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The Compact Genetic Algorithm is Efficient
Under Extreme Gaussian Noise

Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton

Abstract—Practical optimization problems frequently include
uncertainty about the quality measure, for example, due to noisy
evaluations. Thus, they do not allow for a straightforward appli-
cation of traditional optimization techniques. In these settings,
randomized search heuristics such as evolutionary algorithms
are a popular choice because they are often assumed to exhibit
some kind of resistance to noise. Empirical evidence suggests
that some algorithms, such as estimation of distribution algo-
rithms (EDAs) are robust against a scaling of the noise intensity,
even without resorting to explicit noise-handling techniques such
as resampling. In this paper, we want to support such claims
with mathematical rigor. We introduce the concept of graceful
scaling in which the run time of an algorithm scales polynomi-
ally with noise intensity. We study a monotone fitness function
over binary strings with additive noise taken from a Gaussian
distribution. We show that myopic heuristics cannot efficiently
optimize the function under arbitrarily intense noise without any
explicit noise-handling. Furthermore, we prove that using a pop-
ulation does not help. Finally, we show that a simple EDA called
the compact genetic algorithm can overcome the shortsighted-
ness of mutation-only heuristics to scale gracefully with noise.
We conjecture that recombinative genetic algorithms also have
this property.

Index Terms—Evolutionary algorithms, noisy optimization,
run time analysis.

I. INTRODUCTION

EVOLUTIONARY algorithms are widely used for solving
real-world optimization problems in uncertain environ-

ments. In many practical situations, the evaluation of the
objective function is not deterministic, but has a large stochas-
tic component. In these scenarios, evolutionary algorithms
must somehow filter the fitness signal from the noise. If the
noise intensity is relatively small, this poses little to no prob-
lems to selection. However, as the noise intensity grows, the
signal becomes more obscured, and the picture is no longer
as clear.

In this paper, we want to address the dependence of opti-
mization time on noise intensity (measured as the variance).
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Specifically, we want to ask whether there is some kind
of threshold point in the noise intensity at which the noise
becomes too high for efficient optimization, or is it possible
for algorithms to be somehow robust to scaling of the noise
level?

In the first survey article regarding evolutionary algorithms
in noisy environments, Beyer [3] pointed out that the case of
extreme noise can be easily treated: there is no useful selection
information and so an EA will essentially perform a random
walk. We prove that this is indeed the case, at least when
an algorithm is myopic in the sense that it only makes local
changes. However, we also contend that some algorithms, such
as estimation of distribution algorithms (EDAs), can leverage
the underlying fitness signal in such a way that their behav-
ior never defaults to the diffusion-like behavior observed for
myopic algorithms.

To formally characterize how search heuristics can exhibit
robustness to noise intensity, we introduce the concept of
graceful scaling (Definition 1); intuitively, a search heuristic
scales gracefully with noise if (polynomially) more noise can
be compensated by (polynomially) more resources.

We will consider centered Gaussian noise with variance σ 2

and use OneMax as the underlying fitness function. Already
such a seemingly simple setting poses difficulties to the anal-
ysis of evolutionary algorithms, as these algorithms are not
developed with the analysis in mind. We first prove that there
is indeed a noise intensity threshold for myopic algorithms.
For simple hillclimbers like randomized local search (RLS)
and the (1+1) EA, the threshold is already as low as a constant
(Theorem 3). However, we also show that a population cannot
help, and the (μ+1) EA using any polynomial population size
of at least ω(1) and a noise intensity of σ 2 = ω(n2) is prov-
ably inefficient (Theorem 4). This implies that the algorithm
cannot scale gracefully for Gaussian noise (Corollary 1).

On the other hand, we also investigate a simple EDA known
as the compact genetic algorithm (cGA). The working princi-
ples of the cGA are in stark contrast to the (μ+1) EA. Rather
than relying on local, myopic mutation operations, the cGA
maintains an underlying product distribution that reflect an
estimate of the ideal allele frequencies a true population would
have. In each iteration, it compares two individuals drawn from
this product distribution and updates the frequencies based on
tournament selection. The only parameter used by the cGA is
an update step-size 1/K that governs how much the marginal
probabilities change in each iteration.

This approach allows the cGA to smooth the noise suf-
ficiently without having to resort to explicit noise-handling
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strategies. We prove that as long as K is sufficiently
large, that is K = ω(σ 2√n log n), then the cGA scales
gracefully with Gaussian noise. Specifically, we prove that
after O(Kσ 2√n log Kn) many iterations, the cGA will with
high probability (w.h.p.) have converged the all-1-string, as
desired (Theorem 5) In other words, there is no threshold point
in noise intensity at which the algorithm begins to perform
poorly.

The proof of Theorem 5 gives insight into how the cGA can
filter the signal out of the noise efficiently. Even under intense
noise (i.e., a large variance), as long as the allele frequency
update 1/K is small enough, selection errors due to misclas-
sification by the noisy function are not penalized greatly, and
the overall effect of selection biases the stochastic process
described by the allele frequencies toward the optimal config-
uration. This can be contrasted with mutation-only approaches
for which such selection errors become fatal in the sense that
progress in the correct direction is no longer visible to the
algorithm.

We conjecture that evolutionary algorithms that explicitly
use recombination can also leverage similar mechanisms to
exhibit graceful scaling, however, we do not prove this in
the current paper. A step in that direction was recently made
by Prügel-Bennett et al. [30] who proved that a generational
evolutionary algorithm using uniform crossover needs only
O(n log2 n) function evaluations to optimize OneMax with
additive noise of variance σ 2 = n.

The remainder of this paper is organized as follows. In
Section I-A, we give some background to situate this paper
in the broader framework of evolutionary computation in the
presence of noise. In Sections II and III, we introduce the algo-
rithms we consider and formalize our settings. In Section IV,
we present our main theoretical results. We then also present
some numerical experiments in Section V that compare our
studied algorithms with a resampling approach: a popular
noise-handling technique that attenuates the noise level by
averaging over repeated samples of the objective function
value. We conclude this paper in Section VI.

This paper extends a preliminary version published at
ISAAC 2015 [17] in two ways. First, we provide detailed
proofs, which were omitted from the extended abstract.
Second, we complement our theoretical work with experiments
that compare different noise handling techniques.

A. Background

The study of evolutionary algorithms in the pres-
ence of noise has already been underway for decades.
Fitzpatrick and Grefenstette [16] considered genetic algo-
rithms optimizing a function f : {0, 1}n → R. However, for
any string x, instead of direct access to a fitness value f (x),
the GA is only able to perform a fixed number of samples of
a random variable with mean f (x). They explored the tradeoff
between the population size and this fixed number of sam-
ples. They argued that the implicit parallelism of a GA is
a sufficient mechanism for handling noise and that in some
cases, the amount of explicit sampling can be reduced by
increasing the population size. However, it remains an open

question exactly how this tradeoff between explicit resampling
and implicit sampling with a population works.

Beyer [3] presented a survey on evolutionary algorithms in
the presence of noise, focusing on continuous optimization.
Among other things, he identifies three measures to improve
the performance of EAs on noisy functions: 1) resampling;
2) population sizing; and 3) inheriting rescaled mutations.

A first categorization of different types of noise in opti-
mization was given by Beyer et al. [6] and further developed
in [4]. The authors delineate several types of noise: 1) noise
from the environment; 2) actuator imprecision (noise in the
decision variables); 3) imprecision of the evaluation of system
output; and 4) uncertainties regarding feasibility constraints.
In this paper, we focus on uncertainty of type 3) in which
the measurement of the objective function is perturbed by
some additive stochastic noise term. This noise model has
also been called additive posterior noise in [18] and has been
studied in the context of combinatorial optimization in sev-
eral recent papers [10], [15], [19], [33]. In a recent survey of
Jin and Branke [23], the additive noise model is simply called
noisy fitness. In this survey, the authors compare the noisy fit-
ness model to the problem of finding robust solutions, that is,
solutions that perform best after the design variables somehow
change after optimization. They also consider time-varying fit-
ness functions, which are deterministic at any point in time,
but change as a function of time.

In the context of discrete optimization,
Gutjahr and Pflug [19] extended the classical conver-
gence result for simulated annealing to objective functions
perturbed by an additive zero-mean noise term. They show
that if the variance of the noise is reduced quickly enough
(e.g., by resampling) then the algorithm converges for suitable
cooling schedules.

