
J Comb Optim (2016) 32:657–671
DOI 10.1007/s10878-015-9889-3

Improved algorithmic results for unsplittable stable
allocation problems

Ágnes Cseh1 · Brian C. Dean2

Published online: 5 May 2015
© Springer Science+Business Media New York 2015

Abstract The stable allocation problem is amany-to-many generalization of thewell-
known stable marriage problem, where we seek a bipartite assignment between, say,
jobs (of varying sizes) and machines (of varying capacities) that is “stable” based on
a set of underlying preference lists submitted by the jobs and machines. Building on
the initial work of Dean et al. (The unsplittable stable marriage problem, 2006), we
study a natural “unsplittable” variant of this problem, where each assigned job must
be fully assigned to a single machine. Such unsplittable bipartite assignment problems
generally tend to be NP-hard, including previously-proposed variants of the unsplit-
table stable allocation problem (McDermid and Manlove in J Comb Optim 19(3):
279–303, 2010). Our main result is to show that under an alternative model of stabil-
ity, the unsplittable stable allocation problem becomes solvable in polynomial time;
although this model is less likely to admit feasible solutions than the model proposed
in McDermid and Manlove (J Comb Optim 19(3): 279–303, McDermid and Manlove
2010), we show that in the event there is no feasible solution, our approach com-
putes a solution of minimal total congestion (overfilling of all machines collectively
beyond their capacities). We also describe a technique for rounding the solution of a
stable allocation problem to produce “relaxed” unsplit solutions that are only mildly
infeasible, where each machine is overcongested by at most a single job.

B Ágnes Cseh
cseh@math.tu-berlin.de

Brian C. Dean
bcdean@clemson.edu

1 Institute for Mathematics, TU Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany

2 School of Computing, Clemson University, Box 340974, Clemson, SC 29634-0974, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9889-3&domain=pdf

658 J Comb Optim (2016) 32:657–671

Keywords Stable matchings · Stable allocations · Rotations · Unsplittable
assignments

1 Introduction

Consider a bipartite assignment problem over a graphG = (V = J ∪M, E) involving
the assignment of a set of jobs J to a set ofmachinesM . Each job j ∈ J has a processing
time q(j), each machine m ∈ M has a capacity q(m), and there is a capacity c(jm)

for each edge jm ∈ E governing the maximum amount of job j that can be assigned
to machine m. A feasible allocation of jobs to machines is described by a function
x : E → R≥0 such that

1. 0 ≤ x(jm) ≤ c(jm) for all edges jm ∈ E ,
2. x(j) := ∑

m∈M x(jm) ≤ q(j) for all jobs j ∈ J , and
3. x(m) := ∑

j∈J x(jm) ≤ q(m) for all machines m ∈ M .

If x(jm) ∈ {0, q(j)} for all jm ∈ E , we say the allocation is unsplit, since each
assigned job is assigned in its entirety to a single machine. We often forgo the use
of edge capacities c(jm) when discussing unsplit allocations, since an edge jm can
simply be deleted if c(jm) < q(j).

Problems of the form above have been extensively studied in the algorithmic liter-
ature, where typical objectives are to find a feasible assignment or one of maximum
weight (maximizing a linear objective function

∑
jm∈E w(jm)x(jm), with w(jm)

being the weight of edge jm). While the fractional (splittable) variants of these prob-
lems are easy to solve in polynomial time via network flow techniques, it is NP-hard
to find an unsplit allocation of either maximum total size |x | = ∑

jm∈E x(jm) or of
maximumweight; the former is a variant of the multiple subset sum problem (Caprara
et al. 2000), and the latter is known as the multiple knapsack problem (Chekuri and
Khanna 2005).

In contrast to problems with explicit edge costs, the stable allocation problem is
an “ordinal” problem variant where the quality of an allocation is expressed in a more
game theoretic setting via ranked preference lists submitted by the jobs and machines,
with respect to which we seek an assignment that is stable (defined shortly). In this
paper, we study the stable allocation problem in the unsplittable setting, which was
shown to be NP-hard in (McDermid and Manlove 2010) using one natural definition
for stability. We show here that by contrast, a different and more strict notion of
stability, proposed initially in Dean et al. (2006), leads to an O(|E |) algorithm for
the unsplit problem. The tradeoff is that under this different notion of stability, it is
unlikely that feasible allocations will exist. However, we show that by relaxing the
problem to allow mildly infeasible allocations, our algorithm computes a “relaxed”
unsplit stable allocation (in which each machine is filled beyond its capacity by at
most the allocation of a single job) in which the total amount of overcongestion across
all machines,

∑
m∈M max (0, x(m) − q(m)), is minimized (so in particular, if there is

a feasible allocation with no congestion, we will find it).
Through the work of several former authors (Dinitz et al. 1999; Skutella 2000;

Shmoys and Tardos 1993), the “relaxed” model has become relatively popular in the

123

J Comb Optim (2016) 32:657–671 659

context of unsplittable bipartite assignment and unsplittable flow problems. The stan-
dard approximation algorithm framework (finding an approximately-optimal, feasible
solution) typically does not fit these problems, since finding any feasible solution is
typically NP-hard. Instead, authors tend to focus on pseudo-approximation results
with minimal congestion per machine or per edge. Analogous results were previously
developed for unsplit stable allocation problems in Dean et al. (2006), where an unsplit
stable allocation can be found in linear time in which each machine is overcongested
by at most a single job. The model of stability proposed in Dean et al. (2006) is the one
we further develop in this paper, and among all of these prior approaches (including
those for standard unsplittable bipartite assignment and flows), it seems to be the only
unsplit model studied to date in which minimization of total congestion is possible
in polynomial time. Hence, there is a substantial algorithmic incentive to consider
this model, even though its notion of stability is less natural than in McDermid and
Manlove (2010).

