
Information and Computation 251 (2016) 194–207
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Enlarging learnable classes

Sanjay Jain a,∗,1, Timo Kötzing b,2, Frank Stephan c,3

a Department of Computer Science, National University of Singapore, Singapore 117417, Republic of Singapore
b Hasso Plattner Institute, 14482 Potsdam, Germany
c Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 November 2015
Received in revised form 28 July 2016
Available online 16 September 2016

Keywords:
Inductive inference
Learning in the limit
Total recursive functions
Non-union theorem

We study which classes of recursive functions satisfy that their union with any other
explanatorily learnable class of recursive functions is again explanatorily learnable. We
provide sufficient criteria for classes of recursive functions to satisfy this property and also
investigate its effective variants. Furthermore, we study the question which learners can
be effectively extended to learn a larger class of functions. We solve an open problem by
showing that there is no effective procedure which does this task on all learners which
do not learn a dense class of recursive functions. However, we show that there are two
effective extension procedures such that each learner is extended by one of them.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

One branch of inductive inference investigates the learnability of recursive functions; the basic scenario given in the seminal
paper by Gold [10] is as follows. Let S be a class of recursive functions; we say that S is explanatorily learnable iff there is a
learner M which issues conjectures e0, e1, . . . with en being based on the data f (0), f (1), . . . , f (n − 1) (e0 being based on
no data) such that, for all f ∈ S , almost all of these conjectures are the same index e explaining f , that is, satisfying ϕe = f
with respect to an underlying numbering ϕ0, ϕ1, . . . of all partial recursive functions. In this paper, we consider learnability
by partial recursive learners; with Me we refer to the learner derived from the e-th partial recursive function. This setting
of learning is also called learning in the limit (see also [20], which surveys recursive function learning).

During the course of time, several variants of this basic notion of explanatory learning (Ex) have been considered; most
notably, behaviourally correct learning (BC) [3], in which the learner has to almost always output a correct index for the input
function (these indices though are not constrained to be the same).

Another variant considered is finite learning (Fin) where the learner outputs a special symbol (?) until it makes one
conjecture e which is never abandoned; this conjecture must of course be correct for a function to be learnt. Osherson,
Stob and Weinstein [16] introduced a generalisation of this notion, namely confident learning (Conf), where the learner can
revise the hypothesis finitely often; it must, however, on each total function f , even if it is not in the class to be learnt or
not even recursive, eventually stabilise on one conjecture e. In inductive inference, one often only needs the weak version

* Corresponding author.
E-mail addresses: sanjay@comp.nus.edu.sg (S. Jain), timo.koetzing@hpi.de (T. Kötzing), fstephan@comp.nus.edu.sg (F. Stephan).

1 Supported by NUS grants C252-000-087-001, R252-000-420-112, R146-000-181-112 and R252-000-534-112.
2 Major parts of this paper were written when Timo Kötzing was visiting the Department of Computer Science at the National University of Singapore

and was at Max-Planck-Institut für Informatik, Saarbrücken.
3 Supported in part by NUS grant R252-000-420-112, R146-000-181-112 and R252-000-534-112.
http://dx.doi.org/10.1016/j.ic.2016.09.001
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:sanjay@comp.nus.edu.sg
mailto:timo.koetzing@hpi.de
mailto:fstephan@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.ic.2016.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.09.001&domain=pdf

S. Jain et al. / Information and Computation 251 (2016) 194–207 195
of this property where the convergence criterion only applies to recursive functions while the convergence behaviour on
non-recursive ones is not constrained (WConf, Sharma, Stephan and Ventsov [19]).

Minicozzi [15] called a learner reliable (Rel) iff the learner, on every function (including total but non-recursive func-
tions), either converges to a correct index or signals infinitely often that it does not find the index (by doing a mind change
or outputting a question mark); Osherson, Stob and Weinstein [16, Exercise 4.6.1A] generalised this notion to weakly reliable
(WRel) where the learner is weakly reliable iff the learner is reliable on every recursive function and there are no con-
straints on its behaviour on non-recursive functions. One can combine the notion of reliability and confidence: A learner is
weakly confident and weakly reliable (WConfRel) iff the learner, for every recursive function f , either converges to an index
e with ϕe = f or almost always outputs ? (in order to signal non-convergence to any conjecture).

Formal definitions of the above criteria are given in Section 2. The relations between those criteria have been extensively
studied, giving the following inclusion relations [4,6,8,10,12,15,16,19]:

• Fin ⊂ Conf ⊂ WConf ⊂ Ex ⊂ BC;
• ConfRel ⊂ WConfRel ⊂ WRel ⊂ Ex ⊂ BC;
• Rel ⊂ WRel ⊂ Ex ⊂ BC;
• Fin �⊂ Rel and Rel �⊂ WConf.

Besides inclusion (learnability with respect to which criterion implies learnability with respect to another criterion), struc-
tural questions have also been studied: Is the union of two learnable classes learnable? Can one extend each learnable
class?

Bārzdiņš [3] and Blum and Blum [4] gave with the non-union theorem a quite strong answer to the first question: There
are two classes S and S ′ of recursive functions such that each of them is learnable under the criterion Ex but their union
is not learnable even under the more general criterion BC. Indeed, one can even learn the class S confidently and the
class S ′ reliably. Thus, the non-union theorem gives an interesting contrast to the fact that both confident learning and
reliable learning are effectively closed under union, that is, given two confident (reliable) learners, one can effectively find
a confident (reliable) learner which explanatorily learns the union of functions explanatorily learnt by the two learners. In
fact Minicozzi [15] proved a stronger result that, given an index for a recursively enumerable set A of reliable learners, one
can effectively find a reliable learner which learns the union of the classes of functions learnt by the individual learners in
the set A. Apsı̄tis, Freivalds, Simanovskis and Smotrovs [2] also considered closedness properties of Ex-identification.

The non-union theorem has been extended in various ways; for example, if one considers learning with oracles, there is
a choice of a confidently learnable S and a consistently learnable S ′ such that their union is not Ex-learnable, even with
any non-high oracle A [9,13] — “non-high” is the best that one can expect in this context as a high oracle permits to learn
the whole class of recursive functions [1].

Furthermore, it is interesting to ask how effective the union is. That is, if the union of two classes is learnable, can one
effectively construct a learner for the union, given programs for the learners of the two given classes? The answer is “No”
in general as can be seen directly by the proof of the non-union theorem.

The confidently learnable class S above consists of all the functions f such that f (0) is an index for f , and the class S ′
consists of all the functions f which are almost everywhere 0 (Blum and Blum [4] used slightly different classes S and S ′
which were {0, 1}-valued; our S and S ′ , which are taken from [3], make the presentation simpler; a proof of the non-union
theorem using these classes can also be found in [20]). Now consider the union of S ′ with a class Se , where Se contains
ϕe in the case that ϕe is total and ϕe(0) = e; otherwise Se is empty. It is easy to show that, for each e, the class Se ∪ S ′
is explanatory (Ex) learnable. However, learnability of these unions is not effective. If, given e, one can effectively find a
Ex-learner Mh(e) for the class Se ∪ S ′ , then one could make a learner N for S ∪ S ′ as follows. For non-empty sequences σ ,
N(σ) = Mh(σ (0))(σ). This learner N , Ex-learns S ∪S ′ , as σ(0) constrains the functions in S to be only from Sσ(0) . However,
this is in contradiction to the non-union theorem, and thus one cannot effectively find, given e, an Ex-learner for Se ∪ S ′ .

The above example suggests to study four notions of when the unions of a given class S with another class is
Ex-learnable:

1. S is (non-constructively) Ex-unionable iff for every Ex-learnable class S ′ , the class S ∪ S ′ is Ex-learnable;
2. S is constructively Ex-unionable iff one can effectively convert every Ex-learner for a class S ′ into an Ex-learner for the

class S ∪ S ′;
3. S is singleton-Ex-unionable iff for every recursive g , S ∪ {g} is Ex-learnable;
4. S is constructively singleton-Ex-unionable iff there is a recursive function which assigns, to every index e, an Ex-learner

for the class S ∪ {ϕe} if ϕe is total and for the class S if ϕe is partial.

