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ABSTRACT
The most common representation in evolutionary compu-
tation are bit strings. This is ideal to model binary de-
cision variables, but less useful for variables taking more
values. With very little theoretical work existing on how
to use evolutionary algorithms for such optimization prob-
lems, we study the run time of simple evolutionary algo-
rithms on some OneMax-like functions defined over Ω =
{0, 1, . . . , r − 1}n. More precisely, we regard a variety of
problem classes requesting the component-wise minimiza-
tion of the distance to an unknown target vector z ∈ Ω.

For such problems we see a crucial difference in how we
extend the standard-bit mutation operator to these multi-
valued domains. While it is natural to select each position of
the solution vector to be changed independently with prob-
ability 1/n, there are various ways to then change such a
position. If we change each selected position to a random
value different from the original one, we obtain an expected
run time of Θ(nr logn). If we change each selected posi-
tion by either +1 or −1 (random choice), the optimization
time reduces to Θ(nr+n logn). If we use a random mutation
strength i ∈ {0, 1, . . . , r−1}n with probability inversely pro-
portional to i and change the selected position by either +i
or −i (random choice), then the optimization time becomes
Θ(n log(r)(log(n) + log(r))), bringing down the dependence
on r from linear to polylogarithmic.

One of our results depends on a new variant of the lower
bounding multiplicative drift theorem.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems
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1. INTRODUCTION
In evolutionary computation, taking ideas both from com-

puter science and biology, often search and optimization
problems are modeled in a way that the solution candi-
dates are fixed-length strings over the alphabet consisting of
0 and 1. In other words, the search space Ω is chosen to be
{0, 1}n for some positive integer n. Such a representation of
solution candidates is very suitable to model binary decision
variables. For example, when searching for graph substruc-
tures like large cliques, (degree-constrained) spanning trees,
or certain matchings, we can use binary decision variables
describing whether a vertex or an edge is part of the solution
or not. For these reasons, the bit string representation is the
most prominent one in evolutionary computation.

When a problem intrinsically consists of other types of
decision variables, the algorithm designer has the choice to
either work with a different representation (e.g., permuta-
tions in the traveling salesman problem) or to re-model the
problem using a bit string representation. For an example
for the latter, see, e.g., [8], where the Eulerian cycle problem
(asking for a permutation of the edges) was re-modeled as
a matching problem. In general, such a re-modeling may
not lead to an efficient or a natural approach, and it may
be better to work with a representation different from bit
strings. The traveling salesman problem is an example for
such a situation.

While in this work we shall not deal with the difficulties
of treating permutation search spaces in evolutionary com-
putation, we shall try to extend our good understanding
of the bit string representation to representations in which
the decision variables can take more values than just zero
and one. Consequently, we shall work with search spaces
Ω = {0, . . . , r − 1}n. Such search spaces are a natural rep-
resentation when each decision variable can take one out
of r values. Examples from the evolutionary computation
literature include scheduling n jobs on r machines, which
naturally leads to the search space {0, . . . , r − 1}n, see Gu-
nia [13]. However, also rooted trees lead to this type of rep-
resentation: Since each vertex different from the root has a
unique predecessor in the tree, a rooted tree on n vertices
can be represented via an element of {0, . . . , n−1}n−1. This
was exploited in [24] to design evolutionary algorithms for
shortest-path problems.

An alternative representation would be to code each value
in log r bits, leading to a search space of {0, 1}n log r. How-
ever, this representation has the weakness that search points
with similar fitness can be vastly different (the bit repre-
sentations 10 . . . 0 and 01 . . . 1 code almost the same value,
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but are complementary); this trap-like behavior can lead to
a very poor performance on some OneMax functions (see
Section 1.2 for a formal defintion).

1.1 Mutation Operators for Multi-Valued
Search Spaces

A first question, and our main focus in this work, is
what mutation operators to use in such multi-valued search
spaces. When there is no particular topology in the compo-
nents i ∈ [1..n] := {1, . . . , n}, that is, in the factors [0..r−1],
then the natural analogue of the standard-bit mutation op-
erator is to select each component i ∈ [1..n] independently
and mutate the selected components by changing the current
value to a random other value in [0..r − 1]. This operator
was used in [13,24] as well as in the theoretical works [9,12].

When the decision values 0, 1, . . . , r− 1 carry more mean-
ing than just denoting alternatives without particular topol-
ogy, then one may want to respect this in the mutation op-
erator. We shall not discuss the most general set-up of a
general distance matrix defined on the values 0, 1, . . . , r− 1,
but assume that they represent linearly ordered alternatives.

Given such a linear topology, several other mutation op-
erators suggest itself. We shall always imitate the principle
of standard-bit mutation that each component i ∈ [1..n]
is changed independently with probability 1/n, so the only
point of discussion is how such an elementary change looks
like. The principle that mutation is a minimalistic change
of the individual suggests to alter a selected component ran-
domly by +1 or −1 (for a precise definition, including also
a description of how to treat the boundary cases, see again
Section 2). We say that this mutation operator has a muta-
tion strength equal to one. Naturally, a mutation strength of
one carries the risk of being slow—it takes r−1 such elemen-
tary mutations to move one component from one boundary
value, say 0, to the other, say r − 1.

