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Abstract

We investigate the potential of exhaustively exploring larger
neighborhoods in local search algorithms for MINIMUM VER-
TEX COVER. More precisely, we study whether, for moderate
values of k, it is feasible and worthwhile to determine, given
a graph G with vertex cover C, if there is a k-swap S such
that (C \S)∪ (S \C) is a smaller vertex cover of G. First, we
describe an algorithm running in ΔO(k) · n time for searching
the k-swap neighborhood on n-vertex graphs with maximum
degree Δ. Then, we demonstrate that, by devising additional
pruning rules that decrease the size of the search space, this
algorithm can be implemented so that it solves the problem
quickly for k ≈ 20. Finally, we show that it is worthwhile
to consider moderately-sized k-swap neighborhoods. For our
benchmark data set, we show that when combining our al-
gorithm with a hill-climbing approach, the solution quality
improves quickly with the radius k of the local search neigh-
borhood and that in most cases optimal solutions can be found
by setting k = 21.

Introduction

MINIMUM VERTEX COVER and its sister problem MAX-
IMUM INDEPENDENT SET are fundamental NP-hard op-
timization problems, their decision versions being among
Karp’s classic 21 NP-complete problems (Karp 1972).
In MINIMUM VERTEX COVER we aim to find a smallest
vertex set covering all edges of a graph.

MINIMUM VERTEX COVER

Input: An undirected graph G = (V,E).
Task: Find a minimum-cardinality set C ⊆ V such

that ∀ {u, v} ∈ E : u ∈ C ∨ v ∈ C.

Equivalently, there should be no edges among vertices
in V \C, that is, V \C should be an independent set of max-
imum size. Both problems are also hard from the viewpoint
of polynomial-time approximation algorithms: MINIMUM
VERTEX COVER is NP-hard to approximate within a factor
of 1.36 (Dinur and Safra 2005) and there is evidence that even
improving upon the trivial factor-2 approximation might be
impossible (Khot and Regev 2008). For MAXIMUM INDE-
PENDENT SET it is even NP-hard to obtain a factor-|V |1−ε
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approximation in polynomial time for any ε > 0 (Zuckerman
2007).

Despite these hardness results for both problems, heuris-
tic algorithms have a very good performance in practice.
One approach that has been applied successfully is local
search: state-of-the art heuristic solvers for MINIMUM
VERTEX COVER such as EWCC (Cai, Su, and Sattar
2011), NuMVC (Cai et al. 2013), and FastVC (Cai 2015)
are based on local search strategies. The main focus in this
line of research has been to investigate heuristic approaches
that prevent cycling during the local search algorithm and
avoid being stuck in a bad local optimum.

Here, we study the performance of local search in a strict
hill-climbing setting. In hill-climbing, cycling is not an issue
but it is crucial to avoid bad local optima. To this end, we
exhaustively examine larger neighborhoods of the current
solution. More precisely, we follow the approach of param-
eterized local search (Fellows 2001; Fellows et al. 2012;
Gaspers et al. 2012), where the radius k of the neighbor-
hood is used as a parameter of the algorithm and the aim is
to obtain fast algorithms for searching the k-neighborhood
of the solution. Here, when searching for an improvement
of a current vertex cover C, we consider the k-swap neigh-
borhood which precisely contains all vertex sets that can be
obtained from C by adding and removing a set S (the swap)
of altogether at most k vertices. In other words, we aim to
solve the following problem.

LS-VERTEX COVER

Input: An undirected graph G = (V,E), a vertex
cover C of G, and an integer k.

Task: Find a swap S of size at most k, that is, a vertex
set S ⊆ V such that C ⊕ S := (C \ S) ∪ (S \ C) is
a vertex cover, |C ⊕ S| < |C|, and |S| ≤ k.

