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Abstract

An f -Sensitive Distance Oracle with stretch � preprocesses

a graph G(V;E) and produces a small data structure that

is used to answer subsequent queries. A query is a triple

consisting of a set F � E of at most f edges, and vertices

s and t. The oracle answers a query (F; s; t) by returning a

value ~d which is equal to the length of some path between

s and t in the graph G n F (the graph obtained from G by

discarding all edges in F ). Moreover, ~d is at most � times

the length of the shortest path between s and t in G n F .

The oracle can also construct a path between s and t in

G n F of length ~d. To the best of our knowledge we give the

�rst nontrivial f -sensitive distance oracle with fast query

time and small stretch capable of handling multiple edge

failures. Speci�cally, for any f = o( logn
log logn

) and a �xed

� > 0 our oracle answers queries (F; s; t) in time eO(1) with

(1 + �) stretch using a data structure of size n2+o(1). For

comparison, the na��ve alternative requires mfn2 space for

sublinear query time.

1 Introduction.

Dealing with failures is an essential part of modern com-
puting. Built in processes that deal with failures are an
essential part of many computing environments, from
massive storage devices, large scale parallel computa-
tion, and communication networks.

In this paper we study how to answer queries
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in the presence of failures in a network, where one
assumes apriori a bound on the number of simultaneous
failures. Such a bound is especially relevant in the
context of independent failures where the probability
of multiple failures decreases exponentially with the
number of failures. In particular, we consider distance
and shortest path queries in the presence of edge failures
for undirected weighted graphs.

Our goal is to preprocess a graph G = (V;E)
and produce some (hopefully small) data structure
used to answer subsequent queries of the form (F; s; t),
F � E, jF j � f . The answer to such a query is
an approximation to the length of the shortest path
between s and t in the graph G nF (the graph obtained
from G by discarding all edges in F ). Moreover, we
want to be able to answer queries that ask to compute
such an approximate shortest path. We call such a data
structure an f -sensitive distance oracle.

There are several parameters to be considered with
respect to suggested f -sensitive distance oracles.

� The size of the data structure.

� The time needed to answer distance queries
(F; s; t).

� The approximation ratio (also known as the
stretch), how close are our estimated distances to
the actual distances?

� The time required for the preprocessing phase.

The f -sensitive distance oracle is said to have a
stretch of � if the estimated distance returned by the
data structure is at most � times the actual distance.
I.e., for every set F � E such that jF j � f and for every
pair of vertices s and t, the f -sensitive distance oracle
returns an estimated distance bdGnF (s; t), that satis�es

dGnF (s; t) � bdGnF (s; t) � �dGnF (s; t) (where dGnF (s; t)
is the distance from s to t in the graph G n F ).

The na��ve solution to the exact problem is to store
for every vertex v and for every set F with jF j �
f , a shortest path tree rooted by v and a distance
vector giving the distances from v to all other vertices.
Thus, the total space required by the na��ve solution is
O(mfn2). Using the na��ve approach, a query (F; s; t)

returns the exact solution and requires eO(f) time (to
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�nd the appropriate distance vector). To print out the
path one also needs to follow the predecessor links in
the appropriate shortest path tree. This can be done in
time proportional to the number of edges of the shortest
path.

Another na��ve solution requires linear space and
also returns the exact solution. This solution does
not preprocess the graph, and upon query (F; s; t) run
Dijkstra's algorithm from s in the graph G n F . This is
space e�cient, but query time is high.

In section 2 we present a simple exact solution with
query time O(f2) and space O(n2 � nf ). The primary
di�culty that we address is how to replace the nf factor
in this space bound, by roughly logf n�1=�f . We achieve
this at the cost of returning an approximate shortest
path rather than an exact shortest path (with stretch
1+ �), and slightly increasing the query time. The basic
idea that we use to reduce the size of the data structure
is to consider sets of edges (called segments) rather than
singleton edges. More speci�cally, instead of considering
the deletion of each edge individually, we consider the
deletion of the entire segment containing the edge.
When done appropriately, the deletion of segments
rather than individual edges, maintains approximate
shortest paths.

Related Work: The problem of f -sensitive dis-
tance oracles is closely related to dynamic shortest paths
algorithms. In dynamic algorithm as opposed to the f -
sensitive model, the failures/updates are not given as a
batch but rather as an adversarial sequence of update
and query operations. The problem of dynamic short-
est path was extensively studied since the early 80's (e.g.
[13, 20, 21, 22, 3, 9, 24, 25, 23, 5, 4, 16, 15, 18, 17, 1])
and for many problems we have dynamic algorithms
with bounds close to optimal. The situation with the
f -sensitive model is perhaps surprisingly very di�erent
and many key problems in this model are far from being
fully understood.

The �rst distance sensitive oracle was in the context
of directed graphs [10]. It maintained exact distances
and was capable of handling a single edge failure. The
space requirement of this oracle is O(n2 log n) and its
query time is O(log n).

This was later generalized to handle a single vertex
or edge failure in [11]. Demetrescu et al. [11] presented
an exact 1-sensitive distance oracle of size O(n2 log n),

O(1) query time and eO(mn2) preprocessing time.
Later, in two consecutive papers, Karger and Bern-

stein improved the preprocessing time (while keep-
ing the space and query time unchanged), �rst in to

O(n2
p
m) in [6] and then to eO(mn) in [7].

Afterwards, by a quite involved construction, Duan
and Pettie [12] considered the case of two failures (ver-

tices or edges) with exact distances. The size of their
oracle is O(n2 log3 n), the query time is O(log n) and
the construction time is polynomial. They claim: \It
may yet be possible to �nd distance oracles capable of
handling any �xed number of failures. However, the
sheer complexity of our algorithm suggests that moving
beyond dual-failures will require a fundamentally di�er-
ent approach to the problem". Further details on their
dual-failure data-structure appear in Duan's PhD The-
sis [27].

Khanna and Baswana [19] considered approxi-
mate 1-sensitive distance oracles for unweighted graphs.
More precisely, they presented a data structure of size

O(k5n1+1=k log3 n
�4 ), (2k�1)(1+�) stretch and O(k) query

time.
The problem of 1-sensitive distance oracles was

also studied with a special focus on improving the
preprocessing time at the cost of a polynomial query
time (see [26, 14]).

The case of handling more than two edge failures
(while keeping query time small) was also considered in
[8] | albeit the stretch was 
(f) which is quite large.
Let W denote the weight of the heaviest edge in the
graph assuming the smallest edge weight is 1. For any
integer parameter k, [8] gave an f -sensitive distance
oracle of size O(fkn1+1=k log (nW )), (8k � 2)(f + 1)
stretch and O(f �log2 n�log log2 n) query time. Note that
even with k = 1 and for a constant number of failures,
the stretch is quite large, and therefore irrelevant in
many settings.

Our Results: To the best of our knowledge, we present
the �rst non trivial f -sensitive distance oracle with
small stretch and fast query time capable of handling
multiple edge failures for weighted undirected graphs.
We are unaware of any previous construction that deals
with more than 2 failures and gives stretch arbitrarily
close to one (See Tables 1, 2). We deal with an arbitrary
(predetermined) upper bound on the number of failures,
and arbitrarily small (constant) stretch. More precisely,
our main result is the following theorem.

Theorem 1.1. Let G = (V;E) be a weighted undirected
graph, with jV j = n, and jEj = m, where all edges have
positive weight in the range [1;W ]. Let D = n�W (which
is an upper bound on the diameter of the graph), and let
� be a parameter such that 0 < � < 1. One can construct

in O
��
fn5 + n4 logD + n3 logD log logD

�
(logD=�)

f
�

time an f -sensitive distance oracle for G with

(1 + �) stretch, O
�
n2 (logD=�)

f � f logD
�

space, and

O
�
f5 logD

�
query time.

In addition, we show that one can replace the logf D
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Model
f - Max #
failures

Approximation
Data Structure
Size

Query time
Preprocessing
Time

Ref.

