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Counting Homomorphisms to Square-Free Graphs, Modulo 2

ANDREAS GÖBEL, LESLIE ANN GOLDBERG, and DAVID RICHERBY, University of Oxford

We study the problem ⊕HOMSTOH of counting, modulo 2, the homomorphisms from an input graph to a
fixed undirected graph H. A characteristic feature of modular counting is that cancellations make wider
classes of instances tractable than is the case for exact (nonmodular) counting; thus, subtle dichotomy
theorems can arise. We show the following dichotomy: for any H that contains no 4-cycles, ⊕HOMSTOH is
either in polynomial time or is ⊕P-complete. This partially confirms a conjecture of Faben and Jerrum that
was previously only known to hold for trees and for a restricted class of tree-width-2 graphs called cactus
graphs. We confirm the conjecture for a rich class of graphs, including graphs of unbounded tree-width. In
particular, we focus on square-free graphs, which are graphs without 4-cycles. These graphs arise frequently
in combinatorics, for example, in connection with the strong perfect graph theorem and in certain graph
algorithms. Previous dichotomy theorems required the graph to be tree-like so that tree-like decompositions
could be exploited in the proof. We prove the conjecture for a much richer class of graphs by adopting a much
more general approach.
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1. INTRODUCTION

A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that
preserves edges, in the sense of mapping every edge of G to an edge of H; nonedges of G
may be mapped to edges or nonedges of H. Many structures arising in graph theory
can be represented naturally as homomorphisms. For example, the proper q-colourings
of a graph G correspond to the homomorphisms from G to a q-clique. For this reason,
homomorphisms from G to a graph H are often called “H-colourings” of G. Independent
sets of G correspond to the homomorphisms from G to the connected graph with two
vertices and one self-loop (vertices of G that are mapped to the self-loop are out of
the corresponding independent set; vertices that are mapped to the other vertex are
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12:2 A. Göbel et al.

Fig. 1. Theorem 1.2 shows that ⊕HOMSTOH1 is ⊕P-complete, whereas ⊕HOMSTOH2 is in P. This, and the
role of the starred vertex, are explained later in the introduction.

in it). Homomorphism problems can also be seen as constraint satisfaction problems
(CSPs) in which the constraint language consists of a single symmetric binary relation.
Partition functions in statistical physics—such as the Ising model, the Potts model, and
the hard-core model—arise naturally as weighted sums of homomorphisms [Bulatov
and Grohe 2005; Goldberg et al. 2010].

In this article, we study the complexity of counting homomorphisms modulo 2. For
graphs G and H, Hom(G → H) denotes the set of homomorphisms from G to H. For
each fixed H, we study the computational problem ⊕HOMSTOH, which is the problem
of computing |Hom(G → H)| mod 2, given an input graph G.

The structure of the graph H strongly influences the complexity of ⊕HOMSTOH. For
example, consider the graphs H1 and H2 in Figure 1. Our result (Theorem 1.2) shows
that ⊕HOMSTOH1 is ⊕P-complete, whereas ⊕HOMSTOH2 is in P.

The aim of research in this area is to understand for which graphs H the problem
⊕HOMSTOH is in P, for which graphs H the problem is ⊕P-complete, and to prove that,
for all graphs H, one or the other is true. Note that it is not obvious, a priori, that
there are no graphs H for which ⊕HOMSTOH has intermediate complexity—proving
that there are no such graphs H is the main work of a so-called dichotomy theorem.

This line of work was introduced by Faben and Jerrum [2015]. They made the fol-
lowing important conjecture (which requires a few definitions to be provided). An
involution of a graph is an automorphism of order 2, that is, an automorphism ρ that is
not the identity but for which ρ2 is the identity. Given a graph H and an involution ρ,
Hρ denotes the subgraph of H induced by the fixed points of ρ. We write H ⇒ H′ if
there is an involution ρ of H such that Hρ = H′, and we write H ⇒∗ H′ if either H
is isomorphic to H′ (written H ∼= H′) or, for some positive integer k, there are graphs
H1, . . . , Hk such that H ∼= H1, H1 ⇒ · · · ⇒ Hk, and Hk ∼= H′. Faben and Jerrum [2015,
Theorem 3.7] showed that, for every graph H, there is (up to isomorphism) exactly one
involution-free graph H∗ such that H ⇒∗ H∗. This graph H∗ is called the involution-
free reduction of H. See Faben and Jerrum [2015, Figure 1] for a diagram showing
a graph being reduced to its involution-free reduction. Faben and Jerrum make the
following conjecture.

CONJECTURE 1.1 ([FABEN AND JERRUM 2015]). Let H be a graph. If its involution-free
reduction H∗ has at most one vertex, then ⊕HOMSTOH is in P; otherwise, ⊕HOMSTOH is
⊕P-complete.

Note that our claim in Figure 1 is consistent with Conjecture 1.1. H1 is involution-
free; thus, it is its own involution-free reduction, but the involution-free reduction of H2
is the single vertex marked ∗ in the figure.

Faben and Jerrum [2015, Theorem 3.8] proved Conjecture 1.1 for the case in which H
is a tree. Subsequently, Göbel et al. [2014, Theorem 1.6] proved the conjecture for a
well-studied class of tree-width-2 graphs, namely cactus graphs, which are graphs in
which each edge belongs to at most one cycle.
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The main result of this article is to prove the conjecture for a much richer class of
graphs. In particular, we prove the conjecture for every graph H whose involution-free
reduction has no 4-cycle (whether induced or not).

Graphs without 4-cycles are called “square-free” graphs. These graphs arise fre-
quently in combinatorics, for example, in connection with the strong perfect graph
theorem [Conforti et al. 2004] and certain graph algorithms [Arends et al. 2011]. Our
main theorem is the following.

THEOREM 1.2. Let H be a graph whose involution-free reduction H∗ is square-free.
If H∗ has at most one vertex, then ⊕HOMSTOH is in P; otherwise, ⊕HOMSTOH is ⊕P-
complete.

If H is square-free, then so is every induced subgraph, including its involution-free
reduction H∗. Thus, we have the following corollary.

COROLLARY 1.3. Let H be a square-free graph. If its involution-free reduction H∗ has
at most one vertex, then ⊕HOMSTOH is in P; otherwise, ⊕HOMSTOH is ⊕P-complete.

In Section 1.3, we will discuss the reasons that we require H∗ to be square-free in the
proof of Theorem 1.2. First, in Section 1.1, we will describe the background to counting
modulo 2. In Section 1.2, we will explain why Conjecture 1.1 is so much more difficult
to prove for graphs with unbounded tree-width. Very briefly, in order to prove that
⊕HOMSTOH is ⊕P-hard without having a bound on the tree-width of H, it is necessary
to take a much more abstract approach. Since it is not possible to decompose H using a
tree-like decomposition, as we did in Göbel et al. [2014, Theorem 1.6], we have instead
come up with an abstract characterisation of graph-theoretic structures in H that lead
to ⊕P-hardness. As we shall see, the proof that such structures always exist in square-
free graphs involves interesting nonconstructive elements, leading to a more abstract,
and less technical (graph-theoretic), proof than Göbel et al. [2014], while applying to a
substantially richer set of graphs H, including graphs with unbounded tree width.

1.1. Counting Modulo 2

Although counting modulo 2 produces a one-bit answer, the complexity of such problems
has a rather different flavour from the complexity of decision problems. The complexity
class ⊕P was first studied by Papadimitriou and Zachos [1982] and by Goldschlager and
Parberry [1986]. ⊕P consists of all problems of the form “compute f (x) mod 2” where
computing f (x) is a problem in #P. Toda [1991] has shown that there is a randomised
polynomial-time reduction from every problem in the polynomial hierarchy to some
problem in ⊕P. As such, ⊕P is a large complexity class, and ⊕P-completeness seems to
represent a high degree of intractability.

The unique flavour of modular counting is exhibited by Valiant’s famous restricted
version of 3-SAT [Valiant 2006] for which counting solutions is #P-complete [Xia et al.
2007], counting solutions modulo 7 is in polynomial time, but counting solutions mod-
ulo 2 is ⊕P-complete [Valiant 2006]. The seemingly mysterious number 7 was subse-
quently explained by Cai and Lu [2011], who showed that the k-SAT version of Valiant’s
problem is tractable modulo any prime factor of 2k − 1.

Counting modulo 2 closely resembles ordinary, nonmodular counting, but is still
very different. Clearly, if a counting problem can be solved in polynomial time, the
corresponding decision and parity problems are also tractable, but the converse does not
necessarily hold. A characteristic feature of modular counting is cancellations, which
can make the modular versions of hard counting problems tractable. For example,
consider not-all-equal SAT, the problem of assigning values to Boolean variables such
that each of a given set of clauses contains both true and false literals. The number of
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solutions is always even, since solutions can be paired up by negating every variable in
one solution to obtain a second solution. This makes counting modulo 2 trivial, while
determining the exact number of solutions is #P-complete [Goldberg et al. 2014] and
even deciding whether a solution exists is NP-complete [Schaefer 1978].

We use cancellations extensively in this article. For example, if we wish to compute
the size of a set S modulo 2 then, for any even-cardinality subset X ⊆ S, we have
|S| ≡ |S\X| mod 2. This means that we can ignore the elements of X. It is also helpful
to partition the set S into disjoint subsets S1, . . . , S� exploiting the fact that |S| is
congruent modulo 2 to the number of odd-cardinality Si. We use this idea frequently.

1.2. Going Beyond Bounded Tree-Width

1.2.1. Trees. All known hardness results for counting homomorphisms modulo 2 start
with the following basic “pinning” approach. Let p be a function from V (G) to 2V (H).
A homomorphism f ∈ Hom(G → H) respects the pinning function p if, for every
v ∈ V (G), f (v) is in the set p(v). Let PinHom(G, H, p) be the set of homomorphisms
from G to H that respect the pinning function p and let ⊕PINNEDHOMSTOH be the
problem of counting, modulo 2, the number of homomorphisms in PinHom(G, H, p),
given an input graph G and a pinning function p.

Faben and Jerrum [2015, Corollary 4.18] give a polynomial-time Turing reduction
from the problem ⊕PINNEDHOMSTOH to the problem ⊕HOMSTOH for the special case
in which the pinning function pins only two vertices of G, and these are both pinned
to entire orbits of the automorphism group of H. The reduction relies on a result of
Lovász [1967].

In order to use the reduction, it is necessary to show that the special case of the prob-
lem ⊕PINNEDHOMSTOH is itself ⊕P-hard. Faben and Jerrum restrict their attention to
the case in which H is a tree, which is helpful. Every involution-free tree is asymmetric
(thus, the orbit of every vertex is trivial); thus, the pinning function p is actually able
to pin two vertices of G to any two particular vertices of H.

The reduction that they used to prove hardness of ⊕PINNEDHOMSTOH is from ⊕IS, the
problem of counting independent sets modulo 2, which was shown to be ⊕P-complete
by Valiant [2006].

We first give an informal description of a general reduction from ⊕IS to the problem
⊕PINNEDHOMSTOH. (The general description is actually based on our current approach
in this article, but we can also present past approaches in this context.) The vertices
and edges of an input G of ⊕IS are replaced by gadgets to give a graph J. In J,
the gadget corresponding to the vertex v of G has a vertex yv. We also choose an
appropriate vertex i in H. Any homomorphism σ from J to the target graph H defines
a set I(σ ) = {v ∈ V (G) | σ (yv) = i} (mnemonic: “i” means “in” because σ (yv) is i exactly
when v is in I(σ )). The configuration of the gadgets ensures that a set I ⊆ V (G) has an
odd number of homomorphisms σ with I(σ ) = I if and only if I is an independent set
of G. Next, the homomorphisms σ ∈ Hom(J → H) can be partitioned according to the
value of I(σ ). By the partitioning argument mentioned at the end of Section 1.1, the
number of independent sets in G is equivalent to |Hom(J → H)|, modulo 2.