In this language, the previously discussed mutation op-
erator changing a selected component to a new value cho-
sen uniformly at random can (roughly) be described as hav-
ing a mutation strength chosen uniformly at random from
[1..r − 1]. While this operator does not have the disadvan-
tage of moving slowly through the search space, it does have
the weakness that reaching a particular target is slow, even
when already close to it.

Based on these (intuitive, but we shall make them pre-
cise later) observations, we propose an elementary mutation
that takes a biased random choice of the mutation strength.
We give more weight to small steps than the uniform op-
erator, but do allow larger jumps with certain probability.
More precisely, in each elementary mutation independently
we choose the mutation strength randomly such that a jump
of +j or −j occurs with probability inversely proportional
to j (and hence with probability Θ((j log r)−1)). This dis-
tribution was used in [2] and is called harmonic distribution,
aiming at overcoming the two individual weaknesses of the
two operators discussed before and, as we shall see, this does
indeed work.

1.2 Run time Analysis of Multi-Valued One-
Max Functions

To gain a more rigorous understanding of the working
principles of the different mutations strengths, we conduct
a mathematical run time analysis for simple evolutionary
algorithms on multi-valued analogues of the OneMax test

function. Comparable approaches have been very success-
ful in the past in studying in isolation particular aspects of
evolutionary computation, see, e.g., [16]. Also, many obser-
vations first made in such simplistic settings have later been
confirmed for more complicated algorithms (see, e.g., [1]) or
combinatorial optimization problems (see, e.g., [22]).

On bit strings, the classic OneMax test function is de-
fined by Om : {0, 1}n → R; (x1, . . . , xn) 7→

∑n
i=1 xi. Due to

the obvious symmetry, for most evolutionary algorithms it
makes no difference whether the target is to maximize or to
minimize this function. For several reasons, among them the
use of drift analysis, in this work it will be more convenient
to always assume that our target is the minimization of the
given objective function.

The obvious multi-valued analogue of this OneMax func-
tion is Om : {0, 1, . . . , r − 1}n → R;x 7→

∑n
i=1 xi, how-

ever, a number of other functions can also be seen as multi-
valued analogues. For example, we note that in the bit
string setting we have Om(x) = H(x, (0, . . . , 0)), where
H(x, y) := |{i ∈ [1..n] | xi 6= yi}| denotes the Ham-
ming distance between two bit strings x and y. Defining
fz : {0, 1}n → R;x 7→ H(x, z) for all z ∈ {0, 1}n, we ob-
tain a set of 2n objective functions that all have an isomor-
phic fitness landscape. Taking this route to define multi-
valued analogue of OneMax functions, we obtain the class
of functions fz : {0, 1, . . . , r − 1}n 7→ R;x 7→

∑n
i=1 |xi − zi|

for all z ∈ {0, 1, . . . , r − 1}n, again with f(0,...,0) being the
OneMax function defined earlier. Note that these objec-
tive functions do not all have an isomorphic fitness land-
scape. The asymmetry with respect to the optimum z can
be overcome by replacing the classic distance |xi − zi| in
the reals by the distance modulo r (ring distance), that is,
min{xi−(zi−r), |xi−zi|, (zi+r)−xi}, creating yet another
non-isomorphic fitness landscape. All results we show in the
following hold for all these objective functions.

As evolutionary algorithm to optimize these test func-
tions, we study the (1+1) evolutionary algorithm (EA). This
is arguably the most simple evolutionary algorithm, how-
ever, many results that could first only be shown for the
(1 + 1) EA could later be extended to more complicated al-
gorithms, making it an ideal instrument for a first study of
a new subject. Naturally, to study mutation operators we
prefer mutation-based EAs. For the different ways of setting
the mutation strength, we conduct a mathematical run time
analysis, that is, we prove bounds on the expected number
of iterations the evolutionary algorithm needs to find the
optimal solution. This optimization time today is one of
the most accepted performance measures for evolutionary
algorithms.

1.3 Previous Works and Our Results
In particular for the situation that r is large, one might

be tempted to think that results from continuous optimiza-
tion can be helpful. So far, we were not successful in this
direction. A main difficulty is that in continuous optimiza-
tion, usually the asymptotic rate of convergence is regarded.
Hence, when operating with a fixed r in our setting and re-
scaling things into, say, {0, 1

r
, 2
r
, . . . , 1}n, then these results,

due to their asymptotic nature, could become less mean-
ingful. For this reason, the only work in the continuous
domain that we found slightly resembling ours is by Jägers-
küpper (see [15] and the references therein), which regards
continuous optimization with an a-priori fixed target preci-
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sion. However, the fact that Jägersküpper regards approxi-
mations with respect to the Euclidean norm (in other words,
minimization of the sphere function) makes his results hard
to compare to ours, which can be seen as minimization of
the 1-norm.

Coming back to the discrete domain, as said above, the
vast majority of theoretical works on evolutionary computa-
tion work with a bit string representation. A notable excep-
tion is the work on finding shortest path trees (e.g., [24]);
however, in this setting we have that the dimension and the
number r of values are not independent: one naturally has
r equal to the dimension, because each of the n − 1 non-
root vertices has to choose one of the n− 1 other vertices as
predecessor.