Directed
Edge Failure

1 1 O(n2 log n) O(log n) O(mn2 log n+ n3 log2 n) [10]

Directed
Edge/vertex
Failure

1 1 O(n2 log n) O(1) O(mn2) [11]

Directed
Edge/vertex
Failure

1 1 O(n2 log n) O(1) eO(mn) [6], [7]

Directed
Edge/vertex
Failure

2 1 O(n2 log3 n) O(log n) poly(n) [12]

Undirected
Unweighted
Edge/vertex
Failure

1
(2k � 1)(1 + �)
k � 1, � > 0

O
�
k5n1+1=k log3 n=�4

�
O(k) O

�
kmn1+1=k

�
[19]

Undirected
Weighted
Edge Failure

f 2 Z
(8k � 2)(f + 1)
k � 1

O
�
fkn1+1=k log (nW )

�
O
�
f � log2 n � log log2 n� poly(n) [8]

Table 1: Previous f -sensitive Distance Oracles. Note that if the number of failures f > 2 then the stretch is
(8k � 2)(f + 1) � 24.

Model
f - Max #
failures

Approximation
Data Structure
Size

Query time
Preprocessing
Time

Ref.

Undirected
Unweighted
Edge Failure

f 2 Z
1 + �
� > 0

O
�
n3 (log n=�)

f
�

O(f4) O(n2(log n=�)f (m+ n log n)) This Paper

Undirected
Unweighted
Edge Failure

f 2 Z
1 + �
� > 0

O
�
n2 (log n=�)

f � f log n
�

O
�
f5 log n

�
O
��
fn5

�
(log n=�)

f
�

This Paper

Undirected
Weighted
Edge Failure

f 2 Z
1 + �
� > 0

O
�
n3 (logD=�)

f
�

O(f4) O(n2(logD=�)f (m+ n log n)) This Paper

Undirected
Weighted
Edge Failure

f 2 Z
1 + �
� > 0

O
�
n2 (logD=�)

f � f logD
�

O
�
f5 logD

�
O
��
fn5 + n4 logD + n3 logD log logD

�
(logD=�)

f
�

This Paper

Undirected
Weighted
Edge Failure

f 2 Z
1 + �
� > 0

O
�
n3 (log n=�)

f
(logW= log n)

�
O
�
f4 log logW

�
O
�
n2 (log n=�)

f
(logW= log n) (m+ n log n)

�
This Paper

Undirected
Weighted
Edge Failure

f 2 Z
1 + �
� > 0

O
�
n2 (log n=�)

f � f logW
�

O
�
f5 log n log logW

�
O
�
fn5 (log n=�)

f
(logW= log n)

�
This Paper

Table 2: New f -sensitive Distance Oracles. Note that the stretch is now 1 + � for arbitrary small � > 0. The
�rst two rows describe our results for unweighted graphs, rows 3 and 4 give our results for weighted graphs as a
function of D = n �W , and the last two rows improve the space bound as a function of the max edge weight W .

factor in Theorem 1.1 by (roughly) logf n, at the cost
of an additional log logW factor in the query time.

The rest of the paper is organized as follows. In
Section 2 we present an f -sensitive (1 + �) stretch
distance oracle that requiresO(n3(logD=�)f ) space, and
O(f4) query time, where D = n �W is an upper bound
on the diameter of the graph (the edge weights are
normalized so that the minimum edge has weight 1
and W is the maximum edge weight). In Section 3
we reduce the space requirements of our data structure
to O(n2(logD=�)f � f logD) and obtain Theorem 1.1.
The main idea used in Section 3 is that we do not
need to explicitly store the paths in our data-structures.
Rather we can represent the paths implicitly as the
concatenation of at most O(f logD) shortest paths in

the original graph G. We do this by developing new
tools introduced in Section 3 (decomposable paths and
expaths).

We further improve the space in Section 4 and
replace the logf D factor in Theorem 1.1 by (roughly)
logf n at the cost of an additional log logW factor in
the query time (see Table 2 for the full details).

1.1 Preliminaries. We use the following notations:
Let P be a path. jP j is de�ned to be the sum of the

weights of its edges.
dG(u; v) is the distance from u to v in G, abbrevi-

ated d(u; v) whenG is known from the context. PG(u; v)
denotes an arbitrary shortest path from u to v in G and
is abbreviated P (u; v) when G is known from the con-
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text.
Let P be a path and x; y be two vertices along the

path. Then P [x; y] is the subpath of P from x to y
(including x and y).

We now de�ne the path concatenation (�) operator.
Let P1 = (x1; x2; : : : ; xr) and P2 = (y1; y2; : : : ; yt) be
two paths. Then P = P1 � P2 is de�ned as the path
P = (x1; x2; : : : ; xr; y1; y2; : : : ; yt), and it is well de�ned
if either xr = y1 or (xr; y1) 2 E.

2 eO(n3) Approximate Distance Sensitive
Oracles.

In this section we present an f -sensitive distance
oracle for a given graph G with (1 + �) stretch,

O
�
n3 (logD=�)

f
�
space, and O

�
f4
�
query time.

The intuition for our construction comes from a
simple data structure that can accommodate up to f
edge failures and returns the exact shortest path in the
graph without the failed edges. Unfortunately, the space
requirements are quite large, O(nf+3). We describe this
simple data structure in Appendix A as the paper is self-
contained without it, and we give it to provide some
more intuition.

2.1 Improved Data Structure. Similarly to the
O(nf+3) data structure, our O(n3(logD=�)f ) data
structure consists of rooted trees FT (u; v) for every pair
of vertices u; v 2 V . We further improve upon the space
requirement in Section 3.

To de�ne FT (u; v) we �rst de�ne a general decom-
position of a path P into subpaths using a particular
subset of the vertices of P which we call netpoints. We
use �0 = �=3 in these de�nitions.

Definition 2.1. (Path Netpoints) Let P = (v1 =
u; v2; : : : ; vk = v) be a path from u to v in G. Let
L be the set of all vertices vj ; vj+1 2 P such that
jP [u; vj ]j < (1 + �0)i � jP [u; vj+1]j for some integer
i � 0. De�ne R analogously to be the set of all vertices
vj ; vj�1 2 P such that jP [vj ; v]j < (1+�0)i � jP [vj�1; v]j
for some integer i. Let netpoints(P ) = L [ R [ fu; vg.
See Figure 1.

Note that the cardinality of netpoints(P ) is
O(log1+�0 jP j) = O(log1+� jP j) and for a small enough

�, O(log1+� jP j) = O( log jP j
� ) = O(logD=�).

A segment of P is a subpath of P connecting two
consecutive netpoints along P . We denote by seg(P ) the
set of segments of the path P . From this de�nition it
follows that the segments in seg(P ) are pairwise disjoint
except possibly for their endpoints. For e 2 P we de�ne
seg(e; P ) to be the segment of P containing e, see Figure
2.

The following lemma follows immediately from the
de�nition of netpoints and segments.

Lemma 2.1. Let P be a path from u to v, e = (x; y) be
an edge of P . Either seg(e; P ) = feg or jseg(e; P )j �
�0minfjP [u; x]j ; jP [x; v]jg.
Proof. Assume with out loss of generality that the
vertex x is closer than y to u along P (i.e. jP [u; x]j <
jP [u; y]j). Let i be the maximal index such that
(1 + �0)i � jP [u; x]j. Then (1 + �0)i+1 > jP [u; x]j. If
(1 + �0)i+1 � jP [u; y]j then we get jP [u; x]j < (1 +
�0)i+1 � jP [u; y]j and by de�nition both x and y are
netpoints of P , hence seg(e; P ) = feg. Otherwise,
(1 + �0)i+1 > jP [u; y]j and
jseg(e; P )j � (1+�0)i+1�(1+�0)i = �0(1+�0)i � �0jP [u; x]j:

Symmetrically, we can show that either seg(e; P ) =
feg or jseg(e; P )j � �0 jP [y; v]j. If jseg(e; P )j �
�0 jP [y; v]j, it follows that jseg(e; P )j � �0 jP [y; v]j <
�0 jP [x; v]j (since jP [y; v]j < jP [x; v]j by assumption).
Therefore, either seg(e; P ) = feg or jseg(e; P )j �
�0minfjP [u; x]j ; jP [x; v]jg.

The trees FT (u; v). We associated with each node
� 2 FT (u; v) a particular graph G�, the shortest path
P� := PG�

(u; v) which is the shortest path from u to v
in the graph G�, and a segment S� 2 seg(Pp(�)) where
p(�) is the parent of � in FT (u; v). The graphs G� are
de�ned top down as follows.

The graph Gr associated with the root r of FT (u; v)
is the input graph G = (V;E) itself (we formally de�ne
Sr = ;). We introduce a child � of r for each segment
s 2 seg(Pr), de�ne S� = s, and G� to be the graph
obtained from Gr by deleting the edges of s.