The gadgets are chosen according to the structure and properties of H. Since Faben
and Jerrum were working with trees, they were able to use gadgets with a very simple
structure: their gadgets are essentially paths and they exploit the fact that any non-
trivial involution-free tree has at least two even-degree vertices and, of course, these
have a unique path between them (which turns out to be useful).

1.2.2. Cactus Graphs. The situation for cactus graphs is much more complicated. Non-
trivial involution-free cactus graphs still contain even-degree vertices, but the presence
of cycles means that paths, even shortest paths, are no longer guaranteed to be unique.
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Our solution, in Göbel et al. [2014], was to use more complicated gadgets. They are
still (loosely) based on paths, since they are defined in terms of numbers of walks be-
tween vertices of H. However, rather than requiring appropriate even-degree vertices
(which might not exist), we used a second, and more complicated, gadget to “select” an
even-cardinality subset of a vertex’s neighbours. To find such gadgets in H, we used
tree-like decompositions. Given a decomposition that breaks H into independent frag-
ments, we inductively found gadgets (or, sometimes, partial gadgets) in the fragments,
carefully putting them together across the join of the decomposition. All of this led to
a very technical, very graph-theoretic solution, as well as to a solution that does not
generalise to graphs without tree-like decompositions.

The proof is complicated by the fact that there are involution-free graphs (even
involution-free cactus graphs!) that have nontrivial automorphisms, unlike the situ-
ation for trees. Thus, the fact that the pinning function pins vertices to entire orbits
(rather than to particular vertices) causes complications. The solution in Göbel et al.
[2014, Section 8] relies on special properties of cactus graphs, and it is not clear how it
could be generalised.

1.2.3. Unbounded Tree-Width. Since they are based around a tree-like decomposition,
the techniques of Göbel et al. [2014] are not suitable for graphs with unbounded tree-
width. To prove Conjecture 1.1 for a richer class of graphs, we adopt a much more
abstract approach. Since we do not have tree-like decompositions, we instead mostly
use structural properties of the whole graph to find gadgets. The structural properties
do not always require technical detail; as we will see later, re-examining a result of
Lovász [1967] even allows us to demonstrate nonconstructively the existence of some
of the gadgets that we use.

In order to support our more general approach, we first have to modify the pinning
problem ⊕PINNEDHOMSTOH. For any graph H, a partially H-labelled graph J = (G, τ )
consists of an underlying graph G and a pinning function τ , which, in this article, is a
partial function from V (G) to V (H). Thus, every vertex v in the domain of τ is pinned
to a particular vertex of H and not to a subset such as an orbit. A homomorphism from
a partially labelled graph J = (G, τ ) to H is a homomorphism σ : G → H such that, for
all vertices v ∈ dom(τ ), σ (v) = τ (v). The intermediate problem that we study, then, is
⊕PARTLABHOMSTOH, the problem of computing |Hom(J → H)| mod 2, given a partially
H-labelled graph J. In Section 3, we generalise the application of Lovász’s theorem to
show (Theorem 3.1) that ⊕PARTLABHOMSTOH ≤ ⊕HOMSTOH.

Armed with a stronger pinning technique, we then abstract away most of the com-
plications that arose for graphs with small tree-width by instead using more general
gadgets, defined in Section 4. Because they are not based on paths, they do not rely on
uniqueness of any path in H. Instead, the gadgets have three main parts. Our new re-
duction from ⊕IS to ⊕HOMSTOH can be seen informally as assigning colours to both the
vertices and the edges of G, where each “colour” is a vertex of H. One part of the gadget
controls which colours can be assigned to each vertex, one controls which colours can
be assigned to each edge and a third part determines how many homomorphisms there
are from G to H, given the choice of colours for the vertices and edges. In addition to
all of this, we identify two special vertices of H, one of which is the vertex i mentioned
earlier.

The much more general nature of our gadgets compared to those used previously
makes them much easier to find and, in some cases, allows us to prove the existence of
parts of them nonconstructively. (Recall that gadgets depend only on the fixed graph H
and not on the input G, thus, they can be hard-coded into the reduction—there is no
need to find one constructively.) We no longer need to find unique shortest paths in H
or, indeed, any paths at all. In fact, all the gadgets that we construct in this article use
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a “caterpillar gadget” (Definition 4.3), which allows us to use any specified path in the
graph H instead of relying on a unique shortest path. Rather than finding hardness
gadgets in components in some decomposition of H, we mostly find gadgets “in situ”.

When a graph has two even-degree vertices, we can directly use those vertices and a
caterpillar gadget to produce a hardness gadget (see Lemma 5.3). This already provides
a self-contained proof of Faben and Jerrum’s dichotomy for trees. Next, for graphs with
only one even-degree vertex, we show (Corollary 5.5) that deleting an appropriate set of
vertices leaves a component with two even-degree vertices and show (Lemma 5.7) how
to simulate that vertex deletion with gadgets. This leaves only graphs in which every
vertex has odd degree. In such a graph, we are able to use any shortest odd-length cycle
to construct a gadget (Lemma 5.13). If there are no odd cycles, the graph is bipartite.
In this interesting case (Lemma 5.15), we use our version of Lovász’s result to find a
gadget nonconstructively.

1.3. Squares

It is natural to ask why the involution-free reduction H∗ in Theorem 1.2 is required to be
square-free. We do not believe that the restriction to square-free graphs is fundamental,
since our results on pinning apply to all involution-free graphs (Section 3) and neither
our definition of hardness gadgets (Definition 4.1) nor our proof that the existence
of a hardness gadget for H implies that ⊕HOMSTOH is ⊕P-complete (Theorem 4.2)
requires H to be square-free. However, all the actual hardness gadgets that we find
for graphs do rely on the absence of 4-cycles, as discussed in Section 4.3, and removing
this restriction seems technically challenging. We note that dealing with 4-cycles also
caused significant difficulties in cactus graphs [Göbel et al. 2014].

1.4. Related Work

We have already mentioned earlier work on counting graph homomorphisms modulo 2.
The problem of counting graph homomorphisms (exactly, rather than modulo a fixed
constant) was previously studied by Dyer and Greenhill [2000]. They showed that the
problem of counting homomorphisms to a fixed graph H is solvable in polynomial time
if every connected component of H is a complete graph with a self-loop on every vertex
or a complete bipartite graph with no self-loops, and is #P-complete, otherwise. Their
work builds on an earlier dichotomy by Hell and Nešetřil [1990] for the complexity of
the graph homomorphism decision problem (the problem of distinguishing between the
case in which there are no homomorphisms and the case in which there is at least one).
For work on counting modulo k in the constraint satisfaction setting, see Guo et al.
[2011].

1.5. Organisation

We introduce notation in Section 2. Section 3 deals with pinning and consists mostly of
adapting existing work to the precise framework that we require. It can be skipped by
the reader who is comfortable with pinning and happy to believe that it can be done in
our more general setting.

The gadgets that we use are formally defined in Section 4, in which we also show
that ⊕HOMSTOH is ⊕P-complete if H is an involution-free graph that has one of these
gadgets. Section 4.2 introduces a gadget that we use extensively, but which requires
H to be square-free, as discussed in Section 4.3. In Section 5, we show how to find
hardness gadgets for all square-free graphs. In Section 6, we tie everything together to
prove the dichotomy theorem.
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2. NOTATION

We write [n] for the set {1, . . . , n}. For a set S and an element x, we often write S − x
for S\{x}.

Graphs. In this article, graphs are undirected, and have no parallel edges and no
loops. The one exception to this is that we briefly allow loops in the proof of Lemma 3.6
(this is clearly stated in the proof). Paths and cycles do not repeat vertices; walks may
repeat both vertices and edges. The length of a path or cycle is the number of edges
that it contains. The odd-girth of a graph is the length of its shortest odd-length cycle.
�G(v) is the set of neighbours of a vertex v in G.

We write G ∼= H to indicate that graphs G and H are isomorphic. Aut(H) denotes the
automorphism group of a graph H. An involution is an automorphism of order 2 (i.e.,
an automorphism ρ that is not the identity such that ρ◦ρ is the identity). Hom(G → H)
denotes the set of homomorphisms from a graph G to a graph H.

Partially Labelled Graphs. For any graph H, a partially H-labelled graph J = (G, τ )
consists of an underlying graph G and a pinning function τ , which is a partial function
from V (G) to V (H). A vertex v in the domain of the pinning function is said to be
pinned or pinned to τ (v). We will refer to these graphs as partially labelled graphs
when the graph H is clear from the context. We sometimes write G(J) and τ (J) for the
underlying graph and pinning function of a partially labelled graph, respectively. We
write partial functions as sets of pairs, for example, writing τ = {a 
→ s, b 
→ t} for the
partial function τ with dom(τ ) = {a, b} such that τ (a) = s and τ (b) = t.

A homomorphism from a partially labelled graph J = (G, τ ) to H is a homomorphism
σ : G → H such that, for all vertices v ∈ dom(τ ), σ (v) = τ (v). We say that such a
homomorphism respects τ .

Distinguished Vertices. It is often convenient to regard a graph as having some
number of distinguished vertices x1, . . . , xr; we denote such a graph by (G, x1, . . . , xr).
Note that the distinguished vertices need not be distinct. We sometimes abbreviate the
sequence x1, . . . , xr as x̄ and we use G[x̄] to denote the subgraph of G induced by the set
of vertices {x1, . . . , xr}. A homomorphism from a graph (G, x1, . . . , xr) to (H, y1, . . . , yr)
is a homomorphism σ from G to H with the property that σ (xi) = yi for each i ∈
[r]. This is the same thing as a homomorphism from the partially H-labelled graph
(G, {x1 
→ y1, . . . , xr 
→ yr}) to H. Given a partially labelled graph J = (G, τ ) and vertices
x1, . . . , xr /∈ dom(τ ), a homomorphism from (J, x1, . . . , xr) to (H, y1, . . . , yr) is formally
identical to a homomorphism from J′ = (G, τ ∪ {x1 
→ y1, . . . , xr 
→ yr}) to H.

Similarly, we say that two graphs (G, x1, . . . , xr) and (H, y1, . . . , ys) are isomorphic if
r = s and there is an isomorphism ρ : V (G) → V (H) such that ρ(xi) = yi for each
i ∈ [r] (note that we may have G = H). An automorphism of (G, x1, . . . , xr) is just an
automorphism ρ of G with the property that ρ(xi) = xi for each i ∈ [r].

Diagram Conventions. In diagrams of partially labelled graphs, ordinary vertices
are denoted by black dots, distinguished vertices by small white circles, and pinned
vertices (i.e., the vertices in dom(τ )) by large white circles. A label next to a vertex of
any kind indicates the identity of that vertex; a label inside a white circle indicates
what that vertex is pinned to.

3. PARTIALLY LABELLED GRAPHS AND PINNING

The results in this section do not require H to be square-free.
We use pinning in our gadgets; thus, we mostly work with the problem of determining

the number of homomorphisms from a partially H-labelled graph to H, modulo 2:
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Name. ⊕PARTLABHOMSTOH.
Parameter. A graph H.
Input. A partially H-labelled graph J.
Output. |Hom(J → H)| mod 2.

Our goal in the remainder of this section is to prove the following theorem.

THEOREM 3.1. ⊕PARTLABHOMSTOH ≤ ⊕HOMSTOH for any involution-free graph H.

The reader who is prepared to take Theorem 3.1 on trust may safely skip the rest of
this section. The theorem is used in later sections, but the details of its proof are not.

