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Abstract

We consider language learning in the limit from text where all learning restrictions are
semantic, that is, where any conjecture may be replaced by a semantically equivalent
conjecture. For different such learning criteria, starting with the well-known TxtGBc-
learning, we consider three different normal forms: strongly locking learning, consistent
learning and (partially) set-driven learning. These normal forms support and simplify
proofs and give insight into what behaviors are necessary for successful learning (for example
when consistency in conservative learning implies cautiousness and strong decisiveness).

We show that strongly locking learning can be assumed for partially set-driven learners,
even when learning restrictions apply. We give a very general proof relying only on a natural
property of the learning restriction, namely, allowing for simulation on equivalent text.
Furthermore, when no restrictions apply, also the converse is true: every strongly locking
learner can be made partially set-driven. For several semantic learning criteria we show that
learning can be done consistently. Finally, we deduce for which learning restrictions partial
set-drivenness and set-drivenness coincide, including a general statement about classes of
infinite languages. The latter again relies on a simulation argument.

Keywords: behaviorally correct learning, language identification in the limit, learning
restriction, normal form, semantic learning

1. Introduction

Gold (1967) introduced a framework for the learning of languages as a branch of algorithmic
learning theory. It has since been called inductive inference or learning in the limit. This
branch analyzes the problem of algorithmically learning a description for a formal language
(a computably enumerable subset of the natural numbers) when presented successively all
and only the elements of that language. For example, a learner h might be presented more
and more even numbers. After each new number, h outputs a description for a language as
its conjecture. The learner h might decide to output a description for the set of all multiples
of 4, as long as all numbers presented are divisible by 4. Later, when h sees an even number
not divisible by 4, it might change this guess to a program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L have been
proposed in the literature. Gold himself gave a first, simple learning criterion, TxtGEx-
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learning1, where a learner is successful iff on every text for L it will eventually pick a
conjecture which it keeps forever, and this final conjecture is a correct description for L. We
will use W -indices as conjectures, that is, any conjecture is a natural number interpreted as
a program which describes the set of numbers on which the program terminates. Trivially,
each single, describable language L has a constant function as a TxtGEx-learner (this
learner constantly outputs a description for L). Thus, we are interested in analyzing for
which classes of languages L there is a single learner h learning each member of L. This
framework has been studied extensively, using a wide range of learning criteria similar to
TxtGEx-learning (see, for example, the textbook by Jain et al., 1999).

Note that Gold required for successful learning that the learner stops changing the
conjecture eventually, keeping a final correct conjecture. This imposes a syntactic restriction
on the learning process: not only must the hypotheses eventually be correct, but it also
must not change any more. There is also a purely semantic version of this restriction called
behaviorally correct (Bc) learning of languages by Case and Lynes (1982) and Osherson
and Weinstein (1982), where a learner h is successful on a language L iff on every text for
L it eventually only outputs conjectures which are correct descriptions for L. This is an
important distinction when target languages can have multiple descriptions, and deciding
the equivalence of two descriptions is not computable (as is the case with W -indices).

There are a number of desirable properties one might want to have in a learner. For
example, the learner can be required to be consistent with the data seen so far, that is,
any conjecture contains the data it is based on (introduced by Angluin, 1980). Consistency
is another example for a semantic restriction: any specific conjecture is just as good as
any semantically equivalent conjecture. An example for an extensively studied learning
restriction which is not semantic is conservativeness (also by Angluin, 1980), the restriction
of not syntactically changing the conjecture while it is still consistent with the data. In this
paper we will only consider semantic restrictions, of which we give more below.

When working with learners, it is often desirable that they behave in some normalized
way, that they fulfill some simple assumptions. The most famous normal form for learners
is the Fulk Normal Form (Fulk, 1990). He showed that every TxtGEx-learner can be
assumed to have a number of additional properties. Among other things, the Fulk Normal
Form requires the learner to be strongly locking, that is, on any text there is a point such
that enough data was presented and the learner will not change its mind regardless of what
data from the target language is presented. Such a learner would truly converge and would
not be ready to change the conjecture any more for a certain continuation of the data. For
TxtGBc-learning, the corresponding notion is that of strongly Bc-locking, where syntactic
mind changes are still allowed as long as they are not semantic. See Jain et al. (1999) for
the generalized concept of locking sequences in other contexts than Ex-style convergence.

Another part of the Fulk Normal Form is partial set-drivenness or rearrangement inde-
pendence. This describes the situation in which a learner is insensitive to the exact sequence
of the input data and merely depends on the set of data presented and the length of the in-
put sequence. We speak of set-driven learners, introduced by Wexler and Culicover (1980),
when their output depends only on the data. This second regularity property is desirable
in that the exact order of presentation does not have an impact on the learning process.

1. Txt stands for learning from a text of positive examples; G stands for Gold, who introduced this model,
and is used to indicate full-information learning; Ex stands for explanatory.
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For TxtGEx-learning, it is well-known that partial set-drivenness is not a restriction, but
interestingly it cannot be assumed to be set-driven (see Schäfer-Richter, 1984; Fulk, 1985).

We mentioned consistency above. It would support the learning process if the learner
only makes conjectures that at least contain the data seen so far. However, for TxtGEx-
learning, consistency is a restriction of the learning power (Bārzdiņš, 1977); this is called
the inconsistency phenomenon and follows from TxtGEx-learning requiring syntactic con-
vergence. If we relax our criterion to TxtGBc, we can trivially see that every TxtGBc-
learnable class can be TxtGBc-learned consistently (TxtGConsBc-learned for short).
Every new hypothesis is generated by patching in the current data. This requires a change
of the conjecture in every step, but for correct conjectures this change is only syntactic.

Our goal is to study the mentioned three normal forms, (1) strongly Bc-locking, (2)
(partial) set-drivenness and (3) consistency in the area of TxtGBc-learning. For several
semantic restrictions δ, we discuss δ-restricted TxtGBc-learning (TxtGδBc-learning).

Before we consider the different normal forms, we introduce notation and learning cri-
teria in Section 2, followed by a general presentation of semantic learning in Section 3.
In Section 4 we see that, surprisingly, strongly Bc-locking is equivalent to partial set-
drivenness. Furthermore, for many learning restrictions δ, we can assume δ-restricted par-
tially set-driven learning to be strongly locking, and any set-driven learner is always strongly
Bc-locking. These last two statements are very general: They apply to all learning restric-
tions δ we consider in this paper and a wealth of further restrictions. Finally, we also see
that every non-U-shaped (NU) learner is automatically strongly locking.

In Section 5 we consider consistency. While it is trivial that pure TxtGBc-learning
(without any further learning restriction) allows for consistent learning, the situation is
much less clear when an additional learning restriction δ is considered. We were able to
show that many important semantic learning restrictions δ allow for consistent learning.
Our results in this section are specific to the respective restrictions and employ proofs
tailored to the particular structure of the different δ, since most restrictions do not allow
for simple patching of the hypotheses as in the case of TxtGBc.

In Section 6 we reveal when a partially set-driven learner can be assumed to be set-
driven. Here consistency serves as a normal form supporting our proofs. It is known that,
for classes L of infinite languages, TxtGEx-learning can be made set-driven (Osherson
et al., 1986). We pick up the idea of this proof to show, for a wide range of learning criteria,
partially set-driven learning can be made set-driven for classes of infinite languages.

Wherever possible we give our results not just for concrete learning criteria, but for any
learning criteria fulfilling some natural axiom. This makes the theorem more versatile and
applicable also to learning criteria not yet invented, as long as they fulfill the axiom.