The rigorous analysis of the runtime of evolutionary algo-
rithms on noisy functions on discrete domains was initiated
in 2004 by Droste [13]. In that paper, a noisy variant of the
OneMax test function was analyzed for the simplest EA, the
(1+ 1) EA. In essence, it was shown that the (1+ 1) EA can
deal with small noise levels, but not medium noise levels.

A common technique for coping with noise is resam-
pling. In this strategy, a noisy objective function is measured
multiple times at a given point and the average value is
computed. This has the effect of explicitly reducing the vari-
ance of the noise. However, resampling comes at the extra
cost of potentially many more function evaluations, and the
study of the tradeoff between noise reduction and compu-
tational effort of resampling has been investigated for many
applications [2], [5], [7], [8]

Recently, Akimoto et al. [1] explicitly studied the effect
of resampling on various noise models to derive the extra
cost incurred by performing enough resampling to ensure the
underlying optimization algorithm sees a noiseless function.
For Gaussian noise, they show the existence of a resampling
scheme such that any optimization algorithm that requires r(δ)
function evaluations to optimize a noise-free function f with
probability 1 − δ requires max{1, 32σ 2(ln(2) − ln(1 − (1 −
δ)1/r(δ)))} evaluations to optimize f + N (0, σ 2) with proba-
bility (1 − δ)2 under their resampling scheme. Note that this
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Algorithm 1: RLS Optimizing f

1 Choose x ∈ {0, 1}n u.a.r.;
2 while termination criterion not met do
3 Create y by flipping exactly one bit in x u.a.r.;
4 if f (y) ≥ f (x) then x← y

can be upper-bounded by 32σ 2(ln(2)+1) < 20eσ 2, assuming
limδ→0(1− δ)1/r(δ) = 0.

In the next part of this paper, we want to analyze the run
time of algorithms without any explicit noise handling tech-
niques. However, we will revisit the question of resampling in
the experiments in Section V.

II. ALGORITHMS

We consider optimization of pseudo-Boolean fitness func-
tions, that is, of functions f : {0, 1}n → R (where n is the
fixed problem dimension). Thus, our search space is {0, 1}n,
and the individuals of population-based algorithms will be
taken from that set. For any x ∈ {0, 1}n, let |x|0 denote the
number of 0s of x, and let |x|1 denote the number of 1s of
x. We will consider randomized fitness functions as a model
of noise. Thus, two applications of a fitness function f can
lead to different results. In all algorithms, each search point
is evaluated for its fitness value in each iteration anew, after
each iteration the fitness evaluation is discarded, even if the
search point is not.

A. Simple Hillclimbers

The simplest randomized search heuristics maintain a single
current solution and iteratively apply some search operator to
generate a neighboring point. If the neighboring point is at
least as fit as the current point, it is accepted as the new cur-
rent solution. In RLS (Algorithm 1) a neighboring point is
produced by flipping exactly one bit chosen uniformly at ran-
dom. This is a local mutation operation, meaning that only
Hamming neighbors of a solution x are created. A type of
global mutation is obtained by flipping each bit independently
with probability 1/n. In this way, any bitstring is created with
nonzero probability, however, the probability decays expo-
nentially with Hamming distance from x. Implementing a
hillclimber with such a global mutation operation results in
the (1+ 1) EA (see Algorithm 2 with μ = 1).

B. Population-Based Mutation-Only EA

The (μ + 1) EA, defined in Algorithm 2, is a simple
mutation-only evolutionary algorithm that maintains a popula-
tion of μ solutions and uses elitist survival selection. It derives
its name from maintaining a population of μ individuals (ran-
domly initialized) and generating one new individual each
iteration by mutating a parent chosen uniformly at random
from the current population. Then it evaluates the fitness of all
individuals and chooses one with minimal value to be removed
from the population, so that again μ individuals proceed to the
next generation.

Algorithm 2: (μ+ 1) EA Optimizing f

1 t← 0;
2 Pt ← μ elements of {0, 1}n u.a.r.;
3 while termination criterion not met do
4 Select x ∈ Pt u.a.r.;
5 Create y by flipping each bit of x independently with

probability 1/n;
6 Let z ∈ Pt ∪ {y} chosen s.t. ∀v ∈ Pt ∪ {y} : f (z) ≤ f (v);
7 Pt+1 ← Pt ∪ {y} \ {z};
8 t← t + 1;

Algorithm 3: cGA Optimizing f

1 t← 0;
2 p1,t ← p2,t ← · · · ← pn,t ← 1/2;
3 while termination criterion not met do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability pi,t, xi ← 0 with

probability 1− pi,t;

6 for i ∈ {1, . . . , n} do
7 yi ← 1 with probability pi,t, yi ← 0 with

probability 1− pi,t;

8 if f (x) < f (y) then swap x and y for i ∈ {1, . . . , n} do
9 if xi > yi then pi,t+1 ← pi,t + 1/K if xi < yi then

pi,t+1 ← pi,t − 1/K if xi = yi then pi,t+1 ← pi,t

10 t← t + 1;

C. Estimation of Distribution Algorithms

EDAs build and sample explicit probability distributions
to optimize functions. This is contrasted with traditional
evolutionary algorithms that often sample implicitly from
a probability distribution by way of different evolutionary
operators.

One of the simplest EDAs is the cGA [21]. The cGA derives
its name from the fact that it maintains a population of size
K implicitly in memory. Rather than storing each individ-
ual separately, the cGA only keeps track of population allele
frequencies and updates these frequencies during evolution.
That is, instead of a population P ⊆ {0, 1}n with K individuals,
the cGA stores a vector p = (p1, . . . , pn), where

pi = 1

K

∑

x∈P

xi.

Thus, pi represents the frequency of 1s in position i, and at
any point in time the internal state of the cGA is completely
characterized by this frequency vector p. Offspring are then
generated according to these allele frequencies.

The first rigorous analysis of the cGA is due to Droste [14],
who gave a general run time lower bound for all pseudo-
Boolean functions, and a general upper bound for all lin-
ear pseudo-Boolean functions. Defined in Algorithm 3, the
cGA maintains for all times t ∈ N0 a frequency vector
(p1,t, p2,t, . . . , pn,t) ∈ [0, 1]n. In the tth iteration, two strings x
and y are sampled independently from this distribution, where



480 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 3, JUNE 2017

Algorithm 4: Noise-Oblivious Scheme for A

1 i← 0;
2 repeat until solution found
3 Run A(2i) for Tδ(2i) steps and stop it afterward;
4 i← i+ 1;

Pr(x = z) = Pr(y = z) = (
∏

i:zi=1 pi,t)× (
∏

i:zi=0(1− pi,t)) for
all z ∈ {0, 1}n. The cGA then compares the objective values of
x and y, and updates the distribution by advancing pi,t toward
the component of the winning string by an additive term of
1/K. This allele frequency update is inspired by the dynam-
ics of a concrete population of size K undergoing steady-state
binary tournament selection: in that case the proportion of
each winning allele also increases by exactly 1/K [21]. We
will assume without further mention that there is an integer k
such that k/K = 1/2; this implies that, at all times t and for
all i ≤ n

pi,t ∈
{

0,
1

K
, . . . ,

1

2
− 1

K
,

1

2
,

1

2
+ 1

K
, . . . , 1− 1

K
, 1

}
.

D. Noisy Fitness

Let F be a family of pseudo-Boolean functions (Fn)n∈N,
where each Fn is a set of (unnoisy) functions f : {0, 1}n → R.
Let D be a family of distributions (Dθ )θ∈R such that for all
Dθ ∈ D, E(Dθ ) = 0. We define F with additive D-noise as the
set F[D] := { fn + Dθ : fn ∈ Fn, Dθ ∈ D}.

Definition 1: An algorithm A scales gracefully with noise
on F[D] if there is a polynomial q such that, for all gn,θ =
fn + Dθ ∈ F[D], there exists a parameter setting p such
that A(p) finds the optimum of fn using at most q(n, θ) calls
to gn,θ .