The same notions can also be defined for other learning criteria like finite, confident and behaviourally correct learning. We
get the following results:

1. If a class S has a weakly confident learner then it is constructively singleton-Ex-unionable.
2. If a class S has a weakly confident and weakly reliable learner then it is constructively Ex-unionable.

196 S. Jain et al. / Information and Computation 251 (2016) 194–207
Fig. 1. The inclusion relations for the various unionability notions. It is unknown whether the dotted arrows might also go in the converse direction. All
inclusions are given by arrows (and possibly reversed dotted arrows) and the concatenations of these.

3. There is a class which is Ex-unionable and BC-unionable but does not satisfy any of the constructive unionability
properties.

4. For finite learning, we show that unionability with classes and constructive union with singletons fail for all non-empty
classes; only non-constructive unions with singletons are possible in the case that every pointwise limit of functions in
the class is either in the class or not recursive.

In the last item, we say that a total function f : N → N is the pointwise limit of a sequence of total function (gn)n∈N iff, for
all i ∈N, limn→∞ gn(i) = f (i). All our results for the cases of purely Ex-learning are summarised in Fig. 1.

Forming the union with another class or adding a function are specific methods to enlarge a class. Thus, it is natural
to ask when a learnable class of functions can be extended at all, without prescribing how to do this. Case and Fulk
[5] addressed this question and showed, for the principal learning criteria Ex and BC, that one can extend learners to
learn infinitely more functions whenever the learner satisfies a certain quality, say learns a dense class of functions. This
enlargement can be done constructively (under this precondition). Furthermore, one can non-constructively extend any
learnable class for many usual learning criteria like Fin, Conf, Rel, ConfRel, WConf, WConfRel, Ex and BC. Case and Fulk [5]
left open two particular questions:

1. Is there a method to extend constructively every learner Me which does not Ex-learn a dense class of functions?
2. How much nonconstructive information is needed in order to extend every learner Me to learn infinitely many more

functions? I.e., in how many classes does one have to split the learners so as to have constructive extension for each of
the classes?

Theorem 31 answers the first question negatively – such a method does not exist.
On the other hand, the answer to the second question is that only a split into two classes is necessary. This result is not

based on the information about whether the class is dense or not; instead it is based on the information about whether
there exists a σ such that for no extension τ of σ : M(τ)↓ �= M(σ)↓. In Theorem 33 we show that there is a recursive
function h such that Mh(e,b) Ex-learns a proper superclass of what Me Ex-learns whenever either b = 1 and such a σ exists
or b = 0 and such a σ does not exist.

2. Preliminaries

Let N denote the set of natural numbers (including 0). The symbols ⊆, ⊂, ⊇, ⊃ respectively denote subset, proper subset,
superset and proper superset. We let 〈x, y〉 denote (x + y) · (x + y + 1)/2 + y; this is Cantor’s bijection from N ×N onto N,
which is increasing in both its arguments and satisfies 〈0, 0〉 = 0. The pairing function can easily be extended to multiple
arguments. Let ∀∞ denote “for all but finitely many”.

Let R denote the set of all total recursive functions f : N → N and P denote the set of all partial recursive functions
f : N → N. Note that [17] calls total recursive functions general recursive functions; following [17], for brevity of notation,
in this paper we will sometimes refer to total recursive functions as just recursive functions. Let R0,1 denote the set of
all total recursive functions f with range(f) ⊆ {0, 1}. Let ϕ denote a fixed acceptable programming system [17] for P . Let
ϕi denote the i-th program in this programming system. Then, i is called the index or program for the partial recursive
function ϕi .

Let K denote the diagonal halting set {x | ϕx(x)↓}. For a function η, let η(x)↓ denote that η(x) is defined, and η(x)↑
denote that η(x) is not defined. We let pad be a 1–1 recursive function such that, for all i, j, ϕpad(i, j) = ϕi . We let S range
over sets of recursive functions. Please find unexplained recursion theoretic notions in Rogers’ book [17].

Let σ , τ range over finite sequences of natural numbers. We often identify a total function with its sequence of values,
f (0) f (1) f (2) . . .; similarly for finite sequences. Let f [n] = f (0) f (1) . . . f (n − 1). We use the notation σ � τ to denote that

S. Jain et al. / Information and Computation 251 (2016) 194–207 197
σ is a prefix of τ (an initial subfunction of τ). Let � denote the empty sequence. Let |σ | denote the length of σ . Let Seq
denote the set of all finite sequences.

Let σ ·τ denote concatenation of sequences, where σ is finite. When it is clear from context, we often drop · and just use
στ for concatenation. For a finite sequence σ �= �, let σ− be σ with the last element dropped, that is, σ− ·σ(|σ | − 1) = σ .
Let [S] = { f [n] | f ∈ S}. Thus, [R] = Seq. For notational simplification, [f] = [{ f }]. A class S is said to be dense if [S] = [R].
A set of sequences S is said to be dense if {γ | (∃α ∈ S)[γ � α]} = [R]. A class S is everywhere sparse iff for all τ ∈ Seq,
there exists a τ ′ � τ such that τ ′ /∈ [S]. A total function f is an accumulation point of S iff there exist pairwise distinct
functions g0, g1, . . . in S such that, for all n ∈ N, f [n] � gn .

A recursive operator [17] 	 is a recursive mapping from Seq to Seq such that for σ � τ , 	(σ) � 	(τ).
A learner is a partial-recursive mapping from finite sequences to N ∪ {?}. We let M , N and P range over learners and

let C range over classes of learners. Let Mi denote the learner derived from ϕi , that is Mi(σ) = ϕi(code(σ)), where code is
a recursive one-one coding of all finite sequences onto N. For ease of notation, we consider Mi itself as a partial-recursive
function.

We say that M converges on function f to i (written: M(f)↓ = i) iff for all but finitely many n, M(f [n]) = i. If M(f)↓ = i
for some i ∈N, then we say that M converges on f (written: M(f)↓). We say that M(f) diverges (written: M(f)↑) if M(f)
does not converge to any i ∈N. We now describe some of the learning criteria.

Definition 1. Suppose M is a learner and f ∈R.

(a) [10] We say that M Ex-learns f (written: f ∈ Ex(M)) iff (i) for all s, M(f [s]) is defined, and (ii) there exists an i such
that ϕi = f and, for all but finitely many n, M(f [n]) = i.

(b) [3,8] We say that M BC-learns f (written: f ∈ BC(M)) iff, (i) for all s, M(f [s]) is defined, and (ii) for all but finitely
many n, ϕM(f [n]) = f .

(c) [3,8] We say that M Fin-learns f (written: f ∈ Fin(M)) iff (i) for all s, M(f [s]) is defined, and (ii) there exist n and i
such that ϕi = f , for all m < n, M(f [n]) =?, and for all m ≥ n, M(f [n]) = i.

(d) [8] We say that M Exn-learns f (written: f ∈ Exn(M)) iff (i) M Ex-learns f and (ii) card({m | ? �= M(f [m]) �= M(f [m +
1])}) ≤ n.

Note that the notions of Fin-learning and Ex0-learning are identical. Intuitively, ? �= M(f [m]) �= M(f [m +1]) denotes a mind
change by M on f . We say that M makes a mind change at f [m + 1] iff ? �= M(f [m]) �= M(f [m + 1]) (in particular, changing
from ? to a number does not count as a mind change).

Definition 2. Let I be Fin, Ex or BC; let S ⊆R.

(a) We say that M I-learns S (written: S ⊆ I(M)) iff M I-learns each f ∈ S .
(b) We say that S is I-learnable iff there exists a learner M which I-learns S .
(c) I = {S | ∃M [S ⊆ I(M)]}.

Definition 3.

(a) [16] We say that M is confident iff (i) M is total recursive and (ii) for all total f , M(f)↓ or for all but finitely many n,
M(f [n]) =?.

(b) We say that M is weakly confident iff (i) M is total recursive and (ii) for all f ∈ R, M(f)↓ or for all but finitely many
n, M(f [n]) =?.