To prove the theorem, we need to develop some machinery. This closely follows the
presentation of similar material by Faben and Jerrum [2015] and our earlier article
[Göbel et al. 2014] which, in turn, draw on the work of Lovász [1967] and Hell and
Nešetřil [2004]. This duplication is unfortunate but, at the end of the section, we explain
how the results we have presented are subtly different from those in the literature so
that existing results could not be reused directly.

After stating some elementary group theory results that we need, we prove in Sec-
tion 3.2 a version of a result originally due to Lovász. This (Lemma 3.6) states that,
if graphs with distinguished vertices (H, ȳ) and (H′, ȳ′) are nonisomorphic, there is a
graph (G, x̄) that has an odd number of homomorphisms to one of (H, ȳ) and (H′, ȳ′)
and an even number of homomorphisms to the other. Taking H′ = H, this allows us to
distinguish two tuples of vertices in H from one another, as long as they are not in the
same orbit of Aut(H).

This is not quite enough for pinning, as it does not give us control over which of
the two graphs receives an odd number of homomorphisms from (G, x̄). In Section 3.3,
we solve this problem algebraically, adapting a technique of Faben and Jerrum [2015].
This allows us to prove Theorem 3.1 in Section 3.4 and thereby implement the pinning
we need for our reductions.

3.1. Group-Theoretic Background

We will require two results from group theory. For the first, see, for example,
Armstrong [1988, Theorem 13.1].

THEOREM 3.2 (CAUCHY’S GROUP THEOREM). If G is a finite group and a prime p di-
vides |G|, then G contains an element of order p.

For a permutation group G acting on a set X, the orbit of an element x ∈ X is the
set OrbG(x) = {π (x) | π ∈ G}. For a graph H, we will abuse notation mildly by writing
OrbH(·) instead of OrbAutH(·).

The following is a corollary of the orbit–stabiliser theorem [Armstrong 1988, Corol-
lary 17.3].

THEOREM 3.3. Let G be a finite permutation group acting on a set X. For every x ∈ X,
|OrbG(x)| divides |G|.

These two theorems have the following corollary about the size of orbits under the
automorphism group of involution-free graphs.

COROLLARY 3.4. Let H be an involution-free graph. Every orbit of a tuple ȳ ∈ V (H)r

under the action of Aut(H) has odd cardinality.

PROOF. By Theorem 3.2, |Aut(H)| is odd, since the group contains no element of
order 2. Consider the natural action of Aut(H) on V (H)r. By Theorem 3.3, the size of
the orbit of ȳ in H divides |Aut(H)|, thus is also odd.
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3.2. A Lovász-Style Lemma

Lovász proved that two graphs H and H′ are isomorphic if and only if |Hom(G → H)| =
|Hom(G → H′)| for every graph G (in fact, he proved the analogous result for general
relational structures, but we do not need this here). We show that this result remains
true even if we replace equality of the number of homomorphisms with equivalence
modulo 2. Faben and Jerrum [2015, Lemma 3.13] also showed this, though in a less
general setting than the one that we need. Our proof is based on the presentation of
Hell and Nešetřil [2004, Section 2.3].

For the proof, we need some definitions, which are used only in this section. We say
that two r-tuples x̄ and ȳ have the same equality type if, for all i, j ∈ [r], xi = xj if and
only if yi = yj . Let InjHom((G, x̄) → (H, ȳ)) be the set of injective homomorphisms from
(G, x̄) to (H, ȳ).

Before proving the main lemma, we prove a simple fact about injective homomor-
phisms and equality types of distinguished variables.

LEMMA 3.5. Let (G, x̄) and (H, ȳ) be graphs, each with r distinguished vertices. If x̄
and ȳ do not have the same equality type, then |InjHom((G, x̄) → (H, ȳ))| = 0.

PROOF. If there are i, j ∈ [r] such that xi = xj but yi �= yj , then there are no
homomorphisms (injective or otherwise) from (G, x̄) to (H, ȳ), since xi cannot be mapped
simultaneously to both yi and yj . Otherwise, there must be i, j ∈ [r] such that xi �= xj
but yi = yj . Then, no homomorphism η can be injective because we must have η(xi) =
η(xj) = yi.

LEMMA 3.6. Let (H, ȳ) and (H′, ȳ′) be involution-free graphs, each with r distinguished
vertices. Then, (H, ȳ) ∼= (H′, ȳ′) if and only if, for all (not necessarily connected) graphs
(G, x̄) with r distinguished vertices,

|Hom((G, x̄) → (H, ȳ))| ≡ |Hom((G, x̄) → (H′, ȳ′))| (mod 2). (1)

PROOF. If (H, ȳ) and (H′, ȳ′) are isomorphic, it follows trivially that Equation (1) holds
for all graphs (G, x̄). For the other direction, suppose that Equation (1) holds for all
(G, x̄).

First, we claim that this implies that ȳ and ȳ′ have the same equality type. If they
have different equality types, then, without loss of generality, we may assume that there
are distinct indices i and j such that yi = yj but y′

i �= y′
j . Let G be the graph on vertices

{y1, . . . , yr} with no edges: we see that |Hom((G, ȳ) → (H, ȳ))| = 1 �= |Hom((G, ȳ) →
(H′, ȳ′))| = 0, contradicting the assumption that Equation (1) holds for all G.

Second, we show by induction on the number of vertices in G that, if Equa-
tion (1) holds for all (G, x̄), then, for all (G, x̄),

|InjHom((G, x̄) → (H, ȳ))| ≡ |InjHom((G, x̄) → (H′, ȳ′))| (mod 2). (2)

Specifically, under the assumption that Equation (1) holds for all (G, x̄), we show that
Equation (2) holds for all (G, x̄) with |V (G)| ≤ n0 for a suitable value n0 and that,
if Equation (2) holds for all (G, x̄) with |V (G)| < n, it also holds for any (G, x̄) with
|V (G)| = n.

Let n0 = |{y1, . . . , yr}| = |{y′
1, . . . , y′

r}| be the number of distinct elements in ȳ. For the
base case of the induction, consider any graph (G, x̄) with |V (G)| ≤ n0. If x̄ does not
have the same equality type as ȳ and ȳ′ (which is guaranteed if |V (G)| < n0), then, by
Lemma 3.5,

|InjHom((G, x̄) → (H, ȳ))| = |InjHom((G, x̄) → (H′, ȳ′))| = 0.
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If x̄ has the same equality type as ȳ and ȳ′, then, in particular, every vertex of G is
distinguished. Any homomorphism from (G, x̄) to (H, ȳ) or (H′, ȳ′) is injective; thus

|InjHom((G, x̄) → (H, ȳ))| = |Hom((G, x̄) → (H, ȳ))|
= |Hom((G, x̄) → (H′, ȳ′))|
= |InjHom((G, x̄) → (H′, ȳ′))|,

where the second equality is by the assumption that Equation (1) holds for (G, x̄).
For the inductive step, let n > n0 and assume that Equation (2) holds for all (G, x̄)

with |V (G)| < n. Now, consider some (G, x̄) with |V (G)| = n.
Given any homomorphism σ from (G, x̄) to (H, ȳ), we can define an equivalence

relation θ on V (G) by (u, v) ∈ θ if and only if σ (u) = σ (v). (Note that, if σ is injective,
then θ is just the equality relation on V (G).) Write [[u]] for the θ -equivalence class of
a vertex u ∈ V (G). Let G/θ be the graph whose vertex set is {[[u]] | u ∈ V (G)} and
whose edge set is {([[u]], [[v]]) | (u, v) ∈ E(G)}. For graphs with distinguished vertices,
we write (G, x1, . . . , xr)/θ = (G/θ, [[x1]], . . . , [[xr]]). The homomorphism σ from (G, x̄) to
(H, ȳ) corresponds to an injective homomorphism from (G, x̄)/θ to (H, ȳ).

Note that, if there are adjacent vertices u and v in G such that (u, v) ∈ θ for some
equivalence relation θ , the graph G/θ has a self-loop on the vertex [[u]]. This is not a
problem. Because H is loop-free, there are no homomorphisms (injective or otherwise)
from such a graph G/θ to H. For the same reason, there are no homomorphisms from G
to H that map adjacent vertices u and v to the same place. Therefore, this particular θ
does not correspond to any homomorphism from G to H, and contributes zero to the
following sums, as required.

We have that

|Hom((G, x̄) → (H, ȳ))| = |InjHom((G, x̄) → (H, ȳ))| +
∑

θ

|InjHom((G, x̄)/θ → (H, ȳ))|

|Hom((G, x̄)→ (H′, ȳ′))| = |InjHom((G, x̄)→ (H′, ȳ′))| +
∑

θ

|InjHom((G, x̄)/θ → (H′, ȳ′))|,

where the sums are over all equivalence relations θ , except for the equality relation.
The left-hand sides of these equations are equivalent modulo 2 by assumption. The

sums over θ on the right are equivalent modulo 2 by the inductive hypothesis since θ is
not the equality relation; thus, G/θ has fewer vertices than G. Therefore, Equation (2)
holds for the graph under consideration.

Finally, it remains to prove that Equation (2) holding for all (G, x̄) implies that
(H, ȳ) ∼= (H′, ȳ′). To see this, take (G, x̄) = (H, ȳ). An injective homomorphism from a
graph to itself is an automorphism and, since (H, ȳ) is involution-free, Aut(H, ȳ) has no
element of order 2; thus, |Aut(H, ȳ)| is odd by Cauchy’s group theorem (Theorem 3.2).
By Equation (2), there are an odd number of injective homomorphisms from (H, ȳ) to
(H′, ȳ′), which means that there is at least one such homomorphism. Similarly, taking
(G, x̄) = (H′, ȳ′) shows that there is an injective homomorphism from (H′, ȳ′) to (H, ȳ)
and, therefore, the two graphs are isomorphic.

For our nonconstructive proof that some gadgets exist, we use the following corollary
of the proof of Lemma 3.6, which restricts to a certain class of connected graphs.

COROLLARY 3.7. Let (H, ȳ) and (H′, ȳ′) be connected, involution-free graphs, each
with r distinguished vertices, such that H[ȳ] and H′[ȳ′] are also connected. Then,
(H, ȳ) ∼= (H′, ȳ′) if and only if Equation (1) holds for all connected graphs (G, x̄) with
r distinguished vertices such that G[x̄] is connected.
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PROOF. For brevity, we refer to (G, x̄) as appropriate if it is connected, it has r distin-
guished vertices, and G[x̄] is connected.

As in the proof of Lemma 3.6, the “only if” direction is trivial; thus, we suppose that
Equation (1) holds for all appropriate (G, x̄). Also, ȳ and ȳ′ must have the same equality
type. If they do not, we may assume that there are distinct i and j with yi = yj but
y′

i �= y′
j , and take G = H[ȳ]. (G, ȳ) is appropriate, but we have |Hom((G, ȳ) → (H, ȳ))| =

1 �= |Hom((G, ȳ) → (H′, ȳ′))| = 0, which contradicts the assumption that Equation (1)
holds for all appropriate (G, x̄).

The proof that Equation (1) holding for every appropriate G implies that Equ-
ation (2) holds for every appropriate G proceeds by induction on |V (G)|, as in the
proof of the lemma. The base cases are unchanged. To see that the inductive step re-
mains valid, let (G, x̄) be appropriate and let θ be any equivalence relation on V (G).
We claim that (G, x̄)/θ is also appropriate. By construction, (G, x̄)/θ has r distinguished
vertices. It is connected because it is the result of identifying vertices in a connected
graph; (G/θ )[[[x1]], . . . , [[xr]]] is connected for the same reason.

This establishes that Equation (2) holds for all appropriate (G, x̄). Since (H, ȳ) and
(H′, ȳ′) are both appropriate, we can complete the proof in the same way as in the proof
of Lemma 3.6, substituting each of these graphs in turn for (G, x̄) in Equation (2).

3.3. Implementing Vectors

The presentation in this section follows very closely that of Faben and Jerrum [2015],
extended to r-tuples of distinguished vertices.

