
Computational Geometry 55 (2016) 26–40
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Orthogonal graph drawing with inflexible edges ✩,✩✩

Thomas Bläsius a,b,∗, Sebastian Lehmann a, Ignaz Rutter a,∗
a Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
b Hasso Plattner Institute, Potsdam, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 June 2015
Received in revised form 23 December 2015
Accepted 26 February 2016
Available online 3 March 2016

Keywords:
Orthgonal graph drawing
Bend minimization
Planar embedding
Parameterized algorithm
Computational complexity

We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar
graphs with maximum degree 4) with constraints on the number of bends per edge. More
precisely, we have a flexibility function assigning to each edge e a natural number flex(e),
its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such
that each edge e has at most flex(e) bends. It is known that FlexDraw is NP-hard if
flex(e) = 0 for every edge e [1]. On the other hand, FlexDraw can be solved efficiently
if flex(e) ≥ 1 [2] and is trivial if flex(e) ≥ 2 [3] for every edge e.
To close the gap between the NP-hardness for flex(e) = 0 and the efficient algorithm for
flex(e) ≥ 1, we investigate the computational complexity of FlexDraw in case only few
edges are inflexible (i.e., have flexibility 0). We show that for any ε > 0 FlexDraw is
NP-complete for instances with O (nε) inflexible edges with pairwise distance �(n1−ε)

(including the case where they induce a matching), where n denotes the number of
vertices in the graph. On the other hand, we give an FPT-algorithm with running time
O (2k · n · Tflow(n)), where Tflow(n) is the time necessary to compute a maximum flow in
a planar flow network with multiple sources and sinks, and k is the number of inflexible
edges having at least one endpoint of degree 4.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bend minimization in orthogonal drawings is a classical problem in the field of graph drawing. We consider the following
problem called OptimalFlexDraw. The input is a 4-planar graph G (from now on all graphs are 4-planar) together with
a cost function coste : N → R ∪ {∞} assigned to each edge. We want to find an orthogonal drawing � of G such that ∑

coste(βe) is minimal, where βe is the number of bends of e in �. The basic underlying decision problem FlexDraw

restricts the cost function of every edge e to coste(β) = 0 for β ∈ [0, flex(e)] and coste(β) = ∞ otherwise, and asks whether
there exists a valid drawing (i.e., a drawing with finite cost). The value flex(e) is called the flexibility of e. Edges with
flexibility 0 are called inflexible.

Note that FlexDraw represents the important base case of testing for the existence of a drawing with cost 0 that is
included in solving OptimalFlexDraw.

Garg and Tamassia [1] show that FlexDraw is NP-hard in this generality, by showing that it is NP-hard if every edge is
inflexible. For special cases, namely planar graphs with maximum degree 3 and series-parallel graphs, Di Battista et al. [4]

✩ Partially supported by grant WA 654/21-1 of the German Research Foundation (DFG).
✩✩ A preliminary version of this paper has appeared as T. Bläsius, S. Lehmann, I. Rutter, Orthogonal graph drawing with inflexible edges, in: Proceedings
of the 9th International Conference on Algorithms and Complexity, in: Lecture Notes in Computer Science, vol. 9070, Springer, 2015, pp. 153–166.

* Corresponding authors.
E-mail addresses: thomas.blaesius@hpi.de (T. Bläsius), sebastian@leemes.de (S. Lehmann), rutter@kit.edu (I. Rutter).
http://dx.doi.org/10.1016/j.comgeo.2016.03.001
0925-7721/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2016.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:thomas.blaesius@hpi.de
mailto:sebastian@leemes.de
mailto:rutter@kit.edu
http://dx.doi.org/10.1016/j.comgeo.2016.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2016.03.001&domain=pdf

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 27
give an algorithm minimizing the total number of bends, which solves OptimalFlexDraw with coste(β) = β for each edge e.
Their approach can be used to solve FlexDraw, as edges with higher flexibility can be modeled by a path of inflexible edges.
Biedl and Kant [3] show that every 4-planar graph (except for the octahedron) admits an orthogonal drawing with at most
two bends per edge. Thus, FlexDraw is trivial if the flexibility of every edge is at least 2. Bläsius et al. [2,5] tackle the
NP-hard problems FlexDraw and OptimalFlexDraw by not counting the first bend on every edge. They give a polynomial
time algorithm solving FlexDraw if the flexibility of every edge is at least 1 [2]. Moreover, they show how to efficiently
solve OptimalFlexDraw if the cost function of every edge is convex and allows the first bend for free [5].

When restricting the allowed drawings to those with a specific planar embedding, the problem OptimalFlexDraw be-
comes significantly easier. Tamassia [6] shows how to find a drawing with as few bends as possible by computing a flow in
a planar flow network. This flow network directly extends to a solution of OptimalFlexDraw with fixed planar embedding,
if all cost functions are convex. Cornelsen and Karrenbauer [7] recently showed, that this kind of flow network can be solved
in O (n3/2) time.

Contribution & outline In this work we consider OptimalFlexDraw for instances that may contain inflexible edges, clos-
ing the gap between the general NP-hardness result [1] and the polynomial-time algorithms in the absence of inflexible
edges [2,5]. After presenting some preliminaries in Section 2, we show in Section 3 that FlexDraw remains NP-hard even
for instances with only O (nε) (for any ε > 0) inflexible edges that are distributed evenly over the graph, i.e., they have
pairwise distance �(n1−ε). This includes the cases where the inflexible edges are restricted to form very simple structures
such as a matching.

On the positive side, we describe a general algorithm that can be used to solve OptimalFlexDraw by solving smaller
subproblems (Section 4). This provides a framework for the unified description of bend minimization algorithms which cov-
ers both, previous work and results presented in this paper. We use this framework in Section 5 to solve OptimalFlexDraw

for series-parallel graphs with non-decreasing cost functions. This extends the algorithm by Di Battista et al. [4] to non-
biconnected series-parallel graphs and thus solves one of their open problems. Moreover, we allow a significantly larger set
of cost functions (in particular, the cost functions may be non-convex).

In Section 6, we present our main result, which is an FPT-algorithm with running time O (2k ·n · Tflow(n)), where k is the
number of inflexible edges incident to degree-4 vertices, and Tflow(n) is the time necessary to compute a maximum flow
in a planar flow network of size n with multiple sources and sinks. Note that we can allow an arbitrary number of edges
whose endpoints both have degree at most 3 to be inflexible without increasing the running time. Thus, our algorithm can
also test the existence of a 0-bend drawing (all edges are inflexible) in FPT-time with respect to the number of degree-4
nodes. This partially solves another open problem of Di Battista et al. [4]. We conclude with open questions in Section 7.

2. Preliminaries

2.1. Connectivity & the composition of graphs

A graph G is connected if there exists a path between every pair of vertices. A separating k-set S is a subset of vertices of
G such that G − S is not connected. Separating 1-sets are called cutvertices and separating 2-sets separation pairs. A connected
graph without cutvertices is biconnected and a biconnected graph without separation pairs is triconnected. The blocks of a
connected graph are its maximal (with respect to inclusion) biconnected subgraphs.

An st-graph G is a graph with two designated vertices s and t such that G + st is biconnected and planar. The vertices
s and t are called the poles of G . Let G1 and G2 be two st-graphs with poles s1, t1 and s2, t2, respectively. The series
composition G of G1 and G2 is the union of G1 and G2 where t1 is identified with s2. Clearly, G is again an st-graph
with the poles s1 and t2. In the parallel composition G of G1 and G2 the vertices s1 and s2 and the vertices t1 and t2 are
identified with each other and form the poles of G . An st-graph is series-parallel, if it is a single edge or the series or parallel
composition of two series-parallel graphs.

To be able to compose all st-graphs, we need a third composition. Let G1, . . . , G� be a set of st-graphs with poles si and
ti associated with Gi . Moreover, let H be an st-graph with poles s and t such that H + st is triconnected and let e1, . . . , e�

be the edges of H . Then the rigid composition G with respect to the so-called skeleton H is obtained by replacing each edge
ei of H by the graph Gi , identifying the endpoints of ei with the poles of Gi . It follows from the theory of SPQR-trees that
every st-graph is either a single edge or the series, parallel or rigid composition of st-graphs [8,9].

2.2. SPQR-tree

The SPQR-tree T of a biconnected st-graph G containing the edge st is a rooted tree encoding series, parallel and rigid
compositions of st-graphs that result in the graph G [8,9]. The leaves of T are Q-nodes representing the edges of G and
thus the st-graphs we start with. The root of T is also a Q-node, representing the special edge st. Each inner node is
either an S-node, representing one or more series compositions of its children, a P-node, representing one or more parallel
compositions of its children, or an R-node, representing a rigid composition of its children.

Recall that the rigid composition is performed with respect to a skeleton. For an R-node μ, let H be the skeleton of the
corresponding rigid composition with poles sμ and tμ . We call H + sμtμ the skeleton of the μ and denote it by skel(μ).

28 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
Fig. 1. Illustration of the rotation of a path from u to v . Right bends are labeled 1, left bends are labeled −1. The rotation of the path is −2, which is
obtained by summing up all labels.

The special edge sμtμ is called parent edge, all other edges are virtual edges, each corresponding to one child of μ. We also
add skeletons to the other nodes. For an S-node μ, the skeleton skel(μ) is a path of virtual edges (one for each child) from
sμ to tμ together with the parent edge sμtμ . The skeleton of a P-node μ is a bunch of parallel virtual edges (one for each
child) between sμ and tμ together with the parent edge sμtμ . The skeleton of a Q-node contains the edge it represents in
G together with a parallel parent edge. The root representing st has no parent edge, thus this additional edge is a virtual
edge corresponding to the unique child of the root.