We conclude in Section 7. Note that, due to space considerations, some proofs are
omitted in the main part of the paper and can be found in the appendix.

2. Language Learning in the Limit

In this section we give a brief overview over mathematical details used in this paper, focusing
on less standard notation. While full mathematical prelims can be found in Appendix A,
most notation is standard and follows the textbooks by Rogers (1967) and Jain et al. (1999),
except for the notation on learning criteria, which follows Kötzing (2009).
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A text for a language L is an infinite sequence of all and only the elements of L, with
possible additional listings of the pause symbol #. A learner is any partial computable
function h ∈ P. An interaction operator is an operator β taking as arguments a function
h ∈ P (the learner) and a text T ∈ Txt, and outputs a (possibly partial) function p ∈ P,
the sequence of conjectures. The most common interaction operator is G, which is defined
such that, for all learners h, texts T and indices i, G(h, T )(i) = h(T [i]). Partial set-driven
(Psd), set-driven (Sd), and iterative (It) learning can be defined analogously. A learner h
is said to be confluently iterative (CflIt) just in case it is an iterative learner which gives
the same output on any two sequences of inputs that contain the exact same data. In this
work, whenever we refer to all interaction operators we mean those we just defined.

One can establish a hierarchy among the interaction operators by noticing that some
can be simulated by others (Case and Kötzing, 2016). For two interaction operators β, β′,
we say β-learners can be translated into β′-learners, written β 4 β′, if, for every learner h,
there is some learner h′ such that on arbitrary texts T the resulting sequence of hypotheses
of h working on T is the same as that of h′. That is, ∀T ∈ Txt : β(h, T ) = β′(h′, T ).
For example, an Sd-learner can be translated into an Psd-learner by simply ignoring the
additional information of the number of the current iteration.

A learning restriction is a predicate δ on a total learning sequence p ∈ R and a text
T ∈ Txt. For example, for all pairs (p, T ),

Ex(p, T )⇔ p ∈ R ∧ (∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T )).

We consider a number of further restrictions in this work.

Bc(p, T )⇔ ∃n0 ∀n ≥ n0 : Wp(n) = content(T );

Conv(p, T )⇔ ∀i, j : (i ≤ j ∧ content(T [j]) ⊆Wp(i))⇒ p(i) = p(j);

Caut(p, T )⇔ ∀i, j : Wp(i) ⊂Wp(j) ⇒ i ≤ j;
Dec(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k))⇒Wp(i) = Wp(j);

SDec(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k))⇒ p(i) = p(j);

Mon(p, T )⇔ ∀i, j : i ≤ j ⇒Wp(i) ∩ content(T ) ⊆Wp(j) ∩ content(T );

SMon(p, T )⇔ ∀i, j : i ≤ j ⇒Wp(i) ⊆Wp(j);

WMon(p, T )⇔ ∀i, j : (i ≤ j ∧ content(T [j]) ⊆Wp(i))⇒Wp(i) ⊆Wp(j).

NU(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T ))⇒Wp(i) = Wp(j);

SNU(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T ))⇒ p(i) = p(j);

Finally, we let T denote the absence of any restriction. We combine restrictions δ and
δ′ by intersecting them and denote this by juxtaposition. A learning criterion is a tuple
(α, C, β, δ), where C is a set of admissible learners (typically P or R), β is an interaction
operator, and α, δ are learning restrictions. We write τ(α)CTxtβδ to denote this learning
criterion, omitting C in case of C = P and the restrictions if they equal T. Let h ∈ C be an
admissible learner. We say that learner h τ(α)CTxtβδ-learns a language L iff on arbitrary
texts T ∈ Txt, α(β(h, T ), T ) holds, and for all texts T ∈ Txt(L), δ(β(h, T ), T ) holds. The
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class of languages τ(α)CTxtβδ-learned by h is denoted by τ(α)CTxtβδ(h). Finally, we
write [τ(α)CTxtβδ] to denote the set of all τ(α)CTxtβδ-learnable classes of languages.

3. Semantic Learning

The main idea of semantic language learning is to consider only the conjectured languages
during the learning process, not their syntactic representation. The learner may be subject
to restrictions regarding the languages it proposes, but it is free to encode its guesses by
hypotheses it sees fit. Of course, a common hypothesis space is a necessary foundation for
intelligible conjectures.

In this paper we consider semantic learning restrictions. Intuitively, a semantic restric-
tion allows for replacement of a hypothesis by another that describes the same language.
A pseudo-semantic restriction has the additional constraint that no new syntactic mind
change may be introduced by this replacement. The following definitions were first given
by Kötzing (2014). For a partial function p ∈ P we fix the two sets

Sem(p) = {p′ ∈ P | ∀n : (p(n)↓ ⇔ p′(n)↓) ∧ (p(n)↓ ⇒Wp′(n) = Wp(n))};
Mc(p) = {p′ ∈ P | ∀n : p(n)↓ = p(n+ 1)↓ ⇒ p′(n)↓ = p′(n+ 1)↓}.

A learning restriction δ is said to be semantic if for any sequence p and text T , (p, T ) ∈ δ
and p′ ∈ Sem(p) implies (p′, T ) ∈ δ. A restriction is said to be pseudo-semantic if this
implication holds for all p′ ∈ Sem(p) ∩Mc(p). All restrictions defined above are pseudo-
semantic and all but Conv, SDec, SNU, and Ex are also semantic.

The natural success criterion for semantic learning is behaviorally correct identification
(Bc), where we require the learner to eventually only output correct hypotheses for the
language it infers. The reason we disregard restrictions that are only pseudo-semantic but
not semantic is that those cannot utilize the full potential of behaviorally correct learning.
In fact, even when paired with Bc these restrictions fall back to Ex-convergence.

Proposition 1 If δ ∈ {Conv,SDec,SNU,Ex}, then δBc = δEx.

As stated in Section 2, we require a successful learner to be always defined on texts for
languages it is able to identify. However, it might as well diverge on texts for languages
it cannot learn in the first place. The next theorem shows that in semantic learning it is
sufficient to focus on total functions as admissible learners.

Theorem 2 For any interaction operator β and semantic restriction δ holds

[RTxtβδ] = [Txtβδ].

3.1. Semantic Closure

We define the semantic closure of a learning restriction δ as the set

SemCl(δ) = {(p′, T ) | p′ ∈ Sem(p) ∧ (p, T ) ∈ δ}.

We augment the collection of sequences observing δ (with respect to some text) with all
sequences that are semantically equivalent. It is immediate that δ ⊆ SemCl(δ) and that δ
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is semantic iff we have equality. The closures of SDec, SNU, and Ex are already among the
criteria mentioned in Section 2; namely, they are Dec, NU, and Bc, respectively. Regarding
the last pseudo-semantic restriction, Conv, we introduce semantic conservativeness as the
semantic closure SemCl(Conv). In more detail, we define for any p ∈ R and T ∈ Txt,

SemConv(p, T )⇔ ∀i, j : (i ≤ j ∧ content(T [j]) ⊆Wp(i))⇒Wp(i) = Wp(j).

Already on the level of predicates every semantically conservative sequence is also weakly
monotone, SemConv ⊆WMon.

It was shown by Kötzing and Palenta (2016) that, for Ex-learning, cautiousness (Caut)
and WMon are equivalent on the level of learnable classes. To study these restrictions
also in the semantic setting, we adopt their approach of defining new intermediate criteria
as common upper and lower bounds. Bc-learning requires that the learner eventually
conjectures the target language. Consequently, a cautious Bc-learner never guesses a proper
superset of the target. We follow Kötzing and Palenta (2016) in calling this behavior target
cautiousness,

CautTar(p, T )⇔ ∀i : ¬(Wp(i) ⊃ content(T )).

