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Abstract
Isocontours in road networks represent the area that is reachable from a source within a given
resource limit. We study the problem of computing accurate isocontours in realistic, large-scale
networks. We propose isocontours represented by polygons with minimum number of segments
that separate reachable and unreachable components of the network. Since the resulting problem
is not known to be solvable in polynomial time, we introduce several heuristics that run in
(almost) linear time and are simple enough to be implemented in practice. A key ingredient is a
new practical linear-time algorithm for minimum-link paths in simple polygons. Experiments in a
challenging realistic setting show excellent performance of our algorithms in practice, computing
near-optimal solutions in a few milliseconds on average, even for long ranges.
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1 Introduction

How far can I drive my battery electric vehicle (EV), given my position and the current state
of charge? – This question can be answered by a map visualizing the reachable region. This
region is bounded by isocontours representing points that require the same amount of energy
to be reached. Isocontours are typically considered in the context of functions f : R2 → R, in
our case describing the energy necessary to reach a point in the plane. However, f is defined
only at certain points, namely vertices of the graph representing the road network. We have
to fill the gaps by deciding how an isocontour should pass through regions between roads. The
fact that the quality of the resulting visualization heavily depends on these decisions makes
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7:2 Scalable Exact Visualization of Isocontours in Road Networks

Figure 1 Isocontours in a mountainous area (near Bern, Switzerland), showing the range of an
EV positioned at the black disk with a state of charge of 2 kWh. Note that the polygons contain
holes, due to unreachable high-ground areas. Left: state-of-the-art approach (over 10 000 segments,
computed by RP-RC from Section 4); right: our approach (416 segments, computed by RP-CU).

computing isocontours in road networks an interesting algorithmic problem. Besides range
visualization for EVs, isocontour visualization is relevant in a wide range of applications,
including reachability analyses in urban planning [2, 20, 22, 25], geomarketing [10], and
environmental and social sciences [20].

Several techniques consider the problem of computing the subnetwork that is reachable
within a given timespan (but not the actual isocontour), enabling query times in the
order of milliseconds [4, 11, 12]. O’Sullivan et al. [25] introduce basic approaches for
isocontour visualization based on merging shapes covering the reachable area. Marciuska
and Gamper [22] propose isocontours induced by reachable points in the network, but their
approaches are too slow for interactive applications (several seconds for small and medium
ranges). In contrast, our work is motivated by more challenging scenarios, e. g., visualizing
the range of high-end Tesla models or the area reachable by a truck driver within a day
of work. Our algorithms are guided by three major objectives: Isocontours must be exact,
i. e., correctly separate the reachable subgraph from the remaining unreachable part; they
should be polygons of low complexity, i. e., consist of few segments (enabling fast rendering
and a clear, uncluttered visualization); algorithms should be fast enough for interactive
applications, even on large inputs. Figure 1 compares an example resembling state-of-the-art
techniques [9, 10, 12, 22] to one of our approaches. The original works also consider inexact
variants of the approach we refer to as state-of-the-art (e. g., by omitting holes or degeneracies
from the polygon). We resort to an exact variant, in accordance with our objectives.

Contribution and Outline. We propose several new algorithms for computing polygons
that represent isocontours in road networks. All approaches compute exact isocontours,
while having low complexity. Their efficient performance is both proven in theory and
demonstrated in practice on large, realistic instances. Section 2 states the precise problem
and outlines our algorithmic approach. Section 3 attacks the important subproblem of
separating the boundaries of a hole-free region by a polygon with minimum number of
segments. While it can be solved in O(n logn) time [28], we propose a simpler algorithm that
uses at most two additional segments, runs in linear time, and requires computation of only
a single minimum-link path. We also propose a minimum-link path algorithm that is simpler
than previous approaches [26]. Section 4 extends these results to the general case, where
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unreachable parts of the network can induce holes between the boundaries to be separated.
As the complexity of this problem is unknown, we focus on efficient heuristic approaches
that work well in practice, but do not give (nontrivial) guarantees on the complexity of
the resulting range polygons. Section 5 contains our extensive experimental evaluation. It
demonstrates that all approaches are fast enough even for use in interactive applications.
Section 6 concludes with final remarks. See the full version for omitted details and proofs [3].

2 Problem Statement and General Approach

Let G = (V,E) be a road network, which we consider as a geometric graph where vertices
have a fixed position in the plane and edges are straight-line segments between their endpoints.
The function cons : E → R assigns resource consumption to all edges. A source s ∈ V and
range r ∈ R≥0 partition the graph into two parts, one that is within range r from s, and the
part that is not. A vertex v is reachable if the resource consumption cons(πv) on the shortest
(wrt. a nonnegative length function on the edges) s–v-path πv is at most r. An edge (u, v) is
passable if it can be traversed in at least one direction, i. e., cons(πu) + cons((u, v)) ≤ r or
cons(πv) + cons((v, u)) ≤ r. Let Vr be the set of reachable vertices and Er the set of passable
edges. The reachable subgraph is Gr = (Vr, Er). Let Vu = V \ Vr be the set of unreachable
vertices and Eu the set of unreachable edges for which both endpoints are unreachable. The
unreachable subgraph is Gu = (Vu, Eu). Edges in E \ (Er ∪ Eu) are called boundary edges.
A range polygon is a plane (not necessarily simple) polygon P separating Gr and Gu, such
that its interior contains Gr and has empty intersection with Gu. Note that if G is not
planar, a range polygon may not even exist: If a passable edge intersects an unreachable edge,
the requirements of including the passable and excluding the unreachable edge obviously
contradict. To resolve this issue, we consider the planarization Gp of G, which is obtained
from G by considering each intersection point p as a dummy vertex that subdivides all edges
of G that contain p. A dummy vertex is reachable if and only if it subdivides a passable edge
of the original graph. An edge in Gp is passable if and only if the edge in G containing it is
passable. As before, an edge of Gp is unreachable if both endpoints are unreachable. Finally,
let the graph G′ consist of the union of the reachable and unreachable subgraph of Gp. A
face of G′ incident to both the reachable and unreachable subgraph is a border region.