The classical stable marriage problem, perhaps the simplest relative of our prob-
lem in the domain of ordinal matching, is known to satisfy a number of remarkable
mathematical properties. For example, one can always find stable solutions that are
“left-hand-side optimal” or “right-hand-side optimal”, and the exact same subset of
left-hand side and right-hand side elements are matched in every stable solution (the
so-called “rural hospital” theorem, named after applications involving the assignment
of medical residents to hospitals). We show natural generalizations of all of these
structural properties in our relaxed unsplit stable allocation setting (further justifying
the utility of this model from a mathematical perspective). For example we show how
to compute in O(|E |) time a “job-optimal” allocation that maximizes the total size
|x | of all assigned jobs, and a “machine-optimal” allocation that minimizes |x |. It is
this machine-optimal solution that we show also minimizes total congestion. In order
to produce potentially other solutions (e.g., that might be more fair to both sides),
we show also a technique for “rounding” a solution of the fractional stable allocation
problem to obtain a relaxed unsplit solution.

We review preliminary concepts and background material in the next section, then
introduce our structural and algorithmic results for computing relaxed unsplit solutions
maximizing orminimizing |x |, showing how these can be used to solve the unsplittable
stable allocation problem in linear time. Finally, we discuss our rounding method for
producing additional relaxed unsplit assignments.

2 Background and preliminaries

2.1 Stable matching and allocation problems

Stable marriage The stable marriage (or stable matching) problem takes place on a
bipartite graph with men on one side and women on the other, where each individual
submits a strictly-ordered, but possibly incomplete preference list of the members of
the opposite sex. The goal is to find a matching that is stable, containing no blocking
pair—anunmatched (man,woman) pair (m, w)wherem is either unmatchedor prefers
w to his current partner, and likewise for w.

123

660 J Comb Optim (2016) 32:657–671

In their seminal paper (1962), Gale and Shapley describe a simple O(|E |) algorithm
to find a stable matching for any instance. The most typical incarnation of their algo-
rithm generates a solution that is “man-optimal” and “woman-pessimal”, where each
man is matched with the best possible partner he could receive in any stable matching,
and each woman is matched with the worst possible partner she could receive in any
stable matching. By reversing the roles of the men and women, the algorithm can also
generate a solution that is simultaneously woman-optimal and man-pessimal.
Stable allocation The stable allocation problem was introduced by Baïou and Balin-
ski (2002) as a high-multiplicity variant of the stable matching problem, where
we match non-unit elements with non-unit elements—here, we speak of matching
jobs of varying size with machines of varying capacity. Just as before, jobs and
machines submit strict preferences over their outgoing edges in the bipartite assign-
ment graph. If job j ∈ J prefers machine m1 ∈ M to machine m2 ∈ M , we write
rank j (jm1) > rank j (jm2). A stable allocation in this setting is a feasible allocation
(as defined in the introduction) where for every edge jm ∈ E with x(jm) < c(jm),
either j is fully assigned tomachines at least as good asm, orm is fully assigned to jobs
at least as good as j . That is, there can be no blocking edge jm where x(jm) < c(jm)

and both j and m would prefer to use more of jm. We say that edges with positive
x value are in x . If any machine m has q(m) >

∑
j∈J c(jm), then q(m) is set to∑

j∈J c(jm). Machines with x(m) = q(m) are saturated. Later, when x(m) > q(m)

occurs in the relaxed version of the problem,we talk about over-capacitatedmachines.
If any job prefers machinem to any of its allocated machines, thenm is called popular,
otherwise m is unpopular. Note that all popular machines must be saturated in any
stable allocation.

The stable allocation problem can be solved in O(|E | log |V |) time (Dean and
Munshi 2010). There can be many different solutions for the same instance, but they
all have the same total allocation |x |, and even stronger, the values of x(j) and x(m)

for each job and machine remain unchanged across all stable allocations. This holds
for both stable marriage (Gale and Sotomayor 1985) and stable allocation (Baïou and
Balinski 2002), moreover, even for stable roommate (Gusfield and Irving 1989), the
non-bipartite version of the problem, and is known as the rural hospital theorem. A
common application of stable matching in practice is the National Resident Match-
ing Program (NRMP) (Roth 2008), where medical school graduates in the USA are
matched with residency positions at hospitals via a centralized stable matching proce-
dure. A consequence of the rural hospital theorem is that if a less-preferred (typically
rural) hospital cannot fill its quota in some stable assignment, then there is no stable
assignment in which its quota will be filled.

Like the stable marriage problem, one can always find job-optimal, machine-
pessimal and job-pessimal, machine-optimal solutions. To define these notions for
the stable allocation problem, Baïou and Balinski (2002) define an order on stable
solutions based on a min–min criterion, where a job j prefers allocation x1 to alloca-
tion x2 if x1(jm) < x2(jm) implies x1(jm′) = 0 for every jm′ worse than jm for j .
A similar relation can be defined for machines as well. Stable matchings and stable
allocations both are known to form distributive lattices with an ordering relation based
on the min–min criterion.