We have already seen the inclusion Caut ∩ Bc ⊆ CautTar. Observe that we also have
WMon ⊆ CautTar. As a common lower bound for Caut and SemConv, we define a
learning sequence to be semantically witness-based by

SemWb(p, T )⇔∀i, k : (∃j : (i ≤ j ≤ k∧Wp(i) 6=Wp(j)))⇒ (content(T [k])∩Wp(k))\Wp(i) 6= ∅.

Intuitively, if there has been a semantic mind change between the positions i and k, then
there must be an observation in content(T [k]), which is now explained by the hypothesis
p(k), but has not been explained prior by p(i). This “witness” justifies the mind change at
position j. SemWb ⊆ Caut ∩ SemConv is easily verified. As a side note, SemWb is in
fact the semantic closure of what Kötzing and Schirneck (2016) defined as witness-based.

3.2. Semantic Equivalence of Interaction Operators

We weaken the notion of translating one learner into another (see Section 2) to adjust to
the needs of semantic learning. For two interaction operators β, β′, we say β-learners can
be translated semantically into β′-learners, written β 4sem β′, if for every β-learner h, there
is a β′-learner h′ such that for all texts T and positions n

Wβ(h,T )(n) = Wβ′(h′,T )(n).

Note that this entails the output β′(h′, T )(n) being defined if and only if β(h, T )(n) is.
Learner h′ working on some text may give different hypotheses than h, but they describe
the same sequence of recursively enumerable sets, the same semantics. If the translation
is possible in both ways, we write β ∼=sem β′ and say that β and β′ are semantically
equivalent. The importance of 4sem stems from the fact that, if restrictions α and δ are
semantic, β 4sem β′ implies [τ(α)Txtβδ] ⊆ [τ(α)Txtβ′δ].

Theorem 3 G ∼=sem It, Sd ∼=sem CflIt.
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The result follows from a padding argument. The output of the learner is used not only
to describe a conjectured language, but also to encode information about the input seen
so far. As a consequence of Theorem 2 and Theorem 3 we only need to consider full-
information, partially set-driven, and set-driven learners which are defined on all inputs.
All three interaction operators have in common that the learner at least has access to the
content of the input sequence, the set of all data points presented so far.

4. Strongly Locking Learners

A locking sequence for a learner on some language encapsulates sufficient information for
the learner to uniquely identify this language. The following definition for Bc-learning
was given by Jain et al. (1999). Let h ∈ P be a G-learner. A sequence σ ∈ Seq(L) is
a Bc-locking sequence for h on L if for every sequence τ ∈ Seq(L), Wh(σ�τ) = L. Not
only does h infer a correct description of the target language on σ itself (choose τ = ε
as the empty sequence); moreover, no extension of σ with data from L makes the learner
change its mind semantically. Of course, every such extension of σ is a locking sequence as
well. The transfer to (partially) set-driven learning is immediate. A finite set D ⊆ L is a
Bc-locking set for h on L if for all D ⊆ D′ ⊆ L, Wh(D′) = L. A pair (D, t) with t ≥ |D| is
a Bc-locking information if for all D′ as before and numbers t′ such that t′ − t ≥ |D′\D|,
Wh(D′,t′) = L. We also use the term locking information to subsume all three concepts.

A central observation of Blum and Blum (1975) is that every learner has a locking
sequence for every language it Ex-learns. The same holds for Bc-convergence (the proof is
identical). However, it is well-known that there are learners such that no initial sequence of
a text serves as a locking sequence. We show in this section that in some cases we can forgo
learners demonstrating this undesired behavior. Following Kötzing and Palenta (2016), we
call a learner h strongly Bc-locking on some language L, if for every text T ∈ Txt(L)
there is a position n0 such that the sequence T [n0], the set content(T [n0]) or the pair
(content(T [n0], n0), respectively, is a Bc-locking information for h on L. We say h is
strongly Bc-locking if it is strongly Bc-locking on every language it learns.

Another very useful result carries over from Ex-learning (see Case and Kötzing, 2016).

Theorem 4 Every Sd-learner is strongly Bc-locking.

Partially set-driven learners are not strongly locking in general. Unfortunately, many known
techniques to make them so are incompatible with Bc-convergence or violate other semantic
restrictions (compare Fulk, 1990; Jain et al., 1999). We use an alternative approach to
characterize a large class of learning criteria for which strongly locking learners suffice.

Let R denote the set of all unbounded non-decreasing functions r : N → N. Note that
such functions have an unbounded lower limit, that is, for every m ∈ N, there are only
finitely many n such that r(n) < m. A learning restriction δ allows for simulation on equiv-
alent text if, for all T, T ′ ∈ Txt with content(T ) = content(T ′), partial functions p ∈ P and
r ∈ R, the following holds: Whenever δ(p, T ′) and ∀n : content(T [n]) = content(T ′[r(n)]),
we have δ(p ◦ r, T ).

The intuition behind this definition lies in the name: a learner h′ seeing one text T may
simulate a learner h on a different text T ′, provided that T and T ′ are texts for the same
language, and h′ on T uses later and later conjectures given by h on T ′, but always only

7



Normal Forms in Semantic Language Identification

uses hypotheses of h that are based on all the data already available to h. Thus, the texts
T and T ′ are not just equivalent in that they are for the same language, but also they are
used in a data-synchronous way.

Note that this is a generalization of the delayable restrictions of Kötzing and Palenta
(2016). Since all restrictions defined in Section 2 are delayable, they also allow for simulation
on equivalent text. In fact, the strength of this definition lies in the fact that most of the
studied learning restrictions in the literature allow for simulation on equivalent text.

Theorem 5 Let restriction δ allow for simulation on equivalent text. Then, every class of
languages that is TxtPsdδBc-learnable is so learnable by a strongly Bc-locking learner.

Proof Let h be a total Psd-learner (Theorem 2) such that L ⊆ TxtPsdδBc(h) and
consider the learner h′ defined on finite sets D and numbers t ≥ |D| as

h′(D,n) = h(D, 2n).

Let us first check L ⊆ TxtPsdδBc(h′). To this end, let L ∈ L and T ∈ Txt(L).
T ′(n) = T (bn2 c) denotes the text in which all data from T is repeated once, before the next
data point occurs. Let p = Psd(h, T ′) denote the learning sequence in case T ′ is presented
to h, namely n 7→ h(content(T ′[n]), n). Because of T ′ ∈ Txt(L) and L ∈ TxtPsdδBc(h),
we obtain δBc(p, T ′). Furthermore, the function r(n) = 2n is non-decreasing and has
unbounded lower limit, r ∈ R and, for all n, we have content(T ′[r(n)]) = content(T [n]).
Let p′ = Psd(h′, T ) be the learning sequence resulting from T being presented to h′, that
is, n 7→ h(content(T [n]), 2n). Observe that p′ = p ◦ r is the composition of the learning
sequence p with function r. From this we conclude δBc(p′, T ) since the learning restriction
δBc allows for learning on equivalent texts. Hence, h′ learns L from T .