Given a source s ∈ V and a range r ∈ R≥0, we seek to compute a range polygon wrt. Gp

that has the minimum number of holes, and among these we seek to minimize the complexity
of the range polygon. This can be achieved as follows.
1. Compute the reachable and unreachable subgraph of G.
2. Planarize G, compute the reachable and unreachable subgraph of its planarization Gp.
3. Compute the border regions.
4. For each border region B, compute a simple polygon of minimum complexity contained in

B that separates the unreachable components incident to B from the reachable component.

Step 1 is solved by a variant of Dijkstra’s algorithm [8]. Tailored preprocessing-based
algorithms for road networks exist [4, 11]. For Step 2, we planarize G during preprocessing
in a single run of the well-known sweep line algorithm [6] to obtain Gp. In a query (i. e., for
given s ∈ V and r ∈ R≥0), reachability of dummy vertices is then determined in a linear scan
of all original edges containing a dummy vertex. This produces limited overhead in practice,
since the number of dummy vertices in graphs representing road networks is typically small
(as large parts of the input are already planar). Border regions are extracted in Step 3 by
traversing faces of Gp that contain at least one boundary edge. In the remainder of this
work, we focus on Step 4. Each connected component of the boundary of a border region
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Figure 2 Border region (white), with the reachable boundary R = {r} and the unreachable
boundary with components U = {u1, u2, u3, u4}. Reachable and unreachable parts are shaded.

is a hole-free non-crossing polygon. Note that these polygons are not necessarily simple in
the sense that they may contain the same segment twice in different directions; see Figure 2.
Each border region is defined by two sets R and U of such polygons, where R contains
the reachable components and U contains the unreachable components. We seek a simple
polygon with minimum number of segments that separates U from R. Guibas et al. [17]
showed that this problem is NP-complete in general. In our case, however, it is |R| = 1 since
the reachable subgraph is, by definition, connected. Guibas et al. left this case as an open
problem and, to the best of our knowledge, it has not been resolved.

3 Range Polygons in Border Regions Without Holes

In this section, we consider the special case of a border region B with |R| = |U | = 1. A
polygon of minimum complexity that separates the two polygons can be found in O(n logn)
time [28]. However, the algorithm is rather involved and requires computation of several
minimum-link paths. We propose a simpler algorithm that uses at most two additional
segments, runs in linear time, and computes a single minimum-link path. It adds an edge e
to B that connects both boundaries. In the resulting polygon B′, it computes a minimum-link
path π that connects the two sides of e. The algorithm of Suri [26] finds such a path π in
linear time. We obtain a separating polygon by connecting the endpoints of π along e.

We address the subproblem of computing a minimum-link path between two edges a
and b of a simple polygon P , i. e., a polygonal path with minimum number of segments
that connects a and b and lies in the interior of P . The algorithm of Suri [26] starts by
triangulating the input polygon. We preprocess this step by triangulating all faces of the
planarized input graph only once. Afterwards, in each step of Suri’s algorithm a window
(which we define in a moment) is computed. To this end, several visibilty polygons are
constructed. This suffices to prove linear running time, but seems wasteful from a practical
point of view. Below, we present a simpler linear-time algorithm for computing the windows,
called FMLP (fast minimum-link path). It can be seen as a generalization of an algorithm
for approximating piecewise linear functions [19].

Windows and Visibility. Let T be the graph obtained by arbitrarily triangulating P . Let
ta and tb be the triangles incident to a and b, respectively. As T is an outerplanar graph, its
(weak) dual graph has a unique path ta = t1, t2, . . . , tk−1, tk = tb from ta to tb; see Figure 3a.
We call the triangles on this path important and their position in the path their index. The
visibility polygon V (a) of the edge a in P is the polygon that contains a point p in its interior
if and only if there is a point q on a such that the line segment pq lies inside P . Let i be the
highest index such that the intersection of the triangle ti with the visibility polygon V (a) is
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Figure 3 (a) Important triangles wrt. a and b. (b) The window w(a) is an edge of the (shaded)
visibility polygon. (c) The left and right shortest paths (blue) intersect for i = 8 but not for i = 6.
(d) The shortest path from r(a) to `(bi) contains the bold prefix of πr

i , the red segment, and the
bold suffix of π`

i . (e) Visibility lines spanning the (shaded) visibility cone.

not empty. The window w(a) is the edge of V (a) that intersects ti closest (wrt. minimum
Euclidean distance) to the edge between ti and ti+1; see Figure 3b. Note that w(a) separates
the polygon P into two parts. Let P ′ be the part containing the edge b that we want to
reach. A minimum-link path from a to b in P can then be obtained by adding an edge from
a to w(a) to a minimum-link path from w(a) to b in P ′. Thus, the next window is computed
in P ′ starting with the previous window w(a). Below, we first describe how to compute the
first window and then discuss what has to be changed to compute the subsequent windows.