Solving LS-VERTEX COVER for larger k is commonly as-
sumed to be infeasible: The straightforward algorithm trying
all possible k-swaps runs in nΘ(k) time. Moreover, there is
complexity-theoretic evidence that a (much more desirable)
running time of f(k) · nO(1) where f is some computable
function depending only on k cannot be achieved (Fellows
et al. 2012). Due to this assumed hardness of the problem,
implementations of hill-climbing local search use small k-
swap neighborhoods such as 3-swap and 5-swap neighbor-
hoods (Andrade, Resende, and Werneck 2012).
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Here we show that by using the maximum degree of
the input graph as a secondary parameter, we can in fact
examine larger neighborhoods and that exhaustive explo-
ration of these neighborhoods is worthwhile. More precisely,
we present an algorithm that solves LS-VERTEX COVER
in O(2k(Δ − 1)k/2 · k/2 · n) time, where Δ is the maxi-
mum degree of the input graph.1 The algorithm is based on
a search tree procedure which enumerates connected sub-
graphs of G. We then provide pruning rules that help to avoid
searching parts of the k-swap neighborhoods that contain no
solution. We then evaluate the performance of the algorithm
and the general usefulness of larger swap-neighborhoods. In
a nutshell, we show that we can efficiently search k-swap
neighborhoods for k ≈ 20, even on large instances. We also
demonstrate the usefulness of the pruning rules concerning
the running time of the algorithm and the reduction of the
search space size. Moreover, we show that the solution qual-
ity improves quickly with growing k. Finally, we show that
usually it should not be necessary to set k too large in order
to find optimal or almost-optimal solutions: in 91 % of our
benchmark instances, the optimal solution can be found by
setting k = 21.

Preliminaries. We consider simple undirected graphs G =
(V,E). For a vertex v ∈ V we denote its neighborhood by
N(v) := {u | {u, v} ∈ E}. We use G[S] := (S, {{u, v} ∈
E | u, v ∈ S}) to denote the subgraph of G induced by S.
We call a vertex set S connected if G[S] is a connected
graph. A bipartite graph with partite sets B and W is defined
as G = (B 
 W,E). We use the following notation for
stacks: Given a set X , the procedure stack(X) builds a stack
containing the elements of X in arbitrary order, pop(X)
removes the top element of X and returns it. For two stacks S
and S′, we let S ◦S′ denote the stack containing the elements
of S in the order of S on top and then the elements of S′
in the order of S′. Due to lack of space, some proofs are
deferred to a full version of the article.

On the Structure of k-Swaps

Before describing our algorithm, we make several observa-
tions restricting the type of swaps S ⊆ V that we need to
consider when trying to improve the vertex cover C. Es-
sentially, we show that it is sufficient to consider connected
swaps where |S∩C|, the number of vertices that are removed
from the cover, exceeds |S \ C|, the number of vertices that
are added to the cover, by exactly one. The latter is obviously
true when we do not restrict ourselves to connected swaps. To
show this for connected swaps, we make use of the following
lemma.

Lemma 1. Let G = (B 
W,E) be a bipartite, undirected
and connected graph with partite sets B and W where |B| >
|W |. Then there is a vertex set B′ ⊆ B, such that |B′| =
|W |+ 1 and B′ ∪W is connected.

1Fellows et al. (Fellows et al. 2012) show that LS-VERTEX
COVER is tractable on the more general class of graphs with
bounded local treewidth. The running time bound in terms of Δ
and k is, however, not given explicitly.

The following lemma now shows that we can focus on
connected swaps with a size difference of one on the sides. It
is an adaption of (Fellows et al. 2012, Lemma 1), which is
stated for a variant of DOMINATING SET.

Lemma 2. Let C1, C2 be vertex covers of a graph G =
(V,E) such that |C1 ⊕C2| ≤ k and |C1| > |C2|. Then there
are sets S1, S2 ⊆ V such that

1. C = (C1 \ S1) ∪ S2 is a vertex cover of G,
2. |C| = |C1| − 1,
3. |S1 ∪ S2| ≤ k and
4. S1 ∪ S2 is connected.

We exploit one further observation in the search tree al-
gorithm: if we move a vertex from the vertex cover to the
independent set, then all its neighbors in the independent set
must be moved to the vertex cover.