It remains to verify that h′ is strongly Bc-locking. As h learns L there is a Bc-locking
information for h on L. In other words, there is some (D0, n0) such that D0 ⊆ L and
Wh(D0,n0) = L, and for all possible extensions (D,n) compatible with L (n ≥ n0, D0 ⊆ D,
D ⊆ L, and |D \ D0| ≤ n − n0), we have Wh(D,n) = L. Let again T be a text for L
and n1 large enough such that D0 ⊆ content(T [n1]). Since every extension of a locking
information for h on L is again a locking information, it suffices to find an n′ such that
(content(T [n′]), 2n′) is an extension of (D0, n0). By letting n′ = n0 + n1 we immediately
get n0 ≤ 2n′, D0 ⊆ content(T [n′]), |content(T [n′]) \ D0| ≤ n′ ≤ 2n′ − n0 and, of course,
content(T [n′]) ⊆ L. Therefore, (content(T [n′]), 2n′) is a locking information for h′ on L.
Learner h′ is strongly Bc-locking by the arbitrary choice of T .

The proof of the last theorem gives a simple construction to make a learner strongly
locking while simultaneously preserving the restriction δ. It does so for a rich class of
learning restrictions. It remains an open question whether such a general statement also
holds for the case of full-information learning, i.e., for the interaction operator G. The next
two theorems are partial results in this direction, already covering a large portion of the
learning restrictions in question.

Theorem 6 A class of languages is TxtGBc-learnable by a strongly Bc-locking learner
if and only if it is TxtPsdBc-learnable.
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Theorem 7 Let β be an interaction operator and δ ⊆ NU a restriction. Every class
of languages that can be TxtβδBc-learned is in fact so learned by a strongly Bc-locking
learner.

5. Consistency

A natural requirement in language learning is to ask the learner to always include all its
current knowledge in its hypothesis. That is, the learner’s output has to be consistent with
the content of the input sequence (Angluin, 1980). More formally, consistency is defined as
the following predicate on infinite sequences p ∈ P and texts T ∈ Txt,

Cons(p, T )⇔ ∀i : content(T [i]) ⊆Wp(i).

Consistency is a semantic restriction and obviously allows for simulation on equivalent text.
It is known to severely limit the capabilities of Ex-learners (see Jain et al., 1999). In the
context of Bc-convergence, however, the additional requirement of consistency does not
reduce the learning power of many restrictions. One can even extend this requirement to
texts for languages the learner cannot identify.

Theorem 8 Let β be any interaction operator and δ ∈ {T, CautTar, Mon, SMon,
WMon, SemConv, SemWb}. Then, [τ(Cons)TxtβδBc] = [TxtβδBc].

The inclusion [τ(Cons)TxtβδBc] ⊆ [TxtβδBc] is trivial, the other direction will follow
from Lemma 9 through 12 below. We distinguish them by the technique used to ensure
consistency. For their proofs we fix some notation. Let a text T and a finite initial sequence
σ @ T be given. We use |σ| to denote the length of σ. For some learner h, we abbreviate the
output β(h, T )(|σ|) of h on σ to h(σ). This does not mean that h has access to the order or
even the number of data points presented thus far. However, by Theorem 3 we can assume
that at least content(σ) is known to h. Using the S-m-n Theorem (compare Rogers, 1967)
we construct mappings P → P; h 7→ g such that the resulting learner g is consistent. We
say such a transformation preserves some learning restriction δ if (β(g, T ), T ) ∈ δ whenever
(β(h, T ), T ) ∈ δ. In the proofs we repeatedly exploit the following simple observation: For
any two indices i ≤ j, we have content(T [i]) ⊆ content(T [j]) ⊆ content(T ).

The first lemma follows just from patching the set of seen data points into the output.

Lemma 9 The restrictions T, Mon, and SMon allow for consistent Bc-learning.

The W -hypothesis space prohibits an effective test for consistency. Given a universal
enumeration procedure for all languages, one can at least determine consistency in the
limit. We fix such a procedure in the following. For any program e, let Φe : N → N be
the complexity measure associated with the recursive function ϕe (Blum, 1967). We set
W s
e = {x ≤ s | Φe(x) ≤ s} as the collection of natural numbers at most s whose member-

ship to We can be verified within s steps. A complete description of the finite set W s
e can

be computed from e and s, and
⋃
s∈NW

s
e = We. Furthermore, for any finite set D, we have

D ⊆We if and only if there is an s such that D ⊆W s
e . This is the key technique to ensure

consistency for the learning restrictions discussed in the following. Lemma 11 is a simple
equality on the level of predicates.

9
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Lemma 10 The restrictions WMon and CautTar allow for consistent Bc-learning.

Lemma 11 Cons ∩ SemWb = Cons ∩ SemConv.

In the proof of the next lemma we employ one-one texts. Let T ∈ Txt be an arbitrary
text. We construct the one-one sequence T1-1 by deleting every occurrence of # as well as
all duplicate data points from T . Note that for every i we find a unique r(i) ≤ i such that
content(T1-1[r(i)]) = content(T [i]). If content(T ) is finite, we amend T1-1 with infinitely
many pause symbols to make it a text.

Lemma 12 The restrictions SemWb and SemConv allow for consistent Bc-learning.

Proof By Lemma 11 it is sufficient to show this for SemConv. We give separate trans-
formations for three relevant interaction operators β, namely, G, Psd, and Sd.

Case 1 β = G.

For a finite sequence σ ∈ Seq, we let σ− = σ[|σ|−1] denote the prefix of σ containing all
but the last entry, or σ− = ε the empty sequence if σ = ε is empty. Let h be a G-learner,
there are recursive functions f and g such that

Wf(σ) = content(σ) ∪
⋃
s∈N

{
∅, if content(σ) *W s

h(σ);

W s
h(σ), otherwise;

Wg(σ) =

{
Wg(σ−), if content(σ) = content(σ−);

Wf(σ), otherwise.

As long as the content of the input sequence does not change, the output of g also stays
the same. If a new data point is shown, the respective hypothesis of the initial learner h
is tested for consistency (in the limit), depending on the outcome either only the updated
content is conjectured or the guess of h is adopted. The learner g is globally consistent.

Regarding Bc, let L ∈ TxtGSemConvBc(h) a language that h learns and T ∈ Txt(L)
a text for L. If L is infinite, T shows new data points on infinitely many positions n, on all
but finitely many of them, we have Wh(T [n]) = L. The guesses are consistent and are hence
adopted as the output of g. Also, g does not change its mind between these positions. If L
is finite, there is a latest new point in T at position n0. Since SemConv implies CautTar

(as a predicate), the conjecture h(T [n0]) cannot describe a proper superset of L. Either
Wh(T [n0]) is inconsistent or equal to L, in both cases we have Wg(T [n]) = L for all n ≥ n0.

Suppose i ≤ j are indices with content(T [j]) ⊆Wg(T [i]), we show that Wg(T [i]) = Wg(T [j]).
If the content does not change between the positions, this is obvious. We thus assume that i
and j are such that Wg(T [i]) = Wf(T [i]) and Wg(T [j]) = Wf(T [j]). This means, T (j−1) is a new
data point contained in Wg(T [i]). The only way to achieve this is by hypothesis h(T [i]) being
consistent. We get content(T [j]) ⊆ Wg(T [i]) = Wh(T [i]) and arrive at Wh(T [i]) = Wh(T [j]) via
SemConv. Finally, h(T [j]) must also be consistent with the later observation T [j],

Wg(T [i]) = Wh(T [i]) = Wh(T [j]) = Wg(T [j]).

10
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Case 2 β = Psd.

Recall that partially set-driven learners have access to the length of the input sequence,
they are, however, oblivious to the order in which the data is presented. We employ a
construction that uses even less information, the original learner h is queried on inputs that
only depend on the content seen so far. There is a Psd-learner g such that on finite sets
D ⊂ N and numbers t ≥ |D|,

Wg(D,t) = D ∪
⋃
s∈N

{
∅, if D *W s

h(D,|D|);

W s
h(D,|D|), otherwise.