Algorithms that operate in the presence of noise often
depend on a priori knowledge of the noise intensity (mea-
sured by the variance). In such cases, the following scheme
can always be used to transform such algorithms into one that
has no knowledge of the noise intensity. Given an algorithm
A(σ 2), let Tδ(σ

2) denote the number of steps it takes A to solve
a noisy function with variance at most σ 2 with probability at
least 1− δ. A noise-oblivious scheme for A is in Algorithm 4.
This algorithm embodies a simple restart strategy.

If an algorithm A scales gracefully with noise, then the
noise oblivious scheme for A scales gracefully with noise. The
following proposition holds by a simple inductive argument.

Proposition 1: Suppose fn,v ∈ F[D] is a noisy function with
unknown variance v. Fix n and assume that, for all c > 0
and all x, cTδ(x) ≤ Tδ(cx). Then for any s ∈ N+, the noise-
oblivious scheme optimizes fn,v in at most Tδ(2sv) steps with
probability at least 1− δs.

Proof: By the assumptions on Tδ , for all c, x, cTδ(x) ≤
Tδ(cx) and so by induction, for any k ∈ N,

∑k
i=0 Tδ(2i) ≤

Tδ(2k+1). Let phase i be the ith time in the for loop of
Algorithm 4. We pessimistically suppose that the noise-
oblivious scheme has not found a solution by phase
log2 (v) − 1. Then for the next s phases, the proposed vari-
ance is at least 2log2 v = v and the probability that one of these

phases is successful is at least 1−δs. The total number of steps
is at most

∑log2(v)+s−1
i=0 Tδ(2i) ≤ Tδ(2sv).

Intuitively, the restriction on T holds whenever T grows at
least linearly, which is a reasonable assumption for a run time.

III. MATHEMATICAL PRELIMINARIES

In the remainder of this paper, we will study a particular
function class (OneMax) and a particular noise distribution
(Gaussian, parametrized by the variance).

Let |x|1 := |{i : xi = 1}|. The classical OneMax function
is defined as OM(x) = |x|1, which measures the Hamming
distance of its argument to 0n and is to be maximized. We men-
tion here that our results also hold in the setting of an arbitrary
OneMax-target (i.e., the Hamming distance to some predefined
string z ∈ {0, 1}n) but adopt the classical definition for clar-
ity of presentation. Let σ 2 ≥ 0. We define the noisy OneMax
function OM[σ 2] : {0, 1}n → R := x �→ |x|1 + Z, where Z is a
normally distributed random variable Z ∼ N (0, σ 2) with zero
mean and variance σ 2.

The following proposition gives tail bounds for Z by using
estimates of the complementary error function. This will be
useful in our proofs for bounding the probability that the
OM[σ 2] correctly ranks two arbitrary search points.

Proposition 2: Let Z be a zero-mean Gaussian random
variable with variance σ 2. For all t > 0 we have

1

4

√
2e

π
exp

(−t2

σ 2

)
≤ Pr(Z < −t) ≤ 1

2
exp

(−t2

2σ 2

)

and, for x := (t/σ
√

2)

exp
(−x2

)
√

π
(

x+√x2 + 2
) < Pr(Z < −t) ≤ exp

(−x2
)

√

π

(
x+

√
x2 + 4

π

) .

Proof: For a Gaussian distribution, the tail bound of Z is
given by Pr(Z < −t) = (1/2) erfc((t/σ

√
2)). Chang et al. [9]

bounded erfc(x) by a function f (x) = α exp(−βx2) for the
correct choice of constants α and β. For the upper bound
we use α = β = 1 and the lower bound β = 2 and α =
(
√

2e/π) · √β − 1/β.
For the second bounds, we use the ones given in [32]

2 exp
(−x2

)
√

π
(

x+√x2 + 2
) < erfc(x) ≤ 2 exp

(−x2
)

√

π

(
x+

√
x2 + 4

π

) .

To prove our main result, we will need the following two
drift theorems. A drift describes a bias in a randomly moving
process. The negative drift theorem gives an upper bound on
the probability that a random walk that moves, in expectation,
away from the target will nevertheless reach it in at most s
steps.

Theorem 1 (Negative Drift [25]): Let {Xt : t ∈ N0} be a
sequence of random variables over R with finite expectation.
Let X0 ≤ 0, n > 0, and let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt ≥ n.
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Suppose there are c, 0 < c < n and ε < 0 such that,
for all t:

1) E(Xt+1 − Xt|T > t, Xt) ≤ ε;
2) |Xt − Xt+1| < c.

Then, for all s ≥ 0

Pr(T ≤ s) ≤ s exp

(
− n|ε|

16c2

)
.

The multiplicative drift theorem yields an upper bound if a
random walk drifts toward the goal with a speed relative to
the position of the process. The tail bounds gives an upper
bound on how likely it is that this process has not reached its
goal within the denoted time.

Theorem 2 (Tail Bounds for Multiplicative Drift [12],
[26]): Let {Xt : t ∈ N0} be a sequence of random vari-
ables over a set S ⊆ {0} ∪ [xmin, xmax] where xmin > 0. Let T
be the random variable that denotes the earliest point in time
t ≥ 0 such that Xt = 0. If there exists 0 < δ < 1 such that
E(Xt − Xt+1|T > t, Xt) ≥ δXt, then

Pr

(
T >

λ+ ln(X0/xmin)

δ

∣∣∣∣ X0

)
≤ e−λ for all λ > 0.

The following lemma is due to von Bahr and Esseen [34]
and states an exact equality for the first absolute moment of
a random variable Z in terms of its characteristic function
ϕZ(t) = E(eitZ).

Lemma 1 (Special Case of Lemma 2 of [34]): Let Z be a
random variable with E(|Z|) <∞. Then

E(|Z|) = 1

π

∫ ∞

−∞
1−R

(
ϕZ(t)

)

t2
dt

where R(z) is the real part of z ∈ C.
We say that a sequence of events (En)n∈N occurs w.h.p. if

the complementary event En occurs with a probability of at
most O(1/ poly(n)) for a polynomial poly(n).

IV. FORMAL ANALYSES

We derive rigorous bounds on the optimization time, defined
as the first hitting time of the process to the true optimal
solution (1n) of OM[σ 2], on mutation-only approaches and
the cGA.

A. Simple Hillclimber

As a warm-up, we begin by showing that the hillclimber
introduced in Section II (Algorithm 1) is sensitive to very low
noise intensities. This result is not surprising, but serves as a
gentle introduction to some of the techniques we will use later
in this paper.

Theorem 3: Consider the optimization of OM[σ 2] by RLS.
For any constant σ 2 ≥ 2, the true optimum will not be
evaluated after polynomially many iterations w.h.p.

To prove Theorem 3 we will consider the sequence of val-
ues that correspond to the true fitness value of the current
solution. In particular, this sequence is a stochastic process
over the natural numbers {0, 1, . . . , n}. We will prove that for
any constant noise intensity, the drift of this process is biased
away from the optimum. Using the negative drift theorem, we
can lower bound the time until the true optimum is hit.

Proof of Theorem 3: Let {Xt : t ∈ N0} be the sequence
of random variables corresponding to the true OneMax value
of the current solution x. This corresponds to the number of
ones in the current solution in iteration t.

Let T = inf{t ≥ 0 : Xt = n} be the first iteration that
RLS generates the true optimum. We begin by showing that,
w.h.p., X0 is far from the optimum. In particular, in line 1
of Algorithm 1, each bit of x is zero (one) with probability
1/2. Thus, E(X0) = n/2 and by Chernoff bounds [11], with
probability 1−e−�(n), X0 ≤ 7n/8. Thus, Xt must be increased
by at least n/8 before reaching the true optimum. However,
we will show that even a constant noise intensity is enough to
cause random-walk like behavior so that it is very unlikely that
the process gets near the optimum after a polynomial number
of steps.

We consider the drift of {Xt : t ∈ N0}, and we condition
the process on Xt ≥ 7n/8. This has the effect of not counting
any steps in the sequence that are too far away from the true
optimum. Such an assumption can only underestimate the true
value for T .