Observation 1. Let C be a vertex cover of G and let S be a
swap of C such that C⊕S is a vertex cover, and let v ∈ S∩C.
Then, (N(v) \ C) ⊆ S.

A Search Tree Algorithm

Lemma 2 forms the basis of our local search algorithm. It
states that we may restrict ourselves to determining whether
there exists what we call a valid swap: A vertex set S =
(B 
W ) is a valid k-swap for a vertex cover C in G, if S is
connected, |B| = k/2�, |W | = �k/2� and (C \B) ∪W is
a vertex cover in G.

The local search algorithm performs hill-climbing in the k-
swap neighborhood: it gets as input a graph G with a ver-
tex cover C and a number kmax, and tries to improve C by
searching for a valid k-swap as long as possible, that is, until
it encounters a solution that has no valid kmax-swap which
it then outputs. We call such a solution kmax-optimal. The
pseudo-code of the main routine is given in Algorithm 1. The
algorithm checks for each odd k ≤ kmax whether there is a
valid k-swap. If this is the case for some k, then the swap
is applied and the search continues. Otherwise, C is kmax-
optimal and the algorithm returns C. The main algorithmic
part is how to determine whether such a k-swap exists, that
is, to solve LS-VERTEX COVER. To solve this problem, the

Algorithm 1 Local Search
Output: k-optimal vertex cover C

1: procedure LOCALSEARCH(G,C, kmax)
2: for k ∈ {1, 3, 5, . . . , kmax} do
3: for v ∈ C do
4: S ← {v} ∪ (N(v) \ C)
5: P ← stack(N(v) \ C)
6: p ← pop(P )
7: F ← N(v) ∩ C
8: S ← ENUM(S, p, P, F )
9: if S �= ∅ then

10: C ← C ⊕ S
11: go to 2
12: output C
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Algorithm 2 Subgraph Enumeration
Require: Graph G with vertex cover C and k ∈ N

Output: Valid k-swap S
1: procedure ENUM(S, p, P, F )
2: if (S ∩ C) is not independent then output ∅
3: if |S ∩ C| > k/2� then output ∅
4: if |S \ C| > �k/2� then output ∅
5: if |S| = k then output S

6: for b ∈ N(p) \ (S ∪ F ) do
7: if N(b) ∩ (F \ C) = ∅ then
8: Nb ← N(b) \ (S ∪ C)
9: P ′ = stack(Nb) ◦ stack({p}) ◦ P ,

10: p′ ← pop(P ′)
11: ENUM(S ∪ {b} ∪Nb, p

′, P ′, F )
12: F ← F ∪ {b}
13: p′ ← pop(P )
14: ENUM(S, p′, P, F )

algorithm determines for each vertex v of the vertex cover C
whether there is a valid k-swap containing v.

This is done by calls to the ENUM procedure whose pseudo-
code is shown in Algorithm 2. ENUM gets as input a con-
nected vertex set S, a pivot vertex p, a stack P containing
vertices of S that are not in C and a vertex set F . The proce-
dure determines whether there is a valid k-swap S′ with the
following properties:

• S′ extends S, that is, S ⊆ S′, and

• S′ avoids F , that is, S′ ∩ F = ∅.

If such a swap exists, then ENUM outputs the first one that it
finds. To simplify the description of the algorithm, we call
vertices that are in the current vertex cover black and those
that are in the independent set white. We use the pivot vertex p
and the stack P to organize the search for these sets. More
precisely, the pivot vertex p is the vertex from which currently
neighbors may be added to extend S. The stack P contains
those white vertices of S of which a neighbor v ∈ S′ \ S
may still be added to S. The order of the stack determines
the order in which the algorithm makes these vertices a pivot
vertex.