When not allowing pairs of adjacent S-nodes and pairs of adjacent P-nodes in T , then the SPQR-tree is unique for a
fixed edge st in G . Moreover, using the endpoints of a different edge as poles of G results in the same SPQR-tree with a
different root (the parent edge in each skeleton may also change). For fixed poles s and t , there is a bijection between the
planar embeddings of G with st on the outer face and the combinations of embeddings of all skeletons with their parent
edges on the outer face. The pertinent graph pert(μ) of a node μ of T is recursively defined to be the skeleton skel(μ)

without the parent edge sμtμ after the replacement of every virtual edge with the pertinent graph of the corresponding
child. Note that the pertinent graph of the root is G itself. The SPQR-tree can be computed in linear time [10].

2.3. Orthogonal representation

To handle orthogonal drawings of a graph G , we use the abstract concept of orthogonal representations neglecting dis-
tances in a drawing. Orthogonal representations were introduced by Tamassia [6], however, we use a slight modification that
makes it easier to work with, as bends of edges and bends at vertices are handled in the same way. Let � be a normalized
orthogonal drawing of G , that is every edge has only bends in one direction. If additional bends cannot improve the drawing
(i.e., costs are monotonically increasing), a normalized optimal drawing exists [6]. We assume that all orthogonal drawings
we consider are normalized.

For the purpose of the following definitions, think of G being biconnected. We assume that G is biconnected. This
simplifies the description, as each edge and vertex has at most one incidence to a face. For connected graphs, referring to
the incidence of a vertex or an edge and a face may be ambiguous. However, it will be always clear from the context, which
incidence is meant.

Let e be an edge in G that has β bends in � and let f be a face incident to e. We define the rotation of e in f to be
rot(e f) = β and rot(e f) = −β if the bends of e form 90◦ and 270◦ angles in f , respectively. For a vertex v forming the
angle α in the face f , we define rot(v f) = 2 −α/90◦ . Note that, when traversing a face of G in clockwise (counter-clockwise
for the outer face) direction, the right and left bends correspond to rotations of 1 and −1, respectively (we may have two
left bends at once at vertices of degree 1). The values for the rotations we obtain from a drawing � satisfy the following
properties; see Fig. 2a.

(1) The sum over all rotations in a face is 4 (−4 for the outer face).
(2) For every edge e with incident faces f� and fr we have rot(e f�) + rot(e fr) = 0.
(3) The sum of rotations around a vertex v is 2 · deg(v) − 4.
(4) The rotations at vertices lie in the range [−2, 1].

Let R be a structure consisting of an embedding of G plus a set of values fixing the rotation for every vertex-face and edge-
face incidence. We call R an orthogonal representation of G if the rotation values satisfy the above properties (1)–(4). Given
an orthogonal representation R, a drawing inducing the specified rotation values exists and can be computed efficiently [6].

Orthogonal representations and bends of st-graphs We extend the notion of rotation to paths; conceptually this is very similar
to spirality [4]. Let π be a path from vertex u to vertex v . We define the rotation of π (denoted by rot(π)) to be the
number of bends to the right minus the number of bends to the left when traversing π from u to v . Note that the rotation
counts both bends at vertices and bends on edges; see Fig. 1 for an example.

There are two special paths in an st-graph G . Let s and t be the poles of G and let R be an orthogonal representation
with s and t on the outer face. Then π(s, t) denotes the path from s to t when traversing the outer face of G in counter-
clockwise direction. Similarly, π(t, s) is the path from t to s. Let rot(s) and rot(t) denote the rotations of s and t in the outer
face, respectively. We will frequently use the fact that by property (1) it is rot(π(s, t)) + rot(t) + rot(π(t, s)) + rot(s) = −4.
We define the number of bends of R to be max{| rot(π(s, t))|, | rot(π(t, s))|}. Note that the notions of the number of bends
of the edge e and the number of bends of the st-graph e coincide. Thus, the above definition is consistent. Further,
since rot(s) ≥ −2 and rot(t) ≥ −2, we have rot(π(s, t)) + rot(π(t, s)) ≤ 0, and therefore max{| rot(π(s, t))|, | rot(π(t, s))|} ∈

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 29
Fig. 2. (a) An orthogonal drawing together with its orthogonal representation given by the rotation values. (b) A (2, 3)-orthogonal representation (s and t
have 2 and 1 free incidences, respectively) with two bends (defined by − rot(t, s)). (c) An orthogonal representation with thick edges e1 and e2. The gray
boxes indicate how many attachments the thick edges occupy, i.e., e1 is a (2, 3)-edge and e2 is a (2, 2)-edge. Both thick edges have two bends.

{− rot(π(s, t)), − rot(π(t, s))}, i.e., the number of bends of an st-graph is defined by the negative rotation of one of its
boundary paths.

When considering orthogonal representations of st-graphs, we always require the poles s and t to be on the outer face.
We say that the vertex s has σ occupied incidences if rot(s f) = σ − 3 where f is the outer face. We also say that s has 4 −σ
free incidences in the outer face. If the poles s and t have σ and τ occupied incidences in R, respectively, we say that R is
a (σ , τ)-orthogonal representation; see Fig. 2b.

Note that rot(π(s, t)) and rot(π(t, s)) together with the number of occupied incidences σ and τ basically describe the
outer shape of G and thus how it has to be treated if it is a subgraph of some larger graph. Using the bends of R instead
of the rotations of π(s, t) and π(t, s) implicitly allows to mirror the orthogonal representation (and thus exchanging π(s, t)
and π(t, s)).

Thick edges In the basic formulation of an orthogonal representation, every edge occupies exactly one incidence at each of
its endpoints, that is an edge enters each of its endpoint from exactly one of four possible directions. We introduce thick
edges that may occupy more than one incidence at each endpoint to represent larger subgraphs.

Let e = st be an edge in G . We say that e is a (σ , τ)-edge if e is defined to occupy σ and τ incidences at s and t ,
respectively. Note that the total amount of occupied incidences of a vertex in G must not exceed 4. With this extended
notion of edges, we define a structure R consisting of an embedding of G plus a set of values for all rotations to be an
orthogonal representation if it satisfies the following (slightly extended) properties; see Fig. 2c.

(1) The sum over all rotations in a face is 4 (−4 for the outer face).
(2) For every (σ , τ)-edge e with incident faces f� and fr we have rot(e f�) + rot(e fr) = 2 − (σ + τ).
(3) The sum of rotations around a vertex v with incident edges e1, . . . , e� occupying σ1, . . . , σ� incidences of v is ∑

(σi + 1) − 4.
(4) The rotations at vertices lie in the range [−2, 1].

Note that requiring every edge to be a (1, 1)-edge in this definition of an orthogonal representation exactly yields
the previous definition without thick edges. The number of bends of a (thick) edge e incident to the faces f� and
fr is max{| rot(e f�)|, | rot(e fr)|}. Unsurprisingly, replacing a (σ , τ)-edge with β bends in an orthogonal representation
by a (σ , τ)-orthogonal representation with β bends of an arbitrary st-graph yields a valid orthogonal representa-
tion [2, Lemma 5]. This is illustrated in Fig. 2, where replacing the (2, 3)-edge e1 in (c), which has two bends, by the
(2, 3)-orthogonal representation of the graph in (b), which also has two bends, yields a valid orthogonal representation.

3. A matching of inflexible edges

In this section, we show that FlexDraw is NP-complete even if the inflexible edges form a matching. In fact, we show
the stronger result of NP-hardness of instances with O (nε) inflexible edges (for ε > 0) even if these edges are distributed
evenly over the graph, that is they have pairwise distance �(n1−ε). This for example shows NP-hardness for instances with
O (

√
n) inflexible edges with pairwise distances of �(

√
n).

We adapt the proof of NP-hardness by Garg and Tamassia [1] for the case that all edges of an instance of FlexDraw

are inflexible. For a given instance of Nae-3Sat (Not All Equal 3SAT) they show how to construct a graph G that admits an
orthogonal representation without bends if and only if the instance of Nae-3Sat is satisfiable. The graph G is obtained by
first constructing a graph F that has a unique planar embedding [1, Lemma 5.1] and replacing the edges of F by special
st-graphs, the so called tendrils and wiggles. Both, tendrils and wiggles, have degree 1 at both poles and a unique planar
embedding up to possibly a flip. It follows for each vertex v of G , that the cyclic order of incident edges around v is fixed
up to a flip. This implies the following lemma.

Lemma 1. (See Garg & Tamassia [1].) FlexDraw is NP-hard, even if the order of edges around each vertex is fixed up to reversal.

30 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
Fig. 3. The bold edges are inflexible; dashed edges have flexibility 2; all other edges have flexibility 1. (a) The wheel W4. (b) The bend gadget B1,2. (c) The
gadget W ′

3 for replacing degree-3 vertices. The marked subgraphs are bend gadgets.

We assume that our instances do not contain degree-2 vertices; their incident edges can be replaced by a single edge
with higher flexibility. In the following, we first show how to replace vertices of degree 3 by graphs of constant size such
that each inflexible edge is incident to two vertices of degree 4. Afterwards, we can replace degree-4 vertices by smaller
subgraphs with positive flexibility, which increases the distance between the inflexible edges. We start with the description
of an st-graph that has either 1 or 2 bends in every valid orthogonal representation.