Let Ti be the subgraph of T induced by the triangles t1, . . . , ti and let Pi be the polygon
bounding the outer face of Ti. The polygon Pi has two special edges, namely a and the
edge shared by ti and ti+1, which we call bi. Let `(a) and r(a), and `(bi) and r(bi) be
the endpoints of a and bi, respectively, such that their clockwise order is r(a), `(a), `(bi),
r(bi) (think of `(·) and r(·) being the left and right endpoints, respectively); see Figure 3c.
We define the left shortest path π`

i to be the shortest polygonal path (shortest in terms of
Euclidean length) that connects `(a) with `(bi) and lies inside or on the boundary of Pi. The
right shortest path πr

i is defined analogously for r(a) and r(bi); see Figure 3c.
Assume that the edge bi is visible from a, i.e., there exists a line segment in the interior of

Pi that starts at a and ends at bi. Such a visibility line separates the polygon into a left and
a right part. Observe that it follows from the triangle inequality that the left shortest path
π`

i and the right shortest path πr
i lie inside the left and right part, respectively. Thus, these

two paths do not intersect. Moreover, the two shortest paths are outward convex in the sense
that the left shortest path π`

i has only left bends when traversing it from `(a) to `(bi) (the
symmetric property holds for πr

i ); see the case i = 6 in Figure 3c. We note that the outward
convex paths are sometimes also called “inward convex” and the polygon consisting of the
two outward convex paths together with the edges a and bi is also called hourglass [15]. The
following lemma, which is similar to a statement shown by Guibas et al. [16, Lemma 3.1],
summarizes the above observation.

I Lemma 1. If the triangle ti is visible from a, then the left and right shortest path in Pi−1
have empty intersection. Moreover, if these paths do not intersect, they are outward convex.

Guibas et al. [16] argue that the converse of the first statement is also true, i.e., if the two
paths have empty intersection, then the triangle ti+1 is visible from a. Their main arguments
go as follows. The shortest path (wrt. Euclidean length) in the hourglass that connects r(a)
with `(bi) is the concatenation of a prefix of πr

i , a line segment from a vertex x of πr
i to a

vertex y of π`
i , and a suffix of π`

i ; see Figure 3d. We call the straight line through x and y
the left visibility line and denote it by λ`

i . We assume λ`
i to be oriented from x to y and call
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Figure 4 (a) The new vertex `(bi) lies in the visibility cone. (b) The updated left shortest path
π`

i and left visibility line λ`
i . (c) The vertex `(bi) lies to the left of λ`

i−1. (d) The left shortest path
has to be updated, the left visibility line remains unchanged. (e) The vertex `(bi) lies to the right
of λr

i−1, i.e., ti+1 is not visible from a. (f) The window w(a) is a segment of λr
i−1.

x and y the source and target of λ`
i . Analogously, one can define the right visibility line λr

i ;
see Figure 3e. We call the intersection of the half-plane to the right of λ`

i with the half-plane
to the left of λr

i the visibility cone. It follows that the intersection of the visibility cone with
the edge bi is not empty and a point on the edge bi is visible from a if and only if it lies in
this intersection [16]. This directly extends to the following lemma.

I Lemma 2. If the left and right shortest path in Pi−1 have empty intersection, ti is visible
from a. Moreover, a point in ti is visible from a if and only if it lies in the visibility cone.

The above observations then justify the following approach for computing the window.
We iteratively increase i until the left and the right shortest path of the polygon Pi intersect.
We then know that the triangle ti+1 is no longer visible; see Lemma 1. Moreover, as the left
and the right shortest path did not intersect in Pi−1, the triangle ti is visible from a; see
Lemma 2. To find the window, it remains to find the edge of the visibility polygon V (a)
that intersects ti closest to the edge between ti and ti+1. Thus, by the second statement of
Lemma 2, the window must be a segment of one of the two visibility lines. It remains to fill
out the details of this algorithm, argue that it runs in overall linear time, and describe what
has to be done in later steps, when we start at a window instead of an edge.

Computing the First Window. We start with the details of the algorithm starting from
an edge. Assume the triangle ti is still visible from a, i.e., π`

i−1 and πr
i−1 do not intersect.

Assume further that we have computed the left and right shortest path π`
i−1 and πr

i−1 as well
as the corresponding visibility lines λ`

i−1 and λr
i−1 in a previous step. Assume without loss

of generality that the three corners of the triangle ti are `(bi−1), `(bi), and r(bi) = r(bi−1).
There are three possibilities shown in Figure 4, i.e., the new vertex `(bi) lies either in the
visibility cone spanned by λ`

i−1 and λr
i−1 (Figure 4a), to the left of the left visibility line λ`

i−1
(Figure 4c), or to the right of the right visibility line λr

i−1 (Figure 4e).
By Lemma 2, a point in ti is visible from a if and only if it lies inside the visibility cone.

Thus, the edge bi between ti and ti+1 is no longer visible if and only if the new vertex `(bi)
lies to the right of λr

i−1; see Figure 4e. In this case, we can stop and the desired window
w(a) is the segment of λr

i−1 starting at its touching point with πr
i−1 and ending at its first

intersection with an edge of P ; see Figure 4f.
In the other two cases (Figure 4a and Figure 4c), we have to compute the new left and

right shortest path π`
i and πr

i and the new visibility lines λ`
i and λr

i (Figure 4b and Figure 4d).
Note that the old and new right shortest path πr

i−1 and πr
i connect the same endpoints r(a)

and r(bi−1) = r(bi). As the path cannot become shorter by going through the new triangle ti,
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Figure 5 (a) The shortest path from r(a) to `(bi−1) (bold) defining the left visibility line λ`
i−1.

(b) The visibility line does not change if `(bi) lies to the left of λ`
i−1. (c) Illustration how the visibility

line changes when `(bi) lies to the right of λ`
i−1.

we have πr
i = πr

i−1. The same argument shows that λr
i = λr

i−1 (recall that the visibility lines
were defined using a shortest path from `(a) to r(bi−1) = r(bi)).