In general, assume that we have de�ned FT (u; v)
up to level k. We de�ne level k+1 as follows. For each
node �0 of level k for which P�0 6= ; we introduce a child
�, per segment s 2 seg(P�0), de�ne S� = s, and G� to
be the graph obtained from G�0 by deleting the edges
of s. Nodes �0 of level k for which P�0 = ; are leaves of
FT (u; v).

For each node � 2 FT (u; v) we de�ne avoid(�)
to be the set containing all edges in the segment
associated with � and in the segments associated with
the ancestors of � in FT (u; v) (equivalently one can
de�ne recursively avoid(�) = avoid(p(�)) [ S�). Then
G� = G n avoid(�). See Figure 3.

Our data structure consists of the tree FT (u; v) for
every pair of vertices u; v, constructed up to level f . In
each node � 2 FT (u; v) we keep only the path P�. We
store the edges of P� in a perfect hash table, keeping
the index of seg(e; P�) with each edge e. This index
identi�es the child � of � such that S� = seg(e; P�).
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Path netpoints and segments.

Figure 1: Path netpoints, the union of both sets of
netpoints, from u (L in text) and from v (R in text).
Although not shown, the same vertex can be chosen both
for L and for R, and, moreover, the same vertex can be
chosen multiple times for L and/or for R.

Figure 2: Segments of a path and seg(e; P ).
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𝑺𝜶 𝑺𝜷 𝑺𝜸 

𝑺𝜹 𝑺𝜼 

𝑶
log 𝑫

𝝐′  children 

Height =  
𝒇 = #failures 

𝑃𝑟 = S𝛼 ⋅ 𝑆𝛽 ⋅ 𝑆𝛾 

𝑷𝜷 𝑷𝜸 

𝑷𝜹 

𝑷𝜶 

𝑷𝜼 

𝑃𝛽 = S𝛿 ⋅ 𝑆𝜂 

𝑷𝒓 
𝑟 = 𝑝 𝛼

= 𝑝 𝛽 = 𝑝 𝛾  

𝛽 = 𝑝 𝛿 = 𝑝 𝜂  

avoid(𝑟) = ∅ 
avoid(𝛼) = 𝑆𝛼 
avoid(𝛽) = 𝑆𝛽 

avoid(𝛾) = 𝑆𝛾 

avoid(𝛿) = 𝑆𝛽 ∪ 𝑆𝛿  

avoid(𝜂) = 𝑆𝛽 ∪ 𝑆𝜂 

 
 

Figure 3: A tree FT (u; v). The path at the root r is Pr = PG(u; v), the shortest path in the graph G between
vertices u and v. Every node in FT (u; v) has O(logD=�0) children. The path Pr is split by the vertices of
netpoints(Pr) into segments S�, S� , and S . Associated with each such segment is a child of node r, nodes �, �,
and . The path P� is the shortest path in the graph G�, where G� is the result of deleting all edges along S�
from the graph G = Gr (i.e., deleting avoid(�)). Paths P� and P are de�ned analogously. The path P� is split
by netpoints(P�) into segments P�, P�. Segments P� and P� have associated nodes � and � | children of node
�. The path P� is the shortest path between vertices u and v in the graph G�, where G� is the result of deleting
the edges along S� and S� from G. Equivalently, G� is the result of deleting the edges along S� from G� . The
path P� is de�ned similarly.

Since the number of children of each node of
FT (u; v) is O(logD=�) and the depth of FT (u; v) is f
then FT (u; v) contains O((logD=�)f ) nodes. Each node
� keeps the path P� in a data structure of size linear
in number of edges of P� which is O(n). It follows that
the total size of FT (u; v) is O(n(logD=�)f ). The to-
tal size of the trees FT (u; v) for all pairs u; v 2 V is
O(n3(logD=�)f ). This is the size of the data structure.

Preprocessing. We construct FT (u; v) top down
while maintaining G�. At each node � we have to run
a single source shortest path computation to �nd P�.
Subsequently we compute netpoints(P�) and seg(P�)
in O(n) time and construct the hash table storing the
edges of P� in O(n) expected time. Summing up
over all nodes � in all trees FT (u; v) we get that the
total preprocessing time is O(n2(logD=�)f (m+n log n))
expected time.

2.2 Query. Given F � E; jF j � f (a set of failing
edges), and a pair of vertices s; t 2 V , we approximate

the length of the shortest path from s to t in G n F as
follows.

The graph H: We build a small weighted graph H
over V (H) = V (F ) [ fs; tg, i.e. the vertices of H are
the endpoints of the edges of F , and s; t.1 For each
pair of vertices u; v 2 V (H) we decide if E(H) contains
(u; v) and assign it a weight wH(u; v) as follows.

We traverse the tree FT (u; v) from its root towards
a leaf. When visiting a node � 2 FT (u; v), we do one
of the following steps.

Case 1: If P� = ; we stop the traversal and don't add
an edge between u; v in H.

Case 2: If P� \F = ; we add an edge (u; v) to H with
wH(u; v) = jP�j and stop the traversal of FT (u; v).

1We use the notation V (F ) for a subset of edges F , to denote
the endpoints of the edges of F . We use the notation V (H) for a
graph H to denote the set of vertices of the graph.
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Case 3: Otherwise, P� must contain a failing edge e 2
F . We choose arbitrarily an edge e 2 P� \ F and
continue the traversal in a subtree of � obtained
by following the child �0 of � such that S�0 =
seg(e; P�).

We prove in Lemma 2.3 below that this traversal is well
de�ned in the sense that we never reach Case 3 when �
is at level f . We add an edge to H only if this procedure
ends in Case 2. So each edge (u; v) in H corresponds to
some path in G n F and wH(u; v) is the length of this
path.

Recall that avoid(�) is the set of edges along the
segments S�0 for all nodes �0 that are ancestors of �
in FT (u; v) (including edges of S�), G� is the graph
G n avoid(�) and P� is the shortest path between u to
v which avoids the edges avoid(�).

Lemma 2.2. During the traversal of FT (u; v) let �d be
the node visited at depth d, it must be that javoid(�d)\
F j � d.

Proof. By induction on d. For d = 0 this holds
vacuously. For d > 1, we traversed the edge (�d�1; �d)
labeled by seg(e; P�d�1

) where e 2 F \ P�d�1
. By

de�nition,

avoid(�d) = avoid(�d�1) [ seg(e; P�d�1
):

Since e 2 F \ (avoid(�d) n avoid(�d�1)), we get that

javoid(�d) \ F j � javoid(�d�1) \ F j+ 1;

and the lemma follows by induction.

Lemma 2.3. The query procedure is well-de�ned in the
sense that it never applies Case 3 in a leaf of FT (u; v).

Proof. Let � 2 FT (u; v) be a node that is traversed by
the query in which we apply Case 3. In Case 3 we have
P� \ F 6= ;, let e 2 P� \ F . Since e 2 P� it follows
that e 62 avoid(�), thus javoid(�) \ F j < jF j = f . By
Lemma 2.2, it must be that the depth of � is less than
f , and therefore � is not a leaf of FT (u; v).

We use H to answer the query as follows. If s and t
are disconnected in H, then we answer that s and t are
also disconnected in G nF . Otherwise, we compute and
return dH(s; t) as our approximation of dGnF (s; t).

Lemma 2.4. Query time is O(f4).

Proof. This is the time it takes to build the graph H.
For each pair u; v 2 V (H) (there are O(f2) such pairs)
we traverse the tree FT (u; v) along a root-to-leaf path
(the length of the root-to-leaf path is at most f) and at

each node along the root-to-leaf path we �nd a segment
containing a failing edge. We show below how to �nd
a segment containing a failing edge in each node which
we traverse in O(f) time. Therefore, the total time
to build the graph H is O(f4) (that is, O(f2) trees
FT (u; v), multiplied by O(f) nodes on a root-to-leaf
path in each tree, multiplied by O(f) time per node
to �nd the appropriate segment). Finding the shortest

path from s to t in H takes eO(f2) time, so the query
time is dominated by the time required to build H.

To determine if e 2 P and to �nd seg(e; P ) if e 2 P ,
we store the edges of P in a perfect hash table, keeping
also the index of seg(e; P ) with each edge. This allows
to determine if an edge e is in P in O(1) time. To
determine if there is an edge e 2 F that belongs to P
we query the hash table with the edges of F one by one
in O(f) total time.