We next show correctness of ENUM. In the proof the
stack P can be thought of as a set; we need the stack ordering
to show correctness of one of our pruning rules. The state-
ment of Lemma 3 describes the situation at a call of ENUM,
it is illustrated in Figure 1.

Lemma 3. Let G be a graph with vertex cover C and con-
nected set S, let F be a vertex set in G, and let k ∈ N be an
odd number. Moreover, assume that

• every neighbor of each white vertex of S \ (P ∪ {p}) is
either contained in S or in F , and

• N(S ∩ C) ⊆ C ∪ S.

Then, ENUM(S, p, P, F ) outputs a valid k-swap S′ extend-
ing S and avoiding F if and only if such a k-swap exists.

Proof. If S ∩ C is not an independent set, then there is no

C

V \ CSP

F

v

b

p

Figure 1: A situation of the enumeration process in a graph G
with vertex cover C. The vertex v ∈ C is the first vertex
added to S, p is the current white pivot vertex, P is the
remaining pivot stack. Adding the black vertex b to the swap
S makes it a valid 5-swap. Black vertices that were not added
to S are in the set F of forbidden vertices.

valid swap extending S and the algorithm correctly aborts
without output in Line 2.

Next, if S contains more than k/2� black vertices, then
there is no valid k-swap S′ extending S since any valid k-
swap contains k/2� black vertices. Hence, the algorithm
correctly aborts without output in Line 3.

Similarly, if S contains more than �k/2� white vertices,
then there is no valid k-swap S′ extending S since valid
k-swaps have exactly �k/2� white vertices. Hence, the algo-
rithm correctly aborts without output in Line 4.

Now if |S| = k in Line 5, then S is a valid k-swap:
The set S contains at most k/2� black vertices and at
most �k/2� white vertices and thus it contains exactly k/2�
black and �k/2� white vertices. Thus, |C ⊕ S| < |C| and it
remains to show that C ′ := C ⊕ S is a vertex cover. Since C
is a vertex cover, it holds that if there is an edge not covered
by C ′, then this edge has at least one endpoint in S ∩ C, that
is, in a black vertex of S. Since S ∩ C is an independent
set, by the check in Line 2, it must hold furthermore, that
the other endpoint of this edge is a white vertex. Since white
vertices in S belong to C ′, we thus have that this vertex is
contained in V \ (C ∪ S). This contradicts the assumption
that N(S∩C) ⊆ (C ∪S). Hence, C ′ is a vertex cover and S
is a valid k-swap fulfilling the condition of the lemma.

This already shows the “only if” part of the statement.
Moreover, it shows that if |S| = k, then the output of the
algorithm is correct.

Thus, it remains to show that, if |S| < k and there exists a
valid k-swap S′ fulfilling the condition of the lemma, then
the algorithm outputs a valid k-swap in one of the recursive
calls made in Lines 11 or 14. We show this by induction
on (k−|S|). By the arguments above, the claim holds for k−
|S|. Now consider any S with |S| < k and assume that, by
the inductive hypothesis, the algorithm is correct for all S∗
with |S∗| > |S|.

Assume first that S′ contains a vertex b ∈ N(p) \ S.
Since S′ avoids F , b is considered by the for-loop of
Line 6. Without loss of generality, let b be the first vertex
of (S′ ∪N(p)) \ S that is considered by this for-loop. If the
algorithm outputs any swap before the for-loop considers b,
then the claim holds. Otherwise, the only vertices that are
added to F when the for-loop reaches b belong to N(p) \ S.
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Thus, S′ still avoids the set F when the for-loop considers b.
Moreover, b has no neighbor in F \ C: by Observation 1 any
neighbor of b in V \ C must belong to S′.