The wheel W4 of size 4 consists of a 4-cycles v1, . . . , v4 together with a center u connected to each of the vertices
v1, . . . , v4; see Fig. 3a. We add the two vertices s and t together with the inflexible edges sv1 and tv2 to W4. Moreover, we
set the flexibility of v3 v4 to 2 and the flexibilities of all other edges to 1. We call the resulting st-graph bend gadget and
denote it by B1,2. We only consider embeddings of B1,2 where all vertices except for u lie on the outer face. Fig. 3(b) shows
two valid orthogonal representations of B1,2, one with 1, the other with 2 bends. Clearly, the number of bends cannot be
reduced to 0 (or increased above 2) without violating the flexibility constraints of edges on the path π(s, t) (or on the path
π(t, s)). Thus, B1,2 has either 1 or 2 bends in every orthogonal representation. Moreover, if its embedding is fixed, then the
direction of the bends is also fixed.

We now use the bend gadget as building block for a larger gadget. We start with the wheel W3 of size 3 consisting of a
triangle v1, v2, v3 together with a center u connected to v1, v2, and v3. The flexibilities of the edges incident to the center
are set to 1, each edge in the triangle is replaced by a bend gadget B1,2. To fix the embedding of the bend gadgets, we add
three vertices v ′

1, v ′
2, and v ′

3 connected with inflexible edges to v1, v2, and v3, respectively, and connect them to the free
incidences in the bend gadgets, as shown in Fig. 3(c). We denote the resulting graph by W ′

3. Clearly, in the cycle of bend
gadgets, two of them have one bend and the other has two bends in every valid orthogonal representation of W ′

3. Thus,
replacing a vertex v with incident edges e1, e2, and e3 by W ′

3, attaching the edge ei to v ′
i , yields an equivalent instance

of FlexDraw. Note that such a replacement increases the degree of one incidence of e1, e2, and e3 from 3 to 4. Moreover,
every inflexible edge contained in W ′

3 is incident to two vertices of degree 4. We obtain the following lemma.

Lemma 2. FlexDraw is NP-hard, even if the endpoints of each inflexible edge have degree 4 and if the order of edges around each
vertex is fixed up to reversal.

Proof. Let G be an instance of FlexDraw such that the order of edges around each vertex is fixed up to reversal. As
FlexDraw restricted to these kinds of instances is NP-hard, due to Lemma 1, it suffices to find an equivalent instance where
additionally the endpoints of each inflexible have degree 4. Pairs of edges incident to a vertex of degree 2 can be simply
replaced by an edge with higher flexibility. Thus, we can assume that every vertex in G has degree 3 or degree 4. Replacing
every degree-3 vertex incident to an inflexible edge by the subgraph W ′

3 described above clearly leads to an equivalent
instance with the desired properties. �

Similar to the replacement of degree-3 vertices by W ′
3, we can replace degree-4 vertices by the wheel W4, setting the

flexibility of every edge of W4 to 1. It is easy to see, that every valid orthogonal representation of W4 has the same outer
shape, that is a rectangle, with one of the vertices v1, . . . , v4 on each side; see Fig. 3(a). Thus, replacing a vertex v with
incident edges e1, . . . , e4 (in this order) by W4, attaching e1, . . . , e4 to the vertices v1, . . . , v4 yields an equivalent instance
of FlexDraw. This allows us to arbitrarily increase the distance between the edges with flexibility 0, where the distance
between two edges e and f is the length of a shortest-path connecting and endpoint of e to an endpoint of f .

Theorem 1. FlexDraw is NP-complete even for instances of size n with O (nε) inflexible edges with pairwise distance �(n1−ε).

Proof. As FlexDraw is clearly in NP, it remains to show NP-hardness. Let G be the instance of FlexDraw such that the
endpoints of each inflexible edge have degree 4 and such that the order of edges around each vertex is fixed up to reversal.
FlexDraw restricted to these kinds of instances is NP-hard due to Lemma 2. We show how to build an equivalent instance
with O (nε) inflexible edges with pairwise distance �(n1−ε) for any ε > 0.

Let e be an inflexible edge in G with incident vertices u and v , which both have degree 4. Replacing each of the vertices
u and v by the wheel W4 yields an equivalent instance of FlexDraw and the distance of e to every other inflexible edge

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 31
is increased by a constant. Note that this does not increase the number of inflexible edges. Let nG be the number of
vertices in G . Applying this replacement n1/ε−1

G times to the vertices incident to each inflexible edge yields an equivalent
instance G ′ . In G ′ every pair of inflexible edges has distance �(n1/ε−1

G). Moreover, G ′ has size O (n1/ε
G), as we have nG

inflexible edges. Substituting n1/ε
G by n shows that we get an instance of size n with O (nε) inflexible edges with pairwise

distance �(n1−ε). �
Note that the instances described above may contain edges with flexibility larger than 1. We can get rid of that as

follows. An edge e = st with flexibility flex(e) > 0 can have the same numbers of bends as the st-graph consisting of the
wheel W4 (Fig. 3(a)) with the additional edges sv1 and tv3, where flex(sv1) = 1 and flex(tv3) = flex(e) − 1. Thus, we can
successively replace edges with flexibility above 1 by these kinds of subgraphs, leading to an equivalent instance where all
edges have flexibility 0 or 1.

4. The general algorithm

In this section we describe a general algorithm that can be used to solve OptimalFlexDraw by solving smaller subprob-
lems for the different types of graph compositions. To this end, we start with the definition of cost functions for subgraphs,
which is straightforward. The cost function cost(·) of an st-graph G is defined such that cost(β) is the minimum cost of
all orthogonal representations of G with β bends. The (σ , τ)-cost function costστ (·) of G is defined analogously by setting
costστ (β) to the minimum cost of all (σ , τ)-orthogonal representations of G with β bends. Clearly, σ , τ ∈ {1, . . . 4}, though,
for a fixed graph G , not all values may be possible. If for example deg(s) = 1, then σ is 1 for every orthogonal representa-
tion of G . Note that there is a lower bound on the number of bends depending on σ and τ . For example, a (2, 2)-orthogonal
representation has at least one bend and thus cost2

2(0) is undefined. We formally set undefined values to ∞. With the cost
functions of an st-graph G , we refer to the collection of (σ , τ)-cost functions of G for all possible combinations of σ and τ .

The main idea for our algorithm that computes an optimal orthogonal drawing of a graph H with a fixed edges e = st on
the outer face is as follows. We take the SPQR-tree T of H rooted at st, and we compute the cost functions of its pertinent
graphs, in a bottom-up fashion. Note that each pertinent graph is an st-graph, and they are combined by a series, a parallel,
or a rigid composition.

Let the st-graph G be the composition of two or more (for a rigid composition) st-graphs G1, . . . , G� . Computing the cost
functions of G assuming that the cost functions of G1, . . . , G� are known is called computing cost functions of a composition.
The following theorem states that the ability to compute cost functions of compositions suffices to solve OptimalFlexDraw.
The terms T S , T P and T R(�) denote the time necessary to compute the cost functions of a series, a parallel, and a rigid com-
position with skeleton of size �, respectively. Recall that series and parallel compositions always compose only two graphs,
while a rigid composition composes � graphs, where � is the size of the corresponding skeleton (therefore, T R depends
on �, while T S and T P do not). Note that S-nodes and P-nodes in the SPQR-tree may give rise to a sequence of series and
parallel compositions, respectively.

Theorem 2. Let G be an st-graph with n vertices that contains the edge st. An optimal (σ , τ)-orthogonal representation of G with st
on the outer face can be computed in O (nT S + nT P + T R(n)) time.

Proof. Let T be the SPQR-tree of G . To compute an optimal orthogonal representation of G with st on the outer face, we
root T at the Q-node corresponding to st and traverse it bottom up. When processing a node μ, we compute the cost func-
tions of pert(μ), which finally (in the root) yields the cost functions of the st-graph G and thus optimal (σ , τ)-orthogonal
representations (for all possible values of σ and τ) with st on the outer face.

If μ is a Q-node but not the root, then pert(μ) is an edge and the cost function of this edge is given with the input.
If μ is an S-node, its pertinent graph can be obtained by applying multiple series compositions. Since the skeleton of

an S-node leaves no embedding choice, we can compute the cost function of pert(μ) by successively computing the cost
functions of the compositions, which takes O (| skel(μ)| · T S) time.

If μ is a P-node, then pert(μ) can be obtained by applying multiple parallel compositions. In contrast to S-nodes
the skeleton of a P-node leaves an embedding choice, namely changing the order of the parallel edges. As composing
the pertinent graphs of the children of μ in a specific order restricts the embedding of skel(μ), we cannot apply the
compositions in an arbitrary order if skel(μ) contains more than two parallel edges (not counting the parent edge). However,
since skel(μ) contains at most three parallel edges (due to the restriction to degree 4), we can try all composition orders
and take the minimum over the resulting cost functions. As there are only constantly many orders and for each order a
constant number of compositions is performed, computing the cost function of pert(μ) takes O (T P) time.

If μ is an R-node, the pertinent graph of μ is the rigid composition of the pertinent graphs of its children with respect
to the skeleton skel(μ). Thus, the cost functions of pert(μ) can be computed in O (T R (| skel(μ)|)) time.