2.3 Correctness. We prove that dH(s; t) is a good
approximation of dGnF (s; t).

The very high level idea of our analysis is that we
distinguish between two cases. The �rst case is when all
failures are \far away" from the shortest path from s to t
in GnF . In this case, we show that we can �nd an exact
shortest path from s to t by querying the tree FT (u; v)
(see Lemma 2.5). Loosely speaking, since all failures are
far away from the shortest path, discarding at each level
of the search in FT (u; v) a segment containing a failed
edge doesn't eliminate any of the edges of P . Hence
the shortest path survives during the query of FT (u; v).
The second case is when there is a \close by" failure to
the shortest path from s to t in G n F . In this case,
we show that we can construct an approximate shortest
path that consists only of sub-paths where such sub-
path is a path between vertices in V (F ) [ fs; tg and
each sub-path is \far away" from all failures and thus
can be found by querying the appropriate tree FT (u; v).

To prove the correctness we use the following de�-
nition of the trapezoid of a path.

Definition 2.2. (trG(P )) Let P be an arbitrary path
from u to v in G. Let x 2 V be a vertex and ` � 0 a
real number, de�ne

ballG(x; `) = fu j dG(x; u) � `g:

ballG(x; `) is the set of all vertices whose distance in G
from x is at most `. De�ne the trapezoid of P in G to be
trG(P ) =

�S
x2Pnfu;vg ballG(x; �

0 �min(jP [u; x]j ; jP [x; v]j))
�
n fu; vg:

The next lemma gives a su�cient condition for
having an edge (u; v) in H.

Lemma 2.5. Let u; v 2 V (H), and let P be an arbitrary
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path from u to v in G n F . If
trGnF (P ) \ V (H) = ;

then (u; v) is an edge of H and wH(u; v) � jP j.
Proof. Let �0(= r); �1; : : : ; �k, k � f , be the nodes of
FT (u; v) that we traversed during a query. We prove
below that P is contained in G�i for every 1 � i � k.
From this follows that the query concluded the traversal
of FT (u; v) in Case 2 (recall the cases of the procedure
that decides if to add (u; v) to H in Section 2.2), added
(u; v) to H, and set wH(u; v) = jP�k j = dG�

k
(u; v).

Since P is a path between u and v in G�k , and P�k is
the shortest path between u and v in G�k , we obtain
that wH(u; v) � jP j.

The crux of the proof is to show that P is contained
in G�i for i = 0; : : : ; k. We prove this by induction on
i. The base case is obvious since Gr = G. To simplify
the notation which we use to establish the induction
step, let � = �i and �0 = �i+1. We assume that P
is contained in G� and we need to prove that P is
contained in G�0 . The only way P can disappear from
G�0 is if there is a segment of P� that contains an edge
eF 2 F and an edge eP 2 P . (Note that eF 6= eP since
P 2 G n F .)

Assume by contradiction that such a segment s 2
seg(P�) exists and assume without loss of generality
that there isn't any other edge of F or P between eF
and eP in s, and thus P�[x; y] is a path in G n F . Let
x be the endpoint of eP which is closer to eF along P�,
and let y be the endpoint of eF which is closer to eP
along P�. Note that x; y 62 fu; vg. See Figure 4.

The vertex x appears along P and partitions P into
two subpaths P [u; x] and P [x; v]. Similarly, the vertex
x also appears along P� and splits it into two subpaths
P�[u; x] and P�[x; v]. Since P� is the shortest path from
u to v in G� and P is a path in G� it follows that
jP�[u; x]j � jP [u; x]j and jP�[x; v]j � jP [x; v]j which
implies that

(2.1) minfjP�[u; x]j ; jP�[x; v]jg � minfjP [u; x]j ; jP [x; v]jg :

Since x 2 V (P ), y 2 V (H), and trGnF (P )\V (H) =
; by the assumption of the lemma, it follows that
y =2 trGnF (P ) and so (see Figure 5)

(2.2) dGnF (x; y) > �0minfjP [u; x]j ; jP [x; v]jg:
Combining Equations (2.1) and (2.2) and since
jP�[x; y]j � dGnF (x; y) (since we assumed P�[x; y] is a
path in G n F ) we get that

jseg(eF ; P�)j � jP�[x; y]j � dGnF (x; y) >

�0minfjP [u; x]j ; jP [x; v]jg � �0minfjP�[u; x]j ; jP�[x; v]jg

Since seg(eF ; P�) contains both eF , and eP and
eF 6= eP , it cannot be that seg(eF ; P�) = feF g.
Therefore we obtain a contradiction to Lemma 2.1,
since neither seg(eF ; P�) = feF g nor jseg(eF ; P�)j �
�0minfjP�[u; x]j ; jP�[x; v]jg.

When the condition of Lemma 2.5 does not hold
(i.e., trGnF (P ) \ V (H) 6= ;) then the following lemma
shows how to �nd a vertex z in trGnF (P ) \ V (H) such
that one of the distances from u to z or from z to v
can be approximated using Lemma 2.5, and the other
path is shorter than P , and hence can be approximated
recursively. See Figure 7 where x is u, there is an
edge from u to z in H according to Lemma 2.5, and
the approximate length of the dashed path from z to
v is found recursively. The proof of Theorem 2.1 below
speci�es this process, Lemmata 2.5 above and 2.6 below
are used in the proof of Theorem 2.1.

Lemma 2.6. Let u; v 2 V (H), and let P = PGnF (u; v).
If trGnF (P ) \ V (H) 6= ; then there exist vertices x,y,
and z such that (see Figure 6):

1. x 2 fu; vg; y 2 P; z 2 trGnF (P ) \ V (H).

2. jP [x; y]j � 1
2 jP [u; v]j.

3. dGnF (y; z) � �0dGnF (x; y).

4. Let P 0 = PGnF (x; y)�PGnF (y; z). Then trGnF (P
0)\

V (H) = ;.

Proof. Since trGnF (P ) \ V (H) 6= ;, there ex-
ists z 2 trGnF (P ) \ V (H). By the de�nition
of trGnF (P ) there exists y 2 P such that z 2
ballGnF (y; �

0minfjP [u; y]j ; jP [y; v]j)g. We then choose
x 2 fu; vg such that jP [x; y]j = minfjP [u; y]j ; jP [y; v]jg
and obtain that x; y; z satisfy Conditions 1, 2 and 3.

Now among all triples of vertices x; y; z that satisfy
Conditions 1, 2, and 3 we choose the triple x; y; z that
minimizes dGnF (x; y), breaking ties in favor of the triple
that minimizes dGnF (y; z). We show that these x; y; z
satisfy Condition 4.

Assume by contradiction that trGnF (P
0) \ V (H) 6=

;. Then there are vertices z0 2 trGnF (P
0) \

V (H) and y0 2 P 0 such that dGnF (y
0; z0) �

�0minfjP 0[x; y0]j ; jP 0[y0; z]jg. As P 0 = PGnF (x; y) �
PGnF (y; z) and y0 2 P 0 then either y0 2 PGnF (x; y) or
y0 2 PGnF (y; z).

If y0 2 PGnF (x; y) n fyg then jP [x; y0]j < jP [x; y]j
and this contradicts the choice of x; y; z. (We should
have preferred x; y0; z0, see the upper part of Figure 6)

If y0 2 PGnF (y; z) (including the case y0 = y), then
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Figure 4: The path P� and the edges eP and eF in the proof of Lemma 2.5.

Figure 5: Proof of Lemma 2.5: Since y 62 trGnF (P ) we have dGnF (x; y) > �0minfjP [u; x]j ; jP [x; v]jg.

dGnF (y
0; z0) � �0dGnF (y

0; z) and therefore

dGnF (y; z
0) �

dGnF (y; y
0) + dGnF (y

0; z0) =

(dGnF (y; z)� dGnF (z; y
0)) + dGnF (y

0; z0) �
dGnF (y; z)� dGnF (z; y

0) + �0dGnF (y
0; z) <

dGnF (y; z) : (assuming�0 < 1)

This also contradicts the choice of x; y; z. (We should
have preferred x; y; z0 since dGnF (y; z

0) < dGnF (y; z).
See the lower part of Figure 6).

We are now ready to establish the correctness of our
query algorithm.

Theorem 2.1. (Correctness) Our algorithm deter-
mines if s and t are connected in G n F and if they
are connected we have that (see Figure 7) dGnF (s; t) �
dH(s; t) � (1 + �)dGnF (s; t).