Hence, b passes the test in Line 7. The algorithm now
recursively calls itself. In the recursive call, the algorithm re-
turns a valid k-swap extending S∪{b}∪Nb, avoiding F , and
adding neighbors of vertices in P ′ where P ′ contains P , Nb,
and p. Here, Nb is the set of white neighbors of b which are
not yet contained in S. By Observation 1, any swap contain-
ing b must contain Nb. Thus, since S′ extends S ∪ {b}, it
also extends S̃ = S ∪ {b} ∪ Nb and all vertices of S̃ ∩ C
have only neighbors in C ∪ S. Moreover, as noted above S′
avoids F . Finally, every vertex of S \ (P ∪ {p}) is also
contained in S̃ \ (P ′ ∪ {p}). Hence, for these vertices all
neighbors are still either in S̃ or in F .

Altogether, this means that the parameters for the recursive
call fulfill the claims of the lemma and thus we can assume by
induction that the call to ENUM outputs some valid k-swap
extending S and avoiding F .

The final case to consider is that no vertex of N(p)\(S∪F )
is contained in S′, that is, S′ avoids N(p)\ (S∪F ). To show
the correctness of this case, we need a second induction, this
time on |P |. Observe that if |P | = 0 and |S| < k, then S′
cannot avoid N(p) \ (S ∪F ), as we still need to add vertices
to S and may only add neighbors of p. Thus, if |P | = 0,
then the previous case applies and the algorithm is correct.
Now if |P | > 0, then assume by induction that the algorithm
is correct for all calls ENUM(S̃, p̃, P̃ , F̃ ) where |S̃| = |S|
and |P̃ | < |P |.

In the recursive call in Line 14, the algorithm reports a so-
lution extending S and avoiding the modified F , which now
also contains all vertices of N(p) \ (S ∪ F ). By the case as-
sumption, the solution S′ fulfills these conditions. Moreover,
for each white vertex of S \ (P ∪ {p′}), all black neighbors
are either contained in S or in F : by the assumption of the
lemma this holds for all vertices except p, and for p this
holds by the case assumption. Thus, the lemma conditions
are fulfilled by S′ and, by the inductive hypothesis that the
algorithm is correct for calls with a smaller pivot stack, the
call outputs a valid k-swap fulfilling the conditions of the
lemma.

To show correctness of LOCALSEARCH it only remains
to note that the parameters of some call to ENUM are cor-
rect: If C is not kmax-optimal, then for some odd k ≤ kmax,
there exists a valid k-swap S′ which contains at least one
vertex v ∈ C. Consider the pass of the for-loop in LO-
CALSEARCH for this v. By Observation 1, S′ contains all
white neighbors of v. Thus, it extends S := {v}∪(N(v)\C).
Moreover, S′ trivially avoids F := ∅. Finally, every vertex
of S′ that has some neighbor in S is adjacent to some vertex
of N(v) \ C := P ∪ {p}. Thus, the call ENUM(S, p, P, F )
fulfills the conditions of Lemma 3 and therefore some valid k-
swap is output.

We now bound the running time of the procedure.

Lemma 4. Each call to ENUM in Algorithm 1 can be per-
formed in O(2k(Δ− 1)k/2) time.

Altogether, we arrive at the following.

Theorem 5. Let G = (V,E) be a graph with |V | = n and
let C ⊆ V a vertex cover of G. In O(2k(Δ − 1)k/2 · k · n)
time, we either find that C is k-optimal or compute a vertex
cover C ′ with |C ′| = |C| − 1. In O(2k(Δ − 1)k/2 · k · n2)
time, we can compute a k-optimal solution

Pruning Rules

To speed up the algorithm, we develop pruning rules that
identify search tree nodes that do not yield a valid swap.
For example, if a swap S contains �k/2� white vertices, we
cannot add further white vertices to it. Therefore, we consider
no black vertices with at least one white neighbor outside
of S, since adding them to S requires adding further white
vertices.