If μ is the root, that is the Q-node corresponding to st, then pert(μ) = G is a parallel composition of the pertinent graph
of the child of μ and the edge st and thus its cost function can be computed in O (T P) time.

As the total size of S-node skeletons, the number of P-nodes and the total size of R-node skeletons is linear in the size
of G , the running time is in O (n · T S + n · T P + T R(n)). �

32 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
Applying Theorem 2 for each pair of adjacent nodes as poles in a given instance of OptimalFlexDraw yields the following
corollary.

Corollary 1. OptimalFlexDraw can be solved in O (n · (nT S + nT P + T R(n))) time for biconnected graphs.

In the following, we extend this result to the case where G may contain cutvertices. The extension is straightforward,
however, there is one pitfall. Given two blocks B1 and B2 sharing a cutvertex v such that v has degree 2 in B1 and B2, we
have to ensure for both blocks that v does not form an angle of 180◦ . Thus, for a given graph G , we obtain for each block a
list of vertices and we restrict the set of all orthogonal representations of G to those where these vertices form 90◦ angles.
We call these orthogonal representations restricted orthogonal representations. Moreover, we call the resulting cost functions
restricted cost functions. We use the terms T r

S , T r
P and T r

R(�) to denote the time necessary to compute the restricted cost
functions of a series, a parallel, and a rigid composition, respectively. We obtain the following extension of the previous
results.

Theorem 3. OptimalFlexDraw can be solved in O (n · (nT r
S + nT r

P + T r
R(n))) time.

Proof. Let G be an instance of OptimalFlexDraw. We use the BC-tree (Block–Cutvertex Tree) of G to represent all possible
ways of combining embeddings of the blocks of G to an embedding of G . The BC-tree T of G contains a B-node for each
block of G , a C-node for each cutvertex of G and an edge between a C-node and a B-node if and only if the corresponding
cutvertex is contained in the corresponding block, respectively.

Rooting T at some B-node restricts the embeddings of the blocks as follows. Let μ be a B-node (but not the root)
corresponding to a block B and let v be the cutvertex corresponding to the parent of μ. Then the embedding of B is
required to have v on its outer face. It is easy to see that every embedding of G is such a restricted embedding with respect
to some root of T . Thus, it suffices to consider each B-node of T as root and restrict the embeddings as described above.

Before we deal with the BC-tree T , we preprocess each block B of G . Let v be a cutvertex of B . For an edge e incident
to v , we can use Theorem 2 to compute an optimal orthogonal representation of B with e on the outer face in O (n · T S +
n · T P + T R(n)) time. Since every orthogonal representation with v on the outer face has one of its incident edges on the
outer face, we can simply force each of these edges to the outer face once, to get an optimal orthogonal representation
of B with v on the outer face. Clearly, using the computation of restricted cost functions yields an optimal restricted
orthogonal representation. Doing this for each block of G and for each cutvertex in this block leads to a total running time
of O (n · (n · T S + n · T P + T R(n))). Moreover, we can compute an optimal restricted orthogonal representation of each block
(without forcing a vertex to the outer face) with the same running time (Corollary 1).

To compute an optimal orthogonal representation of G we choose every B-node of the BC-tree T as root and consider
for the block corresponding to the root the optimal orthogonal representation (without forcing vertices to the outer face).
For all other blocks we consider the optimal orthogonal representation with the cutvertex corresponding to its parent on
the outer face. Note that these orthogonal representations can be easily combined to an orthogonal representation of the
whole graph, as we enforce angles of 90◦ at vertices of degree 2, if they have degree 2 in another block. The minimum over
all roots leads to an optimal orthogonal representation. As computing this minimum takes O (n2) time, it is dominated by
the running time necessary to compute the orthogonal representation of the blocks. �

Note that Theorem 3 provides a framework for uniform treatment of bend minimization over all planar embeddings
in orthogonal drawings. To obtain an algorithm for a specific class of instances, it suffices to give efficient algorithms for
computing series, parallel, and rigid compositions of these instances.

In particular, the polynomial-time algorithm for FlexDraw with positive flexibility [2] can be expressed in this way.
There, all resulting cost functions of st-graphs are 0 on a non-empty interval containing 0 (with one minor exception)
and ∞, otherwise. Thus, the cost functions of the compositions can be computed using Tamassia’s flow network. The results
on OptimalFlexDraw [5] can be expressed similarly. When restricting the number of bends of each st-graph occurring in
the composition to 3, all resulting cost functions are convex (with one minor exception). Thus, Tamassia’s flow network can
again be used to compute the cost functions of the compositions. The overall optimality follows from the fact that there
exists an optimal solution that can be composed in such a way. In the following sections we see two further applications of
this framework, resulting in efficient algorithms.

5. Series-parallel graphs

In this section we show that the cost functions of a series composition (Lemma 3) and a parallel composition (Lemma 4)
can be computed efficiently. Using our framework, this leads to a polynomial-time algorithm for OptimalFlexDraw for
series-parallel graphs with non-decreasing cost functions (Theorem 4). We note that this is only a slight extension to the
results by Di Battista et al. [4]. However, it shows the easy applicability of the above framework before diving into the more
complicated FPT-algorithm in the following section.

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 33
Fig. 4. Illustration of the proofs of Lemma 3 (a) and Lemma 4 (b).

Lemma 3. If the (restricted) cost functions of two st-graphs are ∞ for bend numbers larger than �, the (restricted) cost functions of
their series composition can be computed in O (�2) time.

Proof. We first consider the case of non-restricted cost functions. Let G1 and G2 be the two st-graphs with poles s1, t1 and
s2, t2, respectively, and let G be their series composition with poles s = s1 and t = t2. For each of the constantly many valid
combinations of σ and τ , we compute the (σ , τ)-cost function separately. Assume for the following, that σ and τ are fixed.
Since G1 and G2 both have at most � bends, G can only have O (�) possible values for the number of bends β . We fix the
value β and show how to compute costστ (β) in O (�) time.

Let R be a (σ , τ)-orthogonal representation with β bends and let R1 and R2 be the (σ1, τ1)- and (σ2, τ2)-orthogonal
representations induced for G1 and G2, respectively. Without loss of generality, we assume that β = − rot(π(s, t)), other-
wise we mirror R. Obviously, σ1 = σ and τ2 = τ holds. However, there are the following other parameters that may vary
(although they may restrict each other). The parameters τ1 and σ2; the number of bends β1 and β2 of R1 and R2, re-
spectively; the possibility that for i ∈ {1, 2} the number of bends of Ri are determined by π(si, ti) or by π(ti, si), that is
βi = − rot(π(si, ti)) or βi = − rot(π(ti, si)); and finally, the rotations at the vertex v in the outer face, where v is the vertex
of G belonging to both, G1 and G2; see Fig. 4a.

Assume we fixed the parameters τ1 and σ2, the choice by which paths β1 and β2 are determined, the rotations x
and y at the vertex v lying on π(s, t) and π(t, s), respectively, and the number of bends β1 of R1. Note that not all
combinations let us actually combine the orthogonal representations. More precisely, they can be combined if and only if
τ1 + σ2 + (2 − x − y) = 4, which can be seen as follows. The rotations x and y indicate that v has (1 − x) + (1 − y) free
incidences in the outer face. Clearly, the number of incidences occupied by R1 and R2 together with the free incidences in
the outer face has to be 4.

Once the above parameters are fixed, there is no choice left for the number of bends β2 of R2, as choosing a different
value for β2 also changes the number of bends β of G , which was assumed to be fixed. More precisely, we compute β2 as
follows. We have that the total rotation around the outer face of each Ri is −4, and therefore, for i = 1, 2, we have

rot(π(si, ti)) + rot(π(ti, si)) + (σi − 3) + (τi − 3) = −4. (1)

If rot(π(s1, t1)) �= −β1, then we have rot(π(t1, s1)) = −β1, and Equation (1) allows us to compute rot(π(s1, t1)). We then
compute rot(π(s2, t2)) using the fact that rot(π(s, t)) = rot(π(s1, t1)) + x + rot(π(s2, t2)) = −β . This either immediately
yields β2 (if β2 is defined by − rot(π(s2, t2))), or we use again Equation (1) to compute β2 = − rot(π(t2, s2)).

As each of the parameters can have only a constant number of values except for β1 , which can have O (�) different
values, there are only O (�) possible choices in total. For each of these choices, we get a (σ , τ)-orthogonal representation
of G with β bends and cost costσ1

τ1 (β1) + costσ2
τ2 (β2). By taking the minimum cost over all these choices we get the desired

value costστ (β) in O (�) time.
If we consider restricted cost functions, it may happen that the vertex v has degree 2. Then we need to enforce an angle

of 90◦ there. Obviously, this constraint can be easily added to the described algorithm. �
Lemma 4. If the (restricted) cost functions of two st-graphs are ∞ for bend numbers larger than �, the (restricted) cost functions of
their parallel composition can be computed in O (�) time.

Proof. Similar to the proof of Lemma 3, we consider several parameters and show that we have to check O (�) combinations
to obtain the cost function of the composition G . As before, let R be a (σ , τ)-orthogonal representation with β bends and
let R1 and R2 be the (σ1, τ1)- and (σ2, τ2)-orthogonal representation induced for G1 and G2, respectively. We assume that
β = − rot(π(s, t)) and that G1 lies to the left of G2 (when going from s to t); the other cases are symmetric.