We compute the new left shortest path π`
i as follows. Let x be the latest vertex on π`

i−1
such that the prefix of π`

i−1 ending at x concatenated with the segment from x to `(bi) is
outward convex. We claim that π`

i is the path obtained by this concatenation, i.e., this
path lies inside Pi and there is no shorter path lying inside Pi. It follows by the outward
convexity, that there cannot be a shorter path inside Pi from `(a) to `(bi). Moreover, by the
assumption that π`

i−1 was the correct left shortest path in Pi−1, the subpath from `(a) to x
lies inside Pi. Assume for contradiction that the new segment from x to `(bi) does not lie
entirely inside Pi. Then it has to intersect the right shortest path and it follows that the
right shortest path and the correct left shortest path have non-empty intersection, which is
not true by Lemma 1.

To get the new left visibility line λ`
i , we have to consider the shortest path in Pi that

connects r(a) with `(bi). Let x and y be the source and target of λ`
i−1, respectively, i.e., the

shortest path from r(a) to `(bi−1) is as shown in Figure 5a. If the new vertex `(bi) lies to the
left of λ`

i−1 (Figure 5b), then the shortest path from r(a) to `(bi) also includes the segment
from x to y. Thus, λ`

i = λ`
i−1 holds in this case. Assume the new vertex `(bi) lies to the right

of λ`
i−1 (Figure 5c). Let x′ be the latest vertex on the path πr

i such that the concatenation
of the subpath from r(a) to x′ with the segment from x′ to the new vertex `(bi) is outward
convex in the sense that it has only right bends; see Figure 5c. We claim that this path lies
inside Pi and that there is no shorter path inside Pi. Moreover, we claim that x′ is either a
successor of x in πr

i−1 or x′ = x. Clearly, the concatenation of the path from r(a) to x with
the segment from x to `(bi) is outward convex, thus the latter claim follows. It follows that
the segment from x′ to `(bi) lies to the right of the old visibility line λ`

i−1. Thus, it cannot
intersect the path π`

i (except in its endpoint `(bi)), as π`
i−1 lies to the left of λ`

i−1. Moreover,
as we chose x′ to be the last vertex on πr

i−1 with the above property, this new segment does
not intersect πr

i (except in x′). Hence, the segment from x′ to `(bi) lies inside Pi. As before,
it follows from the convexity that there is no shorter path inside Pi. Thus, λ`

i is the line
through x′ and `(bi) (x′ is the new source and `(bi) is the new target).

I Lemma 3. Let th be the triangle with the highest index that is visible from a. Then, the
algorithm FMLP computes the first window w(a) in O(h) time.

Computation of Subsequent Windows. As mentioned before, the first window w(a) we
compute separates P into two smaller polygons. Let P ′ be the part including the edge b
(and not a). In the following, we denote w(a) by a′. To get the next window w(a′), we have
to apply the above procedure to P ′ starting with a′. However, this would require to partially

ESA 2016
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Figure 6 (a) Polygon P ′ after computing the window a′; P ′0 is shaded. (b) Shortest paths π`
0 and

πr
0 (blue) and visibility lines (red). (c) Sequence v1, . . . , v6, triangles intersected by a′ are shaded.

retriangulate the polygon P ′. More precisely, let th be the triangle with the highest index
that is visible from a and let bh be the edge between th and th+1; see Figure 6a. Then bh

separates P ′ into an initial part P ′0 (the shaded part in Figure 6a) and the rest (having b on
its boundary). The latter part is properly triangulated, however, the initial part P ′0 is not.
The conceptually simplest solution is to retriangulate P ′0. However, this would require an
efficient subroutine for triangulation (and dynamic data structures that allow us to update P
and T , which produces overhead in practice). Instead, we propose a much simpler method
for computing the next window. The general idea is to compute the shortest paths in P ′0
from `(a′) to `(bh) and from r(a′) to r(bh); see Figure 6b. We denote these paths by π`

0 and
πr

0, respectively. Moreover, we want to compute the corresponding visibility lines λ`
0 and λr

0.
Afterwards, we can continue with the correctly triangulated part as before.

Concerning the shortest paths, note that the right shortest path πr
0 is a suffix of the

previous right shortest path, which we already know. For the left shortest path π`
0, first

consider the polygon induced by the triangles intersected by a′; see Figure 6c. Let v1, . . . , vg

be the path on the outer face of this polygon (in clockwise direction) from `(a′) = v1 to
`(bh) = vg. We obtain π`

0 using Graham’s scan [14] on the sequence v1, . . . , vg, i. e., starting
with an empty path, we iteratively append the next vertex of the sequence v1, . . . , vg while
maintaining the path’s outward convexity by successively removing the second to last vertex,
if necessary. It remains to compute the visibility lines λ`

0 and λr
0 in the hourglass consisting

of a′, bh, and the paths π`
0 and πr

0. Note that the whole edge bh is visible from a′, since
a′ intersects the triangle th. Thus, the visibility lines go through the endpoints of bh. It
follows that λ`

0 is the line that goes through `(bh) and the unique vertex on πr
0 such that it

is tangent to πr
0; see Figure 6b. This can clearly be found in linear time in the length of πr

0.
The same holds for the right visibility line.

I Lemma 4. The algorithm FMLP computes the initial left and right shortest paths π`
0 and

πr
0 as well as the corresponding visibility lines in O(|P ′0|) time.