Let E be the event that the noisy function misclassifies x
and y during the selection step in line 4 of Algorithm 1. In
other words, E is the event that |x|1 > |y|1 but OM[σ 2](x) <

OM[σ 2](y) and vice versa.
In iteration t+1, the change in Xt is in the right direction if a

zero bit is flipped to create y and the noisy function correctly
ranks x and y in line 4 of Algorithm 1. The probability of
this is (1− Pr(E))|x|0/n. On the other hand, the change in Xt

is in the wrong direction if a one bit is flipped to create y,
but the noisy function incorrectly ranks y as being superior.
The probability of this is Pr(E)|x|1/n. Putting these two cases
together, the drift can be calculated as

E(Xt+1 − Xt|Xt) = |x|0
n

(1− Pr(E))− |x|1
n

Pr(E)

= n− Xt

n
− Pr(E)

≤ n− Xt

n
− 1

4

√
2e

π
exp
(
−1/σ 2

)

where we have used Proposition 2. Using the fact that ez ≥
1+z and that we condition on Xt ≥ 7n/8, the drift in the right
direction is at most

1

8
− 1

4

√
2e

π

(
1− 1

σ 2

)
≤ −0.0394.

Here, we have used the fact that σ 2 ≥ 2 and so (1 −
σ−2) ≥ 1/2. Therefore, E(Xt+1 − Xt|Xt) ≤ ε for a constant
ε < 0. Applying Theorem 1, we conclude that w.h.p., T is
superpolynomial in n.

Thus in the case of the hillclimber without any noise-
handling mechanism, even a small constant noise level
obscures any useful selection information, and the algorithm
resorts to random walk behavior. We point out here that a
similar result holds for the (1+ 1) EA [18].

B. Population-Based EA

A common approach to adapt an EA to a noisy environment
is to increase the population size [3], [20]. The idea is that
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using more individuals allow for some kind of implicit resam-
pling of points during optimization. However, we will prove in
this section that for mutation-only EAs, increasing the popula-
tion cannot help as the noise intensity grows large. Specifically,
there is a threshold point in the noise intensity above which
no polynomial size population can optimize OM[σ 2] efficiently.

We consider the (μ+ 1) EA as introduced in Algorithm 2.
We will first, in Theorem 4, give a sufficient condition for
when a noise model is intractable for optimization by the
(μ+ 1) EA. While uniform selection removes any individual
from the population with probability 1/(μ + 1), the condi-
tion of Theorem 4 requires that the noise is strong enough so
that the (μ + 1) EA will remove any individual with at least
half that probability. Then we will show that, in the case of
additive noise sampled from a Gaussian distribution, this con-
dition is fulfilled if the noise is large enough, showing that
the (μ+1) EA cannot deal with arbitrary Gaussian noise (see
Corollary 1).

Theorem 4: Let μ ≥ 1 and D a random variable on R

(which will be used as noise). Let Y be the random vari-
able describing the minimum over μ independent copies of D.
Suppose

Pr(Y > D+ n) ≥ 1

2(μ+ 1)
.

Consider optimization of OneMax with additive noise from D
by (μ + 1) EA. Then, for μ bounded from above by a poly-
nomial, the optimum will not be evaluated after polynomially
many iterations w.h.p.

Proof: This proof will show by induction that the expected
number of the proportion of individuals with many 1 is
small—exponentially small in the number of 1s. The induc-
tion step considers all possibilities of creating individuals with
a given number of 1s and the probability of removing an
individual with that number of 1s from the population.

To this end, for all t and all i ≤ n, let Xt
i be the random

variable describing the proportion of individuals in the pop-
ulation of iteration t with exactly i 1s. Let c= 800, b= 20,
a= (c − 1)/c, and a′ = (c − 2)/c. We show by induction
on t that

∀t, i ≥ an : E
(
Xt

i

) ≤ ban−i.

In other words, the expected number of individuals with i 1s
is decaying exponentially with i after an. This will give the
desired result with a simple union bound over polynomially
many time steps.

The claim holds at the start of the algorithm with an applica-
tion of Hoeffding’s inequality for the number of 1s in a random
individual. Fix some value t and suppose the claim holds for
that t. Let some value i ≥ an be given and let x = ban−i. We
will now show E(Xt+1

i ) ≤ x by considering one generation of
the (μ+ 1) EA.

We distinguish four cases depending on whether an indivi-
dual with less than a′n 1s has been selected for reproduction,
with i − k 1s for some k with 1 ≤ k ≤ n/c, with exactly
i 1s or with strictly more than i 1s. For each of these cases
we estimate the number of individuals that can be chosen to
reproduce, as well as the probability for such an individual to

produce an offspring with exactly i 1s. The following table
gives upper bounds for both values in all four cases; we will
justify all these values below.

Clearly the proportion of individuals with < a′n 1s is
bounded from above by 1; for such an individual with m 0s,
at least half of these 0s need to flip, which has a probability
of at most 2m/nm/2 = 2−�(n ln n), using m ≥ n/c. For any
k < n/c, we get a bound of xbk for the number of individuals
with exactly i− k 1s from the induction hypothesis; as these
individuals have at most 2n/c many 0s, the probability of flip-
ping at least k of these to 1 is ≤ (2/c)k. For an individual with
exactly i 1s to create an offspring with exactly i 1s, we can
either not flip any bit (with a probability tending to 1/e) or
we flip as many 1s as 0s; flipping k 1s has a probability of
at most 1/c (as i ≥ an), thus we can bound the probability of
creating an offspring with exactly i 1s by

1/e+
∞∑

k=1

c−k = 1/e+ 1/c− 1.

With a similar geometric sum we get that the number of indi-
viduals with > i 1s is, using the induction hypothesis, at most
x/(b− 1).

From the table we can now deduce that the probability of
producing an offspring with exactly i 1s in iteration t is at most

2−�(n ln n) + x

(
1

e
+ 1

c− 1
+ 1

b− 1
+
∞∑

k=1

(
2b

c

)k
)

.

Using x ≥ b−n/c we see that 2−�(n ln n) has asymptotically no
impact on the sum. Furthermore, from our choice of b and c,
we have

1

e
+ 1

c− 1
+ 1

b− 1
+ 1

c
2b − 1

<
1

2
.

Thus, we have that we get less than x/2 individuals with
exactly i 1s in expectation, while the premise of the theo-
rem gives that any individual has a probability of at least 1/2
to die in any given iteration. This shows that E(Xt+1

i ) cannot
go above x.

We apply Theorem 4 to show that large noise levels make
it impossible for the (μ+ 1) EA to efficiently optimize when
the noise is significantly larger than the range of objective
values. The proof is a simple exercise in bounding the tails of
a Gaussian distribution using Proposition 2.

Corollary 1: Consider optimization of OM[σ 2] by the
(μ + 1) EA with μ = ω(1) and μ bounded from above by
a polynomial in n. Suppose σ 2 ≥ (na)2, for some a = ω(1).
Then the optimum will not be evaluated after polynomially
many iterations w.h.p. In particular, the (μ+ 1) EA does not
scale gracefully with noise.
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Proof: We set up to use Theorem 4. Let D ∼ N (0, σ 2) and
let Y be the minimum over μ independent copies of D. We
want to bound Pr(D+n < Y). We lower bound this probability
by a case distinction into two events. To that end, we choose
two points t0 < t1 ≤ −3σ < 0 such that Pr(D < t0) = 0.8/μ

and Pr(D < t1) = 2/μ. Note that −t0/σ > −t1/σ ≥ 3.
Hence, the maximum value for the second lower bound on
Pr(D < t) as in Proposition 2, for t ≤ −3σ , is a constant,
whereas Pr(D < t0) < Pr(D < t1) = o(1), since μ = ω(1).
Thus, there actually exist t0, t1 < 0 as wanted. We define the
following two events.

1) The event that D < t0 − n and t0 < Y .
2) The event that t0 − n < D < t1 − n and t1 < Y .
Clearly, the events A and B are disjoint and are contained

in the event that D+ n < Y . Both events are made up of two
independent events, the first one making a statement about D,
the second one making a statement about Y . Let the former
be indexed by D and the latter by Y . Thus, A = AD ∩ AY and
B = BD ∩ BY .

The probabilities of the events indexed with Y can be easily
calculated by the μ independent events that none of the μ

copies of D was smaller than t0, since then the minimum would
trivially also not be smaller. Hence, we get:

1) Pr(AY) = (1− Pr(Y < t0))μ = (1− 0.8/μ)μ;
2) Pr(BY) = (1− Pr(Y < t1))μ = (1− 2/μ)μ.
We now focus on the events indexed by D. By our choice

of t0, we have t0 < −3σ ≤ −3na < −na. We then transform

t0 ≤ −na⇐⇒ t0
a
≤ −n⇐⇒ t0 + t0

a
≤ t0 − n

hence, t0(1 + 1/a) ≤ t0 − n. We can now bound Pr(AD) =
Pr(D < t0 − n) asymptotically from both sides. The upper
bound is trivial

Pr(D < t0 − n) ≤ Pr(D < t0) = 0.8

μ
.