We fix the values β , σ , and τ and show how to compute costστ (β) in constant time. We will see later that we have to
consider only O (�) different values for β (and clearly only a constant number of values for σ and τ). To obtain costστ (β),
assume that (in addition to β , σ , and τ), we fixed values for the parameters σ1, τ1, σ2, and τ2 (leading to constantly many
combinations). We show that this already determines all other relevant parameters of R1 and R2, namely rot(π(s1, t1)),
rot(π(t1, s1)), rot(π(s2, t2)), and rot(π(t2, s2)); see Fig. 4b. Thus, the number of bends β1 and β2 of G1 and G2 are also

34 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
determined and we can look up the cost using the cost function for G1 and G2. The minimum cost we obtain this way is
then the desired value costστ (β).

We start with rot(π(s1, t1)). As G1 lies to the left of G2, we have π(s1, t1) = π(s, t). Thus, rot(π(s1, t1)) =
rot(π(s, t)) = −β . To obtain the rotation of the other path of G1, namely rot(π(t1, s1)), we can use Equation (1) from
the previous lemma.

To obtain the rotations of the paths of G2, consider the inner face f between G1 and G2. It is bounded by the two paths
π(t1, s1) and π(s2, t2). As the total rotation in f is 4, we have rot(π(t1, s1)) + rot(s f) + rot(π(s2, t2)) + rot(t f) = 4. Thus,
if we know the rotations at s and t in f , this gives us the rotation of π(s2, t2). To obtain rot(s f), first note that we can
dismiss the current choice of parameters if σ1 + σ2 ≤ σ does not hold (G cannot occupy fewer incidences than G1 and G2
together). Let �s = σ − σ1 − σ2. Clearly, the vertex s must have �s free incidences in the face f , i.e., the rotation at s in
f is �s − 1. The same arguments let us determine rot(t f) and thus, with the above arguments, rot(π(s2, t2)). Again using
Equation (1) from the previous lemma lets us determine rot(π(t2, s2)).

Finally, note that β ≤ β1, as β = − rot(π(s, t)) = − rot(π(s1, t1)) ≤ β1. Thus, the cost function costστ (β) is ∞ if β > �,
which shows that it suffices to consider only O (�) values for β . �
Theorem 4. For series-parallel graphs with non-decreasing cost functions OptimalFlexDraw can be solved in O (n4) time.

Proof. To solve OptimalFlexDraw, we use Theorem 3. As the graphs we consider here are series-parallel, it suffices to give
algorithms that compute the cost functions of series and parallel compositions. Applying Lemma 3 and Lemma 4 gives us
running times T S ∈ O (�2) and T P ∈ O (�) for these compositions. In the following, we show that it suffices to compute the
cost functions for a linear number of bends, leading to running times Ts ∈ O (n2) and T P ∈ O (n). Together with the time
stated by Theorem 3, this gives us a total running time of O (n4).

Before we show the statement about the bends, we first establish a basic fact from flow theory.

Claim. Let N = (V N , AN) be a min cost flow network with multiple sources and sinks and non-decreasing cost functions, and let dN

denote the sum of all positive demands (i.e., the demand of all sinks in the network). Then there exists an optimal flow ϕ satisfying all
capacities and demands such that the outflow of each vertex is at most dN.

Consider a minimum cost flow ϕ satisfying the demands and capacities. Suppose that a vertex v has outflow more
than dN , i.e., there is more flow leaving v than the total demand of all sinks in the network. It follows that at least one unit
of flow is routed along a cycle C through N back to v . Reducing the flow along C yields a new valid flow with at most the
same cost. We repeat this until, eventually, all vertices have outflow at most dN . This proves the claim.

Let G be an st-graph with non-decreasing cost functions assigned to the edges. We show the existence of an optimal
orthogonal representation of G such that every pertinent graph, and also the root edge st has O (n) bends. To this end,
consider the flow network N from [5] for OptimalFlexDraw, which is very similar to Tamassia’s flow network [6], but uses
flow to represent rotation instead of angles and bends. This network has the property that the rotation of edges or vertices
in faces is in one-to-one correspondence to flow between nodes representing these edges, vertices, and faces, respectively
(incoming and outgoing flow in a face represent positive and negative rotation in this face, respectively). Moreover, the total
demand of the sinks dN is in O (n). Let ϕ be an optimal solution of N where each vertex has outflow at most dN , which
exists by the above claim. Let R be the corresponding orthogonal representation and assume that a pertinent graph of H
has at least dN + 1 bends. The case that the root edge st has dN + 1 bends is handled analogously. By definition, there is a
path π bounding H with rot(π) ≤ −(dN + 1). Let f denote the face of G that is incident to π , where the rotation of π is
at most −(dN + 1). Then, in the flow network, there are at least dN + 1 units that flow from f into H via the edges dual
to π , i.e., f has an outflow of at least dN + 1. This contradicts the choice of the flow.

Thus, we can restrict our search to orthogonal representations in which each split component has only up to dN bends.
This can be done by implicitly setting the costs to ∞ for larger values than dN . This concludes the proof, as dN ∈ O (n)

holds. �
6. An FPT-algorithm for general graphs

Let G be an instance of FlexDraw. We call an edge in G critical if it is inflexible and at least one of its endpoints has
degree 4. We call the instance G of FlexDraw k-critical, if it contains exactly k critical edges. An inflexible edge that is not
critical is semi-critical. The poles s and t of an st-graph G are considered to have additional neighbors (which comes from
the fact that we usually consider st-graphs to be subgraphs of larger graphs). More precisely, inflexible edges incident to
the pole s (or t) are already critical if deg(s) ≥ 2 (or deg(t) ≥ 2). In the following, we first study cost functions of k-critical
st-graphs. Afterwards, we show how to use the insights we got to give an FPT-algorithm for k-critical instances of FlexDraw.
Note that the cost functions we consider in this section only attain the values 0 and ∞, indicating whether or not a valid
representation with the given number of bends exists.

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 35
Fig. 5. An orthogonal representation (the bold edge is inflexible, other edges have flexibility 1), together with a valid cycle (dashed). Bending along this
cycle increases the green and decreases the red angles. The resulting orthogonal representation is shown on the right. (For interpretation of the colors in
this figure, the reader is referred to the web version of this article.)

Fig. 6. Illustration of Fact 1 for some values of σ and τ .

6.1. The cost functions of k-critical instances

Let G be an st-graph and let R be a valid orthogonal representation of G . We define an operation that transforms R
into another valid orthogonal representation of G . Let G be the double directed dual graph of G , that is each edge e of G
with incident faces g and f corresponds to the two dual edges (g, f) and (f , g). We call a dual edge e = (g, f) of e valid
if one of the following conditions holds.

(I) rot(e f) < flex(e) (which is equivalent to − rot(eg) < flex(e)).
(II) rot(v f) < 1 where v is an endpoint of e but not a pole.

A simple directed cycle C in G consisting of valid edges is called valid cycle. Then bending along C changes the orthogonal
representation R as follows; see Fig. 5. Let e = (g, f) be an edge in C with primal edge e. If e is valid due to Condition (I),
we reduce rot(eg) by 1 and increase rot(e f) by 1. Otherwise, if Condition (II) holds, we reduce rot(v g) by 1 and increase
rot(v f) by 1, where v is the vertex incident to e with rot(v f) < 1.

Lemma 5. Let G be an st-graph with a valid (σ , τ)-orthogonal representation R. Bending along a valid cycle C yields a valid
(σ , τ)-orthogonal representation.

Proof. First, we show that the resulting rotations still describe an orthogonal representation. Afterwards, we show that
this orthogonal representation is also valid and that it is a (σ , τ)-orthogonal representation. Let e = (g, f) be an edge
in C with primal edge e. If Condition (I) holds, then rot(eg) is decreased by 1 and rot(e f) is increased by 1 and thus
rot(eg) = − rot(e f) remains true. Otherwise, Condition (II) holds and thus rot(v g) is reduced by 1 and rot(v f) is increased
by 1. Obviously, the total rotation around v does not change. Moreover, both rotations remain in the interval [−1, 1]. Finally,
the incoming arc to a face f in C increases the rotation around f by 1 and the outgoing arc decreases it by 1. Thus, the
total rotation around each face remains as it was.

It remains to show that the resulting orthogonal representation is a valid (σ , τ)-orthogonal representation. First, Con-
dition (I) ensures that we never increase the number of bends of an edge e above flex(e). Moreover, due to the exception
in Condition (II) where v is one of the poles, we never change the rotation of one of the poles. Thus the number of free
incidences to the outer face does not change. �

As mentioned in Section 4, depending on σ and τ , there is a lower bound on the number of bends of (σ , τ)-orthogonal
representations. We denote this lower bound by βlow; see Fig. 6.

Fact 1. A (σ , τ)-orthogonal representation has at least βlow =
⌈

σ + τ

2

⌉
− 1 bends.

For a valid orthogonal representation with a large number of bends, the following lemma states that we can reduce
its bends by bending along a valid cycle. This can later be used to show that the cost function of an st-graph is 0 on a
significantly large interval. In other words, arbitrary alterations of cost 0 and cost ∞ that are hard to handle only occur
on a small interval (depending on k). The lemma and its proof are a generalization of Lemma 1 from [2] that incorporates
inflexible edges. For σ = τ = 3 a slightly weaker result holds.

Lemma 6. Let G be a k-critical st-graph and let R be a valid (σ , τ)-orthogonal representation with σ + τ ≤ 5. If − rot(π(t, s)) ≥
βlow + k + 1 holds, then there exists a valid cycle C such that bending R along C reduces − rot(π(t, s)) by 1.