Proof. An edge (u; v) in H corresponds to a path P�
from u to v in G n F and wH(u; v) = jP�j (the path
must be in G n F because the only possibility for an
edge (u; v) to be added to H is due to case 2 in Section
2.2 of the query procedure, when building the graph H).
Therefore, if there is a path from s to t in H of length
`0, then there is also a path from s to t in G n F of
length `0. Thus, dH(s; t) � dGnF (s; t) and in particular
if s and t are disconnected in G n F then they are also
disconnected inH. So in the rest of the proof we assume
that there is (at least one) path from s to t in G n F .

We prove by induction on dGnF (u; v) that for every
pair of vertices u; v 2 V (H) we have that dGnF (u; v) �
dH(u;v)

1+� (or, equivalently, dH(u; v) � (1+ �)dGnF (u; v)).
We assume that for every u0; v0 2 V (H) such that
dGnF (u

0; v0) < dGnF (u; v) we have already established

that dGnF (u
0; v0) � dH(u0;v0)

1+� , and prove the claim for
u; v.

Let P = PGnF (u; v) and consider the following two
cases.
Case 1 trGnF (P ) \ V (H) = ;: In this case it follows
from Lemma 2.5 that (u; v) 2 E(H) and wH(u; v) �
jP j = dGnF (u; v). So, wH(u; v) = dGnF (u; v) and the
lemma follows.
Case 2 trGnF (P ) \ V (H) 6= ;: (See Figure 7) In
this case by Lemma 2.6 there exist vertices x; y; z
such that x 2 fu; vg, y 2 V (P ), and z 2 V (H) \
trGnF (P ), dGnF (y; z) � �0 jP [x; y]j = �0dGnF (x; y), and
tr(PGnF (x; y) � PGnF (y; z)) \ V (H) = ;. We assume for
the rest of the proof that x = u. If x = v then the proof
is symmetric.

Since trGnF (P (u; y) � PGnF (y; z)) \ V (H) = ; it
follows from Lemma 2.5 that (u; z) 2 E(H),

(2.3) jwH(u; z)j � jPGnF (u; y) � PGnF (y; z)j =
distGnF (u; y) + dGnF (y; z) :

Using the triangle inequality in H and Equation
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Figure 6: An illustration of the proof of Lemma 2.6.

(2.3) we have (see the edge (u; z) in Figure 7)

(2.4) dH(u; v) � wH(u; z) + dH(z; v) �
dGnF (u; y) + dGnF (y; z) + dH(z; v)

Now we apply the induction hypothesis on u0 = z
and v0 = v. We can do so since every point in
trGnF (P ) \ V (H) is closer to v than to u and in
particular, dGnF (z; v) < dGnF (u; v) (see dashed edge in
Figure 7). This application of the induction hypothesis
together with Equation (2.4) gives

(2.5) dH(u; v) � dGnF (u; y) + dGnF (y; z)+

(1 + �)dGnF (z; v)

Finally we apply the triangle inequality in GnF and
the fact that dGnF (y; z) � �0dGnF (u; y) to obtain that

dH(u; v) �
dGnF (u; y) + �0dGnF (u; y) + (1 + �)(dGnF (z; y) + dGnF (y; v)) �
dGnF (u; y) + �0dGnF (u; y) + (1 + �)(�0dGnF (u; y) + dGnF (y; v)) �
dGnF (u; y) + �0(2 + �)dGnF (u; y) + (1 + �)dGnF (y; v) �
(1 + �)(dGnF (u; y) + dGnF (y; v)) �
(1 + �)dGnF (u; v)

where the next to last inequality holds since �0 <
�=3 � �=(�+ 2), and the last inequality holds since P is
a shortest path between u and v in G n F . Therefore,

dGnF (u; v) � dH(u;v)
1+� , and we proved the induction

theorem.

3 Reducing Space by Using Decomposable
Paths.

Our data-structure in Section 2 requires
O(n3(logD=�)f ) space. In this section we develop
a variant of this data structure which requires only
O(n2(logD=�)f � f logD) space and keeps the query
and preprocessing algorithms e�cient. The main idea
is a method to store the paths P� implicitly rather
than explicitly (in a hash table). To specify our new
paths P� and their representation we need the following
de�nition.

Definition 3.1. (k-decomposable path) Let G be a
graph and G nA a subgraph of G obtained by discarding
the edges in A. A k-decomposable path in G n A is a
path which is the concatenation of at most k+1 shortest
paths of G interleaved with at most k edges. Denote the
shortest k-decomposable path from u to v in G n A by
P k
GnA(u; v).
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Figure 7: An illustration of the proof of Theorem 2.1: (u; z) is an edge in H; we apply the induction hypothesis
on z and v.

We also use the following Theorem of Afek et al. [2].

Theorem 3.1. Let G be an undirected graph and let F
be a set of f edges of G. Each shortest path in G nF is
an f -decomposable path.

If we keep a representation of all shortest paths in
G (which takes O(n2) space) then we can represent an
f -decomposable path P using only 2f+2 vertices which
are the endpoints of the f + 1 shortest paths and the
f edges, whose concatenation is P . In particular, a
shortest path in G n F , for F of size at most f , can be
represented using 2f + 2 vertices.

However when we try to apply this approach in
our setting we tackle a technical hurdle: Speci�cally,
the graphs G� associated with the nodes � of the
trees FT (u; v) are obtained from G by discarding � f
segments rather than edges, each of which may be long,
and together these segments may contain much more
than f edges. So we cannot apply Theorem 3.1 to the
paths P� which are indeed shortest paths but in graphs
that may have obtained from G by discarding more than
f edges.

It follows that in order to use Theorem 3.1 we
change the de�nition of the paths P�. A natural
�rst attempt is to de�ne P� to be the shortest f -
decomposable path between u and v in G�. The path
P = PGnF (u; v) is f -decomposable, so as long as P
survives in G� it is a suitable candidate for being elected
as P�.

But, for P to survive as we go from a node � 2
FT (u; v) to its child, we need that no edge eP 2 P will
be contained together with an edge of F in a segment
of P�. In section 2 we guaranteed that this is indeed
the case as long as all edges of F are far from P in
G n F , speci�cally, outside of trGnF (P ). The argument
was based on the fact that if some edge eP = (x; y) of P

appears also on P� (and assume it is closer to u than to
v) then the length of seg(e; P�) is about �jP�[u; x]j which
is not larger than �jP [u; x]j since P� was a shortest path
in G�. Therefore this segment cannot reach an edge
of F which must be outside trGnF (P ). When P� is
a shortest f -decomposable path then it could be that
P�[u; x] is much larger than P [u; x]. This could happen,
for example, if P�[x; v] is a concatenation of, say f � 2
shortest path in G, but also contains an edge in F so it
does not exist in G n F . (We ignore for simplicity the
interleaving edges in this example.) On the other hand
P [x; v] is a concatenation of � � f shortest paths in G.
This forces P�[u; x] to be a concatenation of at most 2
shortest paths in G whereas P [u; x] can be assembled
from many more shortest paths and therefore be much
shorter than P�[u; x].

To overcome this di�culty we introduce the follow-
ing additional type of paths.

Definition 3.2. (k-expath) Let G be a graph and
G n A a subgraph of G obtained by discarding the edges
in A. A k-expath in G n A is path in G n A which is a
concatenation of (1 + 2 logD), k-decomposable paths in
G n A, such that the length of the i-th k-decomposable
path is at most `i = minf2i; 22 logD�ig.

In the improved structure that we describe in this
section, we choose P� to be a shortest (2f + 1)-expath
from u to v in G�. We prove that such a path has the
following pre�x optimality property. This property will
allow us to prove that P = PGnF (u; v) survives in the
graphs G� along the path that we traverse in FT (u; v).

Lemma 3.1. Let A � E and let P be a shortest k-expath
from u to v in G n A. Then for every x 2 V (P ) :
jP [u; x]j � 4jP k

GnA(u; x)j and jP [x; v]j � 4jP k
GnA(x; v)j.
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Proof. Let P be a shortest k-expath from u to v in
G n A. Assume, by contradiction, that there is a
vertex x 2 V (P ) such that jP [u; x]j > 4jP k

GnA(u; x)j
or jP [x; v]j > 4jP k

GnA(x; v)j. Assume without loss of

generality that jP [u; x]j > 4jP k
GnA(u; x)j (the case where

jP [x; v]j > 4jP k
GnA(x; v)j is symmetric). We show that

P 0 = P k
GnA(u; x) � P [x; v] is also a k-expath in G n A,

and since P 0 is shorter than P this contradicts the
assumption that P is the shortest k-expath from u to v.

