add some vertices and hyperedges to G′ to obtain a hypergraph G′′.
For every set S ⊆ V such that |S| = d − 1 and V \ S is a hitting set of G′, we
add to G′′ n new vertices, call them uS,i, 1 ≤ i ≤ n. Also, for each such vertex
uS,i we add to G′′ the hyperedge S ∪ {uS,i}, 1 ≤ i ≤ n. This completes the
construction. It is not hard to see that G′′ has hyperedges of size exactly d, and
its vertex and hyperedge set are both of size O(nd).

Let us analyse the approximability gap of this reduction. First, suppose that
there is a minimal hitting set C of G′ with |V \ C| > n1−ε. Then, there exists a
minimal hitting set of G′′ with size at least nd−O(dε). To see this, consider the
set C ∪{uS,i | S ⊆ V \C, 1 ≤ i ≤ n}. This set is a hitting set, since C hits all the
hyperedges of G′, and for every new hyperedge of G′′ that is not covered by C
we select uS,i. It is also minimal, because C is a minimal hitting set of G′, and
each uS,i selected has a private hyperedge. To calculate its size, observe that for
each S ⊆ V \ C with |S| = d − 1 we have n vertices. There are at least

(
n1−ε

d−1

)

such sets.
For the converse direction, we want to show that if |V \ C| < nε for all

hitting sets C of G′, then any minimal hitting set of G′′ has size at most n1+O(dε).
Consider a hitting set C ′ of G′′. Then, C ′∩V is a hitting set of G′. Let S ⊂ V be a
set of vertices such that S∩C ′ 	= ∅. Then uS,i 	∈ C ′ for all i, because the (unique)
hyperedge that contains uS,i also contains some other vertex of C ′, contradicting
minimality. Now, because V ∩ C ′ is a hitting set of G′ we have |V \ C ′| ≤ nε.
Thus, the maximum number of different sets S ⊆ V such that some uS,i ∈ C ′ is
(

nε

d−1

)
and the total size of C ′ is at most |C ′ ∩ V | + nε(d−1)+1 ≤ n1+O(dε). �

Corollary 1. For any ε > 0 Maximum Minimal Hitting Set is not n1−ε-
approximable, where n is the number of vertices of the input hypergraph, unless
P=NP. This is still true for hypergraphs G = (V, F ) where |F | ∈ O(|V |).
A graph is called co-bipartite if its complement is bipartite. Using Corollary 1 and
the reduction of [21] from Minimum Hitting Set to Minimimum Dominating

Set, the following holds.

Theorem 2. For any ε > 0 Upper Domination, even restricted to co-
bipartite graphs, is not n1−ε-approximable, where n is the number of vertices
of the input graph, unless P=NP.

Note that, in fact, the inapproximability bound given in Theorem 1 is tight,
for every fixed d, a fact that we believe may be of independent interest. This
is shown in the following theorem, which also generalises results on Maximum

Minimal Vertex Cover [7].
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Theorem 3. For all d ≥ 1, there exists a polynomial-time algorithm which,
given a hypergraph G = (V, F ) such that all hyperedges have size at most d,
produces a minimal hitting set H of G with size Ω(n1/d). This shows an O(n

d−1
d )-

approximation for Maximum Minimal Hitting Set on such hypergraphs.

3.2 Hardness on Cubic and Subcubic Planar Graphs

Upper Domination is known to be NP-hard on planar graphs of maximum
degree six [1]. We strengthen this result in two ways: first, we show that even for
cubic graphs the problem is APX-hard; second, the problem remains NP-hard
for planar subcubic graphs. We complement this hardness with an EPTAS on
planar graphs.

u vTheorem 4. Upper Domination is APX-hard on
cubic graphs.

Proof. (Sketch) We present a reduction from Maximum Independent Set on
cubic graphs, which is APX-hard [25]. Let G = (V,E) be the cubic input graph.
Build G′ from G by replacing every (u, v) ∈ E by a structure of six new vertices,
as shown on the right. Any IS ⊂ V is an independent set for G if and only if G′

contains an upper dominating set of cardinality |IS| + 3|E|. �
Theorem 5. Upper Domination is NP-hard on planar subcubic graphs.

3.3 On Minimal Dominating Set Extension

Algorithms working on combinatorial graph problems often try to look at local
parts of the graph and then extend some part of the (final) solution that was
found and fixed so far. For many maximisation problems, like Upper Irredun-

dance or Maximum Independent Set, it is trivial to obtain a feasible solution
that extends a given vertex set by some greedy strategy, or to know that no such
extension exists. This is not true for Upper Domination, as we show next. Let
us first define the problem formally.

Minimal Dominating Set Extension

Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G have a minimal dominating set S′ with S′ ⊇ S?

Notice that this problem is trivial on some input with S = ∅ by using a greedy
approach. If S is an independent set in G, it is also always possible to extend
S to a minimal dominating set, simply by greedily extending it to a maximal
independent set. If S however contains two adjacent vertices, we arrive at the
problem of fixing at least one private neighbour for these vertices. This problem
of preserving irredundance of the vertices in S while extending S to dominate
the whole graph turns out to be a quite difficult task.