The lower bound is as follows, making use of t0 − n ≥
t0(1+ 1/a):

Pr(D < t0 − n) ≥ Pr

(
D < t0

(
1+ 1

a

))

>

exp

(
− t20

(
1+ 1

a

)2

2σ 2

)

√√√√√√π

⎛

⎜⎝− t0
(

1+ 1
a

)

σ
√

2
+
√

t20

(
1+ 1

a

)2

2σ 2 + 2

⎞

⎟⎠

>

exp

(
− t20

2σ 2

)
exp

((
1+ 1

a

)2
)

√√√√π
(

1+ 1
a

)(
− t0

σ
√

2
+
√

t20
2σ 2 + 2

)

>
e−o(1)

1+ o(1)
·

exp

(
− t20

2σ 2

)

√√√√π

(
− t0

σ
√

2
+
√

t20
2σ 2 + 2

)

>
e−o(1)

1+ o(1)
·

exp

(
− t20

2σ 2

)

√√√√π

(
− t0

σ
√

2
+
√

t20
2σ 2 + 2

)

> (1− o(1)) ·
0.984 · exp

(
− t20

2σ 2

)

√√√√π

(
− t0

σ
√

2
+
√

t20
2σ 2 + 4

π

)

> 0.98 · Pr(D < t0)

because
1

√

π

(
x√
2
+
√

x2

2 + 2

) > 0.984√√√√π

(
x√
2
+
√

x2

2 +
4
π

)

for x ≥ 3, and because 1/a = o(1), as we assume a = ω(1).
Thus, we get Pr(D < t0 − n) = Pr(AD) ≤ 1/μ and Pr(AD) >

0.98 · 0.8/μ = 0.784/μ.
We proceed in a similar way for bounding Pr(BD) = Pr(t0−

n < D < t1 − n) = Pr(D < t1 − n)− Pr(D < t0 − n).
Since we already have bounds for Pr(D < t0 − n), we only

have to bound Pr(D < t1−n). These calculations are analogous
to the ones beforehand and do not change anything asymptot-
ically, thus, we get Pr(D < t1 − n) ≥ Pr

(
D < t1(1+ 1/a)

)
>

0.98 · 2/μ, and therefore in total Pr(t0 − n < D < t1 − n) =
Pr(BD) > 0.98 · 2/μ− 0.8/μ = 1.16/μ.

Overall, we get

Pr(Y > D+ n) ≥ Pr(A)+ Pr(B)

= 0.784

μ

(
1− 0.8

μ

)μ

+ 1.16

μ

(
1− 2

μ

)μ

≥ 0.784

μ
e−0.8 + 1.16

μ
e−2 ≥ 1

2μ
≥ 1

2(μ+ 1)

where we made use of (1 − x)t ≥ (1 − o(1))e−xt if
x2t = o(1) [29].

Finally, we can use Theorem 4, since μ is bounded from
above by a polynomial. This completes the proof.

Note that the condition σ 2 = ω(n2) comes from the very
pessimistic assumption of one good individual having to lose
against many much worse individuals; thus we conjecture
that already much smaller noise levels will lead to inefficient
optimization.

C. Compact GA

We now show a positive result for the cGA EDA; specif-
ically, that it can scale gracefully with Gaussian noise in
the sense of Definition 1. Let T� be the optimization time
of the cGA on OM[σ 2], namely, the first time that it gener-
ates the underlying true optimal solution 1n. We consider the
stochastic process {Xt : t ∈ N0} defined as follows:

Xt = n−
n∑

i=1

pi,t (1)

and bound the optimization time by T = inf{t ∈ N0 : Xt = 0}.
This is the time until the product distribution has converged to
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the optimal frequency vector. Clearly T� ≤ T since the cGA
produces 1n in the Tth iteration almost surely. However, T�

and T can be infinite when there is a t < T�, where pi,t = 0
since the process can never subsequently generate any string x
with xi = 1. To circumvent this, Droste [14] estimates E(T�)

conditioned on the event that T� is finite, and then bounds
the probability of finite T�. In this paper, we will prove that
as long as K is large enough, the optimization time is finite
(indeed, polynomial) w.h.p.

We first define the probability that the cGA misclassifies
two points under comparison due to the presence of noise.

Definition 2: Let x, y ∈ {0, 1}n. Without loss of generality,
suppose |x|1 − |y|1 = 
 ≥ 0. Since OM[σ 2] is a function of
unitation, the probability � that it misclassifies y as superior
to x depends only on the so-called phenotypic distance 
. We
define � : [n] ∪ {0} → [0, 1] as

�(
) =
{

1/2 
 = 0

Pr
(E∣∣|x|1 − |y|1 = 


)

 > 0

where E is the event that OM[σ 2](x) < OM[σ 2](y) and [n] :=
[1, n] ∩N.

The following lemma bounds the misclassification prob-
ability in terms of the noise intensity measured by the
variance.

Lemma 2: For any 
 ∈ [n], �(
) > �(
 + 1). Moreover,
assuming σ 2 > 0

�(
) ≤ 1

2

(
1−�

(
σ−2

))
.

Proof: Let x and y be chosen arbitrarily from the set of
all length-n binary strings pairs with |x|1 − |y|1 = 
 for any

 ∈ [n]. The event that OM[σ 2] incorrectly classifies y as
superior to x is equivalent to the event OM[σ 2](x) < OM[σ 2](y)

Pr
(

OM[σ 2](x) < OM[σ 2](y)
) = Pr(
+ (Z1 − Z2) < 0)

where Z1, Z2 ∼ N (0, σ 2) are independent identically dis-
tributed. Letting Z∗ := Z1−Z2, we have Z∗ ∼ N (0, 2σ 2) and
�(
) = Pr(Z∗ < −
). Furthermore, �(
+1) = Pr(Z∗ < −(
+
1)) < Pr(Z∗ < −
) = �(
). Finally, applying Proposition 2,
we have Pr(Z∗ < −
) ≤ (1/2)e−
2/(4σ 2) ≤ (1/2)e−1/(4σ 2).
The proof is then completed by applying the well-known
bound 1− z > e−z/(1−z) [28] and setting z = 1/(4σ 2 + 1).

We need the following technical lemma that yields some
properties of the sum of n independent random variables over
{−1, 0, 1}. Specifically, we derive a bound on the probability
that the sum balances (i.e., is equal to zero) and a lower bound
on the first absolute moment of the sum. We will later use
these results in proofs about the drift of the allele frequencies
during the run of the cGA.

Lemma 3: Let 0 < a < 1 be a constant. Consider a random
variable Z = Z1 + Z2 + · · · + Zn, each Zi independent

Zi =

⎧
⎪⎨

⎪⎩

1 with probability pi(1− pi)

−1 with probability pi(1− pi)

0 with probability 1− 2pi(1− pi)

with a ≤ pi ≤ 1 for every i ∈ {1, . . . , n}. Then Pr(Z = 0) ≥
1/(4
√

n), and

E(|Z|) ≥ a
√

2/n

(
n−

n∑

i=1

pi

)
.

Proof: Let ξ = |Z1|+|Z2|+· · ·+|Zn|. Then ξ is distributed as
a Poisson binomial distribution with each success probability
equal to 2pi(1 − pi). Furthermore, Z = 0 when exactly k of
the Zi variables are nonzero for some even k, and exactly k/2
of these are selected to be negative with the remaining k/2
positive. The probability that exactly k of the variables are
nonzero is Pr(ξ = k), and the probability of selecting exactly
k/2 to be positive is

( k
k/2

)
2−k so we can write

Pr(Z = 0) =
n∑

k=0

Pr(ξ = k)

(
k

k/2

)
2−k

where
( k

k/2

) = 0 if k ≡ 1 (mod 2). Since
( k

k/2

)
vanishes at

odd i, we have

Pr(Z = 0) =
�n/2�∑

k=0

Pr(ξ = 2k)

(
2k

k

)
2−2k.