Therefore, we see only three previous works that are
comparable to ours. The first two regard the optimiza-
tion of linear functions via the (1 + 1) EA using muta-
tion with uniform strength, that is, resetting a component
to a random other value. The main result of [9] is that
the known run time bound of O(n logn) on linear func-
tions defined on bit strings remains valid for the search
space {0, 1, 2}n. This was extended and made more precise
in [12], where for r-valued linear functions an upper bound
of (1 + o(1))e(r− 1)n ln(n) +O(r3n log log n) was shown to-
gether with a (1 + o(1))n(r − 1) ln(n) lower bound.

A third paper considers dynamically changing fitness func-
tions [18]. They also consider OneMax functions with dis-
tance modulo r, using ±1 mutation strength. In this set-
ting the fitness function changed over time and the task was
to track it as closely as possible, which the ±1 mutation
strength can successfully do. Note that a seemingly similar
work on the optimization of a dynamic variant of the maze
function over larger alphabets [20] is less comparable to our
work since there all non-optimal values of a decision variable
contribute the same to the fitness function.

Compared to these works, we only regard the easier
static OneMax problem (note though that there are several
ways to define multi-valued OneMax functions), but obtain
tighter results also for larger values of r and for three differ-
ent mutation strengths. For the uniform mutation strength,
we show a tight and precise (1+o(1))e(r−1)n ln(n) run time
estimate for all values of r (Section 4). For the cautious ±1
mutation strength, the run time becomes Θ(n(r + log n)),
that is, still (mostly) linear in r (Section 5). The harmonic
mutation strength overcomes this slowness and gives a run
time of Θ(n log(r)(log(r)+log(n))), which for most values of
r is significantly better than the previous bound (Section 6).

All analyses rely on drift methods, for the lower bound for
the case of uniform mutation strength we prove a variant of
the multiplicative drift lower bound theorem [25] that does
not need the restriction that the process cannot go back to
inferior search points (see Section 4.2.2).

For reasons of space, several proofs had to be omitted in
this extended abstract. They can be found in [5].

2. ALGORITHMS AND PROBLEMS
In this section we define the algorithms and problems con-

sidered in this paper. We let [r] := {0, 1, . . . , r − 1} and
[1..r] := {1, 2, . . . , r}. For a given search space Ω, a fitness
function is a function f : Ω → R. While a frequently an-
alyzed search space is Ω = {0, 1}n, we will consider in this
paper Ω = [r]n.

We define the following two metrics on [r], called interval-

metric and ring-metric, respectively. The intuition is that
the interval metric is the usual metric induced by the met-
ric on the natural numbers, while the ring metric connects
the two endpoints of the interval (and, thus, forms a ring).
Formally we have, for all a, b ∈ [r],

dint(a, b) = |b− a|;
dring(a, b) = min{|b− a|, |b− a+ r|, |b− a− r|}.

We consider different step operators v : [r] → [r] (possi-
bly randomized). These step operators will later decide the
update of a mutation in a given component. Thus we call,
for any given x ∈ [r], d(x, v(x)) the mutation strength. We
consider the following step operators.
(1) The uniform step operator chooses a different element
from [r] uniformly at random; thus we speak of a uniform
mutation strength.
(2) The±1 operator chooses to either add or subtract 1, each
with probability 1/2; this operator has a mutation strength
of 1.
(3) The Harmonic operator makes a jump of size j ∈ [r]
with probability proportional to 1/j, choosing the direction
uniformly at random; we call its mutation strength harmonic
mutation strength.

Note that, in the case of the ring-metric, all steps are
implicitly considered with wrap-around. For the interval-
metric, we consider all steps that overstep a boundary of the
interval as invalid and discard this mutation as infeasible.
Note that this somewhat arbitrary choice does not impact
the results in this paper.

We consider the algorithms RLS and (1 + 1) EA as given
by Algorithms 1 and 2. Both algorithms sample an initial
search point from [r]n uniformly at random. They then pro-
ceed in rounds, each of which consists of a mutation and
a selection step. Throughout the whole optimization pro-
cess the algorithms maintain a population size of one, and
the individual in this population is always the most recently
sampled best-so-far solution. The two algorithms differ only
in the mutation operation. While the RLS makes a step
in exactly one position (chosen uniformly at random), the
(1 + 1) EA makes, in each position, a step with probability
1/n.

The fitness of the resulting search point y is evaluated and
in the selection step the parent x is replaced by its offspring
y if and only if the fitness of y is at least as good as the
one of x. Since we consider minimization problems here,
this is the case if f(y) ≤ f(x). Since we are interested
in expected run times, i.e., the expected number of rounds
it takes until the algorithm evaluates for the first time a
solution of minimal fitness, we do not specify a termination
criterion. For the case of r = 2, the two algorithms are
exactly the classic Algorithms RLS and (1 + 1) EA, for all
three given step operators (which then degenerate to the flip
operator, which flips the given bit).

Note that the algorithms with the considered topologies
are unbiased in the general sense of [23] (introduced for
{0, 1}n by Lehre and Witt [19] and made specific for sev-
eral combinatorial search spaces in [11]).

Let d be either the interval- or the ring-metric and let
z ∈ [r]n. We can define a straightforward generalization of
the OneMax fitness function as

∑n
i=1 d(xi, zi). Whenever

we refer to an r-valued OneMax function, we mean any
such function. We refer to d as the metric of the OneMax
function and to z as the target of the OneMax function.
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Algorithm 1: RLS minimizing a function f : [r]n → R
with a given step operator v.