123

J Comb Optim (2016) 32:657–671 661

2.2 Unsplittable stable allocation problems

An unsplit allocation x satisfies x(jm) ∈ {0, q(j)} for all jm ∈ E , so each assigned
job is assigned in its entirety to one machine. For simplicity, we introduce a “dummy”
machinemd with high capacity, which acts as the last choice for every job. This lets us
assumewithout loss of generality that an unsplittable allocation always exists in which
every job is assigned. In this context, we define the size |x | of an allocation so that jobs
assigned to md do not count, since they are in reality unassigned. In addition to the
application of scheduling jobs in a non-preemptive fashion, a motivating application
for the unsplittable stable allocation problem is in assigningpersonnelwith “two-body”
constraints. For example, in the NRMP, a married pair of medical school graduates
might act as an unsplittable entity of size 2 (this particular application has been studied
in substantial detail in the literature; see Biró and Klijn 2013 for further reference).

From an algorithmic standpoint, one of the main results of this paper is that howwe
define stability in the unsplit case seems quite important. In McDermid and Manlove
(2010), the following natural definition was proposed: an edge jm is blocking if j
prefersm to its current partner, and ifm prefers j overq(j)units of its current allocation
or unassigned quota. Unfortunately, it was shown in McDermid and Manlove (2010)
that this definition makes the computation of an unsplit stable allocation NP-hard.
We therefore consider an alternative, stricter notion of stability where edge jm is
blocking if j prefers m to its current partner, and if m prefers j over any amount of
its current allocation or has free quota. That is, if j would prefer to be assigned to m
over its current partner, than m must be saturated with jobs that m prefers to j . Aside
of the integrity constraint, this definition is fully aligned with the classical definition
of a stable allocation. As in the splittable case, popular machines must therefore be
saturated. Practice shows (Roth 1996) that if a hospital is willing to hire one person
in a couple, but it has no free job opening for the partner, it is most likely amenable
to make room for both applicants. Therefore, our definition of a blocking pair serves
practical purposes.
Relaxed unsplit allocations The downside of our alternative definition of stability is
that it is unlikely to allow feasible unsplit stable allocations to exist in most large
instances. Therefore, we consider allowing mildly-infeasible solutions where each
machine can be over-capacitated by a single job—a model popularized by previous
results in the approximation algorithm literature for standard unsplittable assignment
problems (Dinitz et al. 1999; Skutella 2000; Shmoys and Tardos 1993), and introduced
in the context of unsplittable stable allocation by Dean et al. (2006). Specifically, we
say that x : E → R≥0 is a relaxed unsplit allocation if x(jm) ∈ {0, q(j)} for every
edge jm ∈ E , x(j) ≤ q(j) for every job j ∈ J , and for each machine m, the removal
of the least-preferred job assigned tom would cause x(m) < q(m).1 Our definition of
stability extends readily to the relaxed setting, and we would argue that it is perhaps

1 The model introduced in Dean et al. (2006) allows x(m) ≤ q(m), but we believe strict inequality is
actually a better choice—mathematically and from a modeling perspective. For example, the old definition
applied to a hospital–resident matching scenario with married couples might cause a hospital to accept two
more residents than its quota, while the new definition would only require accepting one more resident. The
results in Dean et al. (2006) hold with either definition.

123

662 J Comb Optim (2016) 32:657–671

the most natural mathematical notion of stability to consider in this setting (whereas
the form of stability in McDermid and Manlove (2010) is probably the most natural
for the hard capacity setting). We say a relaxed unsplit allocation x is stable if for
every edge jm with x(jm) = 0, either j is assigned to a machine that j prefers to m,
or m’s quota is filled or exceeded with jobs that m prefers to j . Otherwise, if edge jm
with x(jm) = 0 is preferred by j to its allocated machine and m’s quota is not filled
up with better edges than jm, then jm blocks x .

Note that the relaxed unsplit model differs from the non-relaxed unsplit model with
capacities inflated by max q(j), since stability is still defined with respect to original
capacities. It may be best to regard “capacities” here as constraints governing start
time, rather than completion time of jobs. A machine below its capacity is always
willing to launch a new job, irrespective of job size.

3 Machine-optimal relaxed unsplit allocations

In Dean et al. (2006), a version of the Gale–Shapley algorithm is described to find the
job-optimal relaxed unsplit stable allocation xjopt. In this context, job-optimal means
that there is no relaxed unsplit stable allocation x ′ such that any job is assigned to a
better machine in x ′ than in xjopt. The implementation described in Dean et al. (2006)
runs in O(|E ||V | log |V |) time, but O(|E |) is also easy to achieve. In this section, we
show how to define and compute a machine-optimal relaxed unsplit stable allocation
xmopt also in O(|E |) time, and we prove the following:

Theorem 1 Among all relaxed unsplit stable allocations x, |x | is maximized at x =
xjopt and minimized at x = xmopt.