Definition 3.8. Let H be an involution-free graph. We refer to a list ȳ1, . . . , ȳλ of
elements of V (H)r as an enumeration of V (H)r up to isomorphism if, for every ȳ ∈
V (H)r, there is exactly one i ∈ [λ] such that (H, ȳ) ∼= (H, ȳi).

Note that the number λ of tuples in the enumeration depends on H.

Definition 3.9. Let (G, x̄) be a graph with r distinguished vertices. We define the
vector vH(G, x̄) ∈ {0, 1}λ where, for each i ∈ [λ], the ith component of vH(G, x̄) is
given by

(vH(G, x̄))i ≡ |Hom((G, x̄) → (H, ȳi))| (mod 2).

We say that (G, x̄) implements this vector.

Define ⊕ and ⊗ to be, respectively, component-wise addition and multiplication,
modulo 2, of vectors in {0, 1}λ.

LEMMA 3.10. Let x̄ = x1 . . . xr and let (G1, x̄) and (G2, x̄) be graphs such that V (G1) ∩
V (G2) = {x1, . . . , xr}. Then,

vH(G1 ∪ G2, x̄) = vH(G1, x̄) ⊗ vH(G2, x̄).

PROOF. A function σ : V (G1) ∪ V (G2) → V (H) is a homomorphism from (G1 ∪ G2, x̄)
to (H, ȳ) if and only if, for each i ∈ {1, 2}, the restriction of σ to V (Gi) is a homomorphism
from (Gi, x̄) to (H, ȳ).

In contrast, given (G1, x̄1) and (G2, x̄2), it is not obvious that there is a graph (G, x̄)
such that vH(G, x̄) = vH(G1, x̄1) ⊕ vH(G2, x̄2). Following Faben and Jerrum [2015],
we side-step this issue by introducing a formal sum of graphs. Given graphs with
distinguished vertices (G1, x̄1), . . . , (Gt, x̄t), we define

vH((G1, x̄1) + · · · + (Gt, x̄t)) = vH(G1, x̄1) ⊕ · · · ⊕ vH(Gt, x̄t)

and we say that a vector v ∈ {0, 1}λ is H-implementable if it can be expressed as such
a sum.
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We require the following, which is essentially Lemma 4.16 of Faben and Jerrum
[2015].

LEMMA 3.11. Let S ⊆ {0, 1}λ be closed under ⊕ and ⊗. If 1λ ∈ S and, for every distinct
i, j ∈ [λ], there is a tuple s = s1 . . . sλ ∈ S with si �= sj , then S = {0, 1}λ.

COROLLARY 3.12. Let H be an involution-free graph. Every v ∈ {0, 1}λ is H-
implementable.

PROOF. Let S be the set of H-implementable vectors. S is clearly closed under ⊕,
and is closed under ⊗ by Lemma 3.10. Let G be the graph on vertices {x1, . . . , xr}, with
no edges. 1λ is implemented by (G, x1, . . . , xr), which has exactly one homomorphism
to every (H, ȳi). Finally, for every distinct pair i, j ∈ [λ], (H, ȳi) and (H, ȳj) are not
isomorphic, by definition of the enumeration of r-tuples (up to isomorphism). Therefore,
by Lemma 3.6, there is a graph (G, x̄) such that

|Hom((G, x̄) → (H, ȳi))| �≡ |Hom((G, x̄) → (H, ȳj))| (mod 2).

(G, x̄) implements a vector v whose ith and jth components are different.

3.4. Pinning

We now have almost everything we need to prove Theorem 3.1. Recall the definition of
an enumeration ȳ1, . . . , ȳλ of V (H)r up to isomorphism (Definition 3.8).

LEMMA 3.13. Let H be an involution-free graph and let ȳ1, . . . , ȳλ be an enumeration
of V (H)r up to isomorphism. For any graph (G, x̄) with r distinguished vertices,

|Hom(G → H)| ≡
∑
i∈[λ]

(vH(G, x̄))i (mod 2).

PROOF. We have (details to follow),∑
i∈[λ]

(vH(G, x̄))i ≡
∑
i∈[λ]

|Hom((G, x̄) → (H, ȳi))| (mod 2)

≡
∑
i∈[λ]

|OrbH(ȳi)| |Hom((G, x̄) → (H, ȳi))| (mod 2)

=
∑
i∈[λ]

∑
ȳ∈OrbH (ȳi )

|Hom((G, x̄) → (H, ȳ))|

= |Hom(G → H)|.
The second equivalence modulo 2 is because all orbits have odd cardinality by Corol-
lary 3.4 and multiplying the terms of the sum by odd numbers does not change the
total, modulo 2. The first equality is because, for any ȳ ∈ OrbH(ȳi), |Hom((G, x̄) →
(H, ȳ))| = |Hom((G, x̄) → (H, ȳi))|. This is because composing a homomorphism from
(G, x̄) to (H, ȳ) with an isomorphism from (H, ȳ) to (H, ȳi) gives a homomorphism from
(G, x̄) to (H, ȳi). The final equality is because every homomorphism from G to H must
map x̄ to some tuple ȳ and (exactly) all such tuples are included exactly once in the
double sum.

We can now prove Theorem 3.1: for any involution-free graph H, there is a
polynomial-time Turing reduction from ⊕PARTLABHOMSTOH to ⊕HOMSTOH.

PROOF OF THEOREM 3.1. Let J = (G, τ ) be an instance of ⊕PARTLABHOMSTOH. Let
x̄ = x1, . . . , xr be an enumeration of dom(τ ) and let ȳ = y1, . . . , yr = τ (xi), . . . , τ (xr).
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Fig. 2. An involution-free graph H illustrating the difference between pinning vertices to orbits of vertices
and pinning a tuple of vertices to an orbit of a tuple.

Moving from the world of partially H-labelled graphs to the equivalent view of graphs
with distinguished vertices, we wish to compute |Hom((G, x̄) → (H, ȳ))|, modulo 2.

By definition of the enumeration (up to isomorphism) ȳ1, . . . , ȳλ, there is some p
such that (H, ȳ) ∼= (H, ȳp). Let v be the vector that has a 1 in position p and has
0 in every other position. By Corollary 3.12, v is implemented by some sequence
(�1, x̄1), . . . , (�t, x̄t) of graphs with r-tuples of distinguished vertices.

For each i ∈ [t], let (Gi, x̄) be the graph that results from taking the union of disjoint
copies of G and �i and identifying the jth element of x̄ with the jth element of x̄i for
each j ∈ [t]. We have that

vH(G, x̄) ⊗ v = vH(G, x̄) ⊗ vH((�1, x̄1) + · · · + (�t, x̄t))

=
⊕
i∈[t]

(vH(G, x̄) ⊗ vH(�i, x̄i))

=
⊕
i∈[t]

vH(Gi, x̄).

Now, sum the components of the vectors on the two sides of the equation. On the right,
by Lemma 3.13, we have a value congruent modulo 2 to

∑
i∈[t] |Hom(Gi → H)|. This

can be computed by making t calls to an oracle for ⊕HOMSTOH, and t is bounded above
by a constant, since H is fixed. On the left, we have |Hom((G, x̄) → (H, ȳ))|, modulo 2,
which is what we wish to compute.

The result that we have proved appears similar to Göbel et al. [2014, Theorem 3.2],
but there is an important difference. In Göbel et al. [2014], we wished to pin r vertices
of G, each to the orbit of a vertex of H. In this article, we focus on the problem
⊕PARTLABHOMSTOH, where we pin vertices of G to individual vertices of H. In order
to achieve this, we essentially pin an r-tuple of vertices of G to the orbit of an r-tuple
of vertices in H. To see the difference, consider the graph H in Figure 2. The orbits of
single vertices are {a1, a2, a3}, . . . , {d1, d2, d3}. There are six homomorphisms from the
single edge (x, y) to H that map x to the orbit of a1 and y to the orbit of d1 but only three
that map the pair (x, y) to the orbit of the pair (a1, d1), which is {(a1, d1), (a2, d2), (a3, d3)}.
4. HARDNESS GADGETS

In this section, we define gadgets that we will use to prove ⊕P-completeness of
⊕HOMSTOH problems, by reduction from the parity independent set problem ⊕IS,
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that is, the problem of computing the number of independent sets in an input graph,
modulo 2. ⊕IS was shown to be ⊕P-complete by Valiant [2006].

The gadgets that we use are considerably more general than the ones that we defined
for cactus graphs in Göbel et al. [2014]. This allows us to quickly prove hardness for
large classes of square-free graphs and even to find gadgets nonconstructively.

In fact, our definition of hardness gadgets and the proof that ⊕HOMSTOH is ⊕P-
complete if H is involution-free and has a hardness gadget (Section 4.1) does not require
the graphs to be square-free. However, whenever we find a gadget for a particular graph,
it involves the “caterpillar gadgets” that we introduce in Section 4.2. These gadgets do
depend on H being square-free, as we show in Section 4.3.

4.1. ⊕P-Completeness

We now define the gadgets that we use to prove hardness and show that they serve
this purpose. Recall that a partially H-labelled graph J consists of an underlying
graph G(J) and a pinning function τ (J). In the following discussion, we will choose
a set �y ⊆ V (H) and a vertex i ∈ �y. Given a graph G whose independent sets we
wish to count modulo 2, we will construct a partially H-labelled graph J and consider
homomorphisms from J to H. G(J) will contain a copy of V (G), and we will be interested
in homomorphisms that map every vertex in this copy to �y. Vertices mapped to i will
be in the independent set under consideration; vertices mapped to �y − i will not be in
the independent set.

Definition 4.1. A hardness gadget (i, s, (J1, y), (J2, z), (J3, y, z)) for a graph H consists
of vertices i and s of H together with three connected, partially H-labelled graphs with
distinguished vertices (J1, y), (J2, z), and (J3, y, z) that satisfy certain properties, as
explained below. Let

�y = {a ∈ V (H) | |Hom((J1, y) → (H, a))| is odd},
�z = {b ∈ V (H) | |Hom((J2, z) → (H, b))| is odd}, and


a,b = Hom((J3, y, z) → (H, a, b)).

The properties that we require are the following.

(1) |�y| is even and i ∈ �y.
(2) |�z| is even and s ∈ �z.
(3) For each o ∈ �y − i and each x ∈ �z − s, |
o,x| is even.
(4) |
i,s| is odd and, for each o ∈ �y − i and each x ∈ �z − s, |
o,s| and |
i,x| are odd.

Before proving that hardness gadgets give ⊕P-completeness, we introduce some
notation. Given partially H-labelled graphs J1 = (G1, τ1) and J2 = (G2, τ2), with
dom(τ1) ∩ dom(τ2) = ∅, we write J1 ∪ J2 for the partially labelled graph J′ = (G′, τ ′),
where G′ = G1 ∪ G2 and τ ′ = τ1 ∪ τ2. That is, dom(τ ′) = dom(τ1) ∪ dom(τ2) and

τ ′(v) =
{

τ1(v) if v ∈ dom(τ1)
τ2(v) if v ∈ dom(τ2).

We will use the following notation to build partially labelled graphs containing many
copies of some subgraph. For any “tag” T (which we will treat as an arbitrary string) and
any partially labelled graph J, denote by JT a copy of J with every vertex v ∈ V (G(J))
renamed vT.

THEOREM 4.2. If an involution-free graph H has a hardness gadget, then ⊕HOMSTOH
is ⊕P-complete.

