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Abstract
A major part of our knowledge about Computational Learning stems from comparisons of the
learning power of different learning criteria. These comparisons inform about trade-offs between
learning restrictions and, more generally, learning settings; furthermore, they inform about what
restrictions can be observed without losing learning power.

With this paper we propose that one main focus of future research in Computational Learning
should be on a structured approach to determine the relations of different learning criteria. In
particular, we propose that, for small sets of learning criteria, all pairwise relations should be
determined; these relations can then be easily depicted as amap, a diagram detailing the relations.
Once we have maps for many relevant sets of learning criteria, the collection of these maps
is an Atlas of Computational Learning Theory, informing at a glance about the landscape of
computational learning just as a geographical atlas informs about the earth.

In this paper we work toward this goal by providing three example maps, one pertaining to
partially set-driven learning, and two pertaining to strongly monotone learning. These maps can
serve as blueprints for future maps of similar base structure.
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1 Introduction

Computational Learning Theory, also called Inductive Inference, is a branch of (algorithmic)
learning theory. This branch analyzes the problem of algorithmically learning a description
for a formal language (a computably enumerable subset of the set of natural numbers
N = {0, 1, 2, . . .}) when presented successively the elements of that language. For example,
a learner h might be presented more and more even numbers. After each new number, h
outputs a description for a language as its conjecture. The learner h might decide to output
a program for the set of all multiples of 4, as long as all numbers presented are divisible
by 4. Later, when h sees an even number not divisible by 4, it might change this guess to a
program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L have been
proposed in the literature. Gold, in his seminal paper [10], gave a first, simple learning
criterion, TxtGEx-learning1, where a learner is successful iff, on every text for L (listing
of all and only the elements of L) it eventually stops changing its conjectures, and its final

1 Txt stands for learning from a text of positive examples; G stands for Gold, who introduced this model,
and is used to to indicate full-information learning; Ex stands for explanatory.
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47:2 Towards an Atlas of Computational Learning Theory

conjecture is a correct description for the input sequence. Trivially, each single, describable
language L has a suitable constant function as a TxtGEx-learner (this learner constantly
outputs a description for L). Thus, we are interested in analyzing for which classes of
languages L there is a single learner h learning each member of L. This framework is
also sometimes known as language learning in the limit and has been studied extensively,
using a wide range of learning criteria similar to TxtGEx-learning (see, for example, the
textbook [12]).

Recently, the notion of a learning criterion was formalized in [15] (see Section 2 for the
formal notions relevant to this paper). This formalization defines learning criteria as a
combination of several components. At the core of any learning criterion is the interaction
operator which determines what information a learner can get about its target at any stage
of the learning process. For example the learner might only see one new datum at a time,
only remembering its very previous conjecture (iterative learning, It), or the learner might
get the full information (G).

Second, there are many restrictions that can be imposed on learning. For example,
Ex is the restriction that the learner converges to a single hypothesis, and this hypothesis
correctly describes the target language. A relaxation to this is known as behaviorally correct
learning (Bc), which does not require syntactic convergence, but still all but some finite initial
hypothesis have to be correct. These restrictions can be combined with other restrictions,
such as, for example, strong monotonicity (SMon), requiring that the languages described
by the successive hypotheses to be monotonically non-decreasing. For any given interaction
operator β and any learning restriction δ we will use Txtβδ to denote the learning criterion
employing β as interaction operator and δ as learning restriction (in the setting of learning
from text). Note that δ might be the combination, the conjunction, of several learning
restrictions; we denote this conjunction of two restriction δ, δ′ as δδ′.

The main interaction operators from the literature (besides It and G there are also
set-driven learning, Sd, and partially set-driven learning, Psd) exhibit a structure: for any
two interaction operators β, β′, we write β � β′ iff every β-learner can be compiled into
an equivalent β′-learner (see Section 2); intuitively, learners can always ignore additional
information. In particular, we have the relations

Sd ≺ Psd ≺ G and It ≺ G

and no other among these four operators. Note that, for any β, β′ with β � β′ and any
restriction δ, any class Txtβδ-learnable class is also Txtβ′δ-learnable: the existence of a
β-learner implies the existence of an equivalent β′-learner (see Lemma 1). Note that the
converse is not true: While there is no direct way to translate Sd-learners into equivalent It-
learners, it is well known that every TxtItEx-learnable class is also TxtSdEx-learnable [14].
In other words, some comparisons of learning power of different learning criteria are trivial
(following directly from very basic relations of the interaction operators), while others are
contingent on the setting.