Oneof themain challengeswith computing amachine-optimal allocation is defining
machine-optimality. In the stable allocation problem, existence of a machine-optimal
allocation follows from the fact that all stable allocations form a distributive lattice
under the standard min–min ordering relationship introduced in Baïou and Balinski
2002. However, this ordering seems to depend crucially on the existence of a rural
hospital theorem, which no longer holds in the relaxed unsplit case, since relaxed
unsplit stable allocations may differ in cardinality (Fig. 1). Even an appropriately
relaxed version of the rural hospital theorem seems difficult to formulate over relaxed
instances: machines can be saturated or even over-capacitated in one relaxed unsplit
stable allocation, while being empty in another one (Fig. 1). Nonetheless, we can still
prove a result in the spirit of the rural hospital theorem, which we discuss further in
Sect. 3.3.

Without an “exact” rural hospital theorem, comparing two allocations using the
original min–min ordering seems problematic, and indeed one can construct instances
where two relaxed unsplit stable allocations are incomparable according to this crite-
rion (Fig. 1). We therefore adopt a different but nonetheless natural ordering relation:
lexicographical order. We say that machine m prefers unsplit allocation x1 to allo-
cation x2 if the best edge in x1�x2 belongs to x1, where � denotes the symmetric
difference operation. The opposite ordering relation is based on the position of jobs,
and since jobs are always assigned to machines in an unsplit fashion, the lexicographic

123

J Comb Optim (2016) 32:657–671 663

j12

j21

j32

m1 2

m2 12

1
2

1

1
2

1
2

1
3

j12

j23

j31

m1 1

m2 3

m3 1

1

21

2

2 1

2 1

1

3

2 1

j11

j22

j32

j41

j51

j62

j71

m1 1

m2 2

m3 2

m4 2

m5 1

2

1

2

1

1

3

2 2

1 3

1 2

1

2

1

2

1 2

1

3

1

3

2

1

2

1

2

1

j11

j22

j31

j42

j53

j61

j72

m1 1

m2 2

m3 2

m4 3

m5 1

m6 1

2
1

2
1

2
2

1
3

1
2

1

2

2
1

1

3

1

2
1

2

1
3

2
1

2
1

2
1

2

1

Fig. 1 The upper-left instance admits two relaxed unsplit allocations differing in cardinality: The dashed
edges form a stable allocation of size 3, while the remaining edges build another stable allocation of size 5.
The lower-left example is evidence against an exact rural hospital theorem, where m1 is empty in one
relaxed unsplit stable allocation (given by the dashed edges) but filled beyond its capacity in another (given
by the solid edges). The graph in the middle shows two relaxed unsplit allocations that are incomparable
from the perspective ofm3. The last instance is a counterexample showing the difficulty of formulating join
and meet operations

and min–min relations are actually the same from the job’s perspectives; hence, “job
optimal” means the same thing under both. The lexicographical position of the same
agent in different allocations can always be compared, and we say a relaxed stable
allocation x is machine-optimal if it is at least as good for all machines as any other
relaxed stable allocation (although we still need to show that such a allocation always
exists).

3.1 The reversed Gale–Shapley algorithm

For the classical stable marriage problem, the Gale–Shapley algorithm can be reversed
easily, with women proposing instead of men, to obtain a woman-optimal solution.We
show that this idea can be generalized (carefully accounting for multiple assignment
and congestion amongmachines) to compute a machine-optimal relaxed unsplit stable
allocation. Pseudocode for the algorithm appears in Fig. 2.

Claim The algorithm terminates in O(|E |) time.

123

664 J Comb Optim (2016) 32:657–671

1: x(jmd) := q(j) for all j ∈ J , x(jm) := 0 for every other jm ∈ E
2: while ∃m : x(m) < q(m) with a non-empty preference list do
3: m proposes to its best job j with value q(j)
4: if j prefers m to its current partner then
5: x(jm) := q(j)
6: x(jm′) := 0 for ∀m′ = m
7: end if
8: delete j from m’s preference list
9: end while

Fig. 2 Reversed relaxed unsplit Gale–Shapley algorithm

Proof In each step, a job is deleted from a machine’s preference list.

Claim The algorithm produces an allocation x that is a relaxed unsplit stable alloca-
tion.

Proof First, we check the three feasibility constraints for x . Since proposals are always
madewith q(j) and refusals are always full rejections, the quota constraints of the jobs
may not be violated. Moreover, each job is assigned to exactly one machine. Machines
can be over-capacitated, but deleting the worst job from their preference list results
in an allocation under their quota. Otherwise the machine would not have proposed
along the last edge. If x is unstable, then there is an empty edge jm blocking x . During
the execution, m must have proposed to j . This offer was rejected, because j already
had a better partner in the current allocation. Since jobs monotonically improve their
position in the allocation, this leads to a contradiction.

Claim The output x is the machine-optimal relaxed unsplit stable allocation (i.e.,
no machine has a better lexicographical position in any other relaxed unsplit stable
allocation).

Proof Assume that there is a relaxed unsplit stable allocation x ′, where somemachines
come better off than in x . To be more precise, in the symmetric difference x�x ′, the
best edge incident to these machines belongs to x ′. When running the reversed relaxed
unsplit Gale–Shapley algorithm, there is a step when the first such edge jm1 carries
a proposal from m1 but gets rejected. Otherwise, m1 filled up or exceeded its quota
in x with only better edges than jm1. Let us consider only this edge first and denote
the feasible, but possibly unstable relaxed allocation produced by the algorithm so far
by x0.