36 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
Proof. We show the existence of a valid cycle C such that s and t lie to the left and right of C , respectively. Obviously,
such a cycle must contain the outer face. The edge in C having the outer face as target ensures that the rotation of an edge
or a vertex of π(t, s) is increased by 1 (which is the same as reducing − rot(π(t, s)) by 1), where this vertex is neither s
nor t (due to the exception of Condition (II)). Thus, rot(π(t, s)) is increased by 1 when bending along C and thus C is the
desired cycle. We first show the following claim.

Claim 1. There exists a valid edge e that either has the outer face as source and corresponds to a primal edge e on the path π(s, t), or
is a loop with s to its left and t to its right.

Assume the claimed edge e does not exist. We first show that the following inequality follows from this assumption.
Afterwards, we show that this leads to a contradiction to the inequality in the statement of the lemma.

rot(π(s, t)) ≤
{

k, if deg(s) = deg(t) = 1

k − 1, otherwise
(2)

We first show this inequality for the case where we have no critical and no semi-critical edges, in particular k = 0. We
consider the rotation of edges and vertices on π(s, t) in the outer face g . If an edge or vertex has two incidences to g , we
implicitly consider the incidence corresponding to π(s, t). Recall that the rotation along π(s, t) is the sum over the rotations
of its edges and of its internal vertices. The rotation of every edge e is rot(eg) = − flex(e) as otherwise e = (g, f) would be
a valid edge due to Condition (I). At an internal vertex v we obviously have rot(v g) ≤ 1, as larger rotations are not possible
at vertices. Hence, as the flexibility of every edge is at least 1 and a path of � edges has only � − 1 internal vertices, we get
rot(π(s, t)) ≤ −1 and thus Equation (2) is satisfied.

Next, we allow semi-critical edges, but no critical edges (k = 0 remains). If π(s, t) contains a semi-critical edge, it has a
rotation of 0 (instead of −1 for normal edges). Note that we still assume that there is no critical edge in π(s, t), i.e., k = 0.
Moreover, if an internal vertex v is incident to a semi-critical edge, it cannot have degree 4. In this case, there must be a face
incident to v such that v has rotation at most 0 in this face. If this face was not g , Condition (II) would be satisfied. Thus,
rot(v g) ≤ 0 follows for this case. Consider the decomposition of π(s, t) into maximal subpaths, each consisting of either
only semi-critical edges or only of normal edges. It follows that each subpath consisting of semi-critical and normal edges
has rotation at most 0 and −1, respectively. Moreover, the rotation at vertices between two subpaths is 0. Hence, if π(s, t)
contains at least one edge that is not semi-critical, we again get rot(π(s, t)) ≤ −1 and thus Equation (2) is satisfied. On the
other hand, if π(s, t) consists of semi-critical edges, we get the weaker inequality rot(π(s, t)) ≤ 0. If deg(s) = deg(t) = 1
holds, Equation (2) is still satisfied as we have to show a weaker inequality in this case. Otherwise, one of the poles has
degree at least 2 and thus the edges incident to it cannot be semi-critical by definition. Thus, the path π(s, t) cannot consist
of semi-critical edges.

Finally, we allow critical edges, i.e., k ≥ 0. If π(s, t) contains critical edges, we first consider a hypothetical representation
of π(s, t), in which we replace each critical edge by an edge with flexibility 1 that has a left bend in the direction of π(s, t),
i.e., it contributes a rotation of −1 to rot(π(s, t)). This does not create a valid edge e . Hence, from the previous case, we
obtain Equation (2) with k = 0. To reobtain the original representation, we undo the replacement of the critical edges one
by one. Each time rot(π(s, t)) increases by 1. As π(s, t) contains at most k critical edges, rot(π(s, t)) is increased by at most
k yielding Equation (2). This concludes the proof of Equation (2). Now we finish the proof of Claim 1.

In the case that deg(s) = deg(t) = 1, the equation rot(π(s, t)) = − rot(π(t, s)) holds. Equation (2) together with the
inequality in the statement of the lemma leads to k ≥ βlow + k + 1, which is a contradiction. In the following, we only
consider the case where deg(s) = deg(t) = 1 does not hold. Since the total rotation around the outer face sums up to −4,
we get the following equation.

rot(π(s, t)) + rot(π(t, s)) + rot(sg) + rot(tg) = −4

Recall that rot(sg) = σ − 3 and rot(tg) = τ − 3. Using Equation (2) (deg(s) = deg(t) = 1 does not hold) and the inequality
given in the lemmas precondition, we obtain the following.

(
k − 1

)
−

(βlow︷ ︸︸ ︷⌈
σ + τ

2

⌉
− 1+k + 1

)
+

(
σ − 3

)
+

(
τ − 3

)
≥ −4

⇔ −
⌈

σ + τ

2

⌉
+ (σ + τ) ≥ 3

⇔
⌊

σ + τ

2

⌋
≥ 3 (3)

Recall that σ + τ ≤ 5 is a requirement of the lemma. Thus, Equation (3) is a contradiction, which concludes the proof of
Claim 1.

Claim 2. The valid cycle C exists.

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 37
Fig. 7. A cost function with gap k.

Let e be the valid edge existing due to Claim 1. If e is a loop with s to its left and t to its right, then C = e is the
desired valid cycle. This case will serve as base case for a structural induction.

Let e = (g, f) be a valid edge dual to e having the outer face g as source. As e is not a loop, the graph G − e is still
connected and thus s and t are contained in the same block of the graph G − e + st. Let H be this block (without st) and let
S be the orthogonal representation of H induced by R. Then H is a k-critical st-graph, as H is a subgraph of G and H + st
is biconnected. Moreover, the path π(t, s) is completely contained in H and thus its rotation does not change. Hence, all
conditions for Lemma 6 are satisfied and since H contains fewer edges than G , we know by induction that there exists a
valid cycle C

H such that bending S along C
H reduces − rot(π(t, s)) by 1. As the dual graph H of H can be obtained from

G by first contracting e and then taking a subgraph, all edges contained in H were already contained in G . Moreover,
all valid edges in H are also valid in G and thus each edge in C

H corresponds to a valid edge in G . If these valid edges
form a cycle in G , then this is the desired cycle C . Otherwise, one of the two edges in C

H incident to the outer face of H
is in G incident to the outer face g of G and the other is incident to the face f of G . In this case the edges of C

H from in
G a path from f to g and thus adding the edge e yields the cycle C , which concludes the proof of Claim 2 and thus of
this lemma. �

We get the following slightly weaker result for the case σ = τ = 3.

Lemma 7. Let G be a k-critical st-graph and let R be a valid (3, 3)-orthogonal representation. If − rot(π(t, s)) ≥ βlow + k + 2 holds,
then there exists a valid cycle C such that bending R along C reduces − rot(π(t, s)) by 1.

Proof. Since σ = τ = 3 holds, we have βlow = 2 and thus − rot(π(t, s)) ≥ k + 4. We add an edge e = ss′ with flexibility 1
to G , where s′ is a new vertex, and consider the orthogonal representation R′ of G + e where e has one bend such that e
contributes a rotation of 1 to π(t, s′). Since the rotation at s in the outer face is 1, we have rot(π(t, s′)) = rot(π(t, s)) + 2. If
follows that − rot(π(t, s′)) ≥ k + 4 − 2 = k + 2 holds. Since R′ is a (1, 3) orthogonal representation of G + e, and since
the lower bound β ′

low is 1 for (1, 3) orthogonal representations, the precondition of Lemma 6, namely the inequality
− rot(π(t, s′)) ≥ β ′

low + k + 1, is satisfied, which concludes the proof. �
The previous lemmas basically show that the existence of a valid orthogonal representation with a lot of bends implies

the existence of valid orthogonal representations for a “large” interval of bend numbers. This is made more precise in the
following.

Let Bσ
τ be the set containing an integer β if and only if G admits a valid (σ , τ)-orthogonal representation with β bends.

Assume G admits a valid (σ , τ)-orthogonal representation, that is Bσ
τ is not empty. We define the maximum bend value

βmax to be the maximum in Bσ
τ . Moreover, let β ∈ Bσ

τ be the smallest value, such that every integer between β and βmax is
contained in Bσ

τ . Then we call the interval [βlow, β − 1] the (σ , τ)-gap of G . The value β −βlow is also called the (σ , τ)-gap
of G; see Fig. 7.

Lemma 8. The (σ , τ)-gap of a k-critical st-graph G is at most k if σ + τ ≤ 5. The (3, 3) gap of G is at most k + 1.

Proof. In the following, we assume σ + τ ≤ 5; the case σ = τ = 3 works literally the same way when replacing Lemma 6
by Lemma 7. Let R be a valid (σ , τ)-orthogonal representation with β ≥ βlow + k + 1 bends. We show the existence of a
valid (σ , τ)-orthogonal representation with β − 1 bends. It follows that the number of bends can be reduced step by step
down to βlow + k, which shows that the gap is at most k.

As R has β bends, either − rot(π(s, t)) = β or − rot(π(t, s)) = β . Without loss of generality, we assume − rot(π(t, s)) =
β ≥ βlow + k + 1. Due to Lemma 6 there exists a valid cycle C , such that bending along C reduces − rot(π(t, s)) by 1.
This also reduces the number of bends by 1 (and thus yields the desired orthogonal representation) if − rot(π(s, t)) is
not increased above β − 1. Assume for a contradiction that − rot(π(s, t)) was increased above β − 1. Then in the result-
ing orthogonal representation − rot(π(s, t)) is greater than βlow and − rot(π(t, s)) is at least βlow. It follows, that every
(σ , τ)-orthogonal representation has more than βlow bends, which contradicts the fact that βlow is a tight lower bound. �

The following lemma basically expresses the gap of an st-graph in terms of the rotation along π(s, t) instead of the
number of bends.