(c) [4,15] We say that M is reliable iff (i) M is total recursive and (ii) for all total f , M(f)↓ implies M Ex-learns f .
(d) [16] We say that M is weakly reliable iff (i) M is total recursive and (ii) for all f ∈R, M(f)↓ implies M Ex-learns f .
(e) We say that M is confident and reliable iff M is total recursive and, for all total f , either M Ex-learns f or M(f [n]) =?

for all but finitely many n.
(f) We say that M is weakly confident and weakly reliable iff M is total recursive and, for all f ∈ R, either M Ex-learns f

or M(f [n]) =? for all but finitely many n.

Definition 4. We say that M Conf-learns S if M Ex-learns S and M is confident.
If M is confident then I(M) = Ex(M) else I(M) is undefined.
Similarly, we define Rel, WConf, WRel, ConfRel and WConfRel learning criteria where we require the learners to be

reliable, weakly confident, weakly reliable, confident and reliable, and weakly confident and weakly reliable, respectively.

Note that the learners from Definition 3 are total recursive; furthermore, for the criteria Ex and BC, one can assume without
loss of generality that the learners are total recursive. In particular, from any learner M , one can effectively construct a total
recursive learner M ′ such that, for I ∈ {Ex, BC}, I(M) ⊆ I(M ′), see the proof of Osherson, Stob and Weinstein [16] for the
case of I = Ex. We often implicitly assume such conversion of learners into total recursive learners.

198 S. Jain et al. / Information and Computation 251 (2016) 194–207
Proposition 5 (Lindner [14]). Suppose f ∈R is an accumulation point for S ⊆R. Then S ∪ { f } /∈ Fin.

Proof. For ease of reference, we include the proof. Suppose by way of contradiction that S ∪ { f } is Fin-learnable, as wit-
nessed by M . Let x be such that M(f [x])↓ �=?. Furthermore, let f ′ ∈ S , f �= f ′ be such that f [x] � f ′ . Such an f ′ exists as
f is an accumulation point of S . Now M cannot Fin-learn both f and f ′ , as f [x] � f and f [x] � f ′ . This is a contradiction
to M Fin-learning S ∪ { f }. �
Proposition 6 (Blum and Blum [4], Minicozzi [15], Osherson, Stob and Weinstein [16]). There exists a recursive function hRel such that,
if Mi and M j are reliable then MhRel(i, j) is reliable and Ex(Mi) ∪ Ex(M j) ⊆ Ex(MhRel(i, j)). Similar results hold when one considers
confident, weakly confident, weakly reliable or weakly confident and weakly reliable learners, respectively using recursive functions
hConf , hWConf , hWRel , hWConfRel .

Intuitively, the above proposition says that for (weakly) reliable, (weakly) confident learning and their combinations, one
can effectively combine the learning powers of two reliable/confident learners (which can thus be extended to combining
finitely many reliable/confident learners).

Classification of functions can be made in two versions, one for classifiers classifying all functions [18] and one for
classifiers classifying all recursive functions [7]; we take the version with respect to the class of all recursive functions R.

Definition 7 (Case, Kinber, Sharma and Stephan [7]). A set S ⊆ R is two-sided classifiable iff there is a machine M such that,
for all f ∈R,

(i) if f ∈ S , then ∀∞x [M(f [x]) = 1];
(ii) if f /∈ S , then ∀∞x [M(f [x]) = 0].

The next theorem characterises WConfRel in terms of classification; note that we would get ConfRel in the case that we
consider two-sided classifiable with respect to all functions in the definition above.

Theorem 8. Let S ⊆R. The following are equivalent:

(a) S is WConfRel-learnable;
(b) A superset of S is Ex-learnable and two-sided classifiable.

Proof. Without loss of generality assume that the class S is not empty. Suppose S is WConfRel-learnable as witnessed
by total recursive M . Then Ex(M) is an Ex-learnable superset of S . Let N be such that, for all σ , N(σ) = 0, if M(σ) =?;
N(σ) = 1 otherwise. It is easy to verify that N two-sided classifies Ex(M).

For the converse direction, suppose now a superset S ′ of S is Ex-learnable, as witnessed by M , and two-sided classifiable,
as witnessed by N . Let P be such that, for all σ , if N(σ) = 1 then P (σ) = M(σ) else P (σ) =?. It is easy to see that P
WConfRel-learns S ′ . �
3. Initial results on unionability

We start with giving the general definition of unionability. Note that a learner Rel-learns S iff it is a reliable learner and
Ex-learns S; similarly for Conf, WRel, WConf, WConfRel-learning. This is relevant for part (b) in the definition below.

Definition 9. Let I be a learning criterion and S ⊂R.

(a) S is I-unionable iff, for all I-learnable classes S ′ , S ∪ S ′ is I-learnable.
(b) S is constructively I-unionable iff there is an h ∈ R such that, for all I-learnable classes S ′ and for all indices e where

Me I-learns S ′ , Mh(e) I-learns S ∪ S ′ .
(c) S is singleton-I-unionable iff, for all f ∈R, S ∪ { f } is I-learnable.
(d) S is constructively singleton-I-unionable iff there is h ∈R such that, for all e, Mh(e) I-learns S ∪ ({ϕe} ∩R).

Though I-unionable implies singleton-I-unionable for all criteria of learning considered in this paper, this is not the case
for constructive versions. For finite, confident, explanatory or behaviourally correct learning, constructive I-unionability
does imply constructive singleton-I-unionability (Proposition 12), however this is not the case for reliable learning (see
Proposition 13 along with Proposition 6).

For the various versions of unionability, in the following sections we will consider in detail which classes are I-unionable
for I being Fin, Ex or BC, starting with Fin-unionability in this section.

The non-union theorem [3,4,20] gives an example of a Fin-learnable class S and a Rel-learnable class S ′ such that their
union is not BC-learnable.

S. Jain et al. / Information and Computation 251 (2016) 194–207 199
Theorem 10 (Bārzdiņš [3], Blum and Blum [4]). Let S = { f ∈R | ϕ f (0) = f } and S ′ = { f ∈R | (∀∞x)[f (x) = 0]}.

(a) S is Fin-learnable (and thus S ∈ Conf and S ∈ WConf);
(b) S ′ is Rel-learnable;
(c) S ∪ S ′ /∈ BC.

Thus, both classes S and S ′ are neither Ex-unionable nor BC-unionable. In the following, we state the characterisation of
Fin-unionability; we would like to thank the anonymous referee for pointing out that this characterisation is due to Lindner
[14].

Theorem 11 (Lindner [14]).

(a) S is Fin-unionable iff S = ∅.
(b) S is constructively Fin-unionable iff S = ∅.
(c) S is constructively singleton-Fin-unionable iff S = ∅.
(d) S is singleton-Fin-unionable iff S is Fin-learnable and S has no recursive accumulation point.

Proof. (a) and (b) The empty class ∅ is clearly constructively Fin-unionable. Now consider a non-empty S ⊆ R and let
f ∈ S . For all i, let f i be such that f i(i) = f (i) + 1 and, for all x �= i, f i(x) = f (x). Then the class S ′ = { f i | i ∈ N} is
Fin-learnable, but S ∪ S ′ is not Fin-learnable, as f is an accumulation point of S ′ (see Proposition 5).

(c) The empty class is clearly singleton-Fin-unionable. Suppose S is not empty, and f and f i are as in the proof of part
(a) and (b) above. Suppose by way of contradiction that h is a recursive function such that Mh(e) Fin-learns S ∪ ({ϕe} ∩R).
Fix a recursive enumeration of K . Now, we consider a recursive function g such that ϕg(e) = f s , if e is enumerated into K
in exactly s steps; ϕg(e) = f , if e is not enumerated into K . Let k(e) be the first number found, in some algorithmic search,
such that Mh(e)(f [k(e)])↓ �=?. The function k is total recursive, as, for all e, Mh(e) Fin-learns f . If e is enumerated into K in
exactly s steps, then k(g(e)) ≥ s, as otherwise, ϕg(e)[k(g(e))] = f s[k(g(e))] = f [k(g(e))], and thus Mh(g(e)) cannot Fin-learn
both f and ϕg(e) . Hence e is in K iff e is enumerated within k(g(e)) steps into K , a contradiction to K being undecidable.