PROOF. Let (i, s, (J1, y), (J2, z), (J3, y, z)) be the hardness gadget for H and recall the
sets �y and �z from Definition 4.1. We show how to reduce ⊕IS to ⊕PARTLABHOMSTOH;
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Fig. 3. The construction of the partially labelled graphs K and J from an example graph G, as in the proof
of Theorem 4.2.

the result then follows from Theorem 3.1 and ⊕P-completeness of ⊕IS [Valiant 2006].
Given an input graph G to ⊕IS, we construct an appropriate partially H-labelled
graph J and show that |I(G)| ≡ |Hom(J → H)| mod 2, where I(G) is the set of inde-
pendent sets in G.

We construct J in two stages (see Figure 3). Take the union of disjoint copies Je,v
3

of J3 for every edge e ∈ G and each endpoint v of e. For each edge e = (u, v) ∈ G,
identify the vertices ze,u and ze,v, and call this ze. For each vertex v ∈ G, identify all
the vertices ye,v such that e has v as an endpoint, and call this yv. Call the resulting
graph K.

To make J, take K and add a disjoint copy Jv
1 of J1 for every vertex v ∈ G and a

disjoint copy Je
2 of J2 for every edge e ∈ G. For each vertex v ∈ G, identify the vertex yv

in K with the vertex yv in Jv
1 . For each edge e = (u, v) in G, identify the vertex ze in K

with the vertex ze in Je
2 .

We now proceed to show that |Hom(J → H)| ≡ |I(G)| mod 2.
For a homomorphism σ ∈ Hom(K → H), let [[σ ]] be the set of extensions of σ to

homomorphisms from J to H, that is,

[[σ ]] = {σ ′ ∈ Hom(J → H) | σ (v) = σ ′(v) for all v ∈ V (G(K))}.
Every homomorphism from J to H is the extension of a unique homomorphism from

K to H; thus, we have that

|Hom(J → H)| =
∑

σ∈Hom(K→H)

|[[σ ]]|. (3)

From the structure of J, we have that

|[[σ ]]| =
⎛
⎝ ∏

v∈V (G)

|Hom((J1, y) → (H, σ (yv))|
⎞
⎠

⎛
⎝ ∏

e∈E(G)

|Hom((J2, z) → (H, σ (ze))|
⎞
⎠ .

By Definition 4.1, |Hom((J1, y) → (H, a))| is odd if and only if a ∈ �y and
|Hom((J2, z) → (H, b))| is odd if and only if b ∈ �z. Therefore, |[[σ ]]| is odd if and
only if σ maps every vertex yv into �y and every ze into �z: call such a homomorphism
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“legitimate” (with respect to J1 and J2). We can rewrite Equation (3) as

|Hom(J → H)| ≡ |{σ ∈ Hom(K → H) | σ is legitimate} (mod 2), (4)

and, from this point, we restrict our attention to legitimate homomorphisms.
Given a legitimate homomorphism σ ∈ Hom(K → H), let σ |Y be the restriction of σ

to the domain {yv | v ∈ V (G)}. Write σ ∼Y σ ′ if σ |Y = σ ′|Y and write [[σ ]]Y for the
∼Y -equivalence class of σ . The classes [[σ ]]Y partition the legitimate homomorphisms
from K to H. We have that

|[[σ ]]Y | =
∏

(u,v)∈E(G)

n(σ (u), σ (v)),

where

n(a, a′) =
∑
b∈�z

|Hom((J3, y, z) → (H, a, b))| |Hom((J3, y, z) → (H, a′, b))|.

By Definition 4.1, |�z| is even; thus, the sum defining n(a, a′) has an even number of
terms. |Hom((J3, y, z) → (H, a, b))| = |
a,b| is even if a ∈ �y − i and b ∈ �z − s, and odd,
otherwise. If a = a′ = i, every term is odd and n(a, a′) is even. Otherwise, exactly one
term (b = s) is odd; thus, n(a, a′) is odd. Therefore, |[[σ ]]Y | is odd if and only if σ does not
map a pair of adjacent vertices to i: that is, if the set I(σ ) = {v ∈ V (G) | σ (yv) = i} is an
independent set in G.

Choose representatives σ1, . . . , σk, one from each ∼Y -equivalence class. We have that

|Hom(J → H)| ≡ |{σ ∈ Hom(K → H) | σ is legitimate}| (mod 2)

=
k∑

j=1

|[[σ j]]Y |

≡ |{ j ∈ [k] | I(σ j) is independent}| (mod 2)

=
∑

X∈I(G)

|{σ j | j ∈ [k] and I(σ j) = X}|

≡ |I(G)| (mod 2) ,

where the final equivalence is because the number of σ j such that I(σ ) = X is exactly
|�y − i||V (G)\X|, which is odd because |�y| is even.

4.2. Caterpillar Gadgets

All our hardness gadgets use the following “caterpillar gadgets” as J3. We will also use
two other kinds of gadget, “neighbourhood gadgets” and “�-cycle gadgets”, but we defer
their definitions to the sections in which they are used. As we will see in the following
section, caterpillar gadgets rely on H being square-free.

Definition 4.3. For a path P = v0 . . . vk in H of length at least 1, define the caterpillar
gadget JP = (G, τ ) as follows (see Figure 4). V (G) = {u1, . . . , uk−1, w1, . . . , wk−1, y, z} and
G is the path yu1 . . . uk−1z together with edges (uj, w j) for 1 ≤ j ≤ k − 1. τ = {w1 
→
v1, . . . , wk−1 
→ vk−1}.

Note that, if P is a single edge, G(JP) is also the single edge (y, z) and τ (JP) = ∅.
In the following, we will repeatedly make use of the following fact about square-free

graphs: if two distinct vertices have a common neighbour, they must have a unique
common neighbour, since a pair of vertices with two common neighbours would form a
4-cycle.
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Fig. 4. The caterpillar gadget corresponding to a path v0 . . . vk. The vertices w1, . . . , wk−1 in the gadget are
pinned to vertices v1, . . . , vk−1 in H, respectively.

LEMMA 4.4. Let H be a square-free graph, let k > 0, and let P = v0 . . . vk be a path
in H.

(1) For any a ∈ �H(v0)−v1 and σ ∈ Hom((JP, y) → (H, a)), σ (uj) = v j−1 for all j ∈ [k−1].
(2) For any b ∈ �H(vk) − vk−1 and σ ∈ Hom((JP, z) → (H, b)), σ (uj) = v j+1 for all

j ∈ [k − 1].

PROOF. The result is trivial for k = 1; thus, we assume that k > 1. We prove the first
part by induction on j. The second part follows by symmetry (call the vertices on the
path vk . . . v0 instead of v0 . . . vk).

First, take j = 1. From the structure of JP , σ (u1) must be a neighbour of σ (y) = a
and of v1, which are distinct vertices. v0 is a common neighbour of a and v1; thus, it
must be their unique common neighbour. Therefore, σ (u1) = v0. Now, suppose that
σ (uj−1) = v j−2. As in the base case, σ (uj) must be some neighbour of v j−2 and v j , which
are distinct. v j−1 is such a vertex; thus, it is the unique such vertex.

LEMMA 4.5. Let H be a square-free graph. Let k > 0 and let P = v0 . . . vk be a path
in H with degH(v j) odd for all j ∈ {1, . . . , k− 1}. Let �y ⊆ �H(v0) and �z ⊆ �H(vk), with
i = v1 ∈ �y and s = vk−1 ∈ �z. For each o ∈ �y − i and each x ∈ �z − s:

(1) |Hom((JP, y, z) → (H, o, x))| = 0,
(2) |Hom((JP, y, z) → (H, o, s))| = 1,
(3) |Hom((JP, y, z) → (H, i, x))| = 1 and
(4) |Hom((JP, y, z) → (H, i, s))| is odd.

PROOF. If k = 1, i = v1, s = v0, then G(JP) is the single edge (y, z) and τ (JP) = ∅. For
any o ∈ �y − i and x ∈ �y − s, we have that (o, s), (i, s), (i, x) ∈ E(H) so (o, x) /∈ E(H)
because H is square-free. Parts 1 to 4 are immediate. For the remainder of the proof,
we may assume that k ≥ 2. Note that when k = 2, i = s = v1, and this is the unique
common neighbour of v0 and v2 in H.

For Part 1, suppose, toward a contradiction, that σ ∈ Hom((JP, y, z) → (H, o, x)). In
particular, σ ∈ Hom((JP, y) → (H, o)); thus, by Lemma 4.4(1), σ (u1) = v0. We also have
that σ ∈ Hom((JP, z) → (H, x)); thus, by Lemma 4.4(2), σ (u1) = v2. P is a simple path,
however; thus, v0 �= v2.

For Part 2, let σ ∈ Hom((JP, y, z) → (H, o, s)). Since σ ∈ Hom((JP, y) → (H, o)),
σ (uj) = v j−1 for all j ∈ [k − 1] by Lemma 4.4(1). Now, however, σ is completely de-
termined; thus, it is the unique element of Hom((JP, y, z) → (H, o, s)). Part 3 follows
similarly from Lemma 4.4(2).

For Part 4, first, note that there is a homomorphism σ+ ∈ Hom((JP, y, z) → (H, i, s))
with σ+(uj) = v j+1 for all j ∈ [k − 1]. Now, for m ∈ [k − 1], let

Sm = {σ ∈ Hom((JP, y, z) → (H, i, s)) | m is minimal such that σ (um) �= vm+1}.
The sets {σ+} and S1, . . . , Sk−1 partition Hom((JP, y, z) → (H, i, s)).
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Fig. 5. Examples of graphs containing 4-cycles for which caterpillar gadgets (Definition 4.3 and Lemma 4.5)
fail. The graphs H1 and Hk (k ≥ 2) are shown, along with the caterpillar gadgets J1 and JP , corresponding
to the paths v0v1 and v0 . . . vk, respectively. The labels o, s, i, and x are referenced in the text.

We claim that, for any σ ∈ Sm, σ (uj) = v j−1 for all j > m. This is trivial for Sk−1,
so let σ ∈ Sm with m < k − 1. σ (um+1) must be a neighbour of both σ (wm+1) = vm+1
and σ (um) ∈ �H(vm). By definition of Sm, these are distinct vertices; thus, vm is their
unique common neighbour and, thus, σ (um+1) = vm. Now, if σ (uj) = v j−1 for some
j ∈ {m+1, . . . , k−2}, then σ (uj+1) must be a neighbour of both σ (w j+1) = v j+1 and v j−1.
v j is the unique such vertex; thus, σ (uj+1) = v j . This establishes the claim.

But, now, for any σ ∈ Sm, we have σ (uj) = v j+1 for j < m and σ (uj) = v j−1 for j > m.
σ (y) = i, σ (z) = s, and σ (w j) = v j for each j ∈ [k − 1]. Finally, σ (um) may take any
value in �H(vm) − vm+1. It follows that, for all m, |Sm| = degH(vm) − 1, which is even.
|Hom((JP, y, z) → (H, i, s))| = 1 + ∑

m |Sm|, which is odd, as required.

4.3. Caterpillar Gadgets and 4-Cycles

Before proceeding to find hardness gadgets for square-free graphs in the next section,
we pause to show why 4-cycles cause problems for caterpillar gadgets and, in particular,
why Lemma 4.5 does not apply to graphs containing 4-cycles.

First, consider the one-edge caterpillar gadget J1 associated with the path v0v1 in
the graph H1 in Figure 5. This corresponds to k = 1 in Lemma 4.5, and we have i = v1
and s = v0. Taking �y = �H1 (v0) = {v′

0, v1} and �z = �H1 (v1) = {v0, v
′
1} satisfies the

conditions of the lemma. However, taking o = v′
0 ∈ �y − i and x = v′

1 ∈ �z − s, we have
that |Hom((J1, y, z) → (H, o, x))| = 1; thus, Part 1 of the lemma does not hold. However,
the other three parts hold, as

|Hom((J1, y, z) → (H, o, s))| = |Hom((J1, y, z) → (H, i, x))|
= |Hom((J1, y, z) → (H, i, s))| = 1.