Since P is a k-expath in G nA then it is a concate-
nation of k-decomposable paths P0; P1; : : : ; P2 logD in
GnA, such that jPij � `i = minf2i; 22 logD�ig. To show
that P 0 is a k-expath in GnA we de�ne k-decomposable
paths P 0

0; P
0
1; : : : ; P

0
2 logD in GnA such that jP 0

i j � `i and
P 0 is the concatenation of P 0

0; P
0
1; : : : ; P

0
2 logD.

Since jPij � `i � 2i it follows that
Pt

i=0 jPij < 2t+1.

So if we let j0 = blog jP [u; x]jc � 1 then
Pj0

i=0 jPij <
jP [u; x]j and therefore x must be contained in Pj for
some j > j0. Since clearly j0 < logD we have that
`j0 = 2blogjP [u;x]jc�1 � jP [u; x]j =4 > jP k

GnA(x; u)j.
We are now ready to de�ne P 0

0; P
0
1; : : : ; P

0
2 logD. We

set P 0
i = ; for every 0 � i < j0, P 0

j0 = P k
GnA(u; x),

P 0
i = ; for every j0 < i < j, P 0

j to be the su�x of Pj
starting from x, and P 0

i = Pi for every i > j.
It is easy to verify that for every i, P 0

i is a k-
decomposable path in G n A and that jP 0

i j � `i. This
proves that P 0 is a shorter k-expath from u to v than
P in G nA, which contradicts the assumption that P is
the shortest k-expath from u to v.

As already mentioned the critical change that we
make to the structure of section 2, in order to make
it more space e�cient, is to take P� in each node
� 2 FT (u; v) to be a shortest (2f + 1)-expath from
u to v in G�. We represent each such (2f + 1)-expath,
P�, in a straightforward way, by a list of the endpoints
of the paths, and the edges in the representation of each
of its � 2 logD (2f + 1)-decomposable paths. The size
of this representation is O(f logD).

In addition, in order to be able to search the expaths
e�ciently, and later to report the shortest path from
s to t in G n F if required, we store, as part of the
data structure, all the shortest paths in G. Concretely,
we store the values dG(u; v), and �(u; v), which is the
predecessor of v on the shortest path from u to v, for
every pair of vertices u and v. We assume that shortest
paths in G are unique (which could be easily achieved
with high probability, by slightly perturbing the edge
weights).

The technical details of the construction and its
analysis are given in the following sections, proving
Theorem 1.1.

3.1 Reducing Space by Using Decomposable
Paths - Technical Details. We �rst make the fol-
lowing technical change. In Section 2 we used �0 = �=3
to de�ne both the trapezoid of a path P , and the net-
points of a path P . Here, we change the de�nition of the
netpoints of a path P and use �00 = �0=4 there instead
of �0, but keep �0 in the de�nition of a trapezoid. The
de�nition of netpoints is now:

Definition 3.3. (Path Netpoints) Let P = (v1 =
u; v2; : : : ; vk = v) be a path from u to v in G. Let L be
the set of all vertices vj ; vj+1 2 P such that jP [u; vj ]j <
(1 + �00)i � jP [u; vj+1]j for some integer i � 0. De�ne
R analogously to be the set of all vertices vj ; vj+1 2 P
such that jP [vj+1; v]j < (1 + �00)i � jP [vj ; v]j for some
integer i. Let netpoints(P ) = L [R [ fu; vg.

This makes Lemma 2.1 hold with �00 rather than �0.
Speci�cally, we have

Lemma 3.2. Let P be a path from u to v, e =
(x; y) be an edge of P such that jP [u; x]j < jP [u; y]j.
Then either seg(e; P ) = feg or jseg(e; P )j �
�00minfjP [u; x]j ; jP [x; v]jg.

Clearly, the size of the data structure after these modi-
�cations is O(n2(logD=�)f � f logD). We now describe
how to adapt the query algorithm to these modi�cations
of the data structure.
Query. We implement a query as in Section 2 but we
have to adapt the way we navigate through each tree
FT (u; v), to the new representation of the paths P�.
This navigation requires an algorithm, that given an
edge e and an (2f +1)-expath P� determines if e 2 P�,
and if so, returns the index of seg(e; P�) (this is the
index of the child of � to which the search continues).

An edge e = (x; y) is on the shortest path in G
from u to v if and only if dG(u; v) = minfdG(u; x) +
w(x; y) + dG(y; v); dG(u; y) + w(x; y) + dG(x; v)g. To
test if e is contained in an f -expath, P�, we simply
run the test above for every shortest path (in G) in the
representation of P�, and compare e to all the edges in
the representation of P�. If e is contained in one of the
shortest paths in the representation of P�, or if e itself
belongs to this representation, then e is contained in P�
and otherwise it is not.

To �nd seg(e; P�) we compute jP�[u; x]j and
jP�[x; v]j and jP�j. To compute jP�[u; x]j we sum the
lengths of the shortest paths and the edges, in the rep-
resentation of P�, between u and e, or the shortest path
Q, in the representation of P�, containing e. If e is con-
tained in a shortest path Q in the representation of P�,
we also add dG(w; x) where w is the endpoint closer to
x of Q. The computation of jP�[x; v]j is analogous. We

1490 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



compute jP�j by summing up the lengths of all the paths
and edges in the representation of P�. Clearly, comput-
ing jP�[u; x]j and jP�[x; v]j and jP�j takes O(f logD)
time.

Once we have jP�[u; x]j and jP�[x; v]j we compute
the largest index i1 such that (1+�

00)i1 � jP�[u; x]j. The
number of netpoints in L that are between u and x on
P� (possibly including x) is 2i1. Similarly, we compute
the largest index i2 such that (1 + �00)i2 � jP�[x; v]j
and then deduce that 2i2 netpoints of R are between
x and v on P�. We also compute the total number of
endpoints on P� by computing the largest i such that
(1 + �00)i � jP�j. It is easy to see how to �nd seg(e; P�)
from the indices i1, i2 and i.2 We compute i1, i2, and i
by a binary search of � �ngthSP�[u; x], jP�[x; v]j, and
jP�j, among the log1+�D = (logD)=� possible powers
of 1 + �00.3

In total it takes us O(f logD + log(logD=�)) =
O(f logD + log 1

� ) = O(f logD) (note that the last
equation holds since we assume � > 1=D) time to decide
if e 2 P� and to �nd seg(e; P�) if indeed e 2 P�. Now
recall that to perform a query we traverse O(f2) trees
FT (u; v), in each tree we traverse a path of length f , and
in each node � we may have to scan through each edge
of F to �nd one that is contained in P�. For each such
edge we apply the procedure just described. Therefore,
the total query time is O(f5 logD).
Preprocessing. For every pair of vertices u and v and
for every node � 2 FT (u; v) we have to compute the
shortest (2f +1)-expath from u to v in G�. We do this
in three steps as follows.
1) We compute all pairs shortest paths in G� and iden-
tify the pairs of vertices x and y for which dG(x; y) =
dG�

(x; y). These are the pairs for which the shortest
path in G� is the same as the shortest path in G.
2) In this step we compute for every pair of vertices
x and y the shortest (2f + 1)-decomposable path in
G�. We form a layered directed graph G2

� consisting
of 2(2f +1)�1 layers V1; V2; : : : ; V2(2f+1)�1. Each layer
contains a copy of each vertex of G. We denote the copy
of a vertex x at layer i by xi. The arcs of this layered
graph are de�ned as follows. For x 6= y, we add an arc
(x1; y2) if and only if dG(x; y) = dG�

(x; y). We set the
weight of the arc (x1; y2) to be equal to dG(x; y). We
put an arc (x2; y3) if there is an an edge (x; y) in G�.
We set the length of the arc (x2; y3) to be equal to the
length of (x; y). We add arcs between subsequent levels
so that for odd i, the arcs between Vi and Vi+1 are the
same as the arcs between V1 and V2, and for even i,

2Here we assume that we do not remove duplicate netpoints
but introduce empty segments between them.

3These powers are independent of the query and can be stored
with the data structure.

the arcs between Vi and Vi+1 are the same as the arcs
between V2 and V3. I.e. if we have an arc (x1; y2) we
also have an arc (xi; yi+1) of the same length for odd
i, and if we have an arc (x2; y3) we also have an arc
(xi; yi+1) of the same length for even i. We also put an
arc (xi; xi+1) of length 0 for every x and i.