Let L ∈ TxtPsdSemConvBc(h) and T ∈ Txt(L). By transitioning to one-one texts
we can interpret the output h(content(T [i]), |content(T [i])|) of h on T as the hypothesis
h(content(T1-1[r(i)]), r(i)) of h on T1-1. Note that h learns L from T1-1. Consequently, if
L is infinite, almost all queried conjectures of h are correct. If L is finite, then hypothesis
h(L, |L|) is either correct or inconsistent. In all cases g converges to a semantically correct
description of L on T , which yields the preservation of Bc. Regarding SemConv, let again
i ≤ j be such that content(T [j]) ⊆ Wg(content(T [i]),i). In case h(content(T1-1[r(i)]), r(i)) has
been inconsistent, we have

Wg(content(T [i]),i) = content(T [i]) = content(T [j]) = Wg(content(T [j]),j).

The last equality is due to the fact that in the computation of g(content(T [j]), j) learner h
is again queried on input (content(T1-1[r(i)]), r(i)) since the content has not changed. If h
initially has been consistent, we get

Wg(content(T [i]),i) = Wh(content(T1-1[r(i)]),r(i)) = Wh(content(T1-1[r(j)]),r(j)) = Wg(T [j])

from the semantic conservatism of h on text T1-1.

Case 3 β = Sd.

This case follows from the fact that the construction of g in the Psd-case does not make
use of the length t of the input sequence. Although the transformed learner is now based
on a set-driven h, the preservation of SemConv can be seen exactly as above.

As seen in Lemma 11, the additional requirement of consistency can also reveal new
connections among the different learning restrictions and, subsequently, the collections of
identifiable classes. Another example is given in the next theorem.

Theorem 13 Cons ∩WMon ⊆ Caut ∩Dec.

Corollary 14 The following relations hold for any interaction operator β.

(i) [TxtβSemWbBc] = [TxtβSemConvBc];

(ii) [TxtβWMonBc] ⊆ [TxtβCautDecBc].

11
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6. Set-Drivenness

We have seen in Section 3 that, in semantic learning, we can confine ourselves to total
learners interacting with the text via the operators G, Psd, and Sd. For (partially) set-
driven learning we even can assume the learner to be strongly locking. This raises the
question whether we can further reduce the class of relevant learners. For example, it would
simplify the learning process tremendously if the learner only needs to know the content of
the input sequence to identify any learnable class; that is, if set-driven learners suffice. In
this section we study the relation between partially set-driven learners and their set-driven
counterparts in our semantic setting. As it turns out, in general they are unequal in learning
power. There are, however, restrictions δ for which [TxtPsdδBc] = [TxtSdδBc] holds.

We start with the separation result. The technique used in its proof is based on a result
by Kötzing and Palenta (2016) which is, in turn, drawing on a proposition given by Schäfer-
Richter (1984) and Fulk (1985) regarding set-driven Ex-learning. We extend the theorem
to show that semantic learning is not covered completely by set-driven learners.

Theorem 15 [TxtPsdConsMonSDecEx]\[TxtSdBc] 6= ∅.

Corollary 16 If δ ∈ {T, Cons, Dec, Mon, NU}, we have [TxtSdδBc] ⊂ [TxtPsdδBc].

We now present learning restrictions for which Psd-learners and Sd-learners are equally
powerful. In the upcoming proofs we employ several tools introduced in the earlier parts
of this paper. Recall from Section 4 that a learning restriction allows for simulation on
equivalent text if it permits the reasonable reuse of hypotheses gained from a different text
showing the same content. The one-one texts defined in Section 5 are natural examples for
such equivalent texts. The transition from an arbitrary text T ∈ Txt to the equivalent one-
one text T1-1 consists of deleting all pause symbols and repetitions. Regarding the associated
non-decreasing functions r ∈ R with unbounded lower limit, the following observation is
useful: For all n such that content(T [n]) ⊂ content(T ), there is exactly one assignment
n 7→ r(n) satisfying content(T1-1[(r(n)]) = content(T [n]), namely, r(n) = |content(T [n])|. If
content(T ) is infinite, this uniquely defines a total function r ∈ R. If the content is finite,
we can choose r(n) = n for the larger n.

Theorem 17 Let L be a class of infinite languages and δ be a restriction that allows for
simulation on equivalent text. Then, L ∈ [TxtPsdδ] if and only if L ∈ [TxtSdδ].

Proof One direction is trivial. For the other one, let h be a Psd-learner that δ-learns
L. Suppose L ∈ L is a language and T ∈ Txt(L) a text for L. Construct an Sd-learner
g derived from h by defining g(D) = h(D, |D|) on all finite sets D. We claim that g also
δ-learns L from T . To this end, let function r ∈ R be as above. The construction of g gives

Sd(g, T )(n) = g(content(T [n])) = h(content(T [n]), |content(T [n])|)

= h(content(T1-1[r(n)]), r(n)) = Psd(h, T1-1)(r(n)).

By our assumption h learns L from the text T1-1, meaning δ(Psd(h, T1-1), T1-1). As δ allows
for simulation on equivalent text, δ(Psd(h, T1-1) ◦ r, T ) follows. By the equality shown
above, δ(Sd(g, T ), T ) and g learns L from T .

12
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It was observed by Case (1999) that, for infinite languages, set-driven learning is not a
restriction in non-semantic settings without further learning restrictions.

Under some conditions we can apply the ideas from Theorem 17 also to classes of finite
languages.

Theorem 18 Let δ ⊆ CautTarCons be a semantic restriction that allows for simulation
on equivalent text. Then, [TxtPsdδBc] = [TxtSdδBc].

Proof We only need to prove [TxtPsdδBc] ⊆ [TxtSdδBc]. Let again h be a learner,
L ∈ TxtPsdδBc(h) a language it identifies, and g(D) = h(D, |D|) the derived learner. If L
is infinite we get L ∈ TxtSdδBc(g) as in the proof of Theorem 17. Assume L is finite and
let T ∈ Txt(L) be a text for L. In the first part of this proof we exploit the semanticity
of δ to show that learner g identifies L from the one-one text T1-1. In the second part we
show that g learns L from text T using that δ allows for simulation on equivalent text.

We compare the learning sequences Psd(h, T1-1) and Sd(g, T1-1) of the two learners h
and g working on the same text T1-1. At positions n < |L|, we have

g(content(T1-1[n])) = h(content(T1-1[n]), n),

thus Psd(h, T1-1)(n) = Sd(g, T1-1)(n). Since h learns L from T1-1 by assumption, the
learning sequence (Psd(h, T1-1), T1-1) satisfies δ and hence also CautTarCons. If n ≥ |L|,
consistency gives L ⊆Wh(content(T1-1[n]),n) and the target cautiousness enforces equality. On
the other hand

g(content(T1-1[n])) = g(L) = h(L, |L|).
This hypothesis is in general syntactically different from h(content(T1-1[n]), n), but both are
for the target language L. In total, Psd(h, T1-1) and Sd(g, T1-1) describe the same sequence
of sets. Now δ(Sd(g, T1-1), T1-1) follows from learning restriction δ being semantic.

For the second part, we turn to the general text T for L. Let n0 be the minimal n
such that content(T [n]) = L. Recall that we have r(n) = n for all n ≥ n0 to meet the
requirement of an unbounded lower limit. The equality content(T1-1[r(n)]) = content(T [n])
still holds for those n. It is now easy to see that the sequences Sd(g, T1-1) and Sd(g, T ) of
the learner g on the texts T and T1-1, respectively, differ only by a composition with r,

Sd(g, T )(n) = g(content(T [n])) = g(content(T1-1[r(n)])) = Sd(g, T1-1)(r(n)).