Lemma 9. Let G be an st-graph with (σ , τ)-gap k. The set {ρ | G admits a valid (σ , τ)-orthogonal representation with rot(π(s, t)) =
ρ} is the union of at most k + 1 intervals.

38 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
Proof. Recall that an orthogonal representation of G has β bends if either − rot(π(s, t)) = β or − rot(π(t, s)) = β . We first
consider the case that − rot(π(s, t)) = β for any number of bends β ∈ [βlow, βmax].

By the definition of the gap, there exists a valid orthogonal representation for all choices of − rot(π(s, t)) ∈
[βlow + k, βmax], which forms the first interval. Moreover, G does not admit a valid orthogonal representation with
βlow + k − 1 bends, since the gap would be smaller otherwise. Thus it remains to cover all allowed values contained in
[βlow, βlow + k − 2] by intervals. In the worst case, exactly every second value is possible. As [βlow, βlow + k − 2] contains
k − 1 integers, this results in �(k − 1)/2� intervals of size 1. Thus, we can cover all allowed values for rot(π(s, t)) in case
− rot(π(s, t)) ∈ [βlow + k, βmax] holds using only �(k − 1)/2� + 1 intervals.

It remains to consider the case where G has β bends since − rot(π(t, s)) = β holds. With the same argument we can
cover all possible values of π(t, s) using �(k − 1)/2� + 1 intervals. As rot(π(s, t)) equals − rot(π(t, s)) shifted by some
constant, we can cover all allowed values for rot(π(s, t)) using 2 · �(k − 1)/2� + 2 intervals. If k − 1 is even, this evaluates
to k + 1 yielding the statement of the lemma. If k − 1 is odd and we assume the above-described worst case, then we need
one additional interval. However, in this case there must exist a valid orthogonal representation with βlow bends and we
counted two intervals for this bend number, namely for the case − rot(π(s, t)) = βlow and − rot(π(t, s)) = βlow. We show
that a single interval suffices to cover both cases by showing that either − rot(π(s, t)) = βlow or − rot(π(s, t)) = βlow − 1
holds if − rot(π(t, s)) = βlow. This again leads to the desired k + 1 intervals.

Since the rotation around the outer face is −4, the equation − rot(π(s, t)) = σ + τ − 2 + rot(π(t, s)) holds. For
− rot(π(t, s)) = βlow we get the following.

σ + τ − 2 − βlow = σ + τ − 2 −
⌈

σ + τ

2

⌉
+ 1 =

⌊
σ + τ

2

⌋
− 1

If σ + τ is even, this is equal to βlow, otherwise it is equal to βlow − 1, which concludes the proof. �
6.2. Computing the cost functions of compositions

Let G be a graph with fixed planar embedding. We describe a flow network, similar to the one by Tamassia [6] that
can be used to compute orthogonal representations of graphs with thick edges. In general, we consider a flow network
to be a directed graph with a lower and an upper bound assigned to every edge and a demand assigned to every vertex.
The bounds and demands can be negative. An assignment of flow-values to the edges is a feasible flow if it satisfies the
following properties. The flow-value of each edge is at least its lower and at most its upper bound. For every vertex the
flow on incoming edges minus the flow on outgoing edges must equal its demand.

We define the flow network N as follows. The network N contains a node for each vertex of G , the vertex nodes, each
face of G , the face nodes, and each edge of G , the edge nodes. Moreover, N contains arcs from each vertex to all incident
faces, the vertex-face arcs, and similarly from each edge to both incident faces, the edge-face arcs. Before we describe the
demands of the nodes and the capacities of the arcs, we first explain the relation between orthogonal representations of G
and flows in the network N . We interpret an orthogonal representation R of G as a flow in N . A rotation rot(e f) of an edge
e in the face f corresponds to the same amount of flow on the edge-face arc from e to f . Similarly, for a vertex v incident
to f the rotation rot(v f) corresponds to the flow from v to f .

Obviously, the properties (1)–(4) of an orthogonal representation are satisfied if and only if the following conditions hold
for the flow (note that we allow G to have thick edges).

(1) The total amount of flow on arcs incident to a face node is 4 (−4 for the outer face).
(2) The flow on the two arcs incident to an edge node stemming from a (σ , τ)-edge sums up to 2 − (σ + τ).
(3) The total amount of flow on arcs incident to a vertex node, corresponding to the vertex v with incident edges e1, . . . , e�

occupying σ1, . . . , σ� incidences of v is
∑

(σi + 1) − 4.
(4) The flow on vertex-face arcs lies in the range [−2, 1].

Properties (1)–(3) are equivalent to the flow conservation requirement when setting appropriate demands. Moreover, prop-
erty (4) is equivalent to the capacity constraints in a flow network when setting the lower and upper bounds of vertex-face
arcs to −2 and 1, respectively. In the following, we use this flow network to compute the cost function of a rigid composi-
tion of graphs. The term Tflow(�) denotes the time necessary to compute a maximal flow in a planar flow network of size �.
To date, the best known upper bound for Tflow(�) is O (� log3 �) [11].

Lemma 10. The (restricted) cost functions of a rigid composition of � graphs can be computed in O (2k · Tflow(�)) time if the resulting
graph is k-critical.

Proof. First note that in case of a rigid composition, computing “restricted” cost functions makes only a difference for the
poles of the skeleton (as all other vertices have degree at least 3). However, enforcing 90◦ angles for the poles is already
covered by the number of incidences the resulting graph occupies at its poles.

Let H be the skeleton of the rigid composition of the graphs G1, . . . , G� and let G be the resulting graph with poles s
and t . Before we show how to compute orthogonal representations of G , we show that the number of incidences σi and τi

T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 39
a subgraph Gi occupies at its poles si and ti is (almost) fixed. Assume that si is not one of the poles s or t of G . Then si
has at least three incident edges in the skeleton H as H + st is triconnected. Thus, the subgraph Gi occupies at most two
incidences in any orthogonal representation of G , and hence si has either degree 1 or degree 2 in Gi . In the former case
σi is 1, in the latter σi has to be 2. If si is one of the poles of G , then it may happen that Gi occupies two incidences in
some orthogonal representations of G and three incidences in another orthogonal representation. However, this results in a
constant number of combinations and thus we can assume that the values σi and τi are fixed for i ∈ {1, . . . , �}.

To test whether G admits a valid (σ , τ)-orthogonal representation, we can instead check the existence of a valid or-
thogonal representation of H using thick edges for the graphs G1, . . . , G� (more precisely, we use a (σi, τi)-edge for Gi).
To ensure that substituting the thick edges with the subgraphs yields the desired orthogonal representation, we have to
enforce the following properties for the orthogonal representation of H . First, the orthogonal representation of H has to
occupy σ and τ incidences at its poles. Second, the thick edge corresponding to a subgraph Gi is allowed to have βi bends
only if Gi has a valid (σi, τi)-orthogonal representation with βi bends. Note that this tests the existence of an orthogonal
representation without restriction to the number of bends. We will show later, how to really compute the cost function
of G .

Restricting the allowed flows in the flow network such that they only represent (σ , τ)-orthogonal representations is
easy. The graph H occupies σ incidences if and only if rot(s f) = σ − 3 (where f is the outer face). As the rotation rot(s f)

is represented by the flow on the corresponding vertex-face arc, we can enforce rot(s f) = σ − 3 by setting the upper and
lower bound on the corresponding arc to σ − 3. Analogously, we can ensure that H occupies τ incidences of t .

In the following we show how to restrict the number of bends of a thick edge ei = siti to the possible number of bends
of the subgraph Gi it represents. Assume that Gi is ki -critical. It follows from Lemma 8 that Gi has gap at most ki . Thus,
the possible values for rot(π(si, ti)) can be expressed as the union of at most ki + 1 intervals due to Lemma 9. Restricting
the rotation to an interval can be easily done using capacities. However, we get ki + 1 possibilities to set these capacities,
and thus combining these possibilities for all thick edges results in

∏
(ki + 1) flow networks.

We show that
∏

(ki + 1) is in O (2k). To this end, we first show that
∑

ki ≤ k holds, by proving that an edge that is
critical in one of the subgraphs Gi is still critical in the graph G . This is obviously true for critical edges in Gi not incident
to a pole of Gi , as these inflexible edges already have endpoints with degree 4 in Gi . An edge e incident to a pole, without
loss of generality si of Gi is critical in Gi if si has degree at least 2. If si remains a pole of G , then e is also critical with
respect to G . Otherwise, si has degree 4 in G , which comes from the fact that the skeleton H becomes triconnected the
edge st is added.

As the 0-critical subgraphs do not play a role in the product
∏

(ki + 1), we only consider the d subgraphs G1, . . . , Gd
such that Gi (for i ∈ {1, . . . , d}) is ki-critical with ki ≥ 1. To find the worst case, we want to maximize

∏
(ki +1) with respect

to
∑

ki ≤ k (which is equivalent to finding a hypercuboid of dimension d with maximal volume and with fixed perimeter).
We get the maximum by setting ki = k/d for all subgraphs, which results in (k/d + 1)d combinations. Substituting k/d = x
leads to xk/x , which becomes maximal, when x1/x is maximal. Since f (x) = x1/x is a decreasing function, we get the worst
case for x = 1 (when restricting x to positive integers), which corresponds to d = k graphs that are 1-critical. Thus, in the
worst case, we get O (2k) different combinations.