When j refused jm1, it already had a partnerm0 in x0, better thanm1. Even if there
is no guarantee that jm0 ∈ x , it is sure that jm0 /∈ x ′ and jm0 does not block x ′,
though rank j (jm0) > rank j (jm1) for jm1 ∈ x ′. It is only possible if m0 is saturated
or over-capacitated in x ′ with edges better than jm0. Since jm0 ∈ x0, x0 may not
contain all of these edges, otherwise m0 is congested in x0 beyond the level required
for a relaxed unsplit allocation. During the execution of the reversed relaxed unsplit
Gale–Shapley algorithm, m0 proposed along all of these edges and got rejected by at
least one of them. This edge is never considered again, it may not enter x later. Thus,
jm1 is not the first edge in x ′ \ x that was rejected in the algorithm.

With this, we completed the constructive proof of the following theorem:

123

J Comb Optim (2016) 32:657–671 665

Theorem 2 The machine-optimal relaxed unsplit stable allocation xmopt can be com-
puted in O(|E |) time.

3.2 Properties of the job- and machine-optimal solutions

Theorem 3 The job-optimal relaxed unsplit stable allocation xjopt is the machine-
pessimal relaxed unsplit stable allocation and vice versa, the machine-optimal relaxed
unsplit stable allocation xmopt is the job-pessimal relaxed unsplit stable allocation.

Proof We start with the first statement. Suppose that there is a relaxed unsplit stable
allocation x ′ that is worse for some machine m than xjopt. This is only possible if m’s
best edge jm in xjopt�x ′ belongs to xjopt. Since xjopt is the job-optimal solution, jm′,
j’s edge in x ′ is worse than jm. But then,m is saturated or over-capacitated in x ′ with
better edges than jm. We assumed that all edges in x ′ that are better than jm are also
in xjopt. Thus, omitting m’s worst job from xjopt leaves m at or over its quota.

The second half of the theorem can be proved similarly, using the reversed Gale–
Shapley algorithm. Assume that there is a relaxed unsplit stable allocation x ′ that
assigns some jobs to worse machines than xmopt does. Let us denote the set of edges
preferredby any job to its allocatedmachine in x ′ by E ′.Due to our indirect assumption,
E ′ contains some edges of xmopt. When running the reversed Gale–Shapley algorithm
on the instance, there is an edge jm ∈ E ′ that is the first edge in E ′ carrying a
proposal. Since j is not yet matched to a better machine, it also accepts this offer.
Even if jm /∈ xmopt, j’s edge in xmopt is at least as good as m, because jobs always
improve their position during the course of the reversed Gale–Shapley algorithm. On
the other hand, m cannot fulfill its quota in xmopt with better edges than jm, simply
because the proposal step along jm took place.

Since jm /∈ x ′, but j prefers jm to its edge in x ′,m is saturated or over-capacitated
with better edges than jm in x ′. As observed above, not all of these edges belong
to xmopt. Let us denote one of them in x ′ \ xmopt by j ′m. Before proposing along
jm, m submitted an offer to j ′ that has been refused. The only reason for such a
refusal is that j ′ has already been matched to a better machinem′. But since j ′m ∈ x ′,
j ′m′ ∈ E ′. This contradicts to our indirect assumption that jm is the first edge in E ′
that carries a proposal.

Theorem 1 also follows from the proof above.
Wenote that althoughwe can compute the job-optimal andmachine-optimal relaxed

unsplit stable allocations, there in general does not appear to be an obvious underlying
lattice structure behind relaxed unsplit solutions. For stable matching or fractional
stable allocation, computing the meet or join of two solutions is fairly easy. In order
to reach the join (meet) of x1 and x2, all machines (jobs) choose the better edge set
out of those two allocations (Fleiner 2010). The example in Fig. 1 illustrates that
this property does not carry over to relaxed unsplit allocations. If all jobs chose the
better allocation, m3 remains empty and j7m3 becomes blocking. Similar examples
can easily be constructed to show that choosing the worse allocation also can lead to
instability.

123

666 J Comb Optim (2016) 32:657–671

Our ability to compute xmopt in O(|E |) time now gives us a linear-time method
for solving the (non-relaxed) unsplittable stable allocation problem (according to our,
stricter notion of stability).

Lemma 1 If an instance I admits an unsplit stable assignment x, then the machine-
optimal relaxed unsplit stable assignment xmopt on the corresponding relaxed instance
I ′ is also an unsplit stable assignment on I.
Proof Suppose the statement is false, e.g. although there is an unsplit stable assign-
ment x , xmopt is no unsplit stable assignment on I. This can be due to two reasons:
either the feasibility or the stability of xmopt is harmed on I. The latter case is easier
to handle. An allocation that is feasible on both instances and stable on I ′ may not
be blocked by any edge on I, since the set of unsaturated edges is identical on both
instances. The second case, namely if xmopt violates some feasibility constraint on I,
needs more care.

I and I ′ differ only in the constraints on the quota of machines. If xmopt is infea-
sible on I, then there is a machine m for which xmopt(m1) > q(m1). Regarding the
unsplit stable assignment x , the inequality x(m1) ≤ q(m1) trivially holds. Now we
use Theorem 1 for x and xmopt that are both relaxed unsplit stable assignments on I ′.
This corollary implies that if there is a machine m1 with xmopt(m1) > x(m1), then
another machine m2 exists for which xmopt(m2) < x(m2) holds.