(d) Clearly S must be in Fin to be singleton-Fin-unionable.
If S has a recursive accumulation point, then, by Proposition 5, S is not singleton-Fin-unionable.
Now suppose S is Fin-learnable as witnessed by M and S has no recursive accumulation point. Let f ∈R. We show that

S ∪ { f } is Fin-learnable. If f ∈ S , nothing is left to be shown. Suppose f /∈ S; thus, there exists an x such that f [x] /∈ [S].
Let e be an index for f ; we define N such that, for all σ ,

N(σ) =

⎧⎪⎨
⎪⎩

?, if σ ≺ f [x];
e, if f [x] � σ ;
M(σ), otherwise.

It is easy to verify that N Fin-learns S ∪ { f }. �
It is clear that every constructively I-unionable class is I-unionable and every constructively singleton-I-unionable class is
singleton-I-unionable. The next proposition gives the third inclusion for the criteria not involving reliability.

Proposition 12. Let I ∈ {Fin, Conf, WConf, Ex, BC}. If S is constructively I-unionable then S is constructively singleton-I-unionable.

Proof. Given e, consider the I-learner Mh(e) which always outputs e; if ϕe is total, then I(Mh(e)) = {ϕe}, else I(Mh(e)) = ∅.
Now, due to the constructive I-unionability of S , the class is also constructively singleton-I-unionable by forming construc-
tively the union with the class I-learnt by Mh(e) . �
For the criteria I ∈ {Rel, WRel, ConfRel, WConfRel}, one cannot translate an index e into a learner for ϕe of the given
type, as one is not able to test in the limit whether ϕe is partial or total. So there might be an obstacle on the way to
try to prove a hypothetical implication like “constructively Rel-unionable ⇒ constructively singleton-Rel-unionable”. Indeed
this obstacle is a real one and the exact opposite of the hypothetical implication holds. On one hand Minicozzi [15] proved
that there are I-learnable classes and all I-learnable classes are constructively I-unionable — she did this for I = Rel and
the proof carries over to the other choices of I ∈ {WRel, ConfRel, WConfRel} considered here. On the other hand no class
is constructively singleton-I-unionable, as here the singleton is not given by a learner but by a program which might be
partial; this program cannot be transformed into a learner effectively. This is now formally proven in the following result.

Proposition 13. Let I ∈ {WRel, Rel, WConfRel, ConfRel}. There is no class S such that S is constructively singleton-I-unionable.

200 S. Jain et al. / Information and Computation 251 (2016) 194–207
Proof. Assume that such a class S would exist as witnessed by a recursive function h. Then Mh(e) is a weakly reliable
learner for all e. Now define a function ϕg(e) inductively as the limit of the following finite sequences σs:

Let σ0 be any given finite sequence and, for s = 0, 1, . . ., let σs+1 be the first proper extension of σs found (in
some algorithmic search) such that either (i) Mh(e)(σs+1) �= Mh(e)(σs) or (ii) ϕMh(e)(σs)(x)↓ �= σs+1(x)↓ for some x or
(iii) Mh(e)(σs+1) =?.

By reliability of Mh(e) , the function ϕg(e) is total. It is clear that Mh(e) does not I-learn ϕg(e) . However, by the recursion
theorem [17], there is an e with ϕg(e) = ϕe . As ϕe is total, Mh(e) is supposed to I-learn ϕe though, by construction, this is
not the case. This contradiction therefore shows that S is not singleton-I-unionable. �
The proof of the above proposition can be adjusted to prove the following result. Recall that S is everywhere sparse iff for
every sequence σ , there is an extension τ such that no function f ∈ S extends τ . Written more formally, S is everywhere
sparse iff ∀σ∃τ � σ [τ /∈ [S]].

Proposition 14. Let I be any learning criterion such that every I-learner for a class S is also a BC-learner for S . Let S be any I-learnable
class.

(a) If S is constructively singleton-I-unionable then S is everywhere sparse.
(b) If Fin-learnability implies I-learnability and S is I-unionable then S is everywhere sparse.

Proof. Consider an I-learnable class S and a finite sequence τ such that every η � τ satisfies η ∈ [S].
(a) Assume by way of contradiction that S is constructively singleton-I-unionable and this is witnessed by a recursive

function h. Now let ϕg(e) be constructed as in the proof of Proposition 13 with the only differences that:

1. σ0 = τ · e;
2. when forming σs+1 from σs , only (ii) and (iii) are used to extend σs , as syntactic mind changes like in (i) are allowed

for BC-learning.

It follows from the denseness of S above τ that each ϕg(e) is a total recursive function and that Mh(e) does not I-learn
ϕg(e) . As in Proposition 13, there is an e with ϕe = ϕg(e) and Mh(e) does not I-learn ϕe . Hence h cannot witness that S is
constructively singleton-I-unionable.

(b) This is very similar to (a). One constructs ϕg(e) as in part (a), except that ϕg(e) is not diagonalising against Mh(e) but
against Me (that is one takes h(e) = e). Note that for some e, for which Me is not an I-learner for S , the function ϕg(e) can
be partial. Now let

S ′ = {ϕg(e) | e ∈ N∧ ϕg(e) ∈ R}.
The class S ′ is Fin-learnable and thus I-learnable; the learner waits until it has seen τ · e and then conjectures g(e). If Me

I-learns S , then ϕg(e) is total and not I-learnt by Me . Hence there is no I-learner for S ∪ S ′ . Therefore the class S is not
I-unionable. �
Proposition 14 (b) does not cover the learning criteria Rel, WRel, ConfRel and WConfRel. Among these, all ConfRel-learnable
and WConfRel-learnable classes are everywhere sparse. However, there are Rel-learnable and WRel-learnable classes, such
as the class { f ∈ R | ∀∞x [f (x) = 0]}, which are dense and these classes are, by Minicozzi’s result [15], also Rel-unionable
and WRel-unionable, respectively.

4. Ex- and BC-unionable classes

Case and Fulk [5] investigated Ex- and BC-unionability and obtained the following basic result that one can al-
ways add a function to a given class; so in contrast to finite learning, every Ex-learnable class is non-constructively
singleton-Ex-unionable; the same applies to BC-learning.

Proposition 15 (Case and Fulk [5]). If I is either Ex or BC, f ∈R and S is I-learnable, then S ∪ { f } is I-learnable.

Theorem 16. Suppose I is either Ex or BC. Suppose S ∈ WConfRel. Then S is constructively I-unionable.

Proof. The empty class is clearly constructively Ex-unionable and constructively BC-unionable. Now suppose S is a non-
empty class of recursive functions and M witnesses that S ∈ WConfRel. Let h be a recursive function such that Mh(i)
behaves as follows.

Let M ′
i be obtained effectively from i such that M ′

i is total recursive and I(M ′
i) ⊇ I(Mi). If M(σ) =?, then Mh(i)(σ) =

M ′
i(σ). Otherwise, Mh(i)(σ) = M(σ). It is easy to verify that Mh(i) I-learns S ∪ I(Mi). �

S. Jain et al. / Information and Computation 251 (2016) 194–207 201
Theorem 17. Suppose I is either Ex or BC. Suppose S ∈ WConf. Then S is constructively singleton-I-unionable.

Proof. The empty class is clearly constructively singleton-Ex-unionable and constructively singleton-BC-unionable. Now sup-
pose S is a non-empty class of recursive functions. Let g be a recursive function such that M g(e) always outputs e on any
input. Then, Mg(e) WConf-learns {ϕe}. Let Mi be a weakly confident learner which Ex-learns S . Let hWConf be as from
Proposition 6. Then, hWConf(g(e), i) witnesses the theorem. �
The following corollary now follows from the non-union theorem of Bārzdiņš [3] and Blum and Blum [4], Theorem 10 and
Theorem 17.

Corollary 18. Suppose I is either Ex or BC. Then the class S = { f ∈ R | ϕ f (0) = f } is constructively singleton-I-unionable, but not
I-unionable.