Now, consider longer paths such as the path P = v0 . . . vk in Hk in Figure 5, for
some k ≥ 2. The associated caterpillar gadget JP is also shown in the figure. For each
j ∈ {1, . . . , k − 1}, degHk

(vi) is odd. We have that i = v1 and s = vk−1 (with i = s in the
case that k = 2). Again, take �y = �Hk(v0) = {v′

0, v1}, take �z = �Hk(vk) = {vk−1, v
′
k}, and

take o = v′
0 ∈ �y − i and x = v′

k ∈ �z − s.
Once again, Part 1 of the lemma fails. We have that |Hom((JP, y, z) → (Hk, o, x))| = 1,

since there is a homomorphism that maps uj to v′
j for each j ∈ {1, . . . , k−1}. This is the

only possible homomorphism from (JP, y, z) to (Hk, o, x) since there is only one k-path
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Fig. 6. A hardness gadget for the graph Hk (see also Figure 5).

from o to x that the k-path in JP can be mapped to. For a hardness gadget, it would
suffice for |Hom((JP, y, z) → (Hk, o, x))| to be even (not necessarily zero), but it is odd
for every k.

For Hk, the other parts of the lemma fail as well. We have that

|Hom((JP, y, z) → (H, o, s))| = |Hom((JP, y, z) → (H, i, x))| = k.

When the target is (H, o, s), the k-path in JP can be mapped to any of the k k-paths
in Hk from o to s (following along v′

0v
′
1 . . . , then dropping down along an edge v′

jv j

and then following v jv j+1 . . . vk−1). The case with target (H, i, x) is similar. In both
cases, the number of homomorphisms is k. When k is odd, this is not a real problem.
The purpose of Lemma 4.5 is to show that caterpillar gadgets can be used as J3 in a
hardness gadget. The definition of hardness gadgets requires only that |
o,s| and |
i,x|
(i.e., |Hom((JP, y, z) → (H, o, s))| and |Hom((JP, y, z) → (H, i, x))|, respectively) be odd
and not necessarily 1. However, this relaxation does not help when k is even.

Finally, for Part 4, consider a homomorphism from (JP, y, z) to (H, i, s). The image of
the path yu1 . . . uk−1z in H must be a k-walk v1x1 . . . xk−1vk−1 with the property that xj is
adjacent to v j for each j ∈ {1, . . . , k − 1}. This means that xj ∈ {v j−1, v

′
j, v j+1}. There

are two kinds of k-walk satisfying these criteria. The first kind uses only the vertices
{v0, . . . , vk}. Such a walk must be either v1v0v1v2 . . . vk−1 or v1 . . . vαvα+1vα . . . vk−1 for
some α ∈ {1, . . . , k − 1}. The second kind uses some of the vertices {v′

1, . . . , v
′
k−1}. This

kind of walk must be of the form v1 . . . vαv′
α . . . v′

βvβ . . . vk−1 for some 1 ≤ α ≤ β ≤ k − 1.
There are k walks of the first kind and 1

2 k(k − 1) of the second. Thus,

|Hom((J1, y, z) → (H, i, s))| = k + 1
2 k(k − 1) = 1

2 k(k + 1),

which is odd if and only if k is congruent to 1 or 2, mod 4, but is required to be odd for
all k.

We note that ⊕HOMSTOH1 is ⊕P-complete, as is ⊕HOMSTOHk, for every k ≥ 2. H1 is
an involution-free cactus graph with more than one vertex; thus, it is hard by the
main theorem of Göbel et al. [2014]. We claim that X = (i, s, (J1, y), (J2, z), (J3, y, z)),
as shown in Figure 6, is a hardness gadget for Hk. We have that �y = {v0, v

′
1} = {o, i}

and �z = {v1, v
′
2} = {s, x}: both are even, and i ∈ �y and s ∈ �z. There is no edge ox

in Hk; thus, |
o,x| = 0, which is even. There are edges os, ix, and is in Hk; thus,
|
o,s| = |
i,x| = |
i,s| = 1, which is odd. This establishes that X is a hardness gadget;
thus, since Hk is involution-free, ⊕HOMSTOHk is ⊕P-complete by Theorem 4.2. Ironically,
the part J3 of X is the one-edge caterpillar gadget associated with the path v1v

′
1 in Hk.

The failure of Lemma 4.5 in the presence of 4-cycles means only that caterpillar gadgets
are not guaranteed to work, not that they never work.
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5. FINDING HARDNESS GADGETS

In this section, we show how to find hardness gadgets for all connected, involution-free,
square-free graphs. The simplest case is when the graph contains at least two vertices
of even degree. Faben and Jerrum [2015] used the fact that all involution-free trees
have at least two even-degree vertices, though we use different gadgets because we are
dealing with graphs containing cycles, as well as trees. For graphs with only one even-
degree vertex, we show that an appropriate vertex deletion produces a component with
more than one even-degree vertex, and show how to simulate such a vertex deletion
using gadgets.

This leaves graphs in which every vertex has odd degree. In Section 5.2, we show
how to use odd-length cycles to find a hardness gadget. The remaining case, bipartite
graphs in which every vertex has odd degree, is covered in Section 5.3, in which we use
Corollary 3.7, our version of Lovász’s result, to nonconstructively demonstrate that a
hardness gadget always exists.

We will use the following fact.

LEMMA 5.1. An involution-free graph with at least two vertices, but at most one
even-degree vertex, contains a cycle.

PROOF. We prove the contrapositive. Let G be an involution-free acyclic graph. At
most one component of G is an isolated vertex; thus, if G has two or more vertices, it has
at least one component with two or more vertices. This component is an involution-free
tree which, by Faben and Jerrum [2015, Lemma 5.3], contains at least two vertices of
even degree.

5.1. Even-Degree Vertices

We prove that involution-free graphs containing at least one vertex of positive, even
degree have a hardness gadget. In this section, we will use one extra kind of gadget.

Definition 5.2. For a vertex v ∈ V (H), define the neighbourhood gadget J�(v),x =
(G, {w 
→ v}), where G is the single edge (x, w).

It is immediate from the definition that, for any v ∈ V (H),

|Hom((J�(v),x, x) → (H, u))| =
{

1 if u ∈ �H(v)
0 otherwise.

We first show how to find hardness gadgets for connected graphs containing at least
two even-degree vertices (their degree must be positive, since the graph is connected),
then deal with the harder case of graphs containing exactly one vertex of positive, even
degree. The following lemma constructs a caterpillar gadget; thus, the lemma depends
on H being square-free. The extended conclusion about pinned vertices is needed for
technical reasons in the proof of Lemma 5.7.

LEMMA 5.3. Let H be a connected, square-free graph with at least two even-degree
vertices. Then, H has a hardness gadget (i, s, (J1, y), (J2, z), (J3, y, z)). Furthermore, we
can choose J1, J2, and J3 so that each contains at least one pinned vertex.

PROOF. Let v0 . . . vm be a path in H between distinct even-degree vertices v0 and vm,
and let P = v0 . . . vk, where k ∈ {1, . . . , m} is minimal such that degH(vk) is even. We
claim that (v1, vk−1, (J�(v0),y, y), (J�(vk),z, z), (JP, y, z)) is a hardness gadget. |�y| and |�z|
are even because v0 and vk have even degree, and they contain v1 and vk−1, respec-
tively. The remaining properties required by Definition 4.1 hold by Lemma 4.5, since
v1, . . . , vk−1 have odd degree.
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Each of J�(v0),y and J�(vk),z contains a pinned vertex and, if k > 1, JP also con-
tains at least one pinned vertex. If k = 1, then G(JP) is the single edge (y, z) and
τ (JP) = ∅. However, we may add to G(JP) a new vertex w0 and an edge (w0, y) and
set τ (JP) = {w0 
→ v0}: this requires y to be mapped to a neighbour of v0. This has
no effect on the hardness gadget since Definition 4.1 only imposes requirements on
|Hom((J3, y, z) → (H, a, b))| when a ∈ �y. Since �y = �H(v0), we are already consid-
ering only homomorphisms that map y to a neighbour of v0, and the change to J3 is
merely restating this condition.

It is worth noting that, since all involution-free trees have at least two even-degree
vertices, Lemma 5.3 implies the dichotomy of Faben and Jerrum [2015] for ⊕HOMSTOH
where H is a tree. They also use two even-degree vertices, but their gadgets rely on the
fact that there is a unique path between two vertices of a tree, which does not hold in
general graphs. However, from Lemma 5.3, we conclude that uniqueness of the path is
not required, and we can prove hardness even when there are multiple paths between
even-degree vertices.

To handle graphs with fewer than two vertices of even degree, we first investigate
the results of deleting vertices from such graphs. If we delete the unique even-degree
vertex from a connected graph, then each component of the resulting graph contains
at least one vertex of even degree. If we are lucky, one of the resulting components
will contain two or more vertices of even degree, raising the hope that we can use
Lemma 5.3 to prove ⊕P-completeness. If all of the resulting components have exactly
one even-degree vertex, then we can iterate, deleting those vertices to obtain yet more
fragments. As long as the graph contains at least one cycle, it is not hard to see that we
can eventually obtain a component with two or more even-degree vertices. However, to
apply Lemma 5.3, we must ensure that the resulting component has no involution. We
prove this in the following two lemmas.

LEMMA 5.4. Let H be an involution-free graph with exactly one vertex v of positive,
even degree. Then, H′ = H − v is also involution-free.

PROOF. Each vertex u ∈ �H(v) has odd degree in H and has exactly one neighbour
removed; thus, degH′(u) is even. Suppose, toward a contradiction, that ρ is an involution
of H′. No automorphism can map an odd-degree vertex to an even-degree vertex or
vice-versa, and �H(v) is exactly the set of even-degree vertices in H′. Therefore, the
restriction of ρ to the neighbours of v is a permutation. Define ρ̂ : V (H) → V (H) by
ρ̂(v) = v and ρ̂(w) = ρ(w) for w �= v. ρ̂ preserves all edges in H′ and all edges incident
on v in H. Thus, it is an involution of H, contradicting the supposition that H has no
involution.

So far, we have described our goal as being to iteratively delete vertices until we find
a component with more than one even-degree vertex. This is a useful intuition, but we
do not know how to simulate such a sequence of vertex deletions using gadgets. Instead,
we show how to achieve the goal of a component with more than one even-degree vertex
by deleting a set of vertices, which we do know how to do with a gadget.

For a vertex v ∈ V (H) and an integer r ≥ 0, let Br(v) = {u ∈ V (H) | dist(u, v) = r}.
COROLLARY 5.5. Let H be an involution-free graph that has exactly one vertex v of

positive, even degree. For some r, H − Br(v) has an involution-free component H∗ that
does not contain v but does contain at least two even-degree vertices. Furthermore, we
can take r = min {dist(v,w) | w is on a cycle}.

PROOF. H contains a cycle by Lemma 5.1; thus, we can take r as in the statement of
the lemma, which is well-defined. If r = 0, then v is in some cycle C in H. H − v has
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no involution by Lemma 5.4; thus, no component of H − v has an involution. The
component H∗ of H − v that contains C − v contains at least two vertices of �H(v) (v’s
two neighbours in C); these vertices have even degree in H∗. H∗ does not, of course,
contain v.

Suppose that r > 0. By the choice of r, there must be a component H′ of H − Br−1(v)
that contains a vertex vr ∈ Br(v) that is in a cycle C ′ of H′. Since no vertex at distance
less than r from v is in a cycle in H, there is a unique path from v to vr. Let this
be v0 . . . vr, where v = v0. A simple induction on j = 0, . . . , r − 1, using Lemma 5.4,
shows that the component of H − v j containing vr has no involution, does not contain v
and has exactly one even-degree vertex: v j+1. In particular, the component of H − vr−1
that contains vr is H′. But, now, the component of H′ − vr that contains C ′ − vr has no
involution (because no component of H′ − vr has an involution) and contains at least
two vertices of even degree (because vr has at least two neighbours in C ′). Further, this
component is the component H∗ of H − Br(v) that we seek.