A similar observation holds for learning restrictions. These restrictions can be compared
with ⊆ (since we formally define them as sets of pairs for which the restriction holds); for
example, we have Ex ⊂ Bc in the sense that any sequence of conjectures which correctly
Ex-identifies a target from a text T is also a sequence of conjectures which correctly Bc-
identifies the same target from the same text T (but not vice versa). This again gives that
some comparisons of learning power of different learning criteria are trivial (following directly
from the ⊆ relation on the restrictions), while others are contingent on the setting.

This observation holds for all parts of the learning criterion: a monotone change in a
single component leads to a monotone change of the learning power of the learning criterion
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(see Lemma 1 for the formal statement). In other words, for any set of learning criteria, the
rough structure is visible from trivial inclusions, detailed structure requires specific analysis.
Just as the exploration of a geographical landscape might begin with drawing a rough map of
the area and then go explore the different parts in detail, a researcher comparing the learning
power of different learning criteria might proceed by drawing the trivial inclusions among
these criteria as a kind of “backbone” and then determine what further contingent relations
hold. In this way the researcher draws a “map” of the collection of learning criteria.

For a full characterization it would be desirable to have a map of all (important) learning
criteria. As this would require to determine the pairwise relations of several hundred learning
criteria (using all possible combinations of different possible components of learning criteria),
this is not easily feasible and more of a long term goal (just as the complete exploration
of the earth is not feasible in one go). Furthermore, a large map of all criteria might not
be very easy to understand; just as is done for the earth, giving a collection of maps, each
giving details for some specific part, gives a much better idea. Thus, we want to propose
that an important goal in Computational Learning Theory is to give an atlas of insightful
maps of learning criteria.

The question which maps are insightful is of course the crucial and difficult part. The
literature has given several examples; we proceed by giving three main kinds of maps that
we propose to be insightful.

1.1 Partially Set-Driven Learning
A wealth of learning criteria can be derived from TxtGEx-learning by adding restrictions
on the intermediate conjectures and how they should relate to each other and the data. For
example, one could require that a conjecture which is consistent with the data must not be
changed; this is known as conservative learning (Conv, [1]). Additionally to conservative
learning, the following learning restrictions are considered frequently in the literature.

In cautious learning (Caut, [19]) the learner is not allowed to ever give a conjecture for a
strict subset of a previously conjectured set. In non-U-shaped learning (NU, [2]) a learner may
never semantically abandon a correct conjecture; in strongly non-U-shaped learning (SNU, [7])
not even syntactic changes are allowed after giving a correct conjecture. In decisive learning
(Dec, [19]), a learner may never (semantically) return to a semantically abandoned conjecture;
in strongly decisive learning (SDec, [16]) the learner may not even (semantically) return
to syntactically abandoned conjectures. Finally, a number of monotonicity requirements
are studied ([13, 24, 18]): in strongly monotone learning (SMon) the conjectured sets may
only grow; in monotone learning (Mon) only incorrect data may be removed; and in weakly
monotone learning (WMon) the conjectured set may only grow while it is consistent. A
common property of these restrictions is delayability (see Definition 2).

Recently, [17] gave the map of TxtGδEx for all the learning restriction δ given above
(plus T, denoting no restriction). The same paper also gave the map for Sd in place of G,
while [11] gave the map for It in place of G. Thus, the only main interaction operator still
missing is Psd, for which we give the map in this paper (depicted in Figure 1, see Section 3
for all relevant theorems). A solid black line indicates a trivial inclusion (the lower criterion
is included in the higher); a dashed black line indicates an inclusion which is not trivial. A
gray box around criteria indicates equality of (learning power of) these criteria. We will use
this way of graphical representation for every map in this paper.

