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Abstract
The node degrees of large real-world networks often follow a power-law distribution. Such scale-
free networks can be social networks, internet topologies, the web graph, power grids, or many
other networks from literally hundreds of domains. The talk will introduce several mathematical
models of scale-free networks (e.g. preferential attachment graphs, Chung-Lu graphs, hyperbolic
random graphs) and analyze some of their properties (e.g. diameter, average distance, clustering).
We then present several algorithms and distributed processes on and for these network models
(e.g. rumor spreading, load balancing, de-anonymization, embedding) and discuss a number of
open problems. The talk assumes no prior knowledge about scale-free networks, distributed
computing or hyperbolic geometry.
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1 Short Review of Network Models

There are numerous models for large complex networks. The talk reviews some popular
scale-free random graph models. The most cited network model are preferential attachment
graphs by Barabási and Albert [2]. A bit more accessible for a formal analysis is the model
of graphs with fixed expected degree sequences by Chung and Lu [10]. Both models follow a
power-law degree distribution, but show only an extremely small clustering coefficient. Other
models like the small-world model by Watts and Strogatz [24] generate local clustering, but
do not converge to a power-law degree distribution.

There are a number of variations of the aforementioned models to generate graphs with
power-law degree distribution and local clustering, but most are very artificial and therefore
do not give an explanation why large networks typically show both properties. In the last
couple of years it has been observed that complex scale-free network topologies with high
clustering coefficients emerge naturally from hyperbolic metric spaces [23]. There seems
to be a close relationship between hyperbolic geometry and complex networks. This can
be explained by observing that the nodes of real-world networks can be often organized
hierarchically, in an approximate tree-like fashion. Based on this and other observations,
hyperbolic random graphs have been suggested in [23] and experimentally studied in [21].
Boguñá, Papadopoulos, and Krioukov [6] describe how hyperbolic mappings can be used to
improve internet routing. Hyperbolic networks seem to combine all desired features of real
networks in a natural model.
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2 Short Review of Algorithmic Results

The model of Chung and Lu [10] has been studied intensively. It has a giant connected
component that contains a linear fraction of the nodes [10] and ultra-short average distances
of O(log logn) [11, 12]. Algorithmically, these graphs have been examined in various contexts
like information dissemination [14], bootstrap percolation [1], de-anonymization [7], and
finding cliques [15]. Rumor spreading has also been studied on the preferential attachment
model [13, 9]. Graphs can be generated from both models in linear time [22, 3].

For hyperbolic random graphs, much less is known so far. Besides the power-law degree
distribution and high clustering [18, 21], the model generates larger cliques [16], polylogarith-
mic diameter [19, 17] and ultra-short average distances of order O(log logn) [8]. Hyperbolic
random graphs can be generated in linear time [8]. In quasilinear runtime it is also possible
to assign hyperbolic coordinates to large real-world graphs such that the hyperbolic metric
approximates the graph distance [5]. Depending on the exponent β of the power-law degree
distribution, the graphs have comparatively small separators and sublinear treewidth [4].
The model also allows fast bootstrap percolation [20].
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