(2k
k

)
is the kth central binomial coefficient, for which we have

the well-known bound (22k/
√

4k) ≤ (2k
k

)
(see [24]), hence

Pr(Z = 0) ≥ Pr(ξ = 0)+
�n/2�∑

k=1

Pr(ξ = 2k)
1

2
√

k

≥ 1

2
√

n
Pr(ξ is even) (2)

since (1/(2
√

n)) ≤ (1/(2
√

k)) ≤ 1. To finish the proof,
note that for any integer random variable X, Pr(X is even) =
(1+G(−1))/2, where G(z) = E(zX) is the probability gener-
ating function for X. Since ξ is a Poisson binomial distribution
with success probabilities q1, q2, . . . , qn, we can write the
probability generating function as G(z) =∏n

i=1(1− qi + qiz).
Therefore

Pr(ξ is even) = (1+ G(−1))/2

= 1

2

(
1+

n∏

i=1

(1− 2qi)

)
.

Finally, since qi = 2pi(1−pi) ≤ 1/2 for all i ∈ {1, . . . , n}, the
product in the above equation must be non-negative. Therefore,
Pr(ξ is even) ≥ 1/2 and the claimed bound on Pr(Z = 0)

follows from (2).
We now bound the first absolute moment of Z from below.

For every S ⊆ [n], denote as ES the event that |Zi| =
1 ⇐⇒ i ∈ S. We first calculate the expectation of |Z| condi-
tioned on these events. Since the probabilities pi are mutually
independent

E
(
eitZ
∣∣ES
) = eitE(Z|ES) =

n∏

j=1

e
itE
(

Zj

∣∣ES

)

.

If j ∈ S, then Zj = 1 with probability 1/2 and Zj = −1 with
probability 1/2. Thus, eitE(Zj|ES∧j∈S) = eit/2 + e−it/2. On the
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other hand, if j �∈ S, then Zj = 0 and so eitE(Zj|ES∧j �∈S) =
e0 = 1. Denote as 1S the indicator function for S. We collect
the above terms to write

E
(
eitZ
∣∣ES
) =

n∏

j=1

(
1S(j)

(
eit

2
+ e−it

2

)
+ 1− 1S(j)

)

=
∏

j∈S

cos t = (cos t)|S|.

So by Lemma 1

E(|Z||ES) = 1

π

∫ ∞

−∞
1− (cos t)|S|

t2
dt = g(|S|)

where g(k) = 2�k/2�(2�k/2�
�k/2�

)
2−2�k/2� (see Lemma 6 in the

Appendix for a detailed derivation). Again applying bounds
on the central binomial coefficient, g(k) ≥ √�k/2� ≥ √k/2.
By the law of total expectation

E(|Z|) =
n∑

k=1

g(k)
∑

S⊆[n]:|S|=k

Pr(ES)

≥ 1√
2n

n∑

k=1

k
∑

S⊆[n]:|S|=k

Pr(ES)

= E(ξ)√
2n

. (3)

Since ξ follows a Poisson binomial distribution with the ith
success probability equal to 2pi(1− pi), and every pi ≥ a

E(ξ) =
n∑

i=1

2pi(1− pi) ≥ 2a

(
n−

n∑

i=1

pi

)
.

Substituting this inequality into (3) completes the proof.
We will use Lemma 3 in the proof of the next lemma when-

ever we need bounds on the expected absolute difference of the
count of ones between the offspring generated in lines 4 and 6
of Algorithm 3. Specifically, the following lemma bounds the
drift on Xt as defined in (1), conditioned on the event that no
allele frequency gets too small.

Lemma 4: Consider the cGA optimizing OM[σ 2] and let Xt

be the stochastic process defined in (1). Assume that there
exists a constant a > 0 such that pi,t ≥ a for all i ∈ [n] and that
Xt > 0, then E(Xt − Xt+1|Xt) ≥ δXt where 1/δ = O(σ 2K

√
n).

Proof: Let x and y be the offspring generated in iteration t
and Zt = |x|1 − |y|1. Then Zt = Z1,t + · · · + Zn,t where

Zi,t =

⎧
⎪⎨

⎪⎩

−1 if xi = 0 and yi = 1

0 if xi = yi

1 if xi = 1 and yi = 0.

Let E denote the event that in line 8, the evaluation of OM[σ 2]
incorrectly ranks x and y. Without loss of generality, sup-
pose |x|1 ≥ |y|1. Then E(Xt − Xt+1|Xt, E) = E(|Zt|)/K. On
the other hand, if OM[σ 2](x) evaluates to at most OM[σ 2](y)
during iteration t, the roles above are swapped and E(Xt −
Xt+1|Xt, E) = −E(|Zt|)/K. By the law of total expectation

E(Xt − Xt+1|Xt) = E(|Zt|)
K

(1− 2 Pr(E)). (4)

For any i ∈ [n], Pr(Zi,t = 1) = Pr(Zi,t = −1) = pi,t(1 − pi,t)

and Pr(Zi,t = 0) is the inverse. Since we have assumed each
pi,t ≥ a, we can apply Lemma 3 to obtain

E(|Zt|) ≥ a

√
2

n

(
n−

n∑

i=1

pi,t

)
= aXt

√
2/n. (5)

To complete the proof, we substitute the inequality in (5)
into (4) and use Lemma 2 to bound Pr(E) = �(||x|1 − |y|1|)
from above.

To use Lemma 4, we require that the allele frequencies
stay large enough during the run of the algorithm. Increasing
the effective population size K obviously translates to finer-
grained allele frequency values, which means slower dynamics
for pi,t. We point out that this scaling of the update probabili-
ties is an application of the technique of rescaled mutations [3]
to the space of probability vectors. Provided that K is set suffi-
ciently large, the allele frequencies remain above an arbitrary
constant for any polynomial number of iterations with very
high probability. This is captured by the following lemma.

Lemma 5: Consider the cGA optimizing OM[σ 2] with σ 2 >

0. Let 0 < a < 1/2 be an arbitrary constant and T ′ = min{t ≥
0 : ∃i ∈ [n], pi,t ≤ a}. If K = ω(σ 2√n log n), then for every
polynomial poly(n), n sufficiently large, Pr(T ′ < poly(n)) is
superpolynomially small.

Proof: Let i ∈ [n] be arbitrary. Let {Yt : t ∈ N0} be the
stochastic process Yt = (1/2− pi,t)K. We first argue that

E(Yt|Y1, . . . , Yt−1) ≤ Yt−1 −�
(
σ−2

)Pr(xi �= yi)√
n

. (6)

Let x and y be the strings generated in iteration t of the
cGA (lines 4 and 6 of Algorithm 3). We define x̂ :=
(x1, x2, . . . , xi−1, xi+1, . . . , xn) to be the substring of x con-
structed by removing the ith element and ŷ similarly. Since
each element of x and y is constructed independently, we can
regard x̂, ŷ, xi, and yi to be independent.

Define the random variable δt := Yt − Yt−1. Note that
E(Yt|Y1, . . . , Yt−1) = Yt−1 + E(δt) where δt ∈ {−1, 0, 1}.
Define 
̂ = |x̂|1− |ŷ|1. We distinguish between the two events
that |
̂| is nonzero or zero.

Case |
̂| > 0: Suppose without loss of generality that 
̂ > 0
(i.e., |x̂|1 > |ŷ|1). So, δt = 0 if and only if xi = yi. Moreover,
δt = −1 only in the event that: 1) xi = 1 and yi = 0 and
x is accepted (in which case 
 = 
̂ + 1) or 2) xi = 0 and
yi = 1 and x is not accepted (in which case 
 = 
̂− 1). Event
1) occurs only if OM[σ 2] does not misclassify x and y, whereas
event 2) occurs only if OM[σ 2] does misclassify x and y. Thus,
Pr(δt = −1) = Pr(xi = 1, yi = 0)(1 − �(
̂ + 1)) + Pr(xi =
0, yi = 1)�(
̂− 1).