Theorem 19. There are classes S, S ′ ⊆R such that

(a) S and S ′ are both Ex-learnable;
(b) S and S ′ are both constructively BC-unionable;
(c) S ∪ S ′ is not Ex-learnable;
(d) S is not constructively singleton-Ex-unionable;
(e) S ′ is constructively singleton-Ex-unionable.

Proof. Kummer and Stephan [13, Theorem 8.1] constructed a uniformly partial-recursive family ϕg(0), ϕg(1), . . . of functions
with the following properties, where S = { f | f ∈ R and (∃n)[ϕg(n) ⊆ f and ϕg(n) is not total]} and S ′ = {ϕg(n) | n ∈ N and
ϕg(n) ∈R}:

(I) for all n, ϕg(n) is undefined on at most one input;
(II) for all n, 1n0 � ϕg(n);
(III) S, S ′ ∈ Ex;
(IV) S ∪ S ′ /∈ Ex;
(V) S ∪ S ′ ∈ BC.

The class S ∪ S ′ and every subclass of it is constructively BC-unionable. To see this, let patch be a recursive function
satisfying the following equation:

ϕpatch(i,σ)(x) =
{
σ(x), if x < |σ |;
ϕi(x), otherwise.

Let any total recursive BC-learner M for some class be given. Now, a new BC-learner N , obtained effectively from M , learning
BC(M) ∪ S ∪ S ′ is defined as follows:

If there is an n such that 1n0 � σ and no x < |σ | satisfies that ϕg(n)(x) converges within |σ | steps to a value different
from σ(x),
Then N(σ) = patch(g(n), σ),
Else N(σ) = M(σ).

By property (IV) above, S ∪ S ′ is not Ex-learnable. Thus, S and S ′ are not Ex-unionable. As S ′ is Fin-learnable, by Theo-
rem 17, S ′ is also constructively singleton-Ex-unionable.

Furthermore, S is not constructively singleton-Ex-unionable. Suppose by way of contradiction that h witnesses that S
is constructively singleton-Ex-unionable. Then, the following learner N witnesses that S ∪ S ′ ∈ Ex: If 1n0 � σ for some n,
then N(σ) = Mh(g(n))(σ), else N(σ) = 0. However, by Kummer and Stephan [13], such a learner does not exist. �
Theorem 20. There is a class S which is Rel-learnable, Ex-unionable, BC-unionable, but is not constructively singleton-BC-unionable.

Proof. For each n, we will define function fn below. The class S will consist of all functions of the form fn(0) fn(1) . . .
fn(x)y∞ which start with values of some fn until a point x and are constant from then onwards. Clearly S is Rel-learnable.

Without loss of generality assume that learner M0 Ex-learns all eventually constant functions. The functions fn satisfy
the following properties:

(I) fn(0) = n;
(II) Each fn is recursive;

202 S. Jain et al. / Information and Computation 251 (2016) 194–207
(III) The mapping n, x �→ fn(x) is limit-recursive;
(IV) For each m ≤ n,

either for infinitely many s, (∃x) [ϕMm(fn[s])(x)↓ �= fn(x)],
or there is a σ � fn such that (∀τ) [ϕMm(στ) is a subfunction of στ].

Note that the above properties imply that Mm does not BC-learn fn , for any n ≥ m. Thus, in particular, fn is not an eventually
constant function.

The construction of fn is done by inductively defining longer and longer initial segments fn[
n,t] of fn together with the
length
n,t . Let fn(0) = n and
n,0 = 1. In stage t ,
n,t+1 and fn[
n,t+1] are defined as follows: Let m be the remainder of
t divided by n + 1. Search for τ , η and an x <
n,t + |τη| such that ϕMm(fn[
n,t]·τ)(x)↓ �= (fn[
n,t] · τη)(x). If such τ , η, x are
found then
n,t+1 =
n,t + |τη| + 1 and fn[
n,t+1] = fn[
n,t] · τη · 0 else
n,t+1 =
n,t + 1 and fn[
n,t+1] = fn[
n,t] · 0.

Note that if the search does not succeed in stage t then it does not succeed in stage t + n + 1 either, as that stage also
deals with the same m and fn[
n,t+n+1] is an extension of fn[
n,t]. Therefore each fn is recursive. Furthermore, the fn are
uniformly limit-recursive as one can use the oracle for K to decide whether the extension exists in each specific case. It is
clear that property (IV) of fn mentioned above is also met by the way each fn is constructed.

Now suppose that a total recursive learner Me Ex-learns or BC-learns a class S ′ . Thus the functions fe, fe+1, fe+2, . . .
are not learnt by Me and thus not members of S ′ . Now consider the following new learner N for S ∪ S ′ . Let fn,t be the
t-th approximation (as a recursive function) to fn where fn,t(0) = n for all t; the fn,t converge pointwise to fn . The learner
N , on input σ of length t > 0, is defined as follows:

If σ � fd for some d ∈ {0, 1, . . . , e},
Then N(σ) is an index for fd for the least such d,
Else Begin

If σ = fn,t(0) fn,t(1) . . . fn,t(x)yt−x−1 for some n, y and x < t − 1,
Then N(σ) outputs a canonical index for fn,t(0) fn,t(1) . . . fn,t(x)y∞

(* note that in this case, σ(0) = n *),
Else N(σ) = Me(σ)

End

One can easily verify that N Ex-learns f0, f1, . . . , fe and also Ex-learns every member of S . Furthermore, for each f ∈
S ′ − S − { f0, f1, . . . , fe}, there are n = f (0), a least x with f (x + 1) �= fn(x + 1) and a least x′ > x with f (x′ + 1) �= f (x′).
If σ � f is long enough, then fn,|σ | equals fn for inputs up to x + 1 and |σ | > x′ + 1 and thus the learner N outputs
Me(σ). Hence if Me is an Ex-learner for S ′ then N is an Ex-learner for S ∪ S ′ and if Me is a BC-learner for S ′ then N is a
BC-learner for S ∪ S ′ .

Now assume by way of contradiction that S is constructively singleton-BC-unionable as witnessed by a recursive func-
tion h. Thus, for all i, Mh(i) BC-learns S . We will define a learner N below. For the r, k such that Mr = N and ϕk = fr , we
will then show that Mh(k) does not BC-learn ϕk = fr , thus getting a contradiction.

For ease of notation, we define N as running in stages and think of learners as getting the graph of the whole function
as input, and outputting a sequence of conjectures, all but finitely many of which are programs for the input function (for
BC-learning); for Ex-learning, this sequence of programs also converges syntactically.

Let f denote the function to be learnt and let n = f (0). Now define a trigger-event m to be activated iff there is a t > m
such that f [m] � fn,t (as defined above). If f = fn then infinitely many trigger events are eventually activated; otherwise
only finitely many trigger events are eventually activated. On any input function f , the learner N starts in stage 0.

Begin stage 〈i, j〉:

In this stage N copies the output of Mh(i) until

(i) the (〈i, j〉 + 1)-th trigger event has been activated and
(ii) there are x, z such that x > j and ϕMh(i)(f [x])(z)↓ �= f (z).

When both events have occurred, the learner N leaves stage 〈i, j〉 and goes to the next stage 〈i, j〉 + 1.

End stage 〈i, j〉

Note that whenever the input function f is from S , then only finitely many trigger-events are activated and therefore the
construction leaves only finitely many stages. Hence, the learner N eventually follows the learner Mh(i) , for some i, and thus
BC-learns f .

Let r be such that Mr = N . Consider the behaviour of N on fr . As, for each prefix σ of fr , N BC-learns σ0∞ , it follows
from property (IV) of fr that there exist infinitely many x such that, for some z, ϕN(fr [x])(z)↓ �= fr(z). Furthermore, infinitely
many trigger events are activated on input function being fr . Thus, inductively, for each stage 〈i, j〉, ϕMh(i)(fr [x])(z)↓ �= fr(z),
for some x > j. Therefore, for all i, ϕM (fr [x]) �= fr , for infinitely many x. Thus, for each i, Mh(i) does not BC-learn fr .
h(i)

S. Jain et al. / Information and Computation 251 (2016) 194–207 203
However, as there exists a k such that fr = ϕk , the learner Mh(k) must BC-learn fr , which gives a contradiction. Thus, S is
not constructively singleton-BC-unionable. �
We get the following corollary to Theorem 20 due to the implications among the criteria of unionability and by Theorem 17.