Since the flow networks have size O (�), we can test the existence of a valid orthogonal representation of G in O (2k ·
Tflow(�)) time. However, we want to compute the cost function instead. Assume we want to test the existence of a valid
orthogonal representation with a fixed number of bends β . In the following, we show how to restrict each of the flow
networks to allow only flows corresponding to orthogonal representation with β bends. Then G clearly admits a valid
orthogonal representation with β bends if and only if one of these flow networks admits a valid flow. The orthogonal
representation of H (and thus the resulting one of G) has β bends if either − rot(π(s, t)) = β or − rot(π(t, s)) = β . We
can consider these two cases separately, resulting in a constant factor in the running time. Thus, it remains to ensure that
− rot(π(s, t)) is fixed to β . This can be done by splitting the face node corresponding to the outer face such that exactly the
arcs entering f from edge nodes or vertex nodes corresponding to edges and internal vertices of π(s, t) are incident to one
of the resulting nodes. Restricting the flow between the two resulting nodes representing the outer face f to β obviously
enforces that − rot(π(s, t)) = β holds. Thus, we could get the cost function of G by doing this for all possible values of β .
However, we can get the cost function more efficiently.

Instead of fixing the value of − rot(π(s, t)) to β , we can compute maximum flows to minimize or maximize it. Let rotmin
and rotmax be the resulting minimum and maximum for − rot(π(s, t)), respectively. Recall that the number of bends of an
orthogonal representation with − rot(π(s, t)) < βlow is not determined by π(s, t) but by the opposite path π(t, s). Thus,
if rotmax is less than βlow, then there is no orthogonal representation where the number of bends are determined by the
rotation along π(s, t). Moreover, if rotmin < βlow, we set rotmin = βlow. It follows from basic flow theory that all values
between rotmin and rotmax are also possible. Thus, after computing the two flows, we can simply set the cost function of G
to 0 on that interval. To save a factor of k in the running time we do not update the cost function of G immediately, but
store the interval [rotmin, rotmax].

In the end, we have O (2k) such intervals where the cost function is 0. The maximum of all upper bounds of these
intervals is clearly βmax (the largest possible number of bends of G). It remains to extract the cost function of G on the
interval [βlow, βlow + k − 1], since the cost function of G has gap at most k (Lemma 8). This can be done by sorting all
intervals having their lower bound in [βlow, βlow + k − 1] by their lower bound. This can be done in O (k + 2k) time, since
we sort O (2k) values in a range of size k. Finally, the cost function on [βlow, βlow + k − 1] can be easily computed in

40 T. Bläsius et al. / Computational Geometry 55 (2016) 26–40
O (k + 2k) time by scanning over this list. As this is dominated by the computation of all flows, we get an overall running
time of O (2k · Tflow(�)). �
Lemma 11. The (restricted) cost functions of a series and a parallel composition can be computed in O (k2 + 1) time if the resulting
graph is k-critical.

Proof. First, consider only the non-restricted case. Let G1 and G2 be the two graphs that should be composed and let G be
the resulting graph. As in the rigid case, we can use flow networks to compute the cost functions of G . However, this time
the flow network has constant size and thus we do not have to be so careful with the constants.

Assume G1 and G2 are k1- and k2-critical, respectively. Up to possibly a constant number, all critical edges in Gi are also
critical in G , that is ki ∈ O (k + 1) (note that the “+1” is necessary for the case k = 0). Thus, both graphs G1 and G2 have a
gap of size O (k + 1). It follows that the possible rotations values for π(si, ti) (where si and ti are the poles of Gi) are the
union of O (k + 1) intervals, which results in O (k2 + 1) possible combinations and thus O (k2 + 1) flow networks of constant
size. Note that we get an additional constant factor by considering all possible values for the number of occupied incidences
of the graphs Gi . Extracting the cost functions out of the results from the flow computation can be done analogously to the
case where we had a rigid composition (proof of Lemma 10), which finally results in the claimed running time O (k2 + 1).

To compute the restricted cost functions, one possibly has to restrict the rotation at some vertices to −1 or 1, which can
be obviously done without increasing the running time. �
Theorem 5. FlexDraw for k-critical graphs can be solved in O (2k · n · Tflow(n)).

Proof. By Theorem 3, we get an algorithm with the running time O (n · (n · T S + n · T P + T R(n))), where T S , T P ∈ O (k2 + 1)

(Lemma 11) and T R (�) = 2k · Tflow(�) (Lemma 10). This obviously yields the running time O ((k2 + 1) ·n2 + 2k ·n · Tflow(n)) =
O (2k · n · Tflow(n)). �
7. Conclusion

We want to conclude with the open question whether there exists an FPT-algorithm for OptimalFlexDraw for the case
where all cost functions are convex and where the first bend causes cost only for k edges (that is we have k inflexible
edges). One might think that this works similar as for FlexDraw by showing that the cost functions of st-graphs are
only non-convex if they contain inflexible edges. Then, when encountering a rigid composition, one could separate these
non-convex cost functions into convex parts and consider all combinations of these convex parts. Unfortunately, the cost
functions of st-graphs may already be non-convex, even though they do not contain inflexible edges. The reason why
OptimalFlexDraw can still be solved efficiently if there are no inflexible edges [5] is that, in this case, the cost functions
need to be considered only up to three bends (and for this restricted intervals, the cost functions are convex). However,
a single subgraph with inflexible edges in a rigid composition may force arbitrary other subgraphs in this composition to
have more than three bends, potentially resulting in linearly many non-convex cost functions that have to be considered.
Thus, although the algorithms for FlexDraw and OptimalFlexDraw are very similar, the latter does not seem to allow even
a small number of inflexible edges.

Acknowledgements

We thank Marcus Krug for discussions on FlexDraw. Moreover, we thank the anonymous reviewers for their useful
comments.

References

[1] A. Garg, R. Tamassia, On the computational complexity of upward and rectilinear planarity testing, SIAM J. Comput. 31 (2) (2001) 601–625.
[2] T. Bläsius, M. Krug, I. Rutter, D. Wagner, Orthogonal graph drawing with flexibility constraints, Algorithmica 68 (4).
[3] T. Biedl, G. Kant, A better heuristic for orthogonal graph drawings, Comput. Geom. 9 (3) (1998) 159–180.
[4] G. Di Battista, G. Liotta, F. Vargiu, Spirality and optimal orthogonal drawings, SIAM J. Comput. 27 (6) (1998) 1764–1811.
[5] T. Bläsius, I. Rutter, D. Wagner, Optimal orthogonal graph drawing with convex bend costs, in: F.V. Fomin, R. Freivalds, M. Kwiatkowsak, D. Peleg

(Eds.), Proceedings of the 40th International Colloquium on Automata, Languages and Programming, ICALP’13, in: Lecture Notes in Computer Science,
vol. 7965, Springer, Berlin/Heidelberg, 2013, pp. 184–195.

[6] R. Tamassia, On embedding a graph in the grid with the minimum number of bends, SIAM J. Comput. 16 (3) (1987) 421–444.
[7] S. Cornelsen, A. Karrenbauer, Accelerated bend minimization, J. Graph Algorithms Appl. 16 (3) (2012) 635–650.
[8] G. Di Battista, R. Tamassia, On-line maintenance of triconnected components with SPQR-trees, Algorithmica 15 (4) (1996) 302–318.
[9] G. Di Battista, R. Tamassia, On-line planarity testing, SIAM J. Comput. 25 (5) (1996) 956–997.

[10] C. Gutwenger, P. Mutzel, A linear time implementation of SPQR-trees, in: Proceedings of the 8th International Symposium on Graph Drawing, GD’00,
in: Lecture Notes in Computer Science, vol. 1984, Springer, Berlin/Heidelberg, 2001, pp. 77–90.

[11] G. Borradaile, P. Klein, S. Mozes, Y. Nussbaum, C. Wulff-Nilsen, Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time, in: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, FOCS’11, 2011, pp. 170–179.

http://refhub.elsevier.com/S0925-7721(16)30011-6/bib67742D63757270742D3031s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib626B2D62686F67642D3938s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib626C762D736F6F642D3938s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib6272772D6F6F67642D3133s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib6272772D6F6F67642D3133s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib6272772D6F6F67642D3133s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib742D6567676D622D3837s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib636B2D61626D2D3132s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib64742D6F6D74632D3936s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib64742D6F70742D3936s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib676D2D6C74692D3030s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib676D2D6C74692D3030s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib626B6D2D6D736D736D2D3131s1
http://refhub.elsevier.com/S0925-7721(16)30011-6/bib626B6D2D6D736D736D2D3131s1

	Orthogonal graph drawing with inﬂexible edges
	1 Introduction
	2 Preliminaries
	2.1 Connectivity & the composition of graphs
	2.2 SPQR-tree
	2.3 Orthogonal representation

	3 A matching of inﬂexible edges
	4 The general algorithm
	5 Series-parallel graphs
	6 An FPT-algorithm for general graphs
	6.1 The cost functions of k-critical instances
	6.2 Computing the cost functions of compositions

	7 Conclusion
	Acknowledgements
	References