Since δ allows for simulation on equivalent text, (Sd(g, T ), T ) ∈ δ. By the discussion above
the learning sequence also observes Bc, learner g identifies L from T .

Together with Theorem 8 we get the following equalities on the level of learnable classes.
In the case of SMon, the result was known before (Kötzing and Schirneck, 2016).

Corollary 19

(i) If δ ∈ {CautTar,SemWb,SemConv,SMon,WMon}, [TxtPsdδBc] = [TxtSdδBc].

(ii) [TxtPsdConsCautBc] = [TxtSdConsCautBc].

It remains open whether Caut also allows for consistent Bc-learning. For the opposite
statement it would suffice to show [TxtSdCautBc] ⊂ [TxtPsdCautBc].
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7. Conclusion and Future Work

This work lays the foundation for future analyses of semantic learning restrictions by pro-
viding versatile tools. We considered three different normal forms for learners and showed
for many learning criteria that some or all of the normal forms can be assumed. These
normal forms already supported proofs in this work and can be even more beneficial in
future work when analyzing the relations between different semantic learning criteria.

We did not give any results for when a full-information learner can be assumed to be
partially set-driven, which is a natural extension of our work. This would also complement
our theorems for when partial set-driven learning can be assumed set-driven.

For consistent learning, natural future steps would be to (a) give constructions to es-
tablish this normal form for other learning restrictions, such as cautious, decisive, and non-
U-shaped learning and (b) to give a more general, unifying proof, establishing the normal
form for a range of learning restrictions simultaneously.
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Appendix A. Language Learning in the Limit (Full Length)

In this section we formally define our setting of learning in the limit and the associated
learning criteria. We follow the system given by Kötzing (2009). For a background on
computability see the textbook of Rogers (1967). We use symbols ⊂ and ⊆ to distinguish
the proper subset and subset relation between sets. N = {0, 1, 2, . . . } denotes the set of
natural numbers and c, e, i, j, k, n, s, t ∈ N elements thereof. The set of all partial and total
functions N → N is denoted by P and R, respectively. The subset of all partial (total)
computable functions is denoted by P (R). If a partial function p ∈ P is defined at some
position n, we mark this fact with p(n)↓; otherwise, we write p(n)↑. We fix an effective
numbering {ϕe}e∈N of P and let We = dom(ϕe) denote the e-th recursively enumerable set.
This way, we interpret the natural number e as a hypothesis for the set We.

A learner is a partial computable function h ∈ P. A language is a recursively enumerable
set L ⊆ N of natural numbers. The symbol # shall be read as pause. Any total function
T : N → N ∪ {#} is called a text, the collection of all texts is Txt. For any text (or other
sequence) T , we let the content of T be the set content(T ) = range(T )\{#}. For any given
language L, a text for L is a text T such that content(T ) = L, the collection of all texts for
L is Txt(L). For any n, we use T [n] to denote the sequence (T (0), . . . , T (n−1)) of length
n (the empty sequence ε when n = 0). Such initial parts of texts is what learners usually
get as information. For some language L, let Seq(L) denote the set of finite sequences of
elements of L ∪ {#}. We abbreviate Seq(N) to Seq, variables σ, τ range over Seq. The
relation τ v σ means that τ is a prefix of σ. For some x ∈ N∪{#}, σ �x denotes the result
of appending x to σ.

An interaction operator is an operator β taking as arguments a function h ∈ P (the
learner) and a text T ∈ Txt, and outputs a (possibly partial) function p ∈ P. Intuitively,
β defines how a learner can interact with a given text to produce a sequence of hypotheses.
We define the interaction operators G (Gold-style or full-information learning, Gold, 1967),
Psd (partially set-driven learning, Schäfer-Richter, 1984), Sd (set-driven learning, Wexler
and Culicover, 1980), and It (iterative learning, Wexler and Culicover, 1980) as follows. For
all learners h, texts T , and indices i,

G(h, T )(i) = h(T [i]);

Psd(h, T )(i) = h(content(T [i]), i);

Sd(h, T )(i) = h(content(T [i]));

It(h, T )(i) =

{
h(ε), if i = 0;

h(It(h, T )(i−1), T (i−1)), otherwise.

In set-driven learning, the learner has access to the set of all previous data, but not to the full
sequence as in G-learning. In partially set-driven learning, the learner has the set of data
and the current iteration number. Psd-learning is sometimes also called rearrangement-
independent learning (Blum and Blum, 1975). In iterative learning, the learner can access
its last hypothesis as well as the most recent data point. Hereby, h(ε) denotes the initial
hypothesis of learner h. A learner h is said to be confluently iterative just in case it is both
set-driven and iterative. The associated interaction operator is denoted CflIt. In this work,
whenever we refer to all interaction operators we mean those we just defined.
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One can establish a hierarchy among the interaction operators by noticing that some can
be simulated by others (Case and Kötzing, 2016). For two interaction operators β, β′, we
say β-learners can be translated into β′-learners, written β 4 β′, if, for every learner h, there
is some learner h′ such that on arbitrary texts T the resulting sequence of hypotheses of h
working on T is the same as that of h′. That is, ∀T ∈ Txt : β(h, T ) = β′(h′, T ). For example,
an Sd-learner can be translated into an Psd-learner by simply ignoring the additional
information of the number of the current iteration. Clearly, all learners investigated in this
paper can be translated into G-learners.

Successful learning requires the learner to observe certain restrictions, for example con-
vergence to a correct index. A learning restriction is a predicate δ on a learning sequence
p ∈ P and a text T ∈ Txt. We give the important example of explanatory learning (Ex,
Gold, 1967) defined such that, for all pairs (p, T )

Ex(p, T )⇔ p ∈ R ∧ (∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T )).

There are several other learning restrictions under investigation in this work. We would like
to point out that we tacitly assume successful learning to be total, as we did for Ex.

Bc(p, T )⇔ ∃n0 ∀n ≥ n0 : Wp(n) = content(T );

Conv(p, T )⇔ ∀i, j : (i ≤ j ∧ content(T [j]) ⊆Wp(i))⇒ p(i) = p(j);

Caut(p, T )⇔ ∀i, j : Wp(i) ⊂Wp(j) ⇒ i ≤ j;
Dec(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k))⇒Wp(i) = Wp(j);

SDec(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k))⇒ p(i) = p(j);

Mon(p, T )⇔ ∀i, j : i ≤ j ⇒Wp(i) ∩ content(T ) ⊆Wp(j) ∩ content(T );

SMon(p, T )⇔ ∀i, j : i ≤ j ⇒Wp(i) ⊆Wp(j);

WMon(p, T )⇔ ∀i, j : (i ≤ j ∧ content(T [j]) ⊆Wp(i))⇒Wp(i) ⊆Wp(j).

NU(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T ))⇒Wp(i) = Wp(j);

SNU(p, T )⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T ))⇒ p(i) = p(j);

One could require that a conjecture which is consistent with the data must not be changed;
this is known as conservative learning (Conv, Angluin, 1980). In cautious learning (Caut,
Osherson et al., 1982) the learner is not allowed to ever give a conjecture for a strict
subset of a previously conjectured set. In non-U-shaped learning (NU, Baliga et al., 2008)
a learner may never semantically abandon a correct conjecture; in strongly non-U-shaped
learning (SNU, Case and Moelius, 2011) not even syntactic changes are allowed after giving
a correct conjecture. In decisive learning (Dec, Osherson et al., 1982), a learner may
never return to a semantically abandoned conjecture; in strongly decisive learning (SDec,
Kötzing, 2014) the learner may not even return to syntactically abandoned conjectures.
Finally, a number of monotonicity requirements are studied (Jantke, 1991; Wiehagen, 1991;
Lange and Zeugmann, 1993): in strongly monotone learning (SMon) the conjectured sets
may only grow; in monotone learning (Mon) only incorrect data may be removed; and in
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weakly monotone learning (WMon) the conjectured set may only grow while it is consistent.
Finally, we let T denote the absence of any restriction (even totality). We combine any two
learning restrictions δ and δ′ by intersecting them; we denote this by juxtaposition.