Corollary 21. Let S be the class from Theorem 20. Then S fails to be constructively singleton-Ex-unionable, constructively
BC-unionable or constructively Ex-unionable. Furthermore, S is not WConf-learnable.

5. Generalising the non-union theorem

In this section we show that we can build the non-union theorem above any learnable class (Theorem 26). That is, for all
Ex-learnable classes S , there exist classes S1, S2 such that S ∪ S1 and S ∪ S2 are Ex-learnable, but their union is not.

Definition 22. Let 	 be a recursive operator and I a learning criterion. We say that I is robust under 	 iff, for all sets of
functions S , S is I-learnable iff 	(S) is I-learnable.

The proof of the following lemma is straightforward.

Lemma 23. If 	0 satisfies, for all f , 	0(f) = 0 f (0)10 f (1)10 f (2)1 . . ., then Ex and BC are robust under 	0 .

Lemma 24. Let T ⊆ [R] be recursively enumerable and prefix closed set such that any element of T has at least two incomparable
extensions in T . Then there are Ex-learnable classes S0 and S1 , with [S0] ⊆ T and [S1] ⊆ T such that S0 ∪ S1 is not BC-learnable.

Proof. For each τ ∈ T , let r0(τ) and r1(τ) be the first pair of incomparable extensions of τ found in a fixed enumeration
of T . Note that r0 and r1 are recursive functions. Define 	1(f) for f ∈R0,1, as follows. Inductively define a sequence (σi)i∈N
such that σ0 = � and σi+1 = r f (i)(σi); then let 	1(f) = ⋃

i∈N σi . Then Ex and BC are robust under 	1, that is, S ′ ⊆R0,1 is
Ex-learnable (respectively, BC-learnable) iff 	1(S ′) is Ex-learnable (respectively, BC-learnable).

Let Ŝ0 and Ŝ1 be the two Ex-learnable classes with Ŝ0 ∪ Ŝ1 /∈ BC of Blum and Blum [4]. Together with Lemma 23 we
now get that S0 = (1(0(Ŝ0))) and S1 = (1(0(Ŝ1))) are as desired. �
Lemma 25. Let S, S ′ be Ex-learnable and T be a set of finite sequences which is closed under prefixes. Suppose that [S ′] ⊆ T , T is
decidable and, for all f ∈ S , [f] � T . Then S ∪ S ′ is Ex-learnable.

Proof. Let M ∈R and M ′ ∈R be Ex-learners for S and S ′ , respectively. Let N be such that, for all σ ,

N(σ) =
{

M ′(σ), if σ ∈ T ;
M(σ), otherwise.

It is easy to verify that N Ex-learns S ∪ S ′ . �
Theorem 26. Let S ⊆R be Ex-learnable. Then there are S0 ⊆R and S1 ⊆R such that

(a) S ∪ S0 and S ∪ S1 are Ex-learnable;
(b) S0 ∪ S1 is not BC-learnable.

Proof. Suppose there is a finite sequence τ /∈ [S]. Let Ŝ0 and Ŝ1 be the two Ex-learnable classes with Ŝ0 ∪ Ŝ1 /∈ BC of Blum
and Blum [4]. Let

S0 = {τ · f | f ∈ Ŝ0} and S1 = {τ · f | f ∈ Ŝ1}.
Then, S ∪ S0 and S ∪ S1 are each in Ex, but S0 ∪ S1 is not in BC.

Now suppose that [S] = [R]. Let M be a total recursive Ex-learner for S . We will show that there is an infinite decidable
binary tree T ⊆ [R] such that, on all infinite paths of T , M changes its mind infinitely often. For every sequence τ , we let
r0(τ) and r1(τ) be the first pair of incomparable extensions of τ found such that M(τ) �= M(r0(τ)) and M(τ) �= M(r1(τ)).
Note that there must be such incomparable pairs of sequences, as M learns a dense set. We define a sequence (Ti)i∈N
inductively. For all i, let

T0 = {�} and Ti+1 =
⋃

{r0(τ), r1(τ)}.

τ∈Ti

204 S. Jain et al. / Information and Computation 251 (2016) 194–207
It is now easy to see that T = {γ | (∃α ∈ ⋃
i∈N Ti)[γ � α]} is an infinite decidable binary tree, and, on all infinite paths of T ,

M changes its mind infinitely often. Thus, for all f ∈ S , [f] � T . By Lemma 24, there exist S0, S1 such that S0 and S1 are
Ex-learnable, [S0] ⊆ T , [S1] ⊆ T and S0 ∪ S1 is not BC-learnable. As all f ∈ S satisfy [f] � T , by Lemma 25, both classes
S ∪ S0 and S ∪ S1 are Ex-learnable. The theorem follows. �
6. Extendability

In the previous sections, the question was whether a learnable class S can be extended either by adding any learnable
class S ′ or any function ϕe without losing learnability. In this section we ask whether a learnable class S can be extended
effectively without losing learnability and without prescribing exactly what additions need to be done to S . So on one hand,
for a class S , it may be easier to extend S to a learnable class than it being unionable, as it is not required to learn all
relevant extensions of S; on the other hand it may be harder to extend a class S , as one has to find functions not in S
in order to add them (while in unionability, they were given by a learner or an index). Before discussing this in detail, the
next definition makes the notion of extending more precise.

Definition 27. Let C be a set of learners and I a learning criterion.

(a) We say that we can infinitely I-improve learners from C iff, for all M ∈ C , there is a learner N ∈P such that I(M) ⊆ I(N)

and I(N) \ I(M) is infinite.
(b) We say that we can uniformly infinitely I-improve learners from C iff there is a recursive function h such that, for all e

with Me ∈ C , I(Me) ⊆ I(Mh(e)) and I(Mh(e)) \ I(Me) is infinite.

Lemma 28. Suppose C is a set of learners and σ0 ∈ Seq. Suppose for all e, σ one can effectively find a sequence τe,σ such that if Me ∈ C
and σ0 � σ , then σ � τe,σ and Me(σ) �= Me(τe,σ). Then we can uniformly infinitely Ex-improve learners from C .

Proof. There is a partial-recursive function g such that, for all e, x, one defines inductively

ϕ0
g(e,x) = σ0 · e · x and ϕs+1

g(e,x) = τe,ϕs
g(e,x)

;
ϕg(e,x) =

⋃
s

ϕs
g(e,x).

Note that ϕs
g(e,x) are finite sequences of numbers. Suppose, Me ∈ C . It is easy to see that {ϕg(e,x) | x ∈ N} is infinite and

can be Ex-learnt by a total recursive learner M ′
e obtainable effectively from e. Also, there is a two-sided classifier Ne

(obtainable effectively from e) for the class {ϕg(e,x) | x ∈ N}. Furthermore, each Me ∈ C fails to Ex-learn every ϕg(e,x), x ∈ N,
thus Ex(Me) ∪ {ϕg(e,x) | x ∈ N} is an infinite extension of Ex(Me). Now, Ex(Me) ∪ {ϕg(e,x) | x ∈ N} is Ex-learnable by learner
M ′′

e , obtainable effectively from e, as follows:

M ′′
e (σ) =

{
Me(σ), if Ne(σ) = 0;
M ′

e(σ), otherwise.

It is easy to verify that M ′′
e Ex-learns Ex(Me) ∪ {ϕg(e,x) | x ∈N}. �

Case and Fulk [5] showed that every Ex-learner can be infinitely extended. Furthermore, for the subclass of learners learning
a dense set of functions, an effective procedure is implicitly given for turning any such learner into an infinitely more
successful one.

Theorem 29 (Case and Fulk [5]). We can infinitely Ex-improve every learner. Furthermore, we can uniformly infinitely Ex-improve all
learners M where Ex(M) is dense.

As an open question, Case and Fulk [5] asked whether there is another effective procedure for the complement, that is, for
learners that do not learn a dense class.