Thus, the solid black lines are the backbone of these learning criteria. It is interesting to
note that the structure is exactly like for the interaction operator G, even though most of
the proofs do not carry over, and Psd-learning is in general weaker than its G-variants (as,
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Figure 1 Relation of [TxtPsdδEx] for various learning restrictions δ. The backbone is given by
the black solid lines (trivial inclusions bottom-to-top). The only previously known relations are the
collapse of T, NU and SNU, as well as that SMon and Mon are each on their own.

for example, in the case of strongly monotone learning, see Section 1.2). Typically the proofs
can use some ideas from the G-case, but need to add some specific ideas. In this context we
developed some additional methods, such as a normal form for partially set-driven learners
(see Lemma 3). Also, we showed that conservative, weakly monotone and cautious learning
lie in between two other restrictions, which are then shown to be equivalent (see Theorem 6).
This gives another interesting characterization of the important restriction of conservative
learning.

1.2 Strongly Montone Learning and Interaction Operators
When comparing different interaction operators, it comes in handy to have a maximum (with
respect to �) and also a minimum. The maximum (for the four main operators) is G. As
minimum we introduce confluently iterative learning (CflIt). It requires a learner to be just
like an iterative learner, but with the added restriction of being confluent, that is, when a
sequence of inputs is given in different order or quantity, the same output is produced by the
learner. Intuitively, the learner has to be set-driven (thus CflIt � Sd and CflIt � It).

Consider now the restriction of strongly monotone learning (SMon). We can either
require that the learner has to be strongly monotone only on relevant inputs (relevant to the
current class of languages to be learned) or generally. This latter version is denoted τ(SMon)
and written as a prefix to the learning criterion. Note that this requires the learner to be
total (usually any element from P, the set of all partial computable functions, can be used
as a learner, as long as the learner produces output on relevant inputs). As totality of the
learner can impede the learner in itself, it is interesting to compare the two different versions
of a restrictions (on relevant or on all inputs) also with the version where the restriction is
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Figure 2 Relation of [τ(SMon)TxtβEx], [RTxtβSMonEx] and [TxtβSMonEx] for various
interaction operators β. The backbone is given by the black solid lines (trivial inclusions bottom-to-
top). The only previously known relation is [RTxtGSMonEx] = [TxtGSMonEx].

only on relevant inputs, but the learner is required to be total. We denote the restriction of
totality by R (the symbol for the set of total computable functions) as a prefix.

Naturally we have that τ(SMon)TxtβEx is trivially weaker in learning power than
RTxtβSMonEx, which is in turn trivially weaker in learning power than TxtβSMonEx.
In this paper we give the map for these learning criteria (depicted in Figure 2, see Section 4
for all relevant theorems.

Again the solid black lines give the backbone. When replacing SMon with any other learning
restriction, this backbone would stay the same. Noteworthy is the collapse of the three
different criteria involving G, which has the same underlying idea as the collapse of the two
criteria featuring It. As we can see, any strongly monotone G-learner can be assumed to be
not only total but also strongly monotone on arbitrary inputs; this does not hold for the
other interaction operators: the proof for G exploits first a standard delaying trick to make
sure that the learner is total, and then make use of the knowledge of prior hypotheses to
make sure that learner proceeds strongly monotonically.

Furthermore we also give the map for the criteria for the corresponding learning criteria
with Bc in place of Ex. This map is trivial, as all learning criteria τ(SMon)TxtβBc,
RTxtβSMonBc and TxtβSMonBc for the five different β are equivalent in learning
power.
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Figure 3 Relation of [TxtGSMonδ] for various δ. The backbone is given by the black solid lines
(trivial inclusions bottom-to-top).

1.3 Strongly Monotone Learning and Convergence Criteria

In Section 1.1 we saw many different learning restrictions which are typically combined with
Ex. As an alternative to Ex we saw Bc. Another alternative is Fex, allowing any finite
number of limit conjectures, naturally in between Ex and Bc. Even more restrictive than Ex
is Fin, allowing only one hypothesis different from ? overall (this is finite learning). Each of
these four convergence restrictions can be relaxed by counting hypotheses for finite variants
of the target also as correct hypotheses; this is denoted by an asterisk as suffix (e.g., Ex∗).

We give the map for the learning criteria TxtGSMonδ for the eight different choices of
convergence criteria (depicted in Figure 3, see Section 5 for all relevant theorems).
As you can see, the Ex-variants and the corresponding Fex-variants collapse in the case of
strongly monotone full-information learning. All other learning criteria stay separated, and
no further inclusions exist.