Now a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible learners
(typically P or R), β is an interaction operator, and α, δ are learning restrictions. We
write τ(α)CTxtβδ to denote this learning criterion, omitting C in case of C = P and the
restrictions if they equal T. Let h ∈ C be an admissible learner. We say that learner h
τ(α)CTxtβδ-learns a language L iff on arbitrary texts T ∈ Txt, α(β(h, T ), T ) holds, and
for all texts T ∈ Txt(L), δ(β(h, T ), T ) holds. The class of languages τ(α)CTxtβδ-learned
by h is denoted by τ(α)CTxtβδ(h). Finally, we write [τ(α)CTxtβδ] to denote the set of all
τ(α)CTxtβδ-learnable classes of languages.

Splitting a learning criteria into its particles enables one to study the influence of the
different factors independently of the others. The relations between different learners, inter-
action operators, and learning restrictions then translate back to the collections of learnable
classes. This is made formal in the next lemma by Case and Kötzing (2016).

Lemma 20 Let α ⊆ α′, δ ⊆ δ′ be learning restrictions, C ⊆ C′ classes of admissible learners
and β 4 β′ two interaction operators. Then, we have [τ(α)CTxtβδ] ⊆ [τ(α′)C′Txtβ′δ′].

Appendix B. Omitted Proofs

In this appendix we present section-wise the proofs omitted in the main part.

B.1. Proofs of Section 3

Proposition 1 If δ ∈ {Conv,SDec,SNU,Ex}, then δBc = δEx.

Proof The case δ = Ex is trivial, of the remaining restrictions we only prove δ = Conv.
The reasoning for SDec and SNU is very similar. The inclusion ConvEx ⊆ ConvBc is
obvious as Ex (as a predicate) implies Bc. Now suppose p ∈ P is an infinite sequence and
T ∈ Txt a text such that ConvBc(p, T ) holds. There is an index n0 such that all n ≥ n0
satisfy Wp(n) = content(T ). In particular, content(T [n + 1]) ⊆ Wp(n). Conservatism now
enforces that hypothesis p(n) = p(n+ 1) are equal, implying ConvEx(p, T ).

Theorem 2 For any interaction operator β and semantic restriction δ holds

[RTxtβδ] = [Txtβδ].

Proof We use symbol c to denote (the code number of) the input to some learner h ∈ P.
For example, if β = G, c stands for the initial sequence σ v T of some text T ; if β = It, c
encodes the ordered pair of the last hypothesis and the new data point.

The S-m-n Theorem (see Rogers, 1967) implies the existence of a total recursive function
h′ ∈ R such that on any c

Wh′(c) =

{
∅, if h(c)↑;
Wh(c), otherwise.
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Whenever h is defined, the output of h′ describes the same set. Since the learning restric-
tion δ is semantic, learner h′ identifies all languages in Txtβδ(h). The converse inclusion
[RTxtβδ] ⊆ [Txtβδ] follows from Lemma 20.

Theorem 3 G ∼=sem It, Sd ∼=sem CflIt.

Proof Basic computability theory tells us that there is a total recursive padding-function
pad ∈ R strongly monotonically increasing with Wpad(e,σ) = We for any hypothesis e and
finite sequence σ (compare Rogers, 1967). By the strong monotonicity of pad its inverse
unpad2 : pad(e, σ) 7→ σ is also computable. We abbreviate unpad2(c) as σc.

For the first part we show It 4sem G and G 4sem It. The possibility to translate
It-learners into G-learners syntactically, It 4 G, implies It 4sem G. To establish the
converse, let a G-learner h be given and consider the following It-learner h′,

h′(ε) = pad(h(ε), ε);

h′(c, x) = pad(h(σc � x), σc � x).

Learner h′ working on some text T imitates h in the following way. It pads the initial
sequence σ v T seen so far into its hypothesis together with the original guess h(σ). In
the next step it regains this information by unpadding its own prior hypothesis c. It then
appends the new data point x, simulates h on the new sequence σ � x, and finally pads the
result again for the next iteration. While this alters h’s guesses syntactically, it preserves
them semantically, we have WIt(h′,T )(n) = WG(h,T )(n) for all n.

The argument showing the semantic equivalence of Sd and CflIt is very similar. By defi-
nition CflIt 4 Sd, thus CflIt 4sem Sd. Starting from an Sd-learner h, it is straightforward
to construct a semantically equivalent It-learner,

h′(ε) = pad(h(∅), ε);
h′(c, x) = pad(h(content(σc � x)), σc � x).

Observe that h′ satisfies the additional requirement that on any two sequences that have
the same content the resulting hypothesis is the same. Hence, h′ is in fact a CflIt-learner.

B.2. Proofs of Section 4

Theorem 4 Every Sd-learner is strongly Bc-locking.

Proof Let h be an Sd-learner and L ∈ TxtSdBc(h) a language it identifies. There is
a Bc-locking set for h on L, say D0. Let T ∈ Txt(L) be a text for L and n0 such that
content(T [n0]) ⊇ D0. Then, content(T [n0]) is a Bc-locking set for h on L.

Theorem 6 A class of languages is TxtGBc-learnable by a strongly Bc-locking learner if
and only if it is TxtPsdBc-learnable.
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Proof If a concept class is TxtPsdBc-learnable, it is so learnable by some strongly
Bc-locking learner by Theorem 5. The learner can be translated into an equivalent G-learner
(compare Section 2). This translation completely preserves the learning behavior, in par-
ticular the property of being strongly locking.

For the opposite implication, assume the G-learner h is strongly Bc-locking and iden-
tifies a class L ⊆ TxtGBc(h). For any finite set D and number t ≥ |D|, σtD shall denote
the canonical sequence which lists the members of D in ascending order and is then padded
with pause symbols to length t (if needed). We define a Psd-learner g on such D and t by

g(D, t) = h(σtD).

Let L ∈ L be a language. We denote by TL the canonical text listing L in ascending
order (possibly padded with # if L is finite). Since h is strongly locking, there is an index
n0 such that the initial part TL[n0] is a Bc-locking sequence for h on L. Let T ∈ Txt(L) be
any text for L and n1 ≥ n0 large enough such that content(TL[n0]) ⊆ content(T [n1]). Then,
the canonical sequence σn1

content(T [n1])
w TL[n0] is an extension of the Bc-locking sequence.

This shows Wg(content(T [n]),n) = L for n ≥ n1.

Theorem 7 Let β be an interaction operator and δ ⊆ NU a restriction. Every class
of languages that can be TxtβδBc-learned is in fact so learned by a strongly Bc-locking
learner.

Proof Let h be a β-learner and L ⊆ TxtβδBc(h) a class of languages it identifies. To ease
notation, we use h(σ) to denote the hypothesis the h outputs after seeing sequence σ. This
shall not indicate that h, in its computation, can rely on the order or even the length of σ.