We compute the shortest path in G2
� from every

vertex in the �rst layer to every vertex in the last layer.
It is easy to verify that the length of the shortest path
from x1 to y2(2f+1)�1 in G2

� is equal to the length of
the shortest (2f + 1)-decomposable path from x to y

in G�. So following this step we know P 2f+1
G�

(x; y) for
every pair x, y in G�.
3) In this step we also build a directed layered network
G3
� with 2 logD + 1 layers V1; V2; : : : ; V2 logD+1. Each

layer contains a copy of every vertex of G. We denote
the copy of a vertex x at level i by xi. For x 6=
y we add an arc (xi; yi+1) of length jP 2f+1

G�
(x; y)j if

jP 2f+1
G�

(x; y)j � `i. For every vertex u and index i we
add an arc (xi; xi+1) of length 0.

Recall that we want to set P� to be the shortest
(2f + 1)-expath from u to v in G�. We compute the
shortest path P 3 from u1 to v2 logD in G3

�. The length
of P 3 is equal to the length of P�. Let P1; P2; : : : ; P2 logD

be the (2f+1)-decomposable paths composing P�. The
ith edge of P 3 corresponds to Pi. If this edge is of the
form (xi; xi+1) then Pi is empty and if it is of the form

(xi; yi+1) for y 6= x then Pi = P 2f+1
G�

(x; y). Following
these observations we extract the representation of P�
from G2

� and G3
� and store it at �.

The graph G2
� has O(fn2) arcs so we can com-

pute all the shortest paths in G2
� from vertices of the

�rst layer to vertices of the last layer in O(fn3) time
(using Dijkstra's algorithm to compute shortest paths
from every vertex in the �rst layer). The graph G3

�

has O(n2 logD) arcs so we can compute the short-
est path from u1 to v2 logD in G3

� in O(n2 logD +
n logD log n logD) = O(n2 logD + n logD log logD)
time. It follows that the preprocessing time at each
node � is O(fn3 + n2 logD + n logD log logD) and by
multiplying by the total number of nodes in all the trees
FT (u; v) we get that the total preprocessing time is
O((fn5 + n4 logD + n3 logD log logD)(logD=�)f ).

The following theorem summarizes the properties
of the data structure that we have presented and proves
its correctness.

Theorem 3.2. The f -sensitive distance oracle pre-
sented in this section requires O(n2(logD=�)f �
f logD) space, can be built in O((fn5 + n4 logD +
n3 logD log logD)(logD=�)f ) time, and can answer a
query in O(f5 logD) time. Our distance oracle can also
report an approximate shortest path from s to t in GnF
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in time proportional to the length of this path.

Proof. The running times speci�ed in the statement of
theorem are clear from the preceding discussion. We are
only left to prove the correctness of the data structure.

For correctness we follow the footsteps of the cor-
rectness proof in Section 2. A close inspection of the
proof shows that the modi�cations which we did in the
structure a�ects mainly Lemma 2.5.

In Section 2 we proved Lemma 2.5 for an arbitrary
path P such that trGnF (P ) \ V (H) = ;. However,
when we established correctness in Theorem 2.1, we
used Lemma 2.5 only for paths P which are shortest
paths in G n F or concatenations of two shortest paths
in G n F . A shortest path in G n F is f -decomposable
by Theorem 3.1. It follows immediately that a path
which is a concatenation of two shortest paths in G nF
is (2f + 1)-decomposable. Therefore it su�ces if we
reprove Lemma 2.5 for (2f + 1)-decomposable paths.

We established Lemma 2.5 in Section 2 by showing
that P is contained in all graphs G�, for nodes � along
the path that the query algorithm follows in FT (u; v).
We showed this by induction on the nodes of this path
starting from the root. We do the same here and
indicate the modi�cations needed in the induction step
using the same notation as in the proof of Lemma 2.5.
Here we assume that P is a (2f+1)-decomposable path
from u to v in G n F such that tr(P ) \ V (H) = ;.

The critical Equation there in the proof of Lemma
2.5 is Equation (2.1). This equation does not hold here
since P� is not a shortest path anymore. But since P� is
a shortest (2f + 1)-expath then by Lemma 3.1 we have

minfjP�[u; x]j ; jP�[x; v]jg �(3.6)

4minfjP 2f+1
GnF (u; x)j; jP 2f+1

GnF (x; v)jg

Continuing exactly the same reasoning as in the
proof of Lemma 2.5 we get

jseg(eF ; P�)j � jP�[x; y]j � dGnF (x; y)

> �0min(jP (u; x)j ; jP (x; v)j)(3.7)

� �0minfjP 2f+1
GnF (u; x)j; jP 2f+1

GnF (x; v)j(3.8)

� �0

4
minfjP�[u; x]j ; jP�[x; v]jg(3.9)

= �00minfjP�[u; x]j ; jP�[x; v]jg

where Equation (3.7) follows since tr(P ) \ V (H) =
;, Equation (3.8) follows since P is a (2f + 1)-
decomposable path, and Equation (3.9) follows by
Equation (3.6).

However, since we modi�ed our de�nition of net-
points to use an exponential scale with base 1 + �00, it

follows from Lemma 3.2 that

(3.10) jseg(eF ; P�)j � �00minfjP�[u; x]j ; jP�[x; v]jg

which is a contradiction.
To report an approximate shortest path from s to

t in G n F we follow PH(s; t). Each edge e = (u; v)
on PH(s; t) corresponds to some path P� in G n F
which is stored at node � of FT (u; v). We report the
concatenation of these paths P� for all the edges along
PH(s; t). Each such path P� is by itself a concatenation
of O(f logD) shortest paths and edges of G. To report
each shortest path in the representation of P�, we use
the table �. Recall that for every pair of vertices u and
v, �(u; v) is the predecessor of v on the shortest path
from u to v.

4 A Reduction From Arbitrary Weights To
Bounded Weights.

In this section we reduce size of the data-structure by
replacing the logf D factor in the size complexity to
logf n. We do this by a reduction from the problem of f -
sensitive distance oracles on a graph with arbitrary edge
weights to logW

logn independent problems of f -sensitive
distance oracles on graphs with bounded weights, where
the minimum edge weight is 1 and the heaviest edge
weight is O(poly(n)).

Lemma 4.1. Assume we have an f -sensitive distance
oracle with stretch � for bounded weights graphs (where
the minimum edge weight is 1 and the heaviest edge
weight W = O(poly(n))) with fs(n) size, fq(n) query
time and fp(n) preprocessing time. Then we can build
an f -sensitive distance oracle for a graph with arbitrary
edge weights whose size is O(fs(n) � logW

logn ), with (1 +

o(1))� stretch, O(fq(n) � log logW ) query time and

O(fp(n) � logWlogn )) preprocessing time.

Proof. We �rst de�ne graphs Gi and fGi for 1 � i �
logW
logn , which we derive from G using di�erent rounding
scales. We show how to �nd the index i such that
the shortest s to t path in Gi has (1 + o(1))� stretch
compared to the shortest s to t path in G n F .

De�ne Gi to be the following graph. Replace edge
weights � ni�2 by ni�2. Discard all edges of weight
� ni+1. We show the following monotonicity property
on the graphs Gi. There is some index i such that s
and t are disconnected in Gi0 for every i0 � i� 2, while
s and t are connected in Gi0 for every i0 � i.

Let W(F;s;t) be the weight of the heaviest edge on
the shortest path from s to t in the graph G n F . Let
i = blognW(F;s;t)c, then ni � W(F;s;t) < ni+1. Note
that this implies dGnF (s; t) � ni.
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First we show that s and t are disconnected inGi0nF
for every i0 � i� 2. To see this, note that the maximal
edge weight in Gi0 is less than ni

0+1 � ni�1. hence, if s
and t are connected in Gi0 n F then they are connected
by a path length less than ni, contradiction to the fact
that dGnF (s; t) � ni.

Next, we show that s and t are connected in Gi0 nF
for every i0 � i. Consider i0 � i. Recall that
Gi0 contains all edges whose weight is < ni

0+1 | in
particular Gi0 contains all edges whose weight is < ni+1.
It follows that Gi0 nF , contains all edges of GnF whose
weight is < ni+1. Hence, Gi0 nF contains all edges along
the shortest path from s to t in G n F . Thus, s and t
are connected in Gi0 n F .