1 Initialization: Sample x ∈ [r]n uniformly at random
and query f(x);

2 Optimization: for t = 1, 2, 3, . . . do
3 Choose i ≤ n uniformly at random;
4 for j = 1, . . . , n do
5 if j = i then yj ← v(xj);
6 else yj ← xj ;

7 Evaluate f(y);
8 if f(y) ≤ f(x) then x← y;

Algorithm 2: The (1 + 1) EA minimizing a function
f : [r]n → R with a given step operator v.

1 Initialization: Sample x ∈ [r]n uniformly at random
and query f(x);

2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , n do
4 With probability 1/n set yi ← v(xi) and set

yi ← xi otherwise;

5 Evaluate f(y);
6 if f(y) ≤ f(x) then x← y;

3. DRIFT ANALYSIS
A central tool in our proofs is drift analysis, which com-

prises a number of tools to derive bounds on hitting times
from bounds on the expected progress a process makes to-
wards the target. It was first used in evolutionary computa-
tion by He and Yao [14] and is now, after a large number of
subsequent works, probably the most powerful tool in run
time analysis. We briefly introduce the necessary tools.

We phrase the following results in the language that we
have some random process, either in the real numbers or
in some other set Ω, but then equipped with a potential
function g : Ω → R. We are mostly interested in the time
the process (or its potential) needs to reach 0.

Multiplicative drift is the situation that the progress is
proportional to the distance from the target. This quite
common situation in run time analysis was first framed into
a drift theorem, namely the following one, in [10]. A more
direct proof of this results, that also gives large deviation
bounds, was later given in [7].

Theorem 1 (from [10]). Let X(0), X(1), . . . be a random
process taking values in S := {0} ∪ [smin,∞) ⊆ R. Assume

that X(0) = s0 with probability one. Assume that there is a
δ > 0 such that for all t ≥ 0 and all s ∈ S with Pr[X(t) =

s] > 0 we have E[X(t+1)|X(t) = s] ≤ (1 − δ)s. Then T :=

min{t ≥ 0 | X(t) = 0} satisfies E[T ] ≤ ln(s0/smin)+1
δ

.

It is easy to see that the upper bound above cannot im-
mediately be matched with a lower bound of similar order
of magnitude. Hence it is no surprise that the only lower
bound result for multiplicative drift, the following theorem
by Witt [25], needs two additional assumptions, namely that
the process does not move away from the target and that it
does not too often make large jumps towards the target. We
shall see later (Theorem 7) that the first restriction can be
removed under not too strong additional assumptions.

Theorem 2 (from [25]). Let X(t), t = 0, 1, . . . be random
variables taking values in some finite set S of positive num-
bers with min(S) = 1. Let X(0) = s0 with probability one.

Assume that for all t ≥ 0, Pr[X(t+1) ≤ X(t)] = 1. Let
saim ≥ 1. Let 0 < β, δ ≤ 1 be such that for all s > saim and
all t ≥ 0 with Pr[X(t) = s] > 0, we have

E[X(t) −X(t+1) | X(t) = s] ≤ δs,

Pr[X(t) −X(t+1) ≥ βs | X(t) = s] ≤ βδ

ln(s)
.

Then T := min{t ≥ 0 | X(t) ≤ saim} satisfies E[T ] ≥
ln(s0)−ln(saim)

δ
1−β
1+β

.

In situations in which the progress is not proportional to
the distance, but only monotonically increasing with it, the
following variable drift theorem of Johannsen [17] can lead
to very good results. Another version of a variable drift
theorem can be found in [21, Lemma 8.2].

Theorem 3 (from [17]). Let X(t), t = 0, 1, . . . be random
variables taking values in some finite set S of non-negative
numbers. Assume 0 ∈ S and let xmin := min(S \ {0}). Let

X(0) = s0 with probability one. Let T := min{t ≥ 0 | X(t) =
0}. Suppose that there exists a continuous and monoton-
ically increasing function h : [xmin, s0] → R>0 such that

E[X(t) −X(t+1)|X(t)] ≥ h(X(t)) holds for all t < T . Then

E[T ] ≤ xmin

h(xmin)
+

∫ s0

xmin

1

h(x)
dx.

4. MUTATION STRENGTH CHOSEN UNI-
FORMLY AT RANDOM

In this section, we analyze the mutation operator with
uniform mutation strength, that is, if the mutation operator
chooses to change a position, it resets the current value to
a different value chosen independently (for each position)
and uniformly at random. We shall prove the same results,
tight apart from lower order terms, for all r-valued OneMax
functions defined in Section 2. Let f be one such objective
function and let z be its target.

When regarding a single component xi of the solution vec-
tor, it seems that replacing a non-optimal xi by some yi
that is closer to the target, but still different from it, gains
us some fitness, but does not lead to a structural advantage
(because we still need an elementary mutation that resets
this value exactly to the target value zi). This intuitive
feeling is correct for RLS and not correct for the (1+1) EA.

4.1 RLS with Uniform Mutation Strength
For RLS, we turn the above intuition into the potential

function g : [r]n → R;x 7→ H(x, z) = |{i ∈ [1..n] | xi 6= zi}|,
the Hamming distance, which counts the number of non-
optimal positions in the current solution x. We get both an
upper and a lower bound on the drift in this potential which
allow us to apply multiplicative drift theorems. From that
we get the following result.