1.4 Conclusions

We have given three different maps considering very different kinds of learning criteria. We
believe that such maps increase our general understanding of learning and give a better
picture of how different criteria relate. While establishing these maps we typically get
structural insights, which can easily be explained with reference to the map. Most crucially,
since the main result of the research is a map, it is very easy to communicate the results;
especially other researchers who know the general backbone will be able to take in the results
effortlessly. Furthermore, this approach points out gaps in our knowledge about learning
criteria and thus focuses research efforts: maps which leave open problems are typically of
much lesser value, since they only provide a partial picture.

We believe that giving similar maps will drive future research in an important direction:
the development of an Atlas of Computational Learning Theory.

Next, in Section 2, we give a formal definition of learning criteria. Sections 3 to 5 conclude
the paper by giving the formal theorems establishing the maps presented above. All proofs
are omitted due to space restrictions; the main contribution of this paper lies elsewhere.
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2 Learning Criteria

In this section we formally introduce our setting of learning in the limit and associated
learning criteria. We follow the system in [15] in defining learning criteria. For background
on computability, see [21]. In particular, we let We denote the recursively enumerable (r.e.)
set enumerated by the program with (coded) number e. Thus, we can interpret a natural
numbers e as hypothesis for the set We. We denote the set of all r.e. sets by E .

A learner is a partial computable function h ∈ P. We allow learners to output ? to
denote that no conjecture is made yet. A language is an r.e. set L ∈ E of natural numbers.
Any total function T : N→ N ∪ {#} is a text, the collection of all texts is Txt. For any text
(or sequence) T , we let content(T ) = range(T )\{#}. For any given language L, a text for L
is a text T such that content(T ) = L. The set of all texts for some language L is denoted
Txt(L). For a given text T ∈ Txt and any n, we use T [n] to denote the sequence (T (0), . . . ,
T (n − 1)) (the empty sequence λ when n = 0). Initial parts of this kind is what learners
usually get as information.

An interaction operator is an operator β taking as arguments a function h (the learner)
and a text T , and outputs a (possibly partial) function p. We call p the learning sequence
(or sequence of hypotheses) of h given T . We define the interaction operators G (Gold-style
or full-information learning [10]), Psd (partially set-driven learning, [22]), Sd (set-driven
learning, [23]) and It (iterative learning, [23]) as follows. For all h ∈ P, texts T and all i,

G(h, T )(i) = h(T [i]);
Psd(h, T )(i) = h(content(T [i]), i);
Sd(h, T )(i) = h(content(T [i]));

It(h, T )(i) =
{
h(λ), if i = 0;
h(It(h, T )(i− 1), T (i− 1)), otherwise.

In set-driven learning, the learner has access to the set of all previous data, but not to the
full sequence as in G-learning. In partially set-driven learning, the learner has the set of
data and the current iteration number. Psd-learning is sometimes also called rearrangement-
independent learning [4]. In iterative learning, the learner can access its last hypothesis as
well as the most recent input data. Hereby, h(λ) denotes the initial hypothesis of learner
h. For two interaction operators β, β′, we say β-learners can be translated into β′-learners,
written β � β′, if, for every learner h, there is some learner h′ such that, for arbitrary texts
T , the resulting sequence of hypotheses of h working on T is the same as that of h′, i.e.
∀T ∈ Txt : β(h, T ) = β′(h′, T ). For example, an Sd-learner can be translated into an Psd-
learner by simply ignoring the additional information of the number of the current iteration.
Clearly, all learners investigated in this paper can be translated into G-learners. For any
β-learner h such that β � G, we let h∗ (the starred learner) denote the G-learner to simulate
h. A learner h is said to be confluently iterative just in case it is both set-driven and iterative.
That is, its starred learner h∗ satisfies the following two conditions. For any two finite
sequences σ, τ and natural numbers x, we have content(σ) = content(τ) ⇒ h∗(σ) = h∗(τ)
and h∗(σ) = h∗(τ) ⇒ h∗(σ � x) = h∗(τ � x). The interaction operator associated with
confluent iterativeness is denoted CflIt, it is a �-lower bound for both Sd and It.