We compute subsequent windows until we find the last edge b. A minimum-link path π
is obtained by connecting each window w(a) to its corresponding first edge a with a straight
line [26]. In our implementation, we do not construct P and its triangulation T explicitly, but
work directly on the triangulated input graph. The next important triangle is then computed
on-the-fly as follows. Consider an important triangle ti = uvw, and let uv be the edge shared
by the current and the previous important triangle. Clearly, exactly one endpoint of uv is
part of the reachable boundary, so without loss of generality let u be this endpoint. Then the
next important triangle is the triangle sharing vw with ti if w is reachable, and the triangle
sharing uw with ti otherwise. In other words, the next triangle is determined by the unique
edge that has exactly one reachable endpoint. Linear running time of the algorithm follows
immediately from Lemma 3 and Lemma 4. Theorem 5 summarizes our findings.
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(a) (b) (d)(c)

e ee1 e2

Figure 7 Results of RP-RC (a), RP-TS (b), RP-CU (c), and RP-SI (d), starting at indicated edges.

I Theorem 5. Given two edges a and b of a simple polygon P , the algorithm FMLP computes
a minimum-link path from a to b contained in P in linear time.

4 Heuristic Approaches for General Border Regions

A border region B may consist of several unreachable components, i. e., |U | > 1. In this
general case, it is not clear whether one can compute a (non-intersecting) range polygon of
minimum complexity in polynomial time [17]. Even for the simpler subproblem of computing
a minimum-link path in a polygon with holes (without assigning the holes to the reachable
or unreachable part), the fastest known algorithm has quadratic running time [21, 24]. This
is impractical for large instances. We propose heuristics with (almost) linear running time
(in the size of B) that are simple and fast in practice. Figure 7 shows examples.

The first approach, RP-RC (range polygon, extracted reachable components), simply
extracts and returns the reachable boundary R; see Figure 7a. The result resembles previous
approaches [12, 22], so it can be seen as an efficient implementation of the state-of-the-art.

Separating Border Regions Along the Triangulation. The second approach, denoted RP-TS
(triangular separators), works as follows. For each border region B, we consider its trian-
gulation. We add all edges of the triangulation that either connect two reachable vertices
or two unreachable vertices of Gp to the boundary of B, possibly splitting B into several
regions B′ = R′ ∪ U ′ (see bold edges separating the border region in Figure 7b). For each
region B′, we obtain |U ′| ≤ 1, since two components of U must be connected by an edge
of the triangulation or separated by an edge with two endpoints in R. Then, we run the
algorithm presented in Section 3 on each instance B′ with |U ′| = 1 to get the range polygon.
Linear running time follows, as FMLP is run on disjoint subregions of B.

Clearly, the set of edges added to B is not minimal (we could possibly omit some and still
obtain |U ′| ≤ 1). However, it allows us to implement RP-TS without explicitly constructing B′:
Starting from an arbitrary (unvisited) boundary edge in B with one endpoint in each R and U ,
we run FMLP and determine the important triangles on-the-fly (as described in Section 3).
We mark encountered boundary edges and repeat this procedure until all boundary edges
in B (with endpoints in both R and U) were visited. Note that FMLP becomes even simpler
in this variant, because regions B′ contain only important triangles. However, the number
of modified regions B′ can become quite large. Below, we propose a more sophisticated
approach to obtain regions with a single unreachable component.

Connecting Unreachable Components. Third, RP-CU (connecting unreachable components)
adds new edges to border regions B with |U | > 1 to connect all components in U without
intersecting the reachable boundary; see Figure 7c.

ESA 2016
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ru1
u2

s2s1

Figure 8 Dual graph with super sources s1 and s2. Shaded triangles are assigned to u1 and u2,
respectively.

Given a border region B with |U | > 1, the heuristic starts by checking for each pair of
components in U whether it can be connected directly by an edge of the triangulation. This
requires traversal of the vertices in unreachable components, scanning for each vertex its
incident edges in the triangulation. Edges that connect two unreachable components are
added to the boundary of B and the adjacent components are merged (i. e., considered equal
in the further course of the algorithm). To connect all remaining unreachable components
after this first step, we consider the (weak) dual graph of the triangulation of B; see Figure 8.
Since no pair of remaining unreachable components can be connected by a single edge in
the primal graph, each triangle intersects at most one unreachable component. We assign
a component to each dual vertex, namely, the reachable component if the corresponding
triangle contains only reachable vertices, and the unique unreachable component it intersects,
otherwise. For each unreachable component, we add a super source to the dual graph that
is connected to all vertices assigned to this component. Since we want to add as few edges
to the primal graph as possible, our goal is to find a tree of minimum total length in the
modified dual graph that connects all super sources. Finding such a minimum Steiner tree is
NP-hard [13], so we run a heuristic search. It iteratively adds shortest paths between two
sources that are not yet connected in a greedy fashion. This is achieved by a multi-source
variant of a breadth-first search (BFS) starting from all super sources. Whenever a path
connecting two super sources is found, the corresponding components are merged. The
algorithm stops when all super sources are connected. Finally, we add new vertices and edges
to B along the obtained paths to connect all components in U , as illustrated in Figure 7c. We
add further edges to maintain the triangulation, if necessary. The resulting border region B′
is solved by the algorithm presented in Section 3. Making use of a union-find data structure,
the BFS runs in O(nα(n)) time [27], where n is the size of B and α the inverse Ackermann
function. All remaining steps run in linear time, so the overall running time is almost linear.