Similarly, δt = 1 only in the event that: 1) xi = 1 and yi = 0
but x is not accepted, because x and y were misclassified by
OM[σ 2] or 2) xi = 0 and yi = 1 and x is accepted because
OM[σ 2] ranked x and y correctly. Thus, Pr(δt = 1) = Pr(xi =
1, yi = 0)�(
̂+ 1)+ Pr(xi = 0, yi = 1)(1−�(
̂− 1)). Since
Pr(xi = 1, yi = 0) = Pr(xi = 0, yi = 1) = Pr(xi �= yi)/2

E(δt) = Pr(δt = 1)− Pr(δt = −1)

= −Pr(xi �= yi)
(
�
(

̂− 1

)
−�

(

̂+ 1

))
< 0
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where we apply Lemma 2. We conclude that in this case

E
(

Yt|
̂ �= 0, Y1, . . . , Yt−1

)
= Yt−1 + E(δt) < Yt−1.

Case 
̂ = 0: In this case, if xi = yi, then x = y and there
is zero drift. Otherwise, xi > yi and so |x|1 − |y|1 = 1, or
yi > xi and |y|1−|x|1 = 1. The drift in this case only depends
on whether or not OM[σ 2] misclassifies x and y. In particular,
Pr(δt = −1) = Pr(xi = 1, yi = 0)(1 − �(1)) + Pr(xi =
0, yi = 1)(1 − �(1)), and Pr(δt = 1) = Pr(xi = 1, yi =
0)�(1)+ Pr(x1 = 0, yi = 1)�(1). By Lemma 2

E(δt) = Pr(δt = 1)− Pr(δt = −1)

= −Pr(xi �= yi)(1− 2�(1)) ≤ −�
(
σ−2

)
Pr(xi �= yi).

For this case, E(Yt|
̂ = 0, Y1, . . . , Yt−1) = Yt−1 + E(δt) ≤
Yt−1 −�(σ−2) Pr(xi �= yi).

Applying the law of total expectation, E(Yt|Y1, . . . , Yt−1) is
bounded above by

Yt −�
(
σ−2

)
Pr(xi �= yi) Pr

(

̂ = 0

)
.

It remains to bound Pr(
̂ = 0) = Pr(|x̂|1 = |ŷ|1). We define
a random variable Z = Z2 + · · · + Zn where

Zj =

⎧
⎪⎨

⎪⎩

+1 if xj > yj

0 if xj = yj

−1 if xj < yj.

So Pr(|x̂|1 = |ŷ|1) = Pr(Z = 0) ≥ 1/(4
√

n− 1) by Lemma 3
since 0 ≤ Pr(xj > yj) = Pr(xj < yj) = pj(1− pj) ≤ 1/2 for all
j ∈ {2, . . . , n}, proving the claim in (6).

Note that {Yt : t ∈ N} is a Markov chain on the set
{−K/2,−K/2 + 1, . . . , K/2 − 1, K/2} with Y1 = 0. Let
T = min{t : Yt > (1/2 − a)K}. In any iteration, if xi = yi,
then Yt = Yt−1. Thus, for an estimate of the upper bounds of
T , we can ignore self-loops in the chain.

More formally, let {Ŷt : t ∈ N} be the restriction of Yt to
iterations such that Yt �= Yt−1. Similarly, let T̂ = min{t : Ŷt >

(1/2− a)K}. The random variable T stochastically dominates
the random variable T̂ since removing equal moves can only
make the process hit faster, i.e., ∀t ∈ N : Pr(T > t) ≥ Pr(T̂ >

t). Due to the above arguments

E
(

Ŷt|Ŷ1, . . . , Ŷt−1

)

= E
(

Ŷt|xi �= yi, Ŷ1, . . . , Ŷt−1

)

= Ŷt − E(δt|xi �= yi) ≤ Ŷt −�
(
σ−2/
√

n
)
.

By Theorem 1, since Y1 = Ŷ1 = 0 and |Ŷt − Ŷt+1| = 1 <√
2, for all s ≥ 0

Pr(T ≤ s) ≤ Pr
(

T̂ ≤ s
)
≤ s exp

(
− (1/2− a)K|ε|

32

)

with ε = −�(σ−2/
√

n). Since K = ω(σ 2√n log n),
Pr(T ≤ s) = sn−ω(1).

So, for any polynomial s = poly(n), with probability super-
polynomially close to one, Ys has not yet reached a state larger
than (1/2 − a)K, and so pi,t > a for all 0 ≤ t ≤ s. As this

holds for arbitrary i, applying a union bound retains a super-
polynomially small probability that any of the n frequencies
have gone below a by s = poly(n) steps.

It is now straightforward to prove that the optimization
time of the cGA is polynomial in the problem size and
the noise variance. This is in contrast to the mutation-based
(μ + 1) EA, which fails when the variance becomes large.
This means the cGA scales gracefully with noise in the sense
of Definition 1 applied to the OM[σ 2] noise model. We actu-
ally prove a stronger condition than the first hitting time of
the true optimal solution. We show that after polynomial time,
the allele frequencies have converged to the optimal frequency
distribution (pi,t = 1 for all i ∈ [n]). The proof is carried out
by first conditioning on the event that no allele frequency gets
too small. This event is guaranteed w.h.p. by Lemma 5. The
result then follows by showing that the conditional drift of the
total allele frequencies in the right direction is large enough
to hit the optimal distribution within the claimed time bound.

Theorem 5: Consider the cGA optimizing OM[σ 2] with vari-
ance σ 2 > 0. If K = ω(σ 2√n log n), then w.h.p., the
cGA has converged to the optimal frequency distribution after
O(Kσ 2√n log Kn) steps.

Proof: We will consider the drift of the stochastic process
{Xt : t ∈ N0} corresponding to the total allele frequencies
defined as in (1). This is a stochastic process over the state
space S = {n−i/K} for each i = 0, . . . , nK. Hence, the bounds
needed for Theorem 2 are [xmin, xmax] = [1/K, n].

Fix a constant 0 < a < 1/2. We say the process has failed
by time t if there exists some s ≤ t and some i ∈ [n] such
that pi,s ≤ a. Let T = min{t ∈ N0 : Xt = 0}. Assuming the
process never fails, by Lemma 4, the drift of {Xt : t ∈ N0}
in each step is bounded by E(Xt − Xt+1|Xt = s) ≥ δXt where
1/δ = O(σ 2K

√
n). By Theorem 2, Pr(T > (ln(X0/xmin) +

λ)/δ) ≤ e−λ. Choosing λ = d ln n for any constant d > 0, the
probability that T = �(Kσ 2√n log Kn) is at most n−d.

Letting E be the event that the process has not failed by
O(Kσ 2√n log Kn) steps, by the law of total probability, the
hitting time of Xt = 0 (corresponding to the optimal allele
frequency distribution) is bounded by O(Kσ 2√n log Kn) with
probability (1− n−d) Pr(E), where we can apply Lemma 5 to
bound the probability of E .

V. EXPERIMENTS

A common way to handle noisy objective functions is to
explicitly modify an existing algorithm to repeatedly resample
the objective function value at each point and use the aver-
age of these values to estimate the true underlying objective
function value. However, this can require many extra func-
tion evaluations to obtain a suitable estimate [31]. It has also
been observed that even utilizing the expected information
might not lead to robust solutions [27]. In this section, we
seek to compare the performance of the cGA with a base-
line hillclimber that uses explicit resampling to reduce the
noise variance. Additionally, we also consider a cGA with
explicit resampling (and fixed parameter K); however, after
sufficient resampling, the landscape is deterministic and very
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Fig. 1. Median run time as a function of noise variance for n = 100 (left) and as a function of n for σ 2 = √n (right). One hundred runs at each point.
Shaded area denotes interquartile range. This shows empirically that, for a wide range of noise intensities, the cGA outperforms a hillclimber with resampling
by orders of magnitude. It also shows that it is better, again by orders of magnitude, to set K of the cGA according to the noise than to use a pure resampling
strategy.

well-behaved, so that we expect the hill-climber to be supe-
rior in this case. Our baseline hillclimber is called resampling
RLS (reRLS). For a particular variance σ 2, reRLS estimates the
true objective function value by performing 20e ·σ 2 ln n func-
tion calls to guarantee correct estimation of fitness throughout
the optimization process (note that the term ln n is required
to get truthful evaluations for poly(n) iterations). It then hill-
climbs on the estimated true objective function by flipping a
single bit chosen uniformly at random in each iteration and
accepting points with equal or better estimated objectives. We
also investigate a resampling variant of the cGA (recGA) that
uses the same number of resamples as reRLS and has a noise-
independent K. For the cGA, we use K = 7σ 2√n(ln n)2, and,
for the recGA, we use K = 7