Theorem 4. Let f be any r-valued OneMax function with
target z ∈ [r]n. Then randomized local search (RLS) with
uniform mutation strength has an optimization time T sat-
isfying E[T ] = n(r − 1)(ln(n) + Θ(1)).

If x0 denotes the random initial individual, then for all
x ∈ [r]n we have E[T |x0 = x] = n(r− 1)HH(x,z), where, for

1118



any positive integer k, we let Hk :=
∑k
j=1 1/j denote the

k-th Harmonic number.

4.2 The (1+1) EA with Uniform Mutation
Strength

We now consider the same run time analysis problem for
the (1 + 1) EA, that is, instead of selecting a single random
entry of the solution vector and applying an elementary mu-
tation to it, we select each entry independently with proba-
bility 1/n and mutate all selected entries. Our main result
is the following.

Theorem 5. For any r-valued OneMax function, the
(1 + 1) EA with uniform mutation strength has an expected
optimization time of E[T ] = e(r − 1)n ln(n) + o(nr logn).

As we will see, since several entries can be changed in one
mutation step, the optimization process now significantly
differs from the RLS process. This has two important con-
sequences. First, while for the RLS process the Hamming
distance of the current search point precisely determined
the expected remaining optimization time, this is not true
anymore for the (1 + 1) EA. This can be seen (with some
mild calculations which we omit here) from the search points
x = (r, 0, . . . , 0) and y = (1, 0, . . . , 0) and the fitness function
f defined by f(x) =

∑n
i=1 x0.

The second, worse, consequence is that the Hamming dis-
tance does not lead to a positive drift from each search point.
Consider again x = (r, 0, . . . , 0) and f as above. Denote by
x′ the search point after one mutation-selection cycle started
with x. Let g be the Hamming distance to the optimum x∗ =
(0, . . . , 0) of f . Then for r ≥ 5, the drift from the search
point x satisfies E[g(x)− g(x′)] ≤ −(1± o(1)) r−4

2e(r−1)n
< 0.

Indeed, we have g(x′) = 0, that is, g(x) − g(x′) = 1, with
probability (1−1/n)n−1(1/n)(1/(r−1)) = (1±o(1)) 1

e(r−1)n
.

This is the only event that gives a positive drift. On the
other hand, with probability at least

(1− 1/n)n−2(n− 1)(1/n2)(1 + 2 + · · ·+ (r − 2))/(r − 1)2

= (1± o(1))
r − 2

2e(r − 1)n
,

the mutation operator touches exactly the first and one other
entry of x and does so in a way that the first entry does not
become zero and the second entry remains small enough for
x′ to be accepted. This event leads to a drift of −1, showing
the claim.

For these reasons, we resort to the actual fitness as poten-
tial function in our upper bound proof. It is clear that the
fitness also is not a perfect measure for the remaining opti-
mization time (compare, e.g., the search points (2, 0, . . . , 0)
and (1, 1, 0, . . . , 0)), but naturally we have a positive drift
from each non-optimal search point, which we shall exploit
via the variable drift theorem. For the lower bound, a wors-
ening of the Hamming distance in the optimization process
is less of a problem, since we only need an upper bound for
the drift. Hence for the lower bound, we can use multiplica-
tive drift with g again. However, since the process may move
backwards occasionally, we cannot apply Witt’s lower bound
drift theorem (Theorem 2), but have to prove a variant of it
that does not require that the process only moves forward.
This lower bound theorem for multiplicative drift might be
of interest beyond this work.

4.2.1 An Upper Bound for the Run Time

Theorem 6. For any r-valued OneMax function f , the
(1 + 1) EA with uniform mutation strength has an expected
optimization time of

E[T ] ≤ e(r − 1)n ln(n) + (2 + ln(2))e(r − 1)n

= e(r − 1)n ln(n) +O(rn).

Proof. Let z be the optimum of f . Then f can be written
as f(x) =

∑n
i=1 d(xi, zi), where d is one of the distance

measures on [r] that were described in Section 2. Let x
be a fixed search point and y be the result of applying one
mutation and selection step to x. We use the short-hand
di := d(xi, zi). We first show that

∆ := f(x)− E[f(y)] ≥ 1

2e(r − 1)n

n∑
i=1

di(di + 1). (1)

Indeed, f(x) − f(y) is always non-negative. Consequently,
it suffices to point out events that lead to the claimed drift.
With probability (1−(1/n))n−1 ≥ (1/e), the mutation oper-
ator changes exactly one position of x. This position then is
uniformly distributed in [1..n]. Conditional on this position

being i, we have ∆ ≥
∑di
δ=1 δ/(r − 1) = di(di+1)

2(r−1)
, where the

first inequality uses the fact that all our fitness functions are
of the type that if there is a value xi ∈ [r] with d(xi, zi) = k,
then for each j ∈ [0..k−1] there is at least one value yi ∈ [r]
such that d(yi, zi) = j. This shows (1).