The next theorem answers this question in the negative by showing that there is no computable function turning any
given (index for an) Ex-learner which is not successful on a dense set into an (index for a) strictly more successful learner
– not even by a single additional function. The following proposition is well-known.

Proposition 30. There exists a recursive function g such that, for all i,

(a) either ϕg(i) is total or it has a finite domain of the form {0, 1, . . . , z} and
(b) Mi does not BC-learn any extension of ϕg(i).

S. Jain et al. / Information and Computation 251 (2016) 194–207 205
Theorem 31. For every recursive function h there is a learner Me such that [Ex(Me)] �= [R] and Ex(Mh(e)) is not a strict superset of
Ex(Me).

Proof. Suppose, by way of contradiction, that there is a recursive function h such that, for all e with [Ex(Me)] �= [R],
Ex(Mh(e)) properly contains Ex(Me). Let g be as in Proposition 30.

By Kleene’s recursion theorem, there is a program e such that, for all τ ,

Me(τ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(h(e)), if [τ � ϕg(h(e))];
pad(Mh(e)(τ),k), if ∃x < |τ | [ϕg(h(e))(x)↓ �= τ (x)],

where k is the number of inputs up to |τ |
on which ϕg(h(e)) is defined within |τ | steps;

↑, otherwise.

Now if Me does not Ex-learn a dense set of functions, then Ex(Mh(e)) must properly contain Ex(Me).

Case 1: ϕg(h(e)) is total.
Then Me Ex-learns only ϕg(h(e)); note that the padding parameter k used is unbounded as length of τ goes to infinity.

Thus, Mh(e) Ex-learns ϕg(h(e)) by supposition. However, by Proposition 30, Mh(e) does not Ex-learn ϕg(h(e)) , a contradiction.

Case 2: ϕg(h(e)) is finite.
Thus, Me is undefined on any proper extension of ϕg(h(e)) , and, hence, does not learn a dense set. By Proposition 30,

Mh(e) also does not Ex-learn any total extension of ϕg(h(e)) . Let k be the number of elements in the domain of ϕg(h(e)) .
Suppose f ∈R does not extend ϕg(h(e)) . Then, for all large enough j, we now have

Me(f [j]) = pad(Mh(e)(f [j]),k).

Thus, for large enough j, Me(f [j]) is semantically equivalent to Mh(e)(f [j]). Thus, any function that is not an extension of
ϕg(h(e)) is Ex-learned by Mh(e) iff it is Ex-learned by Me . Thus, Mh(e) Ex-learns exactly the same class as Me , a contradic-
tion. �
As an immediate corollary, interesting in its own right, we get that we cannot constructively find initial segments where a
given learner does not learn any extension, even not relative to the halting problem K .

Corollary 32. There is no partial K -recursive function g such that, for all e with Ex(Me) not dense, we have that g(e) is a finite
sequence with g(e) /∈ [Ex(Me)].

Case and Fulk [5] ask whether there is any partitioning of all learners into two (or at least finitely many) sets such that,
for each of the sets, all learners from that set can be uniformly extended. From Theorem 31 we know that this partitioning
cannot be according to whether the set of learned functions is dense. The following theorem answers the open problem by
giving a different split of all possible learners into two different classes.

Theorem 33. Let C be the set of all total recursive learners M such that M changes its mind on a dense set of sequences. Then we can
uniformly infinitely Ex-improve learners from C and from R \ C .

Proof. It follows from Lemma 28, that we can uniformly infinitely Ex-improve learners from C .
We now consider the case of extending learners from R \ C . For any given e and t , let τe,t denote the length-

lexicographically first sequence found such that Me does not change its mind on the first t finite extensions of τe,t . For
any sequence σ and any b we let g(σ , b) denote an index for σb∞ . Let h ∈R be such that, for all e and σ ,

Mh(e)(σ) =
{

g(τe,|σ |,b), if there is b with σ � τe,|σ |b∞;
Me(σ), otherwise.

For all e with Me ∈R \ C , we have that the sequence τe,0, τe,1, . . . converges to a τe such that Me does not make any mind
changes on any extension of τe . Now, Mh(e) learns Ex(Me) ∪{τe ·b∞ | b ∈N}. Note that Me can Ex-learn at most one function
extending τe . The theorem follows. �
As one can effectively convert any partial learner to a total recursive learner with the same (or more) learning capacity, the
above result also applies for partial learners.

For Fin-learning, extending learners is much easier: any learner that learns anything at all can be infinitely extended.

Theorem 34. Let m ∈N. There are recursive functions h1, h2, h3 such that

206 S. Jain et al. / Information and Computation 251 (2016) 194–207
(a) If I ∈ {Conf, WConf, ConfRel, WConfRel} and Me is an I-learner then Mh1(e) is an I-learner and I(Mh1(e)) infinitely extends
I(Me);

(b) For all e, if Exm(Me) is not empty then Exm(Mh2(e)) infinitely extends Exm(Me);
(c) If I ∈ {Rel, WRel, ConfRel, WConfRel} and Me is an I-learner then Mh3(e) is an I-learner and I(Mh3(e)) infinitely extends

I(Me).

Proof. For part (a), note that one can, given a learner Me , find uniformly in e a sequence of finite sequences σ0, σ1, . . .
which converges, in the case that Me is confident, to a limit σn (so σr = σn for all r ≥ n) such that Me(σn · τ) = Me(σn) for
all τ . It is easy to see that one can make effectively an I-learner Ne for the class {σra∞ | r, a ∈ N}: Whenever Ne discovers
that the current data stems from some σra∞ it makes a mind change to this hypothesis and it keeps the hypothesis until
it becomes inconsistent and then reverts to ?; as there are only finitely many different σr , there are also only finitely many
mind changes (including those to or from ?). Using Proposition 6, there is a recursive function h1 such that Mh1(e) I-learns
all functions which are I-learnt either by Me or by Ne .

For part (b), let p ∈R be such that, for all i, σ , ϕp(i,σ) = σ · i∞ .
Let Ne be a total recursive learner, obtained effectively from Me , such that (i) Exm(Me) ⊆ Exm(Ne), (ii) Ne(�) =? and

for σ � τ , [Ne(σ) �=? implies Ne(τ) �=?], (iii) the number of mind changes made by Ne on any function f is bounded by
the number of mind changes made by Me on f , and (iv) the number of mind changes made by Ne on any function f is
bounded by m. Note that such an Ne exists and can be obtained effectively from Me .

Let Ue = {τ | τ �= �, Ne(τ) �= Ne(τ
−) and ϕNe(τ)(|τ |)↓}. Note that Ue is recursively enumerable effectively in e. Let Ue,s

denote Ue enumerated within s steps.
Let τe,σ denote the longest element of Ue,|σ | , if any, such that τe,σ ≺ σ . If there is no such element, then we take

τe,σ = �.
We define h2 ∈R such that, for all σ ,

Mh2(e)(σ) =

⎧⎪⎨
⎪⎩

?, if Ue,|σ | = ∅ or Ne(τe,σ) =?;
Ne(τe,σ), if Ue,|σ | �= ∅ and ϕNe(τe,σ)(|τe,σ |) = σ(|τe,σ |);
p(σ (|τe,σ |), τe,σ), otherwise.

It is easy to verify that the number of mind changes made by Mh2(e) on any function f is bounded by the number of mind
changes made by Ne on f . To see this, let S f = {τ ∈ Ue | τ � f }. Then, Mh2(e) on f , outputs at most one new conjecture
corresponding to each τ ∈ S f : either Ne(τ) or p(σ (|τ |), τ), based on whether ϕNe(τ)(|τ |) = σ(|τ |) or not (note that there
may not be conjectures corresponding to some such τ , if that τ is not detected to be in Ue before a longer such τ ′ is found
in Ue).