We implemented two further more involved pruning rules.
The first rule discards connected vertex sets S that contain
a suboptimal part. Before stating the rule, we need some
terminology concerning the structure of the set S. To this
end, we say that ENUM implicitly defines a rooted spanning
tree T of S where

• the root of T is the black vertex v that is added in the
initial call to ENUM,

• a black vertex b is the child of a white vertex p if p is the
current pivot vertex in the search tree node that creates the
call to ENUM in which b is added,

• a white vertex w is the child of a black vertex b if w ∈ Nb

when b is added.

We say that a white vertex p ∈ S retires when it is not part
of the pivot stack and not a pivot vertex. In Algorithm 2, this
happens in Line 14, when ENUM is called with pivot p′ and
pivot stack P which does not contain p.

Pruning Rule 1. Let p be a retired vertex and let Tp denote
the subtree of T rooted at p. If Tp contains at least as many
white vertices as black vertices, then discard the current node
of the search tree.

Proof of correctness. Let S′ be a valid k-swap extending the
set S at the search tree node in which Pruning Rule 1 is
applied. We show that then there is a valid swap of size
less than k. Since in LOCALSEARCH we call ENUM for
increasing values of k, it is known that no valid swap of size
less than k exists which implies that S′ cannot exist. Thus,
assume towards a contradiction, that S′ exists. Let T ′ be
the rooted spanning tree of S′ implied by the search tree
algorithm at the search tree node that returns S′.

Now, consider the swap S̃ obtained from S′ by removing
all vertices of Tp and let C̃ := C ⊕ S̃ be the vertex set ob-
tained by applying S̃ to C. Since Tp has at least as many
black vertices as white vertices, we have |C̃| < |C|. More-
over, we show that C̃ is a vertex cover. This implies that
there is a valid swap of size less than k leading to the desired
contradiction.

Thus, it remains to show that C̃ is a vertex cover. Any
uncovered edge e has both endpoints in V \ C̃. Since S′ is
a valid swap, e has one endpoint in Tp. Since black vertices
of Tp are contained in C̃ (they are in C and not contained
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in the swap S̃) one endpoint of e is a white vertex w of Tp.
Moreover, the other endpoint of e is a black vertex b from S̃:
the white vertices form an independent set and black vertices
that are not in S̃ are contained in C̃. We show by a case
distinction that such an edge e = {w, b} does not exist.

Case 1: The black vertex b was added to S before w. In
this case, the vertex w is a white neighbor of b that is not
contained in the current set S when b is added. Thus, w is a
child of b in T . Consequently, since w is contained in Tp, so
is b. This contradicts the assumption that b is not contained
in Tp.

Case 2: The black vertex b was added to S after w.
When w retires, all neighbors of w are either in S or in F .
Since b is not in Tp, it is not a child of w and thus not in S
when w retires. Consequently, b is contained in F . This
contradicts the fact that b is added to S after w retires.

The next pruning rule applies when we may only add black
vertices since S contains �k/2� white vertices. We compute
an upper bound on the size of the maximum independent set
formed by the remaining black vertices. The upper bound
relies on the following definition. Let G = (V,E) be an
undirected graph. A lower-bound-packing is a subgraph
L = (V,E′ ⊆ E) such that for every vertex v ∈ V one
of three conditions holds: Either 1) v is isolated or 2) v is
part of an isolated edge or 3) v is part of an isolated triangle.
The size of a lower-bound-packing is equal to the number
of its components and it is an upper bound on the size of
the maximum independent set in G. Thus, we may apply
a pruning rule if the graph induced by the black candidate
vertices has a small packing.

Pruning Rule 2. If S contains �k/2� white vertices,
and G[N(S \ C) \ S] has a lower-bound-packing of size
less than |S| − k, then discard the current node of the search
tree algorithm.