Successful learning requires the learner to observe certain restrictions, for example
convergence to a correct index. A learning restriction is a predicate δ on a learning sequence
and a text. We give the important example of explanatory learning (Ex, [10]) defined such
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that, for all sequences of hypotheses p and all texts T ,

Ex(p, T )⇔ p total ∧ [∃n0 : (∀n ≥ n0 : p(n) = p(n0)) ∧Wp(n0) = content(T )].

There are several other success criteria under investigation in this work, most notably in
Section 5. We always require successful learning sequences p to be total, as in Ex-learning.
These success criteria, as well as other learning restrictions discussed in Section 1, are given
as follows.

Ex∗(p, T )⇔ ∃n0 : (∀n ≥ n0 : p(n) = p(n0)) ∧Wp(n0) =∗ content(T );
Fex(p, T )⇔ ∃D ∃n0 : (∀n ≥ n0 : p(n) ∈ D) ∧ (∀e ∈ D : We = content(T ));

Fex∗(p, T )⇔ ∃D ∃n0 : (∀n ≥ n0 : p(n) ∈ D) ∧ (∀e ∈ D : We =∗ content(T ));
Bc(p, T )⇔ ∃n0 ∀n ≥ n0 : Wp(n) = content(T );

Bc∗(p, T )⇔ ∃n0 ∀n ≥ n0 : Wp(n) =∗ content(T );
Fin(p, T )⇔ ∃n0 : (∀n < n0 : p(n) = ?) ∧Wp(n0) = content(T );

Fin∗(p, T )⇔ ∃n0 : (∀n < n0 : p(n) = ?) ∧Wp(n0) =∗ content(T ).
Conv(p, T )⇔ ∀i : content(T [i+ 1]) ⊆Wp(i) ⇒ p(i) = p(i+ 1);
Caut(p, T )⇔ ∀i, j : Wp(i) ⊂Wp(j) ⇒ i < j;

NU(p, T )⇔ ∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T )⇒Wp(j) = Wp(i);
Dec(p, T )⇔ ∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒Wp(j) = Wp(i);

SNU(p, T )⇔ ∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T )⇒ p(j) = p(i);
SDec(p, T )⇔ ∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ p(j) = p(i);

SMon(p, T )⇔ ∀i, j : i < j ⇒Wp(i) ⊆Wp(j);
Mon(p, T )⇔ ∀i, j : i < j ⇒Wp(i) ∩ content(T ) ⊆Wp(j) ∩ content(T );

WMon(p, T )⇔ ∀i, j : i < j ∧ content(T [j]) ⊆Wp(i) ⇒Wp(i) ⊆Wp(j).

We combine any two learning restrictions δ and δ′ by intersecting them; we denote this by
juxtaposition. With T we denote the restriction which is always true (no restriction).

Now a learning criterion is a tuple (α, C, β, δ), where C is a set of learners (the admissible
learners; typically P or R), β is an interaction operator and α, δ are learning restrictions;
we write τ(α)CTxtβδ to denote the learning criterion, omitting C in case of C = P and the
restriction in case it equals T. We say that a learner h ∈ C τ(α)CTxtβδ-learns a language L
iff, on arbitrary texts T ∈ Txt, α(β(h, T ), T ) and, for all texts T ∈ Txt(L), δ(β(h, T ), T ).
The set of languages τ(α)CTxtβδ-learned by h ∈ C is denoted by τ(α)CTxtβδ(h). We write
[τ(α)CTxtβδ] to denote the set of all τ(α)CTxtβδ-learnable classes.

Throughout this paper we are mostly concerned in showing separations between learning
criteria. The reason is, that most of the inclusions are trivial in the sense that almost all of
them follow from the next lemma. A formal proof can be found in [6].

I Lemma 1. Let α ⊆ α′, δ ⊆ δ′ be learning restrictions, C ⊆ C′ classes of admissible learners
and β � β′ two interaction operators. Then we have [τ(α)CTxtβδ] ⊆ [τ(α′)C′Txtβ′δ′].