For any d ≥ 1, we have d(d+ 1) ≥ 2d and d(d+ 1) ≥ d2.
Also, the mapping d 7→ d2 is convex. Consequently, we have
∆ ≥ 1

2e(r−1)n2 f(x)2 and ∆ ≥ 1
e(r−1)n

f(x), that is, ∆ ≥
max{ 1

2e(r−1)n2 f(x)2, 1
e(r−1)n

f(x)}. To this drift expression,

we apply Johannsen’s [17] variable drift theorem (Theo-
rem 3). Let S = [0..(r−1)n]. Let h : R>0 → R>0 be defined
by h(s) = 1

2e(r−1)n2 s
2 for s ≥ 2n and h(s) = 1

e(r−1)n
s for

s < 2n. Then h is a continuous increasing function satisfy-
ing ∆ ≥ h(f(x)). Consider the process X0, X1, . . . with Xt
describing the fitness after the tth iteration. Given that we
start with a fitness of X0, Johannsen’s drift theorem gives

E[T ] ≤ 1

h(1)
+

∫ X0

1

1

h(s)
ds

= e(r − 1)n+

∫ X0

2n

2e(r − 1)
n2

s2
ds+

∫ 2n

1

e(r − 1)
n

s
ds

≤ e(r−1)n+ 2e(r−1)n2

(
1

2n
− 1

X0

)
+ e(r−1)n ln(2n)

≤ e(r − 1)n ln(n) + (1 + 1 + ln(2))e(r − 1)n.

We may remark that the drift estimate above is pes-
simistic in that it applies to all r-valued OneMax func-
tions. For an r-valued OneMax function using the ring
metric or one having the optimum close to (r/2, . . . , r/2),
we typically have two different bit values in each posi-
tive distance from zi. In this case, the drift stemming
from exactly position i being selected for mutation is ∆ ≥
di/(r − 1) +

∑di−1
δ=1 2δ/(r − 1) =

d2i
r−1

, that is, nearly twice
the value we computed above. The fact that in the follow-
ing subsection we prove a lower bound matching the above
upper bound for all r-valued OneMax functions shows that
this, almost twice as high, drift has an insignificant influence
on the run time.
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4.2.2 A Lower Bound for the Run Time
In this section, we write (q)+ := max{q, 0} for any q ∈ R.

We aim at proving a lower bound, again via drift analysis,
that is, via transforming an upper bound on the expected
progress (with respect to a suitable potential function) into
a lower bound on the expected run time. Since we only need
an upper bound on the progress, we can again (as in the RLS
analysis) work with the Hamming distance g(x) = H(x, z) to
the optimum z as potential and, in the upper estimate of the
drift, ignore the fact that this potential may increase. The
advantage of working with the Hamming distance is that
the drift computation is easy and we observe multiplicative
drift, which is usually convenient to work with.

We have to overcome one difficulty, though, and this is
that the only known lower bound theorem for multiplicative
drift (Theorem 2) requires that the process does not move
away from the target, in other words, that the g-value is non-
increasing with probability one. As discussed above, we do
not have this property when using the Hamming distance as
potential in a run of the (1+1) EA. We solve this problem by
deriving from Theorem 2 a drift theorem (Theorem 7 below)
that gives lower bounds also for processes that may move
away from the optimum. Compared to Theorem 2, we need
the stronger assumptions (i) that we have a Markov process

and (ii) that we have bounds not only for the drift g(X(t))−
g(X(t+1)) or the positive part (g(X(t)) − g(X(t+1)))+ of it,

but also for the positive progress (s− g(t+1))+ with respect

to any reference point s ≤ g(X(t)). This latter condition is
very natural. In simple words, it just means that we cannot
profit from going back to a worse (in terms of the potential)
state of the Markov chain.

A second advantage of these stronger conditions (besides
allowing the analysis of non-decreasing processes) is that
we can easily ignore an initial segment of the process (see
Corollary 8). This is helpful when we encounter a larger
drift in the early stages of the process. This phenomenon is
often observed, e.g., in Lemma 6.7 of [25]. Previous works,
e.g., [25], solved the problem of a larger drift in the early
stage of the process by manually cutting off this phase. This
requires again a decreasing process (or conditioning on not
returning to the region that has been cut off) and an extra
argument of the type that the process with high probability
reaches a search point with potential in [s̃0, 2s̃0] for a suitable
s̃0. So it is safe to say that Corollary 8 is a convenient way
to overcome these difficulties.

We start by proving our new drift results, then compute
that the Hamming distance to the optimum satisfies the as-
sumptions of our drift results, and finally state and prove
the precise lower bound.

Theorem 7. (multiplicative drift, lower bound,

non-decreasing process) Let X(t), t = 0, 1, . . . be a
Markov process taking values in some set Ω. Let S ⊂ R
be a finite set of positive numbers with min(S) = 1. Let

g : Ω → S. Let g(X(0)) = s0 with probability one. Let

saim ≥ 1. Let T := min{t ≥ 0 | g(X(t)) ≤ saim} be the
random variable describing the first point in time for which
g(X(t)) ≤ saim.

Let 0 < β, δ ≤ 1 be such that for all ω ∈ Ω, all saim < s ≤
g(ω), and all t ≥ 0 with Pr[X(t) = ω] > 0, we have

E[(s− g(X(t+1)))+ | X(t) = ω] ≤ δs,

Pr[s− g(X(t+1)) ≥ βs | X(t) = ω] ≤ βδ

ln(s)
.

Then

E[T ] ≥ ln(s0)− ln(saim)

δ

1− β
1 + β

≥ ln(s0)− ln(saim)

δ
(1− 2β).