Computational Experiments

We implemented our algorithm in C++ using
NGraph (http://math.nist.gov/∼RPozo/ngraph/) as
underlying data structure. Our code is available at
http://github.com/maxkatzmann/kLSVC. The experiments
were run on a machine with 32 Intel Xeon 2.60GHz CPUs
and 128GB RAM running Debian GNU/Linux 7. We consid-
ered real-world networks obtained from KONECT (Kunegis
2013), the 10th DIMACS challenge (Bader et al. 2014), and
the Network Data Repository (Rossi and Ahmed 2015). We
group the real-world networks into two categories, consisting
of 16 small graphs (up to 2 000 vertices) and 19 large graphs
(between 2 000 and 550 000 vertices); the instance names
and some instance properties are shown in Table 1. The
results for the small and large graphs are somewhat similar,
thus we present only the results for the large graphs. In the
plots, the boxes extend from 25th to 75th percentile with the
middle line showing the median, whiskers extend to the 10th
or 90th percentile.

We call a vertex cover greedy if it is obtained by adding a
vertex with maximum degree until all edges are covered; the

Table 1: Networks used for our experiments.
Size Name n m
Small adjnoun adjacency 112 425

arenas-email 1 133 5 451
arenas-jazz 198 2 742
bio-celegans 453 2 025
bio-diseasome 516 1 188
bio-yeast 1 458 1 948
ca-netscience 379 914
ca-sandi-auths 86 124
contiguous-usa 49 107
dolphins 62 159
inf-euroroad 1 174 1 417
inf-USAir97 332 2 126
moreno-zebra 27 111
soc-firm-hi-tech 33 91
soc-wiki-Vote 889 2 914
ucidata-zachary 34 78

Large bio-dmela 7 393 25 569
ca-AstroPh 17 903 196 972
ca-CSphd 1 882 1 740
ca-CondMat 21 363 91 286
ca-Erdos992 6 100 7 515
ca-GrQc 4 158 13 422
ca-HepPh 11 204 117 619
citationCiteseer 268 495 1 156 647
coAuthorsCiteseer 227 320 814 134
coAuthorsDBLP 299 067 977 676
coPapersCiteseer 434 102 16 036 720
coPapersDBLP 540 486 15 245 729
inf-openflights 2 939 15 677
inf-power 4 941 6 594
soc-advogato 6 541 51 127
soc-anybeat 12 645 49 132
soc-brightkite 56 739 212 945
soc-hamsterster 2 426 16 630
soc-twitter-follows 404 719 713 319

set V is the trivial vertex cover. Optimal vertex covers were
computed with Gurobi 6.5.

Running time and search space size. First we consider
the running time of our algorithm when searching neighbor-
hoods of increasing size. Figure 2 shows the running time to
find k-optimal solutions on large graphs when starting from a
greedy vertex cover. As expected, the running time increases
with k. One can also see how applying our pruning rules
reduces the running time for larger values of k.

We also considered the size of the search space, counted
in the number of search tree vertices normalized by n. As
expected, the search space size grows exponentially with k as
shown in Figure 3. The pruning rules reduce the size of the
search space approximately five-fold, which in turn explains
the reduced running time.
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Figure 2: The total time needed to find k-optimal solutions
for increasing values of k in large graphs. Grey boxes (left)
represent the default algorithm, black boxes (right) represent
the algorithm with pruning rules.
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Figure 3: The size of the search space on large graphs. For
each value of k the gray boxes (left) represent complete size
of the search space, while the black boxes (right) show the
pruned search space.

Sufficient k to reach (near)-optimal solutions. Due to
the reduced size of the search space we are able to explore
neighborhoods of moderate sizes, allowing us to find out
which neighborhood-radius is sufficient to find optimal vertex
covers by starting from a greedy or a trivial vertex cover.

Figure 4 compares the size of the optimal vertex cover to
the value for k to find it. The figure includes all instances
except the ones from the DIMACS challenge which are dis-
cussed below. The value of k is very small compared to the
size of the optimal cover and usually smaller when starting
from a greedy vertex cover than when starting from the triv-
ial one. The fact that small neighborhoods are sufficient to
find the optimum could explain the success of local search
algorithms for MINIMUM VERTEX COVER.