248 C. Bazgan et al.

In [8] it is shown that this kind of extension of partial solutions is NP-hard
for the problem of computing prime implicants of the dual of a Boolean function;
a problem which can also be seen as the problem of finding a minimal hitting
set for the set of prime implicants of the input function. Interpreted in this way,
the proof from [8] yields NP-hardness for the minimal extension problem for 3-

Hitting Set. The standard reduction from Hitting Set to Dominating Set

however does not transfer this result to Minimal Dominating Set Extension;
observe that if we represent the hitting-set input-hypergraph H = (V, F ) with
partial solution S ⊂ V (w.l.o.g. irredundant) by G = (V ∪ F,E) with E =
{(v, f) : v ∈ V, f ∈ F, v ∈ f} ∪ (V × V ), the set S can always be extended
to a minimal dominating set by simply adding all edge-vertices which are not
dominated by S. One can repair this by adjusting this construction to forbid the
edge-vertices in minimal solutions in the following way: for each edge-vertex f ,
add three new af , bf , cf with edges (f, af ), (af , bf ), (bf , cf ) and include af and
bf in S. This way, f is the only choice for a private neighbour for af .

We will show that Minimal Dominating Set Extension remains hard
even for very restricted cases. Our proof is based on a reduction from the NP-
complete 4-Bounded Planar 3-Connected SAT problem (4P3C3SAT for
short) [23], the restriction of 3-satisfiability to clauses in C over variables in V ,
where each variable occurs in at most four clauses and the associated bipartite
graph (C ∪ X, {(c, x) ∈ C × X : (x ∈ c) ∨ (¬x ∈ c)}) is planar.

c1j

c2j

z1j

z2j
zjsjpj

Theorem 6. Minimal Dominating Set Extension is NP-complete, even
when restricted to planar cubic graphs.

Proof. (Sketch) Consider an instance of 4P3C3SAT with
clauses c1, . . . , cm and variables v1, . . . , vn. By definition,
the graph G = (V,E) with V = {c1, . . . , cm} ∪ {v1, . . . , vn}
and E = {(cj , vi) : vi or v̄i is literal of cj} is planar. Replace
every vertex vi by six new vertices f1

i , x1
i , t

1
i , t

2
i , x

2
i , f

2
i with

edges (f j
i , xj

i ), (t
j
i , x

j
i ) for j = 1, 2.

Depending on whether vi appears negated or non-negated in these clauses,
we differentiate between the three cases depicted in Fig. 1. Observe that all other
cases are rotations of these three cases and/or invert the roles of vi and v̄i and
that the maximum degree of the vertices which replace vi is three. Next, replace
each clause-vertex cj by the subgraph on the right. The vertices c1j , c

2
j somehow

take the role of the old vertex cj regarding its neighbours: c1j is adjacent to two of
the literals of cj and c2j is adjacent to the remaining literal. This way, all vertices
have degree at most three and the choices of literals to connect to c1j and c2j can
be made such that planarity is preserved. �
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vi

c1

c2

c3 c4

t1i
c2

c3 f1
i c4f2

i

c1

t2i

x1
i

x2
i

t1i
c2

c3 f1
i c4t2i

c1

f2
i

x1
i

x2
i

t1i
c2

c3 f1
i c4f2

i

c1

t2i

x1
i

x2
i

vi ∈ c1, c2, c3, v̄i ∈ c4 vi ∈ c2, c4, v̄i ∈ c1, c3 vi ∈ c1, c2, v̄i ∈ c3, c4

Fig. 1. Construction of Theorem 6: A variable vi appearing in four clauses c1, . . . , c4,
of the original instance is transformed to one of the subgraphs on the right, depending
on which clauses it appears positive in. Black vertices denote elements of S.

4 Approximation Algorithms

4.1 Bounded-Degree Graphs

Unlike the general case, Upper Domination admits a simple constant factor
approximation when restricted to graphs of maximum degree Δ. This follows by
the fact that any dominating set in such a graph has size at least n

Δ+1 . We show
that this can be improved.

Theorem 7. Consider some graph-class G(p, ρ) with the following properties:

– One can properly colour every G ∈ G(p, ρ) with p colours in polynomial time.
– For any G ∈ G(p, ρ), Maximum Independent Set is ρ-approximable in

polynomial time.

Then, for every G ∈ G(p, ρ), Upper Domination is approximable in polynomial
time within ratio at most max

{
ρ, Δρp+Δ−1

2ρΔ

}
.

The proof idea uses Eq. (2) and the fact that any maximal independent set is a
minimal dominating set. We distinguish two cases, and run a different Maximum

Independent Set algorithm for each case. We output the best among the
computed solutions.

Any connected graph of maximum degree Δ, except a complete graph or
an odd cycle, can be coloured with at most Δ colours [24]; also, Maximum

Independent Set is approximable within ratio (Δ+3)/5 in graphs of maximum
degree Δ [5]. So, the class G(Δ, (Δ + 3)/5) contains all graphs of maximum
degree Δ.