This machine m2 plays a crucial role in our proof. It has a lower allocation value
in the machine-optimal relaxed solution xmopt than in another relaxed stable solution
x on I. Its lexicographical position can only be better in xmopt than in x if the best
edge j2m2 in x�xmopt belongs to xmopt. Moreover, x�xmopt also contains an edge
j3m2 ∈ x , otherwise xmopt(m2) > x(m2). Naturally, rankm(j2m2) < rankm(j3m2).
At this point, we use the property that xmopt(m2) < q(m2). Since m2 has free quota
in xmopt and j3m2 is not a blocking edge, j3 must be matched to a machine better than
m2 in xmopt. Thus, there is a job that comes better off in the machine-optimal (and job-
pessimal) relaxed solution than in another relaxed stable solution. This contradiction
to Theorem 3 finishes our proof.

Lemma 1 shows that if there is an unsplit solution, it can be found in linear time
by computing the machine-optimal relaxed solution. Unfortunately, the existence of
such an unsplit assignment is not guaranteed. Our next result applies to the case when
no feasible unsplit solution can be found. In terms of congestion, with the machine-
optimal solution we come as close as possible to feasibility.

Theorem 4 Amongst all relaxed unsplit stable solutions, xmopt has the lowest total
congestion.

Proof Let Mu denote the set of machines that remain under their quota in xmopt.
Note that

∑
m /∈Mu

xmopt(m), the total allocation value on the remaining machines
clearly determines the total congestion of xmopt, given by

∑
m /∈Mu

xmopt(m) − q(m).
Let x be an arbitrary relaxed solution. Due to Theorem 1, the total allocation value is
minimized at xmopt. Therefore, for any relaxed unsplit stable allocation x , the following
inequalities hold:

123

J Comb Optim (2016) 32:657–671 667

∑

m∈M
x(m) ≥

∑

m∈M
xmopt(m)

∑

m /∈Mu

x(m) +
∑

m∈Mu

x(m) ≥
∑

m /∈Mu

xmopt(m)+
∑

m∈Mu

xmopt(m)

∑

m /∈Mu

x(m) −
∑

m /∈Mu

xmopt(m) ≥
∑

m∈Mu

xmopt(m) −
∑

m∈Mu

x(m)

∑

m /∈Mu

(x(m) − q(m)) −
∑

m /∈Mu

(xmopt(m) − q(m)) ≥
∑

m∈Mu

xmopt(m) −
∑

m∈Mu

x(m)

At this point, we investigate the sign of both sides of the last inequality. The core of
our proof is to show that for each m ∈ Mu and relaxed stable solution x , xmopt(m) ≥
x(m). This result, proved below, has two benefits. On one hand, the term on the right
hand-side of the last inequality is non-negative. Therefore, the inequality implies that
the total congestion on machines in M \ Mu is minimized at xmopt. On the other
hand, no machine in Mu is over-capacitated in any relaxed solution. Thus, the total
congestion is minimized at xmopt.

Our last observation in this subsection refers to the unsaturated machines.

Lemma 2 For every m ∈ Mu and relaxed solution x, the inequality xmopt(m) ≥ x(m)

holds.

Proof Suppose that there is a machine m ∈ Mu for which xmopt(m) < x(m) for some
relaxed solution x . Since m is unsaturated in xmopt, it is unpopular. On the other hand,
there is at least one job j for which jm ∈ x \ xmopt. As m is unpopular in xmopt,
j is allocated to a better machine in xmopt than in x . Since xmopt is the job-pessimal
solution, we derived a contradiction.

3.3 A variant of the “Rural Hospital” theorem

In the relaxed unsplit case, one can find counterexamples against an exact rural hospital
theorem (e.g., where all machines have the same amount of allocation in all relaxed
unsplit allocations) or even aweakened theorem stating that all unsaturated / congested
machines have the same status in all relaxed unsplit allocations. Lemma 2 above
however suggests an alternative variant of “rural hospital” theorem that does hold.

Theorem 5 A machine m that is not saturated in xmopt will not be saturated in every
relaxed unsplit stable solution, and a machine m that is over-capacitated in xjopt must
at least be saturated in every relaxed unsplit stable solution.

Proof The first part is shown by Lemma 2. For the second part, consider a machine
m that is over-capacitated in xjopt but has x(m) < q(m) in some relaxed unsplit
allocation x . Consider any job j in xjopt\x , and note that since xjopt is job-optimal, j
prefers m to its partner in x . Hence, jm blocks x .

As of the jobs’ side, Theorem 3 already guarantees that if a job is unmatched in
xjopt, then it is unmatched in all relaxed stable solutions and similarly, if it is matched
in xmopt, then it is matched in all relaxed stable solutions.

123

668 J Comb Optim (2016) 32:657–671

4 Rounding algorithms

We have seen now how to compute xjopt and xmopt in linear time. We now describe
how to find potentially other relaxed unsplit solutions by “rounding” solutions to the
(fractional) stable allocation problem. For example, this could provide a heuristic for
generating relaxed unsplit solutions that aremore balanced in terms of fairness between
the jobs and machines. Our approach is based on augmentation around rotations,
alternating cycles that are commonly used in stable matching and allocation problems
to move between different stable solutions (see, e.g., Dean andMunshi 2010; Gusfield
and Irving 1989).