3 Delayable Partially Set-driven Language Learning

In this section we will investigate delayable Psd-learning. First, we establish a normal
form for Psd-learners. Consider pairs (D, t) and (D′, t′) consisting of finite sets D,D′ and
numbers t, t′, we write (D, t) → (D′, t′) just in case t ≤ t′ and there is a text T such that
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content(T [t]) = D and content(T [t′]) = D′. Note that (D, t)→ (D′, t′) implies D ⊆ D′. Let
h be some learner and L a language. We call a pair (D, t), with D ⊆ L and t ≥ |D|, such that
Wh(D,t) = L and for all (D′, t′) such that D′ ⊆ L and (D, t)→ (D′, t′), h(D, t) = h(D′, t′), a
locking information for learner h on L. If we use interaction operator G instead a locking
information is commonly referred to as a locking sequence. It is well known that, if h Ex-
learns L, then every such pair can be extended to some locking information [4, 6]. Moreover,
we call h strongly locking if, for each language L ∈ TxtPsdEx(h) and every text T ∈ Txt(L)
for L, there is an n such that (content(T [n]), n) serves as a locking information for h on L.
We call learner h order-independent if, for all languages L ∈ TxtPsdEx(h) and any two
texts T, T ′ ∈ Txt(L) for L, we have limn→∞Psd(h, T )(n) = limn→∞Psd(h, T ′)(n). That
is, h’s final hypothesis only depends on the language L, not on the particular order in which
its elements are presented in the text. We now turn to the notion of delayable learning.

I Definition 2. Let ~R be the set of all unbounded non-decreasing functions r : N→ N, i.e.
for all m we have ∀∞n : r(n) ≥ m. We call a learning restriction δ delayable if, for all texts
T ′ and T with content(T ′) = content(T ), all infinite sequences p and all r ∈ ~R, if (p, T ′) ∈ δ
and ∀n : content(T ′[r(n)]) ⊆ content(T [n]), then (p ◦ r, T ) ∈ δ.

Intuitively, as long as the learner has at least as much data as was used for a given conjecture,
then this conjecture is permissible. The intersection of two delayable learning criteria is
again delayable. All learning restrictions considered in this paper, including success criteria
and T, are delayable. We now get a normal form for delayable Psd-learner.

I Lemma 3. Let restrictions α, δ be delayable and C ∈ {P,R}. Then τ(α)CTxtPsdδ allows
for strongly locking and order-independent learning (simultaneously).

We now proceed to prove the connections shown in Figure 1. The following theorem
translates what is known about the respective criteria of delayable G-learning into the
Psd-setting. The first part has already been proven by Case and Kötzing [6]. Furthermore,
the separations in the second part (in the full-information case) are due to Baliga et al. [2],
Kötzing and Palenta [17] as well as Osherson et al. [20]. For a collection of known separations
see [17].

I Theorem 4. Among the investigated criteria non-U-shapedness and strong non-U-shapedness
are the only ones equally powerful to unrestricted Psd-learning when paired with success
criterion Ex. This is, we have:
1. [TxtPsdSNUEx] = [TxtPsdNUEx] = [TxtPsdEx].
2. For δ ∈ {Conv, Caut, Dec, SDec, Mon, WMon, SMon},

[TxtPsdδEx] ⊂ [TxtPsdEx].

The separation of decisive and strongly decisive learning follows just as for G, see [17].

I Theorem 5. We have [TxtPsdSDecEx] ⊂ [TxtPsdDecEx].

For our work on conservative, weakly monotone and cautious learning, we first give two
more learning restrictions. One of them, witness-based learning (Wb), is more restrictive
than all three of conservative, weakly monotone and cautious learning; the other, target-
cautious learning (CautTar), is less restrictive. That way those three learning restrictions
are “sandwiched” between witness-based and target-cautious learning. We will then show
that witness-based and target-cautious learning have equal learning power in the setting of
partially set-driven learning, showing all three sandwiched restrictions to be equivalent.
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We start by giving the definition of witness-based learning.

Wb(p, T )⇔ ∀i, j : (∃k : i < k ≤ j ∧ p(i) 6= p(k))⇒ (content(T [j]) ∩Wp(j)) \Wp(i) 6= ∅.

Intuitively, any mind change has to be witnessed by some datum which was not included
before, but is included now; this witness justifies the mind change.

Target-cautious learning was introduced in [17] to study the notion of cautious learning
in more detail.