The proof follows from an application of Witt’s drift
theorem (Theorem 2) to the random process Y (t) :=

min{g(X(τ)) | τ ∈ [0..t]}.

Corollary 8. Assume that the assumptions of Theorem 7
are satisfied, however with δ replaced by δ(s) for some func-
tion δ : S → (0, 1]. Then for any saim < s̃0 ≤ s0, we have

E[T ] ≥ ln(s̃0)− ln(saim)

δmax(s̃0)
(1− 2β),

where δmax(s̃0) := max{δ(s) | saim < s ≤ s̃0}.

Proof. Let S̃ := S ∩ [0, s̃0]. Let g̃ : Ω → S̃;ω 7→
min{s̃0, g(ω)}. Let ω ∈ Ω, saim < s ≤ g̃(ω), and t be such

that Pr[X(t) = ω] > 0. Then

E[(s− g̃(X(t+1)))+ | X(t) = ω]

= E[(s− g(X(t+1)))+ | X(t) = ω]

≤ δ(s)s ≤ δmax(s̃0)s

by the assumptions of Theorem 7 and s ≤ s̃0. Similarly,

Pr[s− g̃(X(t+1)) ≥ βs | X(t) = ω]

= Pr[s− g(X(t+1)) ≥ βs | X(t) = ω]

≤ βδ(s)

ln(s)
≤ βδmax(s̃0)

ln(s)
.

Hence we may apply Theorem 7 to (S̃, s̃0, g̃, δmax(s̃0)) in-
stead of (S, s0, g, δ) and obtain the claimed bound.

We are now ready to give the main result of this section.

Theorem 9. For any r-valued OneMax function, the
(1 + 1) EA with uniform mutation strength has an expected
optimization time of

E[T ] ≥ e(r − 1)n (ln(n)− 6 ln ln(n)) (1−O(1/ ln(n)))

≥ e(r − 1)n ln(n)−O((r − 1)n ln ln(n)).

5. UNIT MUTATION STRENGTH
In this section we regard the mutation operator that ap-

plies only ±1 changes to each component.
It is not very surprising that RLS with the ±1 variation

operator needs Θ(n(r + logn)) fitness evaluations in expec-
tation to optimize any r-valued OneMax function. We give
the full proof below since it is similar to the analysis of the
(1 + 1) EA equipped with the ±1 variation operator. The
proof makes use of the following observation. There are two
extreme kinds of individuals with fitness n. The first kind
is only incorrect in one position (by an amount of n); the
second kind is incorrect in every position (by an amount
of 1). The first kind of individual is hard to improve (the
deficient position has to be chosen for variation), while the
second kind is very easy to improve (every position allows
for improvement). We reflect this in our choice of potential
function by giving each position a weight exponential in the
amount that it is incorrect, and then sum over all weights.
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Theorem 10. The expected optimization time of RLS with
the ±1 variation operator is Θ(n(r+logn)) for any r-valued
OneMax function.

Proof. The lower bound Ω(nr) is quite immediate: with
probability 1/2 we start in a search point of fitness at most
nr/2 and in each step the algorithm increases the fitness by
at most one. On the other hand, there is a coupon collector
effect which yields the Ω(n logn) lower bound. Indeed, it is
well-known that this is the expected number of RLS itera-
tions that we need in case of r = 2, and larger values of r
will only delay optimization.

We now turn to the more interesting upper bound. Let
any r-valued OneMax function be given with metric d and
target z. We want to employ a multiplicative drift theorem
(see Theorem 1). We measure the potential of a search point
by the following drift function. For all x ∈ Ω = [r]n, let

g(x) :=

n∑
i=1

(wd(zi,xi) − 1), (2)

where w := 1 + ε is an arbitrary constant between 1 and 2.
In fact, for the analysis of RLS we can simply set w := 2
but since we want to re-use this part in the analysis of the
(1 + 1) EA, we prefer the more general definition here.

We regard how the potential changes on average in one
iteration. Let x denote the current search point and let
y denote the search point that we obtain from x after one
iteration of RLS (after selection). Clearly, we have that each
position is equally likely to be selected for variation. When
a non-optimal component i is selected, then the probability
that yi is closer to zi than xi is at least 1/2, while for every
already optimized component we will not accept any move of
RLS (thus implying yi = xi). This shows that, abbreviating
di := d(zi, xi) for all i ∈ [1..n], and denoting by O := {i ∈
[1..n] | xi = zi} the set of already optimized bits,

E[g(x)− g(y) | x] = 1
2n

∑
i∈[1..n]\O

(
(wdi − 1)− (wdi−1 − 1)

)
= 1

2n

∑
i∈[1..n]\O

(1− 1
w

)wdi ≥ 1
2n

(1− 1
w

)
∑

i∈[1..n]

(wdi − 1)

= 1
2n

(1− 1
w

)g(x).

Furthermore, the maximal potential that a search point
can obtain is at most nwr. Plugging all this into the multi-
plicative drift (see Theorem 1), we see that the expected op-
timization time is of order at most ln(nwr)/

(
1
2n

(1− 1
w

)
)

=
O(n(log(n) + r)), as desired.

The proof for the case of the (1 + 1) EA follows along
similar lines, but is (significantly) more involved.

Theorem 11. The expected optimization time of the (1 +
1) EA with the ±1 variation operator is Θ(n(r + logn)) for
any r-valued OneMax function.

