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ABSTRACT
Despite the pervasiveness of noise in real-world optimization,
there is little understanding of the interplay between the op-
erators of randomized search heuristics and explicit noise-
handling techniques such as statistical resampling. Ant
Colony Optimization (ACO) algorithms are claimed to be
particularly well-suited to dynamic and noisy problems, even
without explicit noise-handling techniques.

In this work, we empirically investigate the trade-offs be-
tween resampling an the noise-handling abilities of ACO al-
gorithms. Our main focus is to locate the point where re-
sampling costs more than it is worth.
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1. INTRODUCTION
In many practical optimization problems, the objective

function has some kind of stochastic component that arises
out of different factors. In these scenarios, the direct evalua-
tion of the objective function is not as reliable, and optimiza-
tion algorithms must employ some kind of noise-handling
strategy. The most common type of noise-handling strategy
is statistical resampling. In this strategy, an algorithm esti-
mates the true value of a function at a point by repeatedly
sampling the value at that point to increase the signal to
noise ratio. This approach comes at a computational cost,
as the extra function evaluations must count toward the to-
tal run time of the algorithm.

A large number of papers [1, 2, 4–8] have observed that
Ant Colony Optimization (ACO) algorithms are particularly
well-suited for solving dynamic and noisy problems. ACO
algorithms do not explicitly keep a population of solutions in
memory, but instead construct a sequence of pheromone val-
ues that represents a probability distribution over the search
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space. This approach appears to make them particularly ro-
bust in a changing, noisy environment [3].

ACO algorithms do not employ resampling directly, but
instead rely on the robustness of the constructed distribu-
tion to somehow“filter”any noise. The impact of resampling
and implicit distribution-building mechanisms of ACO algo-
rithms is not clear. Obviously, resampling can gain a more
accurate estimate of the true objective function, but at the
cost of many extra function evaluations. The quality of the
estimate depends on the number of samples and the under-
lying noise model. On the other hand, it is also not clear to
what degree the distribution-building approach of ACO can
help in the presence of noise, with or without using restarts.

2. CONTRIBUTION
In this work we take a first look at the interplay between

statistical resampling and implicit noise-handling that arises
from the cooperative distribution-building mechanisms of
ACO algorithms. We empirically compare the performance
of the (µ+ 1)-EA (a mutation-only evolutionary algorithm),
the (µ+ 1)-GA (a steady-state genetic algorithm employing
crossover) and λ-MMASib (an ant colony optimization algo-
rithm). We investigate the trade-off between resampling and
implicit noise-handling ability of each of these algorithms.

Our testbed is the fitness function OneMax + N (0, σ2),
which is a simple unimodal function with posterior noise.
All algorithms have local parameters that influence their
run time. We study the dependence of the parameter on
the amount of noise σ and empirically determine for each
algorithm the optimal parameter setting depending on σ.

We are then able to compare the algorithms with opti-
mal parameter settings depending on the level of noise. We
observe a strict hierarchy how well the algorithms can deal
with noise (cf. Figures 1 and 2): from worst to best this
is (µ + 1)-EA, (µ + 1)-GA, and λ-MMASib. The λ-MMASib
scales most gracefully with increasing noise. When optimal
parameters are chosen, we observe the empirical run time of
all algorithms to have a polynomial, and we interpolate the
degrees of these polynomials in Figure 2.

We study the optimal number of samples for a given noise
level (cf. Figures 3–4). With optimal resampling we observe
improved run times for the (µ+1)-EA and (µ+1)-GA, which
scaled least graceful with noise. However, even with optimal
resampling both of them are still much worse than the λ-
MMASib (cf. Figure 1).
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Figure 1: Number of fitness evaluations (run time) for
(µ+1)-EA with optimal resampling, and (µ+1)-EA, (µ+1)-
GA, λ-MMASib with no resampling, for a given posterior
noise standard deviation.
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Figure 2: Interpolated polynomial degree of run times for
(µ+ 1)-EA, (µ+ 1)-GA and λ-MMASib for a given posterior
noise standard deviation.
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Figure 3: Number of fitness evaluations (run time) for the
(µ+1)-EA, for a given number of resamples. Posterior noise
standard deviation is fixed at σ = 5.0.
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Figure 4: Trend of optimal r for a given posterior noise
standard deviation. Note at σ = 5.0 we see minimum of
Figure 3.
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