We now show that querying (F; s; t) in Gi returns a
(1+o(1))� approximate shortest path in the graphGnF .
We �rst show that dGinF (s; t) � (1 + 1=n)dGnF (s; t).
Recall that dGnF (s; t) � ni. Rounding up all edges of
weight less than ni�2 to ni�2 increases the shortest path
by at most (n � 1) � ni�2 < ni�1. Hence dGinF (s; t) �
dGnF (s; t) + ni�1 � (1 + 1=n)dGnF (s; t). Recall that
the stretch of Di is � which means it returns an �-
approximation of dGinF (s; t). It follows that the length
we return � �dGinF (s; t) � (1 + 1=n)�dGnF (s; t) =
(1 + o(1))�dGnF (s; t).

The graph Gi has minimum edge weight ni�2 and
maximum edge weight ni+1, we want to scale it so
that the minimum edge weigh will be 1. Divide all
edge weights of Gi by ni�2 and round upwards to the

closest integer, call the resulting graphfGi. Obviously, infGi, the minimum edge weight is 1 and maximum edge
weight is n3. We now show that ni�2 � d

fGinF
(s; t) �

(1 + 1=n)dGinF (s; t). The length of any simple s to
t path in Gi is at least ni, and if we round the edge
weights upwards to the closest multiple of ni�2 we
add to it a length of at most (n � 1) � ni�2 < ni�1.

Thus, the length of the path in fGi multiplied by ni�2

is at most (1 + 1=n) the length in Gi. We conclude
that ni�2 � d

fGinF
(s; t) � (1 + 1=n)dGinF (s; t) � (1 +

o(1))�dGnF (s; t), where in the last inequality we used
that dGinF (s; t) � (1 + o(1))�dGnF (s; t).

So far, we have described the graphs Gi and fGi.
We now describe the data-structure we build. In the
preprocessing stage we compute all Gi;fGi for all 1 � i �
logW
logn , and store the an f -sensitive distance oracle Di for

every fGi. Thus, space requirements are O(fs(n) � logWlogn )

and preprocessing time is O(fp(n) � logW
logn )). We now

describe the procedure for answering query (F; s; t). We
�rst do a binary search in the range 1 � i � logW

logn ,
to �nd the minimal value i such that s and t are
connected in Gi (querying the distance oracle Di with

(F; s; t) answers if s and t are connected or not in
Gi). Then, using the distance oracles Di and Di+1 we
query (F; s; t) and multiply the result with ni�2 and
ni�1, respectively. We return the minimum of both
alternatives. The claims above prove that the stretch
is (1 + o(1))�. Due to the binary search, total query
time is O(fq(n) � log logW ).

Observe that when we substitute D = poly(n) in
Theorem 1.1, we obtain an f -sensitive distance oracle
with stretch � = 1 + � with the following properties:

� space complexity: fs(n) = O(n2(log n=�)f �f log n).
� query time: fq(n) = O(f5 log n).

� preprocessing time: fp(n) = O(fn5(log n=�)f ).

By substituting these functions fs(n); fq(n); fp(n)
in Lemma 4.1, we obtain the following Theorem.

Theorem 4.1. Let G be a weighted undirected graph.
There exists f -sensitive distance oracle for G with
(1 + �) stretch, O(n2(log n=�)f � f logW ) space, and
O(f5 log n log logW ) query time. The oracle can be built
in O(fn5(log n=�)f logW

logn ) time.

5 Conclusion.

In this paper, we present the �rst f -sensitive distance
oracle with (1 + �)-stretch with small space and fast
query time that handles multiple edge failures. For any
f = o( logn

log logn ) and �xed � > 0 our f -sensitive distance

oracle has n2+o(1) space, eO(1) query time and (1 + �)
stretch.

This is a big step forward in our understanding of
this problem. We leave however many open questions.
Firstly, our data-structure has large space requirements
when f >> logn

log logn which are dominated by the factor

of O(( logn� )f ) in the space complexity. Can the space
be reduced? Secondly, our data-structure deals with
at most f edge-failures, what can be done in the case
of vertex failures? Thirdly, can one develop e�cient
distance-sensitive oracles in the case of directed graphs
for multiple failures? Another interesting direction is:
can we develop e�cient oracles for the seemingly easier
problem of reachability (\is there some path from u to
v after the failures?") for multiple edge/vertex failures?
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A A Simple But Space Ine�cient
Construction.

We present the following construction in an attempt to
make the construction in the body of the paper more
accessible. This data-structure can accommodate up to
f edge failures and returns the exact shortest path in the
graph without the failed edges. Unfortunately, the space
requirements are quite large, O(nf+3). It may be helpful
to consider Figure 8 when reading the description of the
following data structure and query algorithm:

� for every pair of vertices u; v 2 V , construct a tree
BruteForce(u; v), of height at most f and every
node has at most n� 1 children.

{ The root r stores the shortest path from u to
v in G.

{ Let � be an arbitrary node of the tree, and
let G� be a subgraph of G associated with the
node � (we de�ne G� recursively below).

{ Let P� be the shortest path between u and v
in G� (denote by P� = ; if u and v are in
di�erent connected components of G�). Store
the path P� in node �.

{ If P� = ; or � is at depth f then � is a leaf
of BruteForce(u; v).

{ If the depth of � < f and P� 6= ;, then we
create a child node �0 for every edge e 2 P�.
We associate the edge e with the tree arc from
� to its child �0 and denote it by S�0 = feg.

{ We now recursively de�ne avoid(�), a set of
edges we discard from G at node �. For
the root r, avoid(r) = ;. For a node �0

which is a child of �, we de�ne avoid(�0) =
avoid(�) [ S�0 . In other words, avoid(�) is
the set of edges associated with the arcs along
the tree path from the root to �.

{ We de�ne G� = Gnavoid(�), that is the graph
G after all edges in avoid(�) are discarded.

� BruteForce(u; v) is a tree of height at most f , with
degree at most n, and hence it contains O(nf )
nodes. In each node � we store the path P� using
O(n) space per node. Thus, each tree occupies
O(n3) space. There are O(n2) such trees (one for
each pair of vertices u; v 2 V ), so total space is
O(nf+3).

� To answer the query (F; s; t) we search the tree
BruteForce(s; t) using the set of failed edges F as
follows: We start with the root of BruteForce(s; t),
if the path stored in the root does not contain

any of the edges F | the answer to the query
is the path stored in the root. Otherwise, we
branch to a child node using an arbitrary edge in
the intersection of F and the path stored at the
root of BruteForce(s; t). We continue this search
procedure until we either reach a leaf where s and t
are disconnected (in which case we reply that s and
t are disconnected in the graph G after all edges
in F fail) or until we reach a node containing a
path which is edge disjoint from F . This path is
a shortest path from s to t in the graph G after
all edges in F fail. The complexity of such a query
is O(f2) since the query follows a downwards path
from the root of BruteForce(s; t), (i.e., of length
� f), and we can check the intersection of F with
the path stored in any node in time O(f) using a
hash table.
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𝒆𝟏 = (𝒖, 𝒙) 𝒆𝟐 = (𝒙, 𝒗)

𝒆𝟑 = (𝒖, 𝒚)

𝒆𝟒 =
(𝒚, 𝒛)

At most 𝒏 − 𝟏 children ⇒
Branching factor = O(n)

Height =
𝒇 = #failures

Number of 
nodes in the 

tree = 𝑶(𝒏𝒇)

𝑃𝑟 = (𝑢, 𝑥, 𝑣)

𝑷𝜷

𝑷𝜸

𝑷𝜶

𝑷𝜹

𝑃𝛽 = (𝑢, 𝑦, 𝑧, 𝑣)

𝑷𝒓

avoid(𝑟) = ∅
avoid(𝛼) = {𝑒1}
avoid(𝛽) = {𝑒2}
avoid(𝛾) = {𝑒2, 𝑒3}
avoid(𝛿) = {𝑒2, 𝑒4}
avoid(𝜂) = {𝑒2, 𝑒5}

𝑷𝜼

𝒆𝟓 = (𝒛, 𝒗)

Tree 
BruteForce 𝒖, 𝒗

Figure 8: Illustration of the simple and exact O(nf+3) space algorithm. Every node has at most n� 1 children,
one for each edge in the path stored within the node. Node � is a child of node r, the path associated with
node r is the path u! x! v, the shortest path from u to v in the graph G. The path associated with node �,
u ! y ! z ! v, is the shortest path from u to v after the edge (x; v) is deleted from G. The path associated
with node  is the shortest path from u to v after both edges (x; v) and (u; y) have been deleted from G, if such
a path exists, or ; if there is no path from u to v in this graph.
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