6. HARMONIC MUTATION STRENGTH
In this section we will consider a mutation operator with

variable step size. The idea is that different distances to the
target value require different step sizes for rapid progress.
We consider a mutation operator which, in each iteration,
chooses its step size from a fixed distribution. As distribu-
tion we use what we call the harmonic distribution, which

chooses step size j ∈ [1..r − 1] with probability propor-
tional to 1/j. Using the bound on the harmonic number
Hr−1 < 1 + ln r, we see that the probability of choosing
such a j is at least 1/(j(1 + ln r)).

Theorem 12. The RLS as well as the (1 + 1) EA with the
harmonically distributed step size (described above) has an
expected optimization time of Θ(n log r(logn+log r)) on any
r-valued OneMax function.

Proof. We first show the upper bound by considering drift
on the fitness. Let any x ∈ Ω be given, let Y be the random
variable describing the best individual of the next iteration
and let Ai,j be the event that Y differs from x in exactly
bit position i and this bit position is now j closer to the
optimum. Note that, for both RLS and the (1 + 1) EA, we
get Pr[Ai,j ] ≥ 1

2enj(1+ln r)
. We have

E[f(x)− f(Y )] ≥
n∑
i=1

di∑
j=1

E[f(x)− f(Y ) | Ai,j ] Pr[Ai,j ]

=

n∑
i=1

di∑
j=1

j Pr[Ai,j ] ≥
n∑
i=1

di∑
j=1

j

2enj(1 + ln r)

=

n∑
i=1

di
2en(1 + ln r)

=
1

2en(1 + ln r)
f(x).

As the initial fitness is less than rn, the multiplicative drift
theorem (see Theorem 1) gives us the desired total optimiza-
tion time.

Now we turn to the lower bound. A straightforward
coupon collector argument gives us the lower bound of
Ω(n log r logn), since each position has to change from incor-
rect to correct at some point, and that mutation has a prob-
ability of O(1/(n log r)). It remains to show a lower bound
of Ω(n(log r)2). To this end, let f be any r-values OneMax
function and x∗ its optimum. Let g(x) = d(x1, x

∗
1) be the

distance of the first position to the optimal value in the first
position. Let h(x) = ln(g(x) + 1). Let x′ be the outcome of
one mutation step and x′′ be the outcome of selection from
{x, x′}. We easily compute E[max{0, h(x)− h(x′)}] ≤ K

n ln r
for some absolute constant K. Consequently, E[h(x) −
h(x′′)] ≤ K

n ln r
as well. For the random initial search point,

we have g(x) ≥ r/2 with constant probability, that is,
h(x) = Ω(log r) with constant probability. Consequently,
the additive drift theorem gives that the first time T at which
h(x) = 0, satisfies E[T ] ≥ Ω(log r)/ K

n ln r
= Ω(n log2 r).

In the same way as we showed the additive drift statement
E[h(x)−h(x′′)] = O(1/n log r), we could have shown a mul-
tiplicative drift statement for g, namely E[g(x) − g(x′′)] =
O(g(x)/n log r); in fact, the latter is implied by the former.
Unfortunately, due to the presence of large jumps – we have
Pr[g(x′′) ≤ g(x)/2] = Θ(1/n log r) –, we cannot exploit this
via the lower bound multiplicative drift theorem.

Naturally, the question arises whether the O((log r)2) de-
pendence on r can be improved. In particular, one wonders
whether drawing the step size from the Harmonic distri-
bution is optimal, or whether another distribution gives a
better optimization time. This is exactly the problem con-
sidered in [2], where the following result is presented, which
could also be used to derive the run time bound of Theo-
rem 12.
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Theorem 13 ([2]). Let a random process on A = {0, . . . , r}
be given, representing the movement of a token. Fix a prob-
ability distribution of step sizes D over {1, . . . , r}. Initially,
the token is placed on a random position in A. In round t, a
random step size d is chosen according to D. If the token is
in position x ≥ d, then it is moved to position x− d, other-
wise it stays put. Let TD be the number of rounds until the
token reaches position 0. Then minD(E[TD]) = Θ((log r)2).

While our processes have a slightly different behavior (in-
cluding the possibility to overshoot the goal), we believe that
these differences only lead to to differences in the constants
of the optimization time. Thus, the above theorem indi-
cates that the Harmonic distribution is an optimal choice
and cannot be improved.

7. CONCLUSION
While many analyses of randomized search heuristics fo-

cus on the behavior of the algorithm in dependence of a large
and growing dimension, we additionally considered a grow-
ing size of the search space in each dimension. We considered
the (1 + 1) EA with three different mutation strengths and
proved asymptotically tight optimization times for a variety
of OneMax-type test functions over an alphabet of size r.
We proved that both using large changes (change to uni-
formly chosen different value) or very local changes (change
value by ±1) leads to relatively slow (essentially linear in
r) optimization times of Θ(rn logn) and Θ(n(r + logn)),
respectively.

We then considered a variable step size operator which
allows for both large and small steps with reasonable proba-
bility; this leads to an optimization time of Θ(n log r(logn+
log r)). Note that this bound, while polylogarithmic in r, is
worse than the bound of Θ(n(r+logn)) for the ±1 operator
when r is asymptotically smaller than log n log logn. This
shows that there is no uniform superior mutation operator
among the three proposed operators.
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