A crucial observation is that realistic instances of border regions often consist of one
major unreachable component and many tiny components, as illustrated in Figure 2. To
significantly reduce the (empirical) running time, we start the BFS from all but the largest
component. This requires little overhead (traversing unreachable components to identify
the largest one), but searches from small components are likely to quickly converge to the
large component. Moreover, after extracting the next vertex from the queue, we first check
whether its source was connected to the largest component in the meantime. If this is the
case, we prune the search at this vertex, because it now represents the search from the largest
component. Similarly, before running the BFS we also omit traversal of the vertices of the
largest component when checking for edges in the triangulation that connect two components.
For further (practical) speedup, we modify the BFS to always expand the search from the
component that is currently the smallest. This can be done by using a priority queue whose
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Figure 9 Edge indices starting at e for each direction of traversal (∞ if not specified). Separator
edge indices are given in the list (the next index is shaded). (a) The second triangle (shaded yellow)
has two possible next triangles tuw and tvw (shaded blue). The next one is tuw, since the index of
the edge vw with higher index (12) is greater than the next separator edge index (4). Observe that
the yellow triangle is visited a second time during the course of the algorithm. (b) The next triangle
is tuw. The index of the next separator edge is updated from 15 to 16.

elements are components. Additionally, we maintain a queue for each component that stores
the vertices visited by the BFS (extracting them in first-in-first-out order). In each step of
the BFS, we check for the smallest component in the priority queue, and extract the next
vertex from the queue of this component. Note that the use of a priority queue actually
increases the asymptotic running time of the BFS, however, we observe a significant speedup
in practice.

Self-Intersecting Minimum-Link Paths. Our last approach is denoted RP-SI (self intersect-
ing polygons). It computes a minimum-link path that separates reachable and unreachable
boundaries of B. This path has at most OPT + 1 segments (inducing a lower bound for B),
but may intersect itself; see Figure 7d. To obtain a range polygon, we add more segments to
resolve intersections. Below, we generalize FMLP to border regions with several unreachable
components. Note that the (weak) dual graph of the triangulation of B is not outerplanar
if |U | > 1. Thus, paths between dual vertices are no longer unique and we have to compute
a shortest path in the dual graph that separates the boundaries. Vertices may even occur
multiple times in such a path; see the triangles crossed by the polygon in Figure 7d.

Given a boundary edge e with endpoints in R and U , we compute a sequence t1, . . . , tk of
important triangles that must be passed in this order by a minimum-link path (between the
two sides of e) that separates R and U . Our approach runs in two phases. Exploiting that
the reachable boundary is connected, the first phase traverses it starting from e. It assigns
indices to all edges in the triangulation incident to the reachable boundary, according to
the order in which they are traversed. In doing so, we distinguish both sides of edges; see
Figure 9. For consistency, sides of edges that are not traversed get the index ∞. During this
traversal, we also collect an ordered list of indices corresponding to separator edges in the
triangulation, i. e., edges with one endpoint in each R and U . Every separator edge in B is
traversed exactly once. Moreover, the minimum-link path must intersect these edges in the
same order (lest having unreachable components on both sides of the path).

The second phase uses this information to compute the actual sequence of important
triangles. This sequence must pass all separator edges exactly once and in increasing order of
their indices. Therefore, we obtain the sequence of important triangles by computing shortest
paths in the dual graph between pairs of consecutive separator edges. We maintain the index
of the next separator edge that was not traversed yet, initialized to the first element of the
list. Starting at the triangle t1 containing the first edge e, we add triangles to the sequence
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w(a)a

b0

πr
2

b2

Figure 10 The path πr
2 (blue) between the right endpoints of w(a) and b2 intersects itself; P ′0 is

shaded. Note that two unreachable vertices (black) are not connected to the remaining unreachable
boundary.

of important triangles until e is reached again. Let ti = uvw denote the previous triangle
appended to this sequence, and uv the edge shared by ti and ti−1 (if i = 1, let uv = e). We
determine the next important triangle ti+1; see Figure 9. We consider the possible next
triangles tuw containing the edge uw and tvw containing vw. Without loss of generality, let
the index of uw be lower than the index of vw (and thus, finite). This implies that uw is not
contained in the boundary of B. If both u and w are part of the reachable boundary, uw
separates B into two subregions; see Figure 9a. Thus, tuw is the next triangle if and only if
the subregion containing tuw contains a separator edge that was not passed yet. Therefore,
we continue with tuw if and only if the index of the other edge vw is higher than the index
of the next separator edge. If either u or w is part of the unreachable boundary, uw is the
next separator edge; see Figure 9b. We update the index of the next separator edge to the
next element in the according list. We continue until the first edge e is reached again. Note
that this second phase can be performed on-the-fly within FMLP.

To preserve correctness of FMLP, further modifications are necessary, as a path in the
hourglass may intersect itself. Figure 10 shows an example where the subpath of the right
shortest path πr

2 starting at edge b0 intersects the segment from the right endpoint of w(a)
to the right endpoint of b0. The last segment of the right shortest path πr

2 from w(a) to b2
is called visibility-intersecting, as it reaches into the area P ′0 visible from w(a). Visibility-
intersecting segments may lead to wrong results in certain cases [3]. However, one can
show that a segment is visibility-intersecting if and only if it intersects the previous window.
Moreover, it can safely be omitted from the shortest path computed by the algorithm without
affecting correctness. Thus, FMLP is restored with a simple additional intersection test. In
summary, our algorithm consists of two steps (traversing the reachable boundary, running a
modified version of FMLP), which clearly run in linear time. The resulting polygon has at
most OPT + 2 segments. We rearrange it at intersections to obtain the range polygon [3].

5 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3, and 256KiB of L2 cache.