Also, Exm(Mh2(e)) ⊇ Exm(Ne) ⊇ Exm(Me), as for functions f Exm-learnt by Ne , the longest τ such that τ � f and Ne(τ) �=
Ne(τ

−) belongs to Ue and ϕNe(τ) = f for this τ .
Furthermore, let τ be a member of Ue such that no extension of τ is in Ue . Note that there exists such a member τ of

Ue as (i) Me (and thus Ne) Exm-learns at least one function and therefore Ue contains at least one element and (ii) Ue does
not contain distinct τ1, τ2, . . . , τm+2 such that τ1 ≺ τ2 ≺ . . . ≺ τm+2 (as Ne makes at most m mind changes on any function).
Then, Mh2(e) Exm-learns τb∞ , for all b with ϕNe(τ)(|τ |) �= b. However, Me Exm-learns at most one extension of τ . So part (b)
follows.

For part (c), consider e such that Me is an I-learner for some class S . For each n, define the function fe,n as follows:

fe,n = ⋃
s σ

s
e,n , where σ 0

e,n = n (sequence of one element n) and
σ s+1

e,n is a proper extension of σ s
e,n such that Me(σ

s+1
e,n) �= Me(σ

s
e,n) or Me(σ

s+1
e,n) = ?, if such an extension can be

found in s steps,
σ s+1

e,n = σ s
e,n , if an extension as above cannot be found in s steps.

Note that an index for fe,n can be found effectively from e and n. Note that if Me is an I-learner then fe,n is total recursive
and Me either outputs ? infinitely often on fe,n or makes infinitely many mind changes on fe,n and thus does not I-learn
fe,n .

Let h3 be a recursive function such that Mh3(e)(�) =? and, for σ with |σ | > 0 and n = σ(0), Mh3(e)(σ) is defined as
follows:

If there exists an x < |σ | such that fe,n(x) is defined within |σ | steps (in the construction above) and fe,n(x) �= σ(x),
Then Mh3(e)(σ) = Me(σ),
Else Mh3(e)(σ) is the canonical index for fe,n .

In the case that Me is an I-learner, then each fe,n is total recursive and either the input function f = fe,n or there is an x
such that fe,n(x)↓ �= f (x). Thus, Mh3(e) is an I-learner for { fe,n | n ∈N} ∪ Ex(Me). �

S. Jain et al. / Information and Computation 251 (2016) 194–207 207
7. Conclusion

The non-union theorem shows that there are Ex-learnable classes such that their union is not even BC-learnable. Therefore,
the question arose which classes S are not only Ex-learnable but also satisfy the property that the union of S with any
other Ex-learnable class is still Ex-learnable. We distinguished the non-effective version of this notion from the effective
one, where one can compute from any index e of a learner an index e′ of a new learner which Ex-learns the class S and all
functions learnt by the learner with index e. We separated the effective case and the non-effective case for the above notion,
and gave a sufficient criterion for the effective case in terms of weakly confident and weakly reliable learning. However, we
do not know whether this sufficient criterion is also necessary.

Furthermore, we also considered learning unions with classes containing at most one function. For the notion of effec-
tively forming the union of a class S with a single function f (if total) given by its index d, we did not require that the
index d is guaranteed to be an index of a total function; therefore additionally learning the function f (if total) requires
that the learning procedure be able to deal with the case that the function with index d may be partial. For Ex-learning and
BC-learning this is a nontrivial task. Again, in the case of Ex-learning for effectively learning unions with a single function,
we showed a sufficient criterion, which is not yet known to be necessary: namely that the class S is weakly confidently
learnable.

Furthermore, we considered the possibility of (effectively) extending learners to learn (infinitely) more functions. It was
known that all Ex-learners learning a dense set of functions can be effectively extended to learn infinitely more. We solved
the open problem on whether learners learning a non-dense set of functions can be similarly extended by showing that this
is not possible. However, we gave an alternative split of all possible learners into two sets such that, for each of the sets, all
learners from that set can be effectively extended. We have analysed similar concepts also for other learning criteria.

Acknowledgments

A preliminary version of this paper appeared at the Conference on Algorithmic Learning Theory 2012 [11]. We thank the
referees of ALT 2012 and of this journal for various useful comments.

References

[1] Lenny Adleman, Manuel Blum, Inductive inference and unsolvability, J. Symb. Log. 56 (1991) 891–900.
[2] Kalvis Apsı̄tis, Rūsiņs Freivalds, Raimonds Simanovskis, Juris Smotrovs, Closedness properties in Ex-identification, Theor. Comput. Sci. 268 (2001)

367–393, special issue for ALT 1998.
[3] Janis A. Bārzdiņš, Two Theorems on the Limiting Synthesis of Functions, Theory of Algorithms and Programs I, vol. 210, Latvian State University, Riga,

U.S.S.R., 1974, pp. 82–88 (in Russian).
[4] Lenore Blum, Manuel Blum, Toward a mathematical theory of inductive inference, Inf. Control 28 (1975) 125–155.
[5] John Case, Mark Fulk, Maximal machine learnable classes, J. Comput. Syst. Sci. 58 (1999) 211–214.
[6] John Case, Sanjay Jain, Susan Ngo Manguelle, Refinements of inductive inference by Popperian and reliable machines, Kybernetika 30 (1994) 23–52.
[7] John Case, Efim Kinber, Arun Sharma, Frank Stephan, On the classification of recursive languages, Inf. Comput. 192 (2004) 15–40.
[8] John Case, Carl Smith, Comparison of identification criteria for machine inductive inference, Theor. Comput. Sci. 25 (1983) 193–220.
[9] Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer, Steven Kurtz, Mark Pleszkoch, Theodore Slaman, Robert Solovay, Frank

Stephan, Extremes in the degrees of inferability, Ann. Pure Appl. Log. 66 (1994) 231–276.
[10] Mark Gold, Language identification in the limit, Inf. Control 10 (1967) 447–474.
[11] Sanjay Jain, Timo Kötzing, Frank Stephan, Enlarging learnable classes, in: Algorithmic Learning Theory, 23nd International Conference, ALT 2012, in:

LNAI, vol. 7568, Springer, 2012, pp. 66–80.
[12] Sanjay Jain, Daniel Osherson, James Royer, Arun Sharma, Systems That Learn: An Introduction to Learning Theory, second edition, MIT Press, Cambridge,

Massachusetts, 1999.
[13] Martin Kummer, Frank Stephan, On the structure of degrees of inferability, J. Comput. Syst. Sci. 52 (1996) 214–238.
[14] Rolf Lindner, Algorithmische Erkennung, Dissertation B, Sektion Mathematik, Friedrich-Schiller-Universität Jena, Jena, 1972.
[15] Eliana Minicozzi, Some natural properties of strong-identification in inductive inference, Theor. Comput. Sci. 2 (1976) 345–360.
[16] Daniel Osherson, Michael Stob, Scott Weinstein, Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, MIT

Press, Cambridge, Mass., 1986.
[17] Hartley Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967, reprinted in 1987.
[18] Frank Stephan, On one-sided versus two-sided classification, Arch. Math. Log. 40 (2001) 489–513.
[19] Arun Sharma, Frank Stephan, Yuri Ventsov, Generalized notions of mind change complexity, Inf. Comput. 189 (2004) 235–262.
[20] Thomas Zeugmann, Sandra Zilles, Learning recursive functions: a survey, Theor. Comput. Sci. 397 (2008) 4–56, special issue Forty Years of Inductive

Inference, dedicated to the 60th Birthday of Rolf Wiehagen.

http://refhub.elsevier.com/S0890-5401(16)30069-4/bib41423931s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib414653533031s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib414653533031s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib42613734s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib42613734s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib42423735s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib43463939s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib434A4E3934s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib434B53533034s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib43533833s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib462B3934s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib462B3934s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib476F3637s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4A4B533A633A31323A6D6178696D616Cs1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4A4B533A633A31323A6D6178696D616Cs1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4A4F52533939s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4A4F52533939s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4B533933s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4C696E3732s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4D693736s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4F53573836s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib4F53573836s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib526F3837s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib53743031s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib5353563937s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib5A5A3038s1
http://refhub.elsevier.com/S0890-5401(16)30069-4/bib5A5A3038s1

	Enlarging learnable classes
	1 Introduction
	2 Preliminaries
	3 Initial results on unionability
	4 Ex- and BC-unionable classes
	5 Generalising the non-union theorem
	6 Extendability
	7 Conclusion
	Acknowledgments
	References