Let L ∈ L be a language and T ∈ Txt(L) a text for L. As h learns L from T , there is
an n0 such that Wh(T [n0]) = L. For any finite extension T [n0] � τ with τ ∈ Seq(L), there
is a text T ′ ∈ Txt(L) such that the extension T [n0] � τ @ T ′ is an initial part. Learner h
observes restriction δ on T ′ and thus also NU. As h(T [n0]) is already a conjecture for the
content of T ′, namely for L, h never abandons this guess (semantically) on T ′, implying
Wh(T [n0]�τ) = L. So, T [n0] is a Bc-locking sequence and h is strongly Bc-locking by the
arbitrary choice of T .

B.3. Proofs of Section 5

Lemma 9 The restrictions T, Mon, and SMon allow for consistent Bc-learning.

Proof Let h ∈ R be some total learner (compare Theorem 2). By the S-m-n Theorem
there is a total recursive function g such that

Wg(σ) = content(σ) ∪Wh(σ).

By construction learner g is consistent on arbitrary texts. It is also not hard to see that
this transformation preserves Bc. Let T be a text and n0 an index such that for all n ≥ n0,
Wh(T [n]) = content(T ), then Wg(T [n]) = content(T [n]) ∪Wh(T [n]) = content(T ).
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It is left to prove that the transformation preserves T, SMon, Mon, and CautTar,
respectively. The case δ = T is trivial. For SMon, note that for all i ≤ j

Wh(T [i]) ⊆Wh(T [j]) ⇒ content(T [i]) ∪Wh(T [i]) ⊆ content(T [j]) ∪Wh(T [j]),

so g observes SMon whenever h does. In the same spirit, we have

content(T ) ∩Wh(T [i]) ⊆ content(T ) ∩Wh(T [j]) ⇒
content(T ) ∩ (content(T [i]) ∪Wh(T [i])) ⊆ content(T ) ∩ (content(T [j]) ∪Wh(T [j])).

The preservation of Mon follows from that.

Lemma 10 The restrictions WMon and CautTar allow for consistent Bc-learning.

Proof Given h there is a total recursive function g such that

Wg(σ) = content(σ) ∪
⋃
s∈N

{
∅, if content(σ) *W s

h(σ);

W s
h(σ) otherwise.

Learner g is consistent and if Wh(σ) = content(T ), then Wg(σ) = Wh(σ), preserving Bc.
Let T be a text on which the original learner h observes WMon and indices i ≤ j such

that content(T [j]) ⊆ Wg(T [i]). We claim that Wg(T [i]) ⊆ Wg(T [j]). If the conjecture of h at
position i has not been consistent, content(T [i]) *Wh(T [i]), we get Wg(T [i]) = content(T [i]).
By assumption Wg(T [i]) also contains the content of the longer sequence T [j], hence, the
extension has not shown new data. The consistency of g implies

Wg(T [i]) = content(T [i]) = content(T [j]) ⊆Wg(T [j]).

If the original guess h(T [i]) has been consistent, we have content(T [j]) ⊆Wg(T [i]) = Wh(T [i]).
As h is weakly monotonic on T , it only grows its conjectured sets between i and j and the
later guess h(T [j]) must also be consistent,

Wg(T [i]) = Wh(T [i]) ⊆Wh(T [j]) = Wg(T [j]).

It is easy to see that the transformation also preserves CautTar. In neither of the cases,
Wg(σ) = content(σ) or Wg(σ) = Wh(σ), the conjecture of g can be proper supersets of the
text’s content as long as the original learner h is target cautious.

Lemma 11 Cons ∩ SemWb = Cons ∩ SemConv.

Proof SemWb implies SemConv without any additional assumptions. Conversely, let
a function p ∈ P and text T ∈ Txt be such that (p, T ) ∈ Cons ∩ SemConv. If there are
positions i ≤ j such that there is a semantic mind change Wp(i) 6= Wp(j), SemConv implies
that hypothesis p(i) must have been inconsistent with the observation at position j,

content(T [j]) *Wp(i).
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Due to Cons, content(T [k]) = content(T [k]) ∩Wp(k) for any position k. So, if k ≥ j,

∅ 6= content(T [j])\Wp(i) ⊆ (content(T [k]) ∩Wp(k))\Wp(i)

and p observes SemWb with respect to text T .

Theorem 13 Cons ∩WMon ⊆ Caut ∩Dec.

Proof First, we prove Cons ∩ WMon ⊆ Caut. In order to reach a contradiction,
assume there is an infinite sequence p and a text T such that (p, T ) ∈ Cons∩WMon, but
Caut(p, T ) does not hold. There must be indices i ≤ j such that

Wp(i) ⊃Wp(j).

Sequence p is consistent on T , thus, content(T [j]) ⊆ Wp(j) ⊆ Wp(i). The earlier conjecture
p(i) is consistent with the later observation content(T [j]), WMon yields the contradiction

Wp(i) ⊆Wp(j).

For the other inclusion, assume Dec(p, T ) does not hold. There are i ≤ j ≤ k such that

Wp(i) = Wp(k) ∧Wp(i) 6= Wp(j).

Consistency gives content(T [j]) ⊆Wp(k) = Wp(i), using the weak monotonicity of h (twice)
we arrive at Wp(i) ⊂Wp(j) ⊂Wp(k), a contradiction.

B.4. Proofs of Section 6

Theorem 15 [TxtPsdConsMonSDecEx]\[TxtSdBc] 6= ∅.

Proof There is a total recursive function ind ∈ R such that for all finite sets D ⊂ N,
Wind(D) = D holds (see Rogers, 1967). We define a Psd-learner h on any such D and
numbers t ≥ |D| as

h(D, t) =

{
ind(∅), if D = ∅;
ϕmax(D)(t), otherwise.

Consider the class of languages L = TxtPsdConsMonSDecEx(h) that h identifies. We
claim that L cannot be learned set-drivenly. Assume by way of contradiction there is an
Sd-learner h′ for L. Let the predicate Q, defined on pairs (D, t), be such that

Q(D, t)⇔ D ⊂W t
h′(D).

As h′ is recursive, so is Q. The Operator Recursion Theorem (Case, 1974) yields a program
e and a total recursive function f ∈ R strictly monotone increasing such that

We = range(f)

ϕf(n)(t) =

{
ind(content(f [n])), if Q(content(f [n]), t);

e, otherwise.
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Case 1 Q(content(f [n]), t) does not hold for any n or t.

Then, We ∈ L because function ϕf(n) is constant and for any n ∈ N, T ∈ Txt(We),

h(content(T [n]), n) = ϕmax(content(T [n]))(n) = e.

Learner h′ must hence identify We from text f . There is a natural number n0 such that
Wh′(content(f [n])) = We for all n ≥ n0. This gives

content(f [n]) ⊆W t
h′(content(f [n]))

for all t sufficiently large. As Q(content(f [n]), t) does not hold, we have content(f [n]) = We,
which contradicts that We is infinite.

Case 2 There are n and t such that Q(content(f [n]), t) holds.

Let (n0, t0) be the lexicographically minimal pair with Q(content(f [n0]), t0). In the
following we abbreviate content(f [n0]) as L0. The predicate Q witnesses that

L0 6= Wh′(L0)

So, learner h′ cannot identify L0. Contrariwise, on any text T ∈ Txt(L0) the Psd-learner
h changes its mind exactly twice. From ind(∅) to e once T shows its first non-pause symbol
and subsequently to ind(L0) as soon as the pair (max(content(T [n]), n) is (lexicographically)
larger than (f(n0−1), t0). This learning sequence observes the restrictions Cons, Mon,
SDec, and Ex. We conclude that L0 is in L, a contradiction.
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