Our graph is based on the road network of Western Europe, kindly provided by PTV AG
(ptvgroup.com). Edge lengths are set to given travel times. For EV range visualization, we
also consider energy consumption derived from a detailed micro-scale emission model [18].
Removing edges without reasonable energy consumption (e. g., due to missing elevation data),
we obtain a graph with 22 198 628 vertices and 51 088 095 edges. To improve spatial locality,
we reorder these vertices according to a vertex partition [5]. During preprocessing, the graph
is planarized (654 765 split edges, 293 741 dummy vertices) and triangulated.

ptvgroup.com
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Table 1 Computing isochrones and EV range for medium and long ranges. We report aver-
age figures for the number of components of the range polygon (Cp.), complexity of the range
polygon (Seg.), number of self-intersections (Int.), and running time of the algorithm in ms (Time).

Med. (16 kWh/ 60min) Long (85 kWh/ 500min)

Algorithm Cp. Seg. Int. Time Cp. Seg. Int. Time

E
V

R
an

ge RP-RC 41 19 396 — 4.50 131 92 554 — 9.46
RP-TS 69 610 — 4.30 219 1 973 — 7.78
RP-CU 41 561 — 10.15 131 1 820 — 25.11
RP-SI 41 549 4.79 7.52 131 1 781 15.06 22.25

Is
oc
hr
on

es RP-RC 53 22 458 — 4.75 231 238 123 — 20.25
RP-TS 151 1 076 — 4.65 694 4 981 — 14.96
RP-CU 53 913 — 12.11 231 4 208 — 65.09
RP-SI 53 881 9.95 8.70 231 4 055 45.80 51.94

We consider two scenarios, namely isochrones (i. e., travel time is the consumed resource)
and range visualization of an EV. For both, we evaluate queries of medium (60min and
16 kWh, respectively) and long ranges (500min and 85 kWh). We focus on Steps 2 to 4
outlined in Section 2, since implementation of the first step was examined in previous work [4].

Evaluating Queries. Table 1 shows results for the different scenarios. Each figure is the
average of 1 000 queries, with source vertices picked uniformly at random. For RP-SI, figures
are reported as-is after running FMLP (i. e., for polygons with self-intersections). Thus,
figures slightly change after resolving the intersections (both the number of components
and the complexity may increase). All approaches perform excellently in practice, with
timings of at most 65ms even for long ranges. The simpler algorithms, RP-RC and RP-TS are
faster by a factor of 2 to 5. On the other hand, range polygons generated by RP-RC have a
much higher complexity, exceeding the optimum by more than an order of magnitude. For
long ranges, polygons consist of more than 200 000 segments. This clearly justifies the use
of our novel algorithms. Besides a more appealing visualization, a significant decrease in
complexity enables fast rendering and more efficient transmission over mobile networks. The
heuristic RP-TS provides much better results in terms of complexity, but is still outperformed
by the other two approaches. Moreover, the triangular separation increases the number
of components (i. e., the number of holes) in the result by up to a factor of 3, while all
other approaches are optimal in this criterion. The two more involved approaches, RP-CU
and RP-SI, keep the complexity close to the optimum, so the additional effort clearly pays off.
Deriving lower bounds from the results of RP-SI, the average relative error of both RP-CU (at
most 7%) and RP-SI (4%) is negligible in practice. The number of intersections produced
by RP-SI is also rather low, but the majority of computed range polygons contains at least
one intersection. Isochrones are slightly harder to solve in all cases. For long-range queries,
this is due to larger border regions. Setting the resource limit to 500 minutes for isochrones
yields one of the hardest scenarios in our instance. For medium ranges, border region sizes
are similar in both scenarios. Here, differences in performance can be explained by different
shapes of the border regions: Isocontours representing the range of an EV typically have a
more circular shape (highways allow to move faster, but also consume more energy). On the
contrary, isochrones require more segments and yield more challenging scenarios.
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Table 2 Different phases (isochrones, 500min), showing average time (in ms) for border region
extraction (BE), connecting components (CC), range polygon computation with FMLP (RP), testing
for self-intersections (SI), and total time (Total).

Algo. BE CC RP SI Total

RP-RC 12.01 — — — 20.25
RP-TS — — 6.45 — 14.96
RP-CU 26.66 22.99 7.81 — 65.09
RP-SI 31.79 — 9.53 2.34 51.94
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Figure 11 Running times of all approaches subject to Dijkstra rank. Smaller ranks indicate
queries of shorter range. For each rank, we report results of 1 000 random queries.

Table 2 shows details on different phases of the algorithms for the hardest scenario
(isochrones, 500min). Step 2 (transferring input to the planar graph) is identical for all
approaches, taking 8.2ms on average (not reported in the table). Border region extraction
does not apply to RP-TS, where this is done implicitly. Since RP-RC extracts only the reachable
boundary, this takes less than half the time compared to RP-CU (the reachable boundary is
typically smaller). On the other hand, RP-SI spends most time in this step, since it runs on
the triangulated graph.

Despite its simplicity, extraction takes a major fraction of the total effort. This is due
to the size of the border regions (500 000 segments per query), while only parts of them
are visited in later phases. Consequently, connecting unreachable components takes less
time for RP-CU. Running FMLP is fastest for RP-TS, since it visits only important triangles.
The slowest approach in this phase is RP-SI, mostly because no artificial edges are added
to border regions (windows become longer on average, increasing the number of visited
triangles).
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Evaluating Scalability. Figure 11 analyzes scalability of our algorithms. We follow the
methodology of Dijkstra ranks [1], defined as the number of queue extractions performed
by Dijkstra’s algorithm in a shortest-path query. Higher ranks reflect harder queries. To
generate queries, we ran Dijkstra’s algorithm 1 000 times from sources chosen uniformly at
random. For a source s, consider the resource consumption c at the vertex extracted from
the queue in step 2i of the algorithm. We consider a query from s with range c as a query of
rank 2i. For each rank in {21, . . . , 2log |V |}, we obtain 1 000 queries this way.

