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Abstract

A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of
a graph G if the distance from v to x is different from the distance from
v to y. A set W ⊆ V (G) is a total resolving set for a graph G if for
every pair of vertices x, y ∈ V (G), there exists some vertex w ∈ W − {x, y}
which distinguishes x and y, while W is a weak total resolving set if for every
x ∈ V (G)−W and y ∈ W , there exists some w ∈ W−{y} which distinguishes
x and y. A weak total resolving set of minimum cardinality is called a weak

total metric basis of G and its cardinality the weak total metric dimension

of G. Our main contributions are the following ones: (a) Graphs with small
and large weak total metric bases are characterised. (b) We explore the
(tight) relation to independent 2-domination. (c) We introduce a new graph
parameter, called weak total adjacency dimension and present results that
are analogous to those presented for weak total dimension. (d) For trees,
we derive a characterisation of the weak total (adjacency) metric dimension.
Also, exact figures for our parameters are presented for (generalised) fans
and wheels. (e) We show that for Cartesian product graphs, the weak total
(adjacency) metric dimension is usually pretty small. (f) The weak total
(adjacency) dimension is studied for lexicographic products of graphs.
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