Corollary 2. Upper Domination is approximable in polynomial time within
a ratio of (6Δ2 + 2Δ − 3)/10Δ in general graphs.

Theorem 7 can be improved for regular graphs where Γ (G) � n
2 [17].

Corollary 3. Upper Domination in regular graphs is approximable in poly-
nomial time within ratio Δ/2.
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4.2 Planar Graphs

In this section we present an EPTAS (a PTAS with running time f(1ε ) ·poly(|I|))
for Upper Domination on planar graphs. We use techniques based on the
ideas of Baker [3]. As we shall see, some complications arise in applying these
techniques, because of the hardness of extending solutions to this problem.

We use the notion of outerplanar graphs. An outerplanar (or 1-outerplanar)
graph G is a graph such that there is a planar embedding of G, where all vertices
are incident to the outer face of G. For k > 1, graph G is a k-outerplanar graph
if there is a planar embedding of G, such that when all vertices, incident to the
outer face are removed, G is a (k−1)-outerplanar graph. Removing stepwise the
vertices that are incident to the outer face, the vertices of G can be partitioned
into levels L1, . . . , Lk. We write |Li| for the number of vertices in level Li (if i < 1
or i > k we write |Li| = 0). Bodlaender [6] proved that every k-outerplanar graph
has treewidth of at most 3k − 1. This implies the following corollary:

Corollary 4. The maximum minimal dominating set Γ (G) of a k-outerplanar
graph G can be computed in time f(k)n.

To obtain the EPTAS, we use the fact that every planar graph is k-outerplaner
for some k. By removing some of the levels Li we split the graph G into sev-
eral �-outerplanar subgraphs Gi of some small � < k. The maximum minimal
dominating set Γ (Gi) can be computed using the above corollary. Finally the
partial solutions of Gi are merged to obtain a minimal dominating set for G.
In the following theorem we analyse how the maximum of the subgraphs Γ (Gi)
correlates to the maximum Γ (G) of the graph G.

Theorem 8. Let G = (V,E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆
V . For some i ≤ k, let G1 be the subgraph which is induced by levels L1, . . . , Li−1

and let G2 be the subgraph induced by levels Li+1, . . . , Lk. Then, Γ (G1)+Γ (G2) ≥
Γ (G) − ∑i+3

j=i−3 |Lj |.
Using the above theorem iteratively for several levels Li1 , . . . , Lis−1 yields

the following

Corollary 5. Let G = (V,E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆
V . For indices 0 = i0 < i1 < . . . ≤ is = k, let Gj be the subgraph which is induced
by levels Lij

, . . . , Lij+1 . Then,
∑s−1

j=0 Γ (Gj) ≥ Γ (G) − ∑s
k=0

∑ik+3
j=ik−3 |Lj |.

The following algorithm shows how partial solutions of subgraphs can be used
to obtain a minimal dominating set for the whole graph G.

Algorithm 1. Input: A minimal dominating set of subgraphs G1 = (V1, E1)
and G2 = (V2, E2) of G = (V,E), which are separated by level Li such that
V1 ∪ Li ∪ V2 = V .

1. Repeat the following steps until all vertices are covered by the dominating set.
2. Add vertex v ∈ Li which is not covered by the dominating set.
3. Remove vertices in N [N [v]] from the dominating set until the dominating set

is minimal.
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Theorem 9. Let G = (V,E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆
V . For some i ≤ k, let G1 be the subgraph which is induced by levels L1, . . . , Li−1

and let G2 be the subgraph induced by levels Li+1, . . . , Lk. Let S1 and S2 be a
minimal dominating set of G1 and G2, respectively. Then Algorithm 1 returns a
minimal dominating set S with |S| ≥ |S1| + |S2| − |Li−1| − |Li+1|.
We now state our final algorithm: An EPTAS for planar Upper Domination.

Algorithm 2. Input: A k-outerplanar graph G = (V,E) for some k ∈ N and
parameter ε.

1. Let μ = � 36
ε �.

2. Choose x such that 0 ≤ x < μ and such that the following term is minimised

∑

j∈N

((
3∑

i=−3

|Ljμ+x+i|) + |Ljμ+x−1| + |Ljμ+x+1|)

3. Let Gi be the graph induced by levels L(i−1)μ+x+1, . . . , Liμ+x−1 (note that Li

with i < 1 or i > k are empty sets) and let Hi be the graph induced by levels
L1, . . . , Liμ+x−1.

4. Use Corollary 4 to compute the maximum minimal dominating set and its
value Γ (Gi) for each graph Gi with 0 ≤ i ≤ � k

μ�.
5. Apply Algorithm 1 iteratively to graph Hi and Gi+1 with separating level

Liμ+x for all 0 ≤ i ≤ � k
μ� (starting from H0 = G0) to obtain a minimal

dominating set for Hi+1.
6. Return the minimal dominating set for (H� k

μ �) = G.

Theorem 10. Algorithm 2 returns a minimal dominating set S of size |S| ≥
(1 − ε)Γ (G) in time bounded by f( 1ε )n + O(n2).
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