Thus, starting with an involution-free graph H containing only one vertex of positive,
even degree, we have shown how to make a set of vertex deletions (some set Br(v)) to
obtain an involution-free component H∗ with at least two even-degree vertices. We
now show that we can achieve these vertex deletions using gadgetry. The following
technical lemma allows us to construct a gadget that, in a sense, “selects” the vertices
of H∗ within H.

LEMMA 5.6. Let H be a graph, let P = x0 . . . xr+1 with r ≥ 0 be a path in H, and
let w ∈ V (H). If every vertex in H within distance r − 1 of w has odd degree, then
|Hom((P, x0) → (H, w))| has opposite parity to the number of distinct r-paths in H from
w to vertices of even degree.

PROOF. We prove the lemma by induction on r. For r = 0, the result is trivial. The
condition on vertices within distance r − 1 is vacuous. The number of 0-paths from
w to vertices of even degree is zero if deg(w) is odd; it is one if deg(w) is even; and
|Hom((P, x0) → (H, w))| = deg(w).

Suppose that the result holds for the path P = x0 . . . xr+1 and consider the path Pxr+2
and a graph H in which every vertex within distance r of w has odd degree.

Every homomorphism σ from (Pxr+2, x0) to (H, w) induces a homomorphism σ̂ from
(P, x0) to (H, w). Write σ ∼ σ ′ if σ̂ = σ̂ ′. ∼ is an equivalence relation and its equivalence
classes partition Hom((Pxr+2, x0) → (H, w)). Let [[σ ]] be the ∼-equivalence class of σ .

If every vertex within distance r of w in H has odd degree, there are no r-paths
from w to vertices of even degree. It follows that, by the inductive hypothesis, there
are an odd number of homomorphisms from (P, x0) to (H, w); thus, there are an odd
number of equivalence classes. Further, |[[σ ]]| = deg(σ (xr+1)) (this is well defined since
σ (xr+1) = σ̂ (xr+1); thus, all homomorphisms σ ′ ∈ [[σ ]] agree on the value of σ ′(xr+1)).
Any vertex of even degree is at a distance r + 1 from w = σ (x0); thus, if degH(σ (xr+1)) is
even, then the r-walk σ (x0)σ (x1) . . . σ (xr+1) is, in fact, a simple (r + 1)-path. Therefore,
the number N of even-cardinality equivalence classes is equal to the number of (r +
1)-paths in H from w to a vertex of even degree. Subtracting these from the total
number of equivalence classes gives |Hom((Pxr+2, x0) → (H, w))| ≡ 1 − N mod 2, as
required.

Now, we can obtain a hardness gadget for H by combining the “selection gadget”
with the hardness gadget for the subgraph H∗ given to us by Corollary 5.5.

LEMMA 5.7. Any involution-free, square-free graph H that has exactly one vertex v of
positive, even degree has a hardness gadget.
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PROOF. Let r = min {dist(v,w) | w is on a cycle}. By Corollary 5.5, there is an
involution-free component H∗ of H − Br(v) that does not contain v but contains at
least two vertices of even degree. H∗ is square-free because it is an induced sub-
graph of a square-free graph. Therefore, by Lemma 5.3, H∗ has a hardness gadget
X ∗ = (i, s, (J∗

1 , y), (J∗
2 , z), (J∗

3 , y, z)) in which each of J∗
1 , J∗

2 , and J∗
3 contains a pinned

vertex.
We construct a hardness gadget X for H from X ∗. Let P be a path of length r +1 ≥ 1,

with vertices x0 . . . xr+1. Let J1 = (G, τ ) be the partially H-labelled graph such that
τ = τ (J∗

1 ) and G is defined from G(J∗
1 ), as follows: start with G(J∗

1 ) and, for every
vertex u ∈ G(J∗

1 ), add a new copy of P and identify that copy’s vertex x0 with u. Define
J2 and J3 similarly, from J∗

2 and J∗
3 . We claim that the tuple

X = (i, s, (J1, y), (J2, z), (J3, y, z))

is the desired hardness gadget for H.
To find out what X does, we first consider homomorphisms from one copy of the

path P to H. For a vertex w ∈ V (H), let Nw = |Hom((P, x0) → (H, w))|. If dist(v,w) = r
(i.e., w ∈ Br(v)), then there is a unique r-path from w to a vertex of even degree. This
is because v is the unique vertex of even degree and, if there were distinct r-paths Q1
and Q2 from w to v, then Q1 ∪ Q2 would contain a cycle, which would contain vertices at
a distance strictly less than r from v, contradicting the definition of r. If dist(v,w) > r,
then there are no r-paths from w to even-degree vertices. Therefore, by Lemma 5.6,
Nw is even if dist(v,w) = r and Nw is odd if dist(v,w) > r (we will see that the parity
of Nw does not matter if dist(v,w) < r).

Now, let a ∈ V (H) and consider homomorphisms σ, σ ′ ∈ Hom((J1, y) → (H, a)). Write
σ ∼ σ ′ if σ (u) = σ ′(u) for all u ∈ V (G(J∗

1 )) and write [[σ ]] for the ∼-equivalence class
containing σ . |Hom((J1, y) → (H, a))| is the sum of the sizes of the ∼-equivalence
classes. For any σ , we have that

|[[σ ]]| =
∏

x∈V (G(J∗
1 ))

|Hom((P, x0) → (H, σ (x)))|.

Therefore, |[[σ ]]| is even if σ maps any vertex of G(J∗
1 ) into Br(v). In this case, |[[σ ]]|

contributes nothing to the sum, modulo 2.
Thus, we may restrict our attention to homomorphisms from J∗

1 to H that have no
vertex in Br(v) in their image. J∗

1 is connected and contains a vertex pinned to a vertex
in H∗. Therefore, restricting to homomorphisms that have no vertex in Br(v) in their
image means restricting to homomorphisms whose image is wholly within H∗. For any
vertex w ∈ H∗, distH(v,w) > r. This gives that

|Hom((J1, y) → (H, a))| ≡ |Hom((J∗
1 , y) → (H∗, a))| (mod 2)

for any a ∈ V (H∗) and |Hom((J1, y) → (H, a))| ≡ 0 mod 2, for a /∈ V (H∗); and similarly
for J2 and J3. Thus, since X ∗ is a hardness gadget for H∗, X is a hardness gadget
for H.

The proof of Lemma 5.7 does not explicitly use caterpillar gadgets. However, the
hardness gadget X is constructed from X ∗, which was produced by Lemma 5.3. It
follows that J∗

3 is a caterpillar gadget; thus, Lemma 5.7 requires H to be square-free,
as stated.

5.2. Odd Cycles

In the previous section, we showed how to find a hardness gadget for any involution-
free, square-free graph containing at least one vertex of even degree. In this section, we
show that any square-free graph in which all vertices have odd degree has a hardness
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Fig. 7. The �-cycle gadget J�,P,x corresponding to a path P = v1 . . . vk in an �-cycle in H.

gadget if it has an odd cycle. We first introduce a gadget for selecting certain vertices
in cycles.

Definition 5.8. (See Figure 7). Let P = v1 . . . vk be a path in H. For any � > max {2, k},
define the �-cycle gadget J�,P,x = (G, τ ), where G is the cycle xu1 . . . u�−1x and τ = {u1 
→
v1, . . . , uk 
→ vk}.

Recall that the odd-girth of a graph is the length of its shortest odd cycle. By conven-
tion, the odd-girth of a graph without odd cycles is infinite; in the following, we write
“a graph whose odd-girth is �” as a short-hand for “a graph whose odd-girth is finite
and equal to �.”

LEMMA 5.9. Let H be a graph whose odd-girth is � and let G be an �-cycle. The image
of G under any homomorphism from G to H is an �-cycle in H.

PROOF. Let G = u0 . . . u�−1u0. Since G is an �-cycle and H contains an �-cycle,
Hom(G → H) is nonempty; thus, let σ ∈ Hom(G → H). Let C be the image of G
under σ , that is, a subgraph of H consisting of vertices {σ (u0), . . . , σ (u�−1)} and edges
{(σ (uj), σ (uj+1)) | 0 ≤ j < �}, with addition on indices carried out modulo �. Suppose,
toward a contradiction, that C is not an �-cycle. Since C has at most � vertices and at
most � edges, it cannot have an �-cycle as a proper subgraph. Since H has no odd cycles
shorter than �, C must be bipartite. But then, the walk σ (u0)σ (u1) . . . σ (u�−1)σ (u0) is
an odd-length walk from a vertex to itself, and no such walk can exist in a bipartite
graph.

COROLLARY 5.10. Let H be a graph whose odd-girth is �. For any path P on fewer
than � vertices, |Hom((J�,P,x, x) → (H, v))| is the number of �-cycles in H that contain
the path vP.

PROOF. By Lemma 5.9, the image of G(J�,P,x) under any homomorphism to H is
an �-cycle in H and, because of the pinning and distinguished vertex, this cycle must
contain the path vP.

Let #C�(vw) be the number of �-cycles in H containing the edge (v,w).

LEMMA 5.11. Let H be a graph whose odd-girth is �. Every vertex v ∈ V (H) has an
even number of neighbours w such that #C�(vw) is odd.

PROOF. If v is not in any �-cycle, the claim is vacuous: the even number is zero.
Otherwise, let C = vw1 . . . w�−1v be an �-cycle in H. If w j ∈ �H(v) for some even
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j �= � − 1, the odd cycle vw1 . . . w jv contradicts the stated odd-girth of H. If w j ∈ �H(v)
for some odd j �= 1, the odd cycle vw j . . . w�−1v contradicts the odd-girth. Therefore, w1
and w�−1 are the only vertices in C that are adjacent to v and every �-cycle through v
contributes exactly 2 to

∑
w∈�H (v) #C�(vw). Therefore, the sum is even; thus, it has an

even number of odd terms.

LEMMA 5.12. Let H be a square-free graph whose odd-girth is �. If H contains an edge
that is in an odd number of �-cycles, then H has a hardness gadget.

Note that, for the case � = 3, any edge in a 3-cycle in H must be in exactly one 3-cycle
since, if an edge (x, y) is in distinct 3-cycles xyzx and xyz′x, then xzyz′x is a 4-cycle
in H, which is forbidden by the hypothesis of the lemma. The absence of 4-cycles is also
required for the caterpillar gadget produced in the proof.

PROOF. Let (i, s) be an edge in an odd number of �-cycles in H. Let J1 be the �-cycle
gadget J�,s,y (thus, τ (J1) = {u1 
→ s}) and let J2 be the �-cycle gadget J�,i,z. Let G(J3) be
the single edge (y, z) and let τ (J3) = ∅ (J3 is, technically, a caterpillar gadget, but it is
easier to analyse it directly).

We claim that (i, s, (J1, y), (J2, z), (J3, y, z)) is a hardness gadget for H. By Corol-
lary 5.10, |Hom((J�,s,y, y) → (H, v))| is the number of �-cycles in H that contain the
edge (v, s); thus,

�y = {v ∈ V (H) | (v, s) is in an odd number of �-cycles}.
Thus, |�y| is even by Lemma 5.11. �y contains i by the choice of the edge (i, s) in an
odd number of �-cycles. Similarly, �z is even and contains s. To verify the remaining
properties required by Definition 4.1, note that J3 is a single edge; thus, for any a, b ∈
V (H), |Hom((J3, y, z) → (H, a, b))| is 1 if (a, b) ∈ E(H) and 0, otherwise. We have that
�y ⊆ �H(s) and �z ⊆ �H(i). Thus, for any o ∈ �y − i and any x ∈ �z − s, H contains
the edges (o, s), (s, i), and (i, x), but it cannot contain the edge (o, x) because H is
square-free.