Table 2 supports this observation: for four of the remaining
five large instances, the value k that is sufficient to find the
optimum starting from a greedy vertex cover is very small.
For the remaining instance (the ’citationCiteseer’ graph from
the DIMACS challenge), we found a solution with 118 117

Table 2: Sufficient values for k to find the optimal vertex
cover in real world networks from the 10th DIMACS chal-
lenge (Bader et al. 2014).

Name n m Opt. k

coAuthorsCiteseer 227 320 814 134 129 193 7
coAuthorsDBLP 299 067 977 676 155 618 9
coPapersCiteseer 434 102 16 036 720 386 106 9
coPapersDBLP 540 486 15 245 729 472 179 9

Figure 4: Size of the optimal vertex cover compared to the
sufficient value for k to find it. Grey and black symbols indi-
cate starting at greedy or trivial vertex covers, respectively;
crosses show the k-value to reach covers of size 1.01·OPT,
diamonds and circles show the k-value that is sufficient to
find the optimum.

vertices, only two more than the optimal solution, by set-
ting k = 23.

Finally, we examine the amount of improvement when
starting from a greedy vertex cover. As Figure 5 shows, the
solution quality improves quickly with k, with the majority
of the improvements obtained for k ≈ 9. For k ≥ 9, the
median improvement in solution size is approximately 5%.

Combination with a state-of-the-art local search algo-
rithm. For our test data, FastVC (Cai 2015) finds an op-
timal solution for many instances within one hour. Conse-
quently, it outperforms our algorithm in terms of running time.
For some instances, it is known, however, that FastVC does
not find an optimal solution (Cai 2015). Thus, we would like
to determine whether it is worthwhile to use our algorithm
as a post-processing of FastVC. The following preliminary
experiments hint that this might be the case. We started
FastVC with a time limit of 5 minutes and seed ’123456’
on three hard instances: ’soc-delicious’ and ’tech-RL-caida’
from the Network Repository, and ’citationCiteseer’ from the
DIMACS challenge. We found that during the last 4 minutes
of its execution FastVC finds no further improvements. In
comparison, when we take the solution found by FastVC
after 1 minute and let our algorithm run for 4 minutes, then it
improves the vertex cover size by 4, 25, and 9, respectively.
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Figure 5: Relative solution improvement over the size of the
greedy cover for large graphs and different neighborhood
radii k.

Conclusion

We demonstrated the potential of considering larger local
search neighborhoods for MINIMUM VERTEX COVER. Fu-
ture work could focus on different hard computational prob-
lems such as MINIMUM DOMINATING SET or MAXIMUM
CLIQUE. For MAXIMUM CLIQUE, efficient local search
algorithms are known (Wang, Cai, and Yin 2016) and thus pa-
rameterized local search might prove useful for this problem
as well.

Our experiments show that the sufficient neighborhood
radius for finding optimal solutions depends on the initial
vertex cover. This dependency should be examined systemati-
cally. For example, when starting from random vertex covers,
what is the relation between number of initial vertex covers
and sufficient neighborhood radius?

In addition, further more extensive experiments with other
local search solvers such as FastVC (Cai 2015) should be
made. In particular, the potential for using our algorithm as a
postprocessing or in a hybrid algorithm that switches between
hill-climbing with larger k and stochastic local search should
investigated. Our preliminary experiments with FastVC show
that this might be an interesting direction for the future.

Finally, we considered strict local search, as our algorithm
only finds swaps that are inside the k-swap neighborhood
of the current solution. One could also use permissive local
search where the algorithm may return swaps that are outside
the k-swap neighborhood. Theoretical evidence suggests
that permissive local search is easier (Gaspers et al. 2012); it
would be interesting to also provide computational evidence
for this claim.
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