CautTar(p, T )⇔ ∀i : ¬(content(T ) ⊂Wp(i))

Intuitively, the learner may never conjecture a superset of the actual target language; in
other words, it is required to be cautious, but only with respect to the target.

We now get to the theorem establishing the equivalence of the conservative, weakly
monotone and cautious learning.

I Theorem 6. The following learning criteria are equivalent: TxtPsdCautTarEx;
TxtPsdCautEx; TxtPsdConvEx; TxtPsdWMonEx; TxtPsdWbEx.

The following theorem solely reformulates a result well-known in G-learning in terms of
Psd-learning. The first part uses a standard proof, see [12] for example. The second part
has already been shown (for G-learning) by Kötzing and Palenta in [17], in turn based on a
technique presented in [20].

I Theorem 7. Monotone and weakly monotone Psd-learning is incomparable.
In particular, we have
1. [TxtSdWMonEx]\[TxtPsdMonEx] 6= ∅;
2. [TxtPsdMonSDecEx]\[TxtPsdWMonEx] 6= ∅;

I Corollary 8. For each learning restriction δ ∈ {Caut, CautTar, Conv, Wb, WMon},
we have [TxtPsdδEx] ⊂ [TxtPsdSDecEx].

The upcoming lemma is based on an theorem due to Baliga et al. [2] stating that concept
classes containing the set N of all natural numbers, if they are inferable at all, are decisively
learnable. Kötzing and Palenta extended it to comprise strong decisiveness [17]. We show
that the result still holds when restricted to Psd-learnable classes.

I Lemma 9. Let L be a class of languages with N ∈ L. If class L is identifiable by a
Psd-learner at all, then it can in fact be so learned strongly decisive.

We can now use Lemma 9 to show that every monotonically learnable class can be learned
strongly decisively.

I Theorem 10. Any monotonically Psd-learnable class of languages can be so learned
strongly decisively, while the converse does not hold. Thus, we have [TxtPsdMonEx] ⊂
[TxtPsdSDecEx].

4 Strongly Monotone Language Learning

In this section we prove Figure 2 (in Section 4.1) as well as the equivalence of all corresponding
learning criteria with Bc in place of Ex (in Section 4.2).
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4.1 Ex-Learning
In this section we discuss strongly monotone language learning in the context of explana-
tory (Ex) convergence. In particular, we will prove the diagram shown in Figure 2. For
any delayable learning restriction δ we can, without loss of generality, assume every G-
learner with respect to δ to be total [17]. In particular, this holds for δ = SMonEx (and
SMonBc as well). Thus, we get a first connection between the investigated criteria, namely
[RTxtGSMonEx] = [TxtGSMonEx]. Interestingly enough, at least for strongly mono-
tone explanatory learning, G is the only interaction operator for which this relation holds,
as shown in the next theorem.

I Theorem 11. For each interaction operator β ∈ {CflIt, It,Sd,Psd}, we have
[TxtCflItSMonEx] \ [RTxtβSMonEx] 6= ∅.

Recall that we use τ(α) to denote that a learner observes learning restriction α on arbitrary
texts, even on those for languages it cannot identify. In the discussion of τ(SMon)-learners
we can distinguish two major groups: On one hand, we have G- as well as It-learners which
can be transposed into τ -learners without loss of learning power. On the other hand, there is
the group of Psd-, Sd- and CflIt-learners for which their total variants are strictly more
powerful than their globally strongly monotone matches. The main property discriminating
these two groups is whether the learner has access to its previous conjecture.

I Theorem 12. Total full-information and iterative SMon-learning can w.l.o.g. be done by a
learner being strongly monotone on arbitrary texts. Thus, we get the following equalities.
1. [τ(SMon)TxtGEx] = [RTxtGSMonEx] = [TxtGSMonEx];
2. [τ(SMon)TxtItEx] = [RTxtItSMonEx].

The target classes identifiable by τ -learners drawn from the aforementioned second group
(interaction operators Psd, Sd and CflIt) share an interesting common trait in terms of
recursiveness. It is stated in the following lemma. The technique used in its proof resembles
that of a well-known proposition regarding globally consistent learning, cf. [1] and [12,
Proposition 5.6].