Query times of all approaches increase with the Dijkstra rank, which correlates well
with the complexity of the border region. Scaling behavior is similar for all approaches: In
accordance with our theoretical findings, it increases linearly in the size of the border region
for queries beyond a rank of 212. For queries of lower rank, transferring the input to the
planar graph dominates running time (which is linear in the graph size). The approach RP-TS
is consistently the fastest on average for ranks beyond 216. Except for very few outliers,
query times are well below 100ms. For more local queries (i. e., smaller ranges), query times
are much faster (20ms and below if the rank is at most 220, corresponding to about a million
vertices visited by Dijkstra’s algorithm). Interestingly, the more expensive approaches have
a higher variance and produce more outliers, which is explained by their more complex
phases. For example, the performance of the BFS used in RP-CU heavily depends on how
close unreachable components of the border region are in the dual graph.

Minimum-Link Path Computation. In Table 3, we evaluate FMLP in the four main
scenarios (ranges for 16 kWh and 85 kWh batteries and isochrones for 60min and 500min). For
each of the 1 000 queries per scenario, we modified the largest border region such that |U | = 1
(using RP-CU). Then, we added an edge connecting the two remaining components and
computed a minimum-link path between its two sides. We also report figures for Suri’s
algorithm [26], which finds the next window starting from a window a by computing multiple
visibility polygons in the following way. Starting with the polygon bounding all important
triangles intersected by a, it doubles the number of important triangles until a triangle is
(partially) invisible from a. To obtain the window, a final visibility polygon is computed in
a polygon bounding the same set of important triangles together with all non-important
triangles whose closest important triangle (wrt. distance in the dual graph) belongs to this
set. The next window is an edge of this visibility polygon. While a fair comparison with
running times of Suri’s algorithm is beyond the scope of this work (as it requires an equally
tuned implementation), we provide implementation-independent measures. In particular, we
report the total number of visible triangles per query, in all polygons that require visibility
computation. A recent experimental study on visibility polygon computation [7] presents a
practical algorithm based on triangulations that processes only visible triangles, making this
figure a good indicator for running time of an efficient implementation of Suri’s algorithm.

Different scenarios in Table 3 represent certain levels of difficulty. As expected, the
number of segments of the resulting path and the running time of FMLP increase with the
complexity of the input. In all scenarios, Suri’s algorithm requires several thousand calls to
its subroutine for computing visibility polygons. The total number of segments in the input
of this subroutine is beyond 1.5 million for long-range isochrones, which even rules out their
explicit construction in practice. Additionally, the total number of triangles visited by Suri’s
algorithm (using the proposed subroutine [7]) is larger by a factor of 5 to 6. Moreover, we
argue that this factor is a rather conservative estimate on the resulting speedup: While the
workload per triangle is very low for FMLP, the proposed subroutine of Suri’s algorithm is
recursive and therefore possibly less cache efficient. Suri’s algorithm also requires additional
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Table 3 Average performance of minimum-link path algorithms. For each scenario, we report
complexity of the input polygon (|P |) and minimum number of links in resulting paths (Seg.). For
Suri’s algorithm [26], we show the number of computed visibility polygons (V. Pol.), the total number
of segments in the input for these computations (Pol. Seg.), and the total number of visible triangles
(Trng.). For FMLP, we provide the number of visited triangles (Trng.) and running time in ms.

Suri [26] FMLP

Scenario |P | Seg. V. Pol. Pol. Seg. Trng. Trng. Time

EV, 16 kWh 134 049 415 2 010 307 583 48 762 8 901 0.74
Iso, 60 min 135 112 700 3 413 320 244 57 549 11 250 1.05
EV, 85 kWh 357 335 1 328 6 442 850 293 178 574 31 657 3.17
Iso, 500 min 637 224 3 203 15 655 1 547 962 359 969 66 163 6.67

overhead for generating input polygons and determining the actual windows. Given its
simplicity, we conclude that FMLP is much more suitable for practical use. Even for input
consisting of more than half a million segments, it takes less than 7ms.

6 Conclusion

This work introduced algorithms for computing isocontours in large-scale road networks.
Following the objectives of exact results, low result complexity, and practical performance, we
presented three novel algorithms to compute near-optimal solutions in (almost) linear time.
Their key ingredient is a new linear-time algorithm for minimum-link paths in simple polygons,
making it the first practical approach to a problem well-studied in theory [21, 23, 24, 26].
Our experimental evaluation reveals that all approaches are fast enough for interactive
applications on inputs of continental scale.

There are multiple lines of future work. Extending our algorithms to the case |R| > 1 is
an open problem relevant for multi-source isocontours and multimodal networks [12]. For
aesthetic reasons, one could aim at avoiding long straight segments in the range polygon
(which are likely to occur in faces encompassing large areas corresponding to, e. g., big lakes or
mountains). Such constraints could be integrated by adding (during preprocessing) artificial
boundaries to faces whose area exceeds a certain threshold. Alternatively, one could further
reduce result complexity at the cost of inexact results. However, such methods should avoid
intersections between different components of the range polygon (i. e., maintain its topology),
and error measures should consider the graph-based distance from the source to parts of
the network that are classified incorrectly (since vertices close to each other wrt. Euclidean
distance may in fact be far apart in the graph).

Acknowledgements. We thank Roman Prutkin for interesting discussions.
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