√
n(ln n)2, as we assume no noise

after resampling.
All three algorithms require knowledge of the true noise

variance to collect enough samples (reRLS and recGA) or to
set K properly (cGA). We also investigate the performance
of these approaches in the corresponding noise-oblivious set-
ting as defined in Section II (NO-reRLS, NO-recGA, and
NO-cGA). For the NO-reRLS, we use Tδ(σ

2) = n ln n,
i.e., the run time bound is independent of σ 2 because we
use resampling. However, we adjust the number of resam-
ples, 20e ·σ 2 ln n, with the variance of the current run. For the
NO-recGA, we also use 20e · σ 2 ln n resamples with respect
to the current guessed variance, but we adjust Tδ(σ

2) =
Kσ 2√n ln Kn. For the NO-cGA, we use the same Tδ as for
the NO-recGA, but we now also change K = 7σ 2√n(ln n)2

with respect to the current variance.
We measure the performance of reRLS and NO-reRLS by

the number of calls to the objective function until the true opti-
mum 1n is generated. For the cGA, the NO-cGA, the recGA,
and the NO-recGA, we count the number of fitness evaluations
until the frequency vector p converges to the all-ones vector.

This performance metric is standard within black-box opti-
mization because, typically, objective function evaluation is
the most costly operation in terms of computation time. For
the cGA, this is twice the number of iterations through the
while loop in Algorithm 3. For reRLS and the recGA, this is
twice the number of iterations times the number of resamples
necessary to obtain a suitable estimate of the true objective
value.

The performance of each algorithm is plotted fixing n = 100
and controlling the variance in Fig. 1 (left). For each procedure
and variance value, we run each algorithm 100 times until the
true optimum is found and collect the number of calls to the
objective function for each run. The median run times and their
interquartile ranges are plotted. We also plot the performance
as a function of n (fixing σ 2 = √n) in Fig. 1 (right).

Both results are plotted on log-log plots; thus, we see
that the cGA and the NO-cGA are an order of magnitude
faster than the algorithms using resampling in the noise ranges
depicted; note that the noise range extends also to noise val-
ues much higher than any difference in objective value. We
can also see that the noise-oblivious algorithms are faster than
their counterparts that know the noise, since this knowledge
results in setting the parameters in a way that guarantees suc-
cess, while the noise-oblivious algorithms can use parameters
that result in a lower run time with a lower success probability
(and only increase parameters when necessary). Furthermore,
we see that the recGA is worse than even the reRLS, which
was to be expected, since both of them implicitly work on the
deterministic OneMax function.

Fig. 2 corresponds to Fig. 1 and depicts the number of
resamplings [(NO-)reRLS and (NO-)recGA] per iteration or
the value of K [(NO-)cGA] that was sufficient for the respec-
tive algorithm to succeed. Note that the functions for the
non-noise-oblivious algorithms have deterministic function
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Fig. 2. Median of number of resamplings per iteration or median of K as a function of noise variance for n = 100 (left) or as a function of n for
σ 2 = √n (right), 100 runs at each point. Shaded area denotes interquartile range.

values, since the algorithms compute their respective parame-
ters (number of resamplings or K), whereas the ones for the
noise-oblivious versions are random variables because these
algorithms vary their parameters according to the guessed
variance so far.

Fig. 2 also indicates what a reasonable parameter value
could look like, compared to the pessimistic (static) param-
eters of the non-noise-oblivious algorithms. One can see that
the parameters of the noise-oblivious algorithms are always
better than the ones of their counterparts. This means that the
bounds on these parameters are not tight, as the values that
suffice for optimization are orders of magnitudes below the
static ones.

VI. CONCLUSION

In this paper, we examined the robustness of two approaches
to noise, on the one hand an evolutionary algorithm
[the (μ+ 1) EA], on the other hand an EDA (the cGA). We
saw that the cGA can handle noise efficiently by adjust-
ing its step size to be more careful when the noise is
large (Theorem 5). This we call graceful scaling with noise.
Intuitively, the cGA can use its probability vector to average
out the noise over many iterations.

We also saw that the (μ+ 1) EA does not scale gracefully,
i.e., for large noise, even large values of μ cannot cope with
the noise (Corollary 1). The intuitive reason for this is that
the probability of generating and accepting a worse individual
becomes larger than the probability of generating and accept-
ing a better individual: mutation has a bias toward bit strings
with about as many 0s as 1s, and for high noise the probability
of accepting slightly worse individuals is about 1/2.

With our experimental results, we indicate that the robust-
ness of the cGA is not just a theoretical result with possibly
unrealistic constants. In fact, we showed that the cGA can han-
dle noise even better than RLS (a straightforward hillclimber)

with sufficient resampling, and we showed that increasing K
is more efficient than pure resampling when running a cGA.

Our results highlight the importance of understanding the
influence of different search operators in uncertain environ-
ments and suggest that algorithms, such as the cGA, are able
to scale gracefully with noise.

While all our results considered first hitting times, one can
also look at these problems from the perspective of a fixed time
budget [22]. We believe that similar results can be obtained in
this setting.

APPENDIX

In this section, we give a detailed derivation of the solution
to the definite integral needed in Lemma 3.

Lemma 6: Let k ∈ N and t ∈ R, then

1

π

∫ ∞

−∞
1− cosk(t)

t2
dt = 2�k/2�

(
2�k/2�
�k/2�

)
2−2�k/2�.

Proof: We express the kth power of cos(t) in terms of the
binomial expansion

cosk(t) =
(

eit + e−it

2

)k

= 1

2k

k∑

j=0

(
k

j

)
cos((2j− k)t).

Thus, we may calculate the indefinite integral

∫
1− cosk(t)

t2
dt

= − 1

2k

k∑

j=0

(
k

j

)∫
cos((2j− k)t)

t2
dt − 1

t

= cosk(t)

t
− 1

2k

k∑

j=0

(
k

j

)
(k − 2j) Si((2j− k)t)− 1

t
(7)
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where Si(z) := ∫ z
0 (sin x/x) dx is the sine integral. We define

the function

hk(t) := − 1

2k

k∑

j=0

(
k

j

)
(k − 2j) Si((2j− k)t).

By the algebraic limit theorem

lim
t→∞ hk(t) = − 1

2k

k∑

j=0

(
k

j

)
(k − 2j) lim

t→∞Si((2j− k)t).

The limits at infinity of the sine integral are

lim
t→∞Si((2j− k)t) =

⎧
⎪⎨

⎪⎩

π/2 if (2j− k) > 0

0 if (2j− k) = 0

−π/2 if (2j− k) < 0.

Therefore

lim
t→∞ hk(t) = −π

2k+1

⎛

⎝
k∑

j=�k/2�

(
k

j

)
(k − 2j)−

�k/2�∑

j=0

(
k

j

)
(k − 2j)

⎞

⎠

= π

2k+1

⎛

⎝
�k/2�∑

j=0

(
k

j

)
(k − 2j)−

k∑

j=�k/2�

(
k

j

)
(k − 2j)

⎞

⎠

= π

2k+1

(
�k/2�

(
2�k/2�
�k/2�

)
I(k)

)

where

I(k) =
{

1 if k is odd

2 if k is even.

It is possible to express I(k) = 2(k+1)/22�k/2�, and so

lim
t→∞ hk(t) = π�k/2�

(
2�k/2�
�k/2�

)
2−2�k/2�. (8)

A similar derivation yields

lim
t→−∞ hk(t) = − lim

t→∞ hk(t). (9)

To complete the proof, we take the indefinite integral derived
in (7) and use the fact that limt→∞ cosk(t)/t = limt→∞ 1/t =
0 to compute the definite integral as follows:

∫ ∞

−∞
1− cosk(t)

t2
dt = lim

t→∞

(
cosk(t)

t
+ hk(t)− 1

t

)

− lim
t→−∞

(
cosk(t)

t
+ hk(t)− 1

t

)

= lim
t→∞ hk(t)− lim

t→−∞ hk(t) = 2 lim
t→∞ hk(t)

where we have used (9). Finally, substituting (8) for the limit
at positive infinity, we get

= π · 2�k/2�
(

2�k/2�
�k/2�

)
2−2�k/2�.
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