I Lemma 13. If a class L is identifiable by a Psd-learner being globally strongly monotone
and if L comprises at least all singleton sets, then L is a collection of recursive languages.

I Theorem 14. There is a class of languages identifiable by a total CflIt-learner which
cannot be learned by a globally strongly monotone Psd-learner. That is, for all interaction
operators β ∈ {CflIt,Sd,Psd}, we have [RTxtCflItSMonEx]\[τ(SMon)TxtβEx] 6= ∅.

I Theorem 15. There is a class of languages identifiable by a total strongly monotone
iterative learner which cannot be so learned partially set-driven, this is,
[RTxtItSMonEx]\[TxtPsdSMonEx] 6= ∅.

I Corollary 16. Psd-learning with respect to SMon is strictly less powerful than its full-
information counterpart. Hence, we have [TxtPsdSMonEx] ⊂ [TxtGSMonEx].

This corollary stands in sharp contrast to the abilities of partially set-driven functions in
unrestricted language learning. A famous result due to Fulk [9] states that any class of
languages, which can be learned at all, can be inferred by a total Psd-learner. To our
knowledge, SMon is the first learning restriction in literature for which no equivalent of
Fulk’s Theorem holds.

STACS 2016
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I Theorem 17. We have [τ(SMon)TxtSdEx] \ [TxtItSMonEx] 6= ∅, i.e. there is a class
of languages identifiable by a globally strongly monotone Sd-learner which cannot be identified
by any It-learner.

The last question to be covered in this section is that of the relation among the learners
within the second group, namely, that between Psd- and Sd-learners.

I Theorem 18. For all variants, Psd-learners are strictly more powerful than their set-driven
analogues. Particularly, we have [τ(SMon)TxtPsdEx]\[TxtSdSMonEx] 6= ∅.

4.2 Bc-Learning
In this section we turn the discussion to behaviorally correct (Bc) language learning. It
becomes apparent that all criteria in this setting possess the same learning power. We
establish this in one step by showing that full-information Bc-learning with respect to SMon
can be done confluently iteratively being globally strongly monotone. We conclude this
section by proving that strongly monotone Bc-learning is strictly more powerful than strongly
monotone Ex-learning.

I Theorem 19. We have [τ(SMon)TxtCflItBc] = [TxtGSMonBc], i.e. every class
of languages which is TxtGSMonBc-identifiable can be learned by a CflIt-learner being
strongly monotone on arbitrary texts.

I Theorem 20. Strongly monotone Bc-learning is strictly more powerful than its explanatory
counterpart. So we have [TxtGSMonEx] ⊂ [TxtGSMonBc]. Even stronger, we have
[TxtGSMonBc] \ [TxtGEx] 6= ∅.

5 Anomalous and Vacillatory Language Learning

In this section we examine the behavior of different success criteria for learning when paired
with the requirement of strong monotonicity. A result in the field of function learning states
one does not gain additional learning power in allowing the learner to vacillate between
finitely many correct hypotheses in the limit [3, 8]. However, in (unrestricted) language
identification, Fex-learners can indeed infer strictly more classes of languages [5]. We begin
our analysis in proving that, when paired with SMon, this advantage vanishes once again.

I Theorem 21. For strongly monotone language learning, vacillating among finitely many
hypotheses does not increase learning power. Thus, we have
1. [TxtGSMonEx] = [TxtGSMonFex];
2. [TxtGSMonEx∗] = [TxtGSMonFex∗].

We conclude with two theorems establishing the separations given in Figure 3. Note
that for finite learning (Fin) any learner is strongly monotone as it outputs only a single
hypothesis besides “?”, hence, [TxtGSMonFin∗] = [TxtGFin∗].

I Theorem 22. There is a class of languages which can only be inferred if the learner is
allowed to make finite error. Thus, we have [TxtGSMonFin∗]\[TxtGSMonBc] 6= ∅. Even
stronger, we have [TxtGSMonFin∗]\[TxtGBc] 6= ∅

I Theorem 23. The following two separations hold for anomalous and behaviorally correct
strongly monotone language learning:
1. [TxtGSMonEx]\[TxtGSMonFin∗] 6= ∅;
2. [TxtGSMonBc]\[TxtGSMonEx∗] 6= ∅.
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