LEMMA 5.13. Let H be a square-free graph in which every vertex has odd degree. If
H contains an odd cycle, then it has a hardness gadget.

PROOF. Let � be the odd-girth of H. If H contains an edge in an odd number of �-cycles
(which is guaranteed for � = 3, since H is square-free), then H has a hardness gadget
by Lemma 5.12. For the remainder of the proof, we may assume that the shortest odd
cycle in H has length � > 4 and that every edge is in a (not necessarily positive) even
number of �-cycles.

Let P = vkvk+1 . . . v�−1v0 be a longest path that is in a positive, even number of �-cycles
(see Figure 8; it turns out to be most convenient to label the vertices in this order; the
path has length � − k). Such a path certainly exists because any edge in an �-cycle is in
a positive, even number of them. In particular, P contains at least one edge. Further,
P has fewer than � − 1 edges, because any path on � − 1 edges is in at most one �-cycle,
since H has no parallel edges. Let C = v0v1 . . . v�−1v0 be an �-cycle containing P. Let
rev(P) = v0v�−1 . . . vk be the path P with the vertices listed in the reverse order.

Let i = v1 and s = vk−1. Let J1 be the �-cycle gadget J�,rev(P),y, let J2 be the �-cycle
gadget J�,P,z, and let J3 be the caterpillar gadget Jv0...vk.

We claim that (i, s, (J1, y), (J2, z), (J3, y, z)) is a hardness gadget for H. Since P was
chosen to be a longest path in a positive, even number of �-cycles, any path uP in H
must be in an odd number of �-cycles or in none at all. Since P itself is in an even
number of �-cycles, the number of extensions uP in an odd number of cycles must be
even. By Corollary 5.10, |Hom((J�,P,z, z) → (H, u))| is the number of �-cycles in H that
contain the path uP. Therefore, �z is precisely the set of vertices u such that uP is
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Fig. 8. The parts J1, J2, and J3 of the hardness gadget constructed in the proof of Lemma 5.13. The
corresponding cycle in H is indicated in gray within each gadget. The path P = vk . . . v�−1v0 is undirected,
but the arrow indicates the order in which the vertices are listed.

in an odd number of �-cycles; thus, we have established that |�z| is even. Since sP is
an extension of P, it is not in a positive, even number of �-cycles. It is in at least one
�-cycle (namely, C); thus, it is in an odd number of them. Therefore, s ∈ �z. Similarly,
|�y| is even and i ∈ �y.

It remains to verify that the conditions of Lemma 4.5 hold for J3; that lemma gives
us the remaining properties we need from Definition 4.1. All vertices in H have odd
degree by assumption, including, in particular, the interior vertices of P. We have
already established that i = v1 ∈ �y and s = vk−1 ∈ �z. Finally, �y ⊆ �H(v0) because,
in G(J1), y is adjacent to a vertex that is pinned to v0. Similarly, �z ⊆ �H(vk).

5.3. Bipartite Graphs

The only remaining case is bipartite graphs H, in which every vertex has odd degree.
We show that, if H has an “even gadget”, it has a hardness gadget. It turns out that
every connected bipartite graph with more than one edge has an even gadget.

Definition 5.14. An even gadget for a bipartite graph H with at least one edge is an
edge (a, b) of H together with a connected bipartite graph G with a distinguished edge
(w, x) such that |Hom((G, w, x) → (H, a, b))| is even.

Note that, for bipartite G and H, with edges (w, x) and (a, b), respectively, there
is always at least one homomorphism from (G, w, x) to (H, a, b), since the whole
of G can be mapped to the edge (a, b). Thus, although Definition 5.14 only requires
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|Hom((G, w, x) → (H, a, b))| to be even, the number of homomorphisms is always
nonzero.

Suppose that H is any connected bipartite graph with more than one edge such that,
for some edge (a, b) of H, (H, a, b) is involution-free. We will show that H has an even
gadget. If, furthermore, H is square-free, this even gadget gives a hardness gadget. If
H is also involution-free, the hardness gadget implies ⊕P-completeness of ⊕HOMSTOH,
by Theorem 4.2.

LEMMA 5.15. Suppose that H is a connected bipartite graph with more than one edge
such that, for some edge (a, b) of H, (H, a, b) is involution-free. Then, H has an even
gadget.

PROOF. Let H be a graph satisfying the conditions in the statement of the lemma. Let
K2 be the graph consisting of the single edge (a, b). Clearly, (K2, a, b) is involution-free
(since there are no nontrivial automorphisms of K2 that fix a and b) and H �∼= K2 since
H has more than one edge; thus, (H, a, b) �∼= (K2, a, b). By Corollary 3.7 (taking H′ = K2
and ȳ = ȳ′ = (a, b)), there is a connected graph (G, w, x) with distinguished vertices w
and x such that (w, x) is an edge and

|Hom((G, w, x) → (H, a, b))| �≡ |Hom((G, w, x) → (K2, a, b))| (mod 2). (5)

G must be bipartite—otherwise,

|Hom((G, w, x) → (H, a, b))| = |Hom((G, w, x) → (K2, a, b))| = 0,

contradicting Equation (5). Thus, |Hom((G, w, x) → (K2, a, b))| = 1; therefore, the edge
(a, b) of H together with (G, w, x) is an even gadget.

LEMMA 5.16. Suppose that H is a connected, bipartite, square-free graph with more
than one edge such that, for some edge (a, b) of H, (H, a, b) is involution-free. Suppose
that every vertex of H has odd degree. Then, H has a hardness gadget.

PROOF. By Lemma 5.15, H has an even gadget. Choose an even gadget consisting
of an edge (i, s) of H and a connected bipartite graph G with distinguished edge (w, x)
so that N = |Hom((G, w, x) → (H, i, s))| is even. Choose the even gadget so that the
number of vertices of G is as small as possible. There is a homomorphism from G to
the edge (i, s); thus, N > 0. N is even; thus, G cannot be a single edge.

First, we show that degG(w) ≥ 2. Suppose, toward a contradiction, that degG(w) = 1,
that is, that x is the only neighbour of w in G. If this is the case, then x must have some
neighbour w′ �= w, since G is not a single edge. We have that

0 ≡ |Hom((G, w, x) → (H, i, s))| (mod 2)
≡ |Hom((G − w, x) → (H, s))| (mod 2)

=
∑

c∈�H (s)

|Hom((G − w, x, w′) → (H, s, c))|.

Since every vertex in H has odd degree, the sum has an odd number of terms. Since
the total is even, there must be some c such that |Hom((G − w, x, w′) → (H, s, c))| is
even, contradicting the choice of G. By the same argument, degG(x) ≥ 2, as well.

For any vertex v ∈ V (G), let

C(v) = {c ∈ V (H) | |Hom((G, w, x, v) → (H, i, s, c))| is odd}.
Note that, for any v ∈ V (G), |C(v)| is even since, otherwise, N would be odd.

We now show that C(y) �= ∅ for every y ∈ �G(x)\{w}. If C(y) = ∅, then, in particular,
i /∈ C(y); thus, |Hom((G, w, x, y) → (H, i, s, i))| is even. But then, |Hom((G′, w, x) →
(H, i, s))| is even, where G′ is the graph made from G by identifying the (distinct)
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vertices w and y and calling the resulting vertex w. This contradicts minimality in the
choice of G. Similarly, C(z) �= ∅ for every z ∈ �G(w)\{x}. Choose vertices y ∈ �G(x)\{w}
and z ∈ �G(w)\{x}.

Finally, let J be the partially H-labelled graph (G, {w 
→ i, x 
→ s}) and let G(J3) be the
single edge (y, z) and τ (J3) = ∅. We show that (i, s, (J, y), (J, z), (J3, y, z)) is a hardness
gadget for H. �y = C(y) is even and i ∈ C(y); likewise, �z = C(z) is even and s ∈ C(z).

By the choice of J, �y ⊆ �H(s) and �z ⊆ �H(i). For any o ∈ �y − i and x ∈ �z − s,
H contains edges (o, s), (s, i), and (i, x). It does not contain the edge (o, x), as it is square-
free. Therefore, |
o,s| = |
i,s| = |
i,x| = 1 and |
o,x| = 0. We have now established all
the conditions of Definition 4.1.

6. MAIN THEOREM

We have shown that all connected, square-free, involution-free graphs (and some dis-
connected graphs) have hardness gadgets and that ⊕HOMSTOH is ⊕P-complete for any
involution-free graph that has a hardness gadget. To deal with graphs that have invo-
lutions, we use reduction by involutions. As we noted in the introduction, Faben and
Jerrum [2015] showed that every graph H has a unique (up to isomorphism) involution-
free reduction H∗. They also proved [Faben and Jerrum 2015, Theorem 3.4] that, for
any graph G, |Hom(G → H)| ≡ |Hom(G → H∗)| mod 2. Hence, ⊕HOMSTOH has the
same complexity as ⊕HOMSTOH∗.

If H is a tree (as it was for Faben and Jerrum [2015]), then its involution-free
reduction H∗ is connected. However, for general graphs, the fact that H is connected
does not imply that H∗ is connected.1 The final result that we need is from Faben and
Jerrum [2015, Theorem 6.1], which allows us to deal with disconnected graphs:

LEMMA 6.1. Let H be an involution-free graph. If H has a component H′ for which
⊕HOMSTOH′ is ⊕P-complete, then ⊕HOMSTOH is ⊕P-complete.

We can now prove our main result.

THEOREM 1.2. Let H be a graph whose involution-free reduction H∗ is square-free.
If H∗ has at most one vertex, then ⊕HOMSTOH is in P; otherwise, ⊕HOMSTOH is ⊕P-
complete.

PROOF. As noted earlier, ⊕HOMSTOH has the same complexity as ⊕HOMSTOH∗. If
H∗ has at most one vertex, then ⊕HOMSTOH∗ is in P: |Hom(G → H∗)| = 1 if G has
no edges and Hom(G → H∗) = ∅ if G has an edge. Otherwise, let H∗∗ be any compo-
nent of H∗ with more than one vertex. Such a component must exist since, otherwise,
H∗ would be a graph with at least two vertices and no edges, and any such graph has
an involution.

If H∗∗ has two or more vertices of even degree, then it has a hardness gadget by
Lemma 5.3. If H∗∗ has exactly one vertex of even degree, it has a hardness gadget by
Lemma 5.7. If the previous cases do not apply, then every vertex of H∗∗ must have odd
degree. By Lemma 5.1, H∗∗ contains a cycle. If it contains an odd cycle, it has a hardness
gadget by Lemma 5.13. Otherwise, H∗∗ is bipartite. By construction, H∗∗ is connected
and square-free. Since H∗∗ contains a cycle, it has more than one edge. Since it is
involution-free, it certainly contains an edge (a, b) so that (H∗∗, a, b) is involution-free.
Every vertex of H∗∗ has odd degree; thus, it has a hardness gadget by Lemma 5.16.

1For example, consider nonisomorphic, disjoint, connected, involution-free graphs H1 and H2 and let H be a
graph made by adding two disjoint paths of the same length from some vertex x1 ∈ H1 to some vertex x2 ∈ H2.
The only involution of this graph exchanges the interior vertices of the two paths; thus, H∗ = H1 ∪ H2, which
is disconnected.
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We have established that either H∗ has at most one vertex, in which case ⊕HOMSTOH∗
and ⊕HOMSTOH are in P, or that some component H∗∗ of H∗ has a hardness gadget.
In the latter case, ⊕HOMSTOH∗∗ is ⊕P-complete by Theorem 4.2. ⊕HOMSTOH∗ is ⊕P-
complete by Lemma 6.1; thus, ⊕HOMSTOH is ⊕P-complete.
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