We begin with a stable allocation x with x(j) = q(j) for every job j , thanks to
the existence of a dummy machine. For each job j that is not fully assigned to its
first-choice machine, we define its refusal edge r(j) to be the worst edge jm incident
to j with x(jm) > 0. Jobs with refusal edges also have proposal edges—namely all
their edges ranked better than r(j). Recall that a machine with incoming proposal
edges is said to be popular. We call a machine dangerous if it is over-capacitated and
has zero assignment on all its incoming proposal edges.

Claim Consider a popular machinem in some fractional stable allocation x . Amongst
all proposal edges incoming to m, at most one has positive allocation value in x , and
this positive proposal edge is ranked lower on m’s preference list than any other edge
into m with positive allocation.

Proof Let rankm(j1m) > rankm(j2m) be proposal edges such that x(j1m) and x(j2m)

are both positive. Note that j1m blocks x , since j1 and m have worse allocated edges
in x . A similar argument implies the last part of the claim.

Our algorithm proceeds by a series of augmentations around rotations, defined as
follows.We start from a popular, non-dangerousmachinem (if no suchmachine exists,
the algorithm terminates, having reached an unsplit solution). Since m is popular and
non-dangerous, it has incoming proposal edges with positive allocation, and due to the
preceding claim, it must have exactly one such edge jm. We include jm as well as j’s
refusal edge jm′ in our partial rotation, then continue building the rotation from m′
(again finding an incoming proposal edge, etc.). We continue until we close a cycle,
visiting some machine m visited earlier (in which case we keep just the cycle as our
rotation, not the edges leading up to the cycle), or until we reach a machine m that is
unpopular or dangerous, where our rotation ends.

To enact a rotation, we increase the allocation on its proposal edges by ε and
decrease along the refusal edges by ε, where ε is chosen to be as large as possible
until either (i) a refusal edge along the rotation reaches zero allocation, or (ii) a dan-
gerous machine at the end of the rotation drops down to being exactly saturated from
being over-capacitated, and hence ceases to be dangerous. We call case (i) a “regular”
augmentation. This concludes the algorithm description.

Claim The algorithm terminates after O(|E |) augmentations.

Proof Jobs remain fully allocated during the whole procedure, and their lexicograph-
ical positions never worsen. With every regular augmentation, some edge stops being

123

J Comb Optim (2016) 32:657–671 669

a refusal edge, and will never again be increased or serve as a proposal or refusal
edge. We can therefore have at most O(|E |) regular augmentations. Furthermore, a
machine can only become dangerous if one of its incoming refusal pointers reaches
zero allocation, so the number of newly-created dangerous machines over the entire
algorithm is bounded by |E |. Hence, the number of non-regular augmentations is at
most O(|M | + |E |) = O(|E |).
Claim The final allocation x is a feasible relaxed unsplit assignment.

Proof Since we start with a feasible assignment and jobs never lose or gain allocation,
the quota condition on jobs cannot be harmed. If there is any edge jm with 0 <

x(jm) < q(j), then j has at least two positive edges, the better one must be a positive
proposal edge. This contradicts the termination condition, and hence x is unsplit.

We now show that deleting the worst job from each machine results in an allocation
strictly below themachine’s quota. It is clearly true at the beginning, where nomachine
is over-capacitated (since x starts out as a feasible stable allocation). The only case
when x(m) increases is when m is the first machine on a rotation. As such, m has a
positive proposal edge jm, which is also its worst allocated edge, due to our earlier
claim. Ifm is not over-capacitated when choosing the rotation, then even if x(jm) rises
as high as q(j), this increases x(m) by strictly less than q(j). Thus, deleting jm, the
worst allocated edge of m, guarantees that x(m) sinks under q(m). If m is saturated
or over-capacitated when choosing the rotation, then jm would have been the best
proposal edge of m earlier, when x(m) was not greater than q(m). Thus, assigning
j entirely to m does not harm the relaxed quota condition. Let us consider the last
step as x(m) exceeded q(m). Again, m was the starting vertex of an augmenting path,
having a positive proposal edge. If it was jm, our claim is proved. Otherwisem became
over-capacitated while x(jm) was zero, and then increased the allocation on jm. But
between those two operations,m had to become dangerous, because it switched its best
proposal edge to jm. Dangerous machines never start alternating paths. Thus, we have
a contradiction to the fact that we considered the last step when x(m) exceeded q(m).

Claim The final allocation x is stable.

Proof Suppose some edges block x . Since we started with a stable allocation, there
was a step during the execution of the algorithmwhen the first edge jm became block-
ing. Before this step, either j orm was saturated or over-capacitated with better edges
than jm. The change can be due to two reasons: either j gained allocation on an edge
worse than jm, or m gained allocation on an edge worse than jm. As already men-
tioned, j’s lexicographical position never worsens: rank j (p) > rank j (r(j)) always
holds. The second event also may not occur, because machines always play their best
response strategy. An edge jm that becomes blocking when allocation is increased
on an edge worse than it, was already a proposal edge before. Thus, m would have
chosen jm, or an edge better than jm to add it to the augmenting path.

Since each augmentation requires O(|V |) time and there are O(|E |) augmentations,
our rounding algorithm runs in O(|E ||V |) total time. If desired, dynamic tree data
structures can be used (much like in Dean andMunshi 2010) to augment in O(log |V |)
time, bringing the total time down to just O(|E | log |V |).

123

670 J Comb Optim (2016) 32:657–671

Although jobs improve their lexicographical position in each rotation, the output
of the algorithm is not necessarily xjopt. In fact, even xmopt can be reached via this
approach. Ideally, this approach can serve as a heuristic to generate many other relaxed
unsplit stable allocations, if run from a variety of different initial stable solutions x .

5 Conclusion and open questions

In our present work, we reformulated the definition of stable unsplit allocations. Sev-
eral basic properties of stable matchings and allocations are discussed on the relaxed
setting. Most of them carry over to unsplit allocations, but we also showed examples
for certain structural properties that do not hold in the unsplittable case.

We proved that the reversed relaxed unsplit Gale–Shapley algorithm can be used to
decide in polynomial time whether a regular instance admits an unsplit stable assign-
ment. If not, relaxed solutions canbe searched for.Besides constructing the job-optimal
and themachine-optimal solutions,we also showed amethod that rounds any fractional
stable solution to a relaxed unsplit stable allocation.

On the other hand, we mentioned that the well-known rural hospital theorem has
no generalization for unsplit assignments: relaxed stable solutions can have different
cardinality and the same vertex can have various lexicographical position in them.
The set of relaxed solutions also has been investigated: the distributive lattice structure
known for matchings and allocations cannot be observed here. Although rotations can
be used to derive an unsplit solution from a fractional one, moving form one unsplit
solution to another one is impossible just by rotations along cycles.

This latter obstacle raises a problem about optimizing over the set of solutions. If
the instance contains cost on edges, how to find a minimum-value stable solution?
Rounding the optimal fractional assignment does not necessarily lead to an optimal
unsplit allocation. A similar question can be addressed about fair allocations. Aside
from these, any combination with well-known notions in stability problems can be
studied: ties, restricted edges, etc. Another straightforward generalization would be to
define k-splittable allocations and investigate their properties.

Acknowledgments This work was partially supported by the Deutsche Telekom Stiftung, the Deutsche
Forschungsgemeinschaft within the research training group Methods for Discrete Structures (GRK 1408),
and by the USA National Science Foundation CAREER award CCF-0845593.

References

Baïou M, Balinski M (2002) The stable allocation (or ordinal transportation) problem. Math Oper Res
27(3):485–503

Biró P, Klijn F (2013) Matching with couples: a multidisciplinary survey. Int Game Theory Rev (IGTR)
15(02):1340008-1–1340008-18

Caprara A, Kellerer H, Pferschy U (2000) A PTAS for the multiple subset sum problem with different
knapsack capacities. Inf Process Lett 73(3–4):111–118

Chekuri C, Khanna S (2005) A polynomial time approximation scheme for the multiple knapsack problem.
SIAM J Comput 35(3):713–728

Dean B, Goemans M, and Immorlica N (2006) The unsplittable stable marriage problem. In: IFIP TCS,
volume 209 of IFIP, pp 65–75. Springer:Berlin

123

J Comb Optim (2016) 32:657–671 671

Dean B, Munshi S (2010) Faster algorithms for stable allocation problems. Algorithmica 58(1):59–81
Dinitz Y, Garg N, Goemans M (1999) On the single-source unsplittable flow problem. Combinatorica

19:17–41
Fleiner T (2010) On stable matchings and flows. In: Proceedings of the 36th International Workshop on

Graph-Theoretic Concepts in Computer Science, WG’10, pp 51–62
Gale D, Shapley L (1962) College admissions and the stability of marriage. Am Math Mon 1:9–14
Gale D, Sotomayor M (1985) Some remarks on the stable matching problem. Discrete Appl Math 11:223–

232
Gusfield D, Irving R (1989) The stable marriage problem: structure and algorithms. MIT Press, Cambridge
McDermid E, Manlove D (2010) Keeping partners together: algorithmic results for the hospitals/residents

problem with couples. J Comb Optim 19(3):279–303
Roth A (1996) The national residencymatching program as a labor market. J AmMedAssoc 275(13):1054–

1056
Roth A (2008) Deferred acceptance algorithms: history, theory, practice, and open questions. Int J Game

Theory 36(3–4):537–569
Shmoys D, and Tardos E (1993) Scheduling unrelated machines with costs. In: Proceedings of SODA, pp

448–454
Skutella M (2000) Approximating the single source unsplittable min-cost flow problem. In: Proceedings of

FOCS, pp 136–145

123

	Improved algorithmic results for unsplittable stable allocation problems
	Abstract
	1 Introduction
	2 Background and preliminaries
	2.1 Stable matching and allocation problems
	2.2 Unsplittable stable allocation problems

	3 Machine-optimal relaxed unsplit allocations
	3.1 The reversed Gale--Shapley algorithm
	3.2 Properties of the job- and machine-optimal solutions
	3.3 A variant of the ``Rural Hospital'' theorem

	4 Rounding algorithms
	5 Conclusion and open questions
	Acknowledgments
	References

