
How to Draw a Planarization

Thomas Bläsius1,2, Marcel Radermacher1(B), and Ignaz Rutter1

1 Faculty of Informatics, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

{radermacher,rutter}@kit.edu
2 Research Group Algorithm Engineering, Hasso Plattner Institute,

Potsdam, Germany
thomas.blaesius@hpi.de

Abstract. We study the problem of computing straight-line drawings
of non-planar graphs with few crossings. We assume that a crossing-
minimization algorithm is applied first, yielding a planarization, i.e.,
a planar graph with a dummy vertex for each crossing, that fixes the
topology of the resulting drawing. We present and evaluate two different
approaches for drawing a planarization in such a way that the edges of
the input graph are as straight as possible. The first approach is based
on the planarity-preserving force-directed algorithm ImPrEd [18], the
second approach, which we call Geometric Planarization Drawing, itera-
tively moves vertices to their locally optimal positions in the given initial
drawing.

1 Introduction

In his seminal paper “How to Draw a Graph” [20], Tutte showed that every pla-
nar graph admits a planar straight-line drawing. His result has been strengthened
in various ways, e.g., improving the running time and the required area [3]. In
practice, however, many graphs are non-planar and we are interested in finding
straight-line drawings with few crossings. Unfortunately, crossing minimization
for straight-line drawings (rectilinear crossing number) is ∃R-complete, i.e., as
hard as the existential theory of the reals [16]. We thus need to relax either the
condition of minimizing the number of crossings or the requirement of straight
edges. Approximating the rectilinear crossing number seems difficult, and for
complete graphs Kn, it is only known for n ≤ 27 [1]. We thus follow the second
approach, i.e., we insist on a small (though not necessarily minimal) number of
crossings and optimize the straightness of the edges in the drawing.

In contrast to the geometric setting, the crossing number for topological
drawings has received considerable attention and there is a plethora of results
on crossing minimization; see [2] for a survey. The output of these algorithms

This work was initiated within the FYS Heuristische Verfahren zur Visualisierung
von dynamischen Netzwerken, financially supported by the “Concept for the Future”
of KIT within the framework of the German Excellence Initiative. Work was partially
supported by grant WA 654/21-1 of the German Research Foundation (DFG).

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 295–308, 2017.
DOI: 10.1007/978-3-319-51963-0 23

296 T. Bläsius et al.

typically is a planarization Gp of the input graph G together with a planar
embedding. To profit from the results in this area, we focus on the problem of
drawing Gp such that for each edge of G the corresponding planarization path
in the drawing of Gp is as straight as possible.

This type of problem is prototypical for several fundamental problems in
graph drawing that ask for a geometric realization of a given combinatorial
description of a drawing. The most prominent examples are the topology-shape-
metrics framework for orthogonal graph drawing [19] and the fundamental (∃R-
complete) problem Stretchability, which asks whether a given arrangement
of pseudo-lines can be realized by geometric lines [14]. There have been sev-
eral other works that consider the problem of realizing a given combinatorial
description of a drawing geometrically. Hong et al. [9] give a characterization and
testing algorithm for 1-planar graphs that admit a straight-line drawing. Grilli
et al. [7] study the problem of realizing a given simultaneous planar embedding
of two (or more) graphs with few bends per edge. Feng et al. [6] study trade-offs
between straightness and area of drawings of clustered graphs where clusters are
represented by convex drawings. The algorithm of Dwyer et al. [5] minimizes
the stress of a layout while preserving the topology of the drawing. Didimo
et al. [4] present an algorithm that is able to preserve the topology unless chang-
ing the topology improves the number of crossings. Simonetto et al. [18] improve
a known force-directed layout algorithm for planar graphs that preserves the
combinatorial embedding of the input drawing.

Contribution and Outline. We study the problem of finding a drawing of a given
planarization Gp of a graph G such that the planarization paths corresponding
to the edges of G are drawn as straight as possible. Throughout, we assume
without loss of generality that Gp is biconnected; see Appendix. We present two
approaches, one is based on an adaption of ImPrEd that includes additional
forces to facilitate straightening the planarization paths (Appendix). The second
is a geometric framework that iteratively moves the vertices of a given drawing
one by one to locally optimal positions such that (i) the planarization and its
planar embedding are preserved and (ii) the angles on planarization paths influ-
enced by that vertex are optimized (Sect. 3). This framework has several degrees
of freedom, such as the vertex processing order and the exact placement strat-
egy for vertices. We experimentally evaluate the modified ImPrEd algorithm
(ImPrEd++) and several configurations of the Geometric Planarization Draw-
ing approach in a quantitative study (Sect. 4). We show that all our methods
significantly increase the straightness compared to the initial drawing and that
the geometric algorithms typically outperform ImPrEd++ in terms of quality.
Statistical tests are used to show that these results are significant with 95%
confidence.

2 Preliminaries

Intuitively, a planarization of a graph G is the graph resulting from placing
dummy vertices at the intersections of edges in a drawing of G. More formally,

How to Draw a Planarization 297

v

u
w

(a) (b)

v
v

(c)

v

Fig. 1. (a) An initial drawing (left) that is difficult to repair using the force-directed
algorithm although v could be moved to an optimal position without violating planarity
(right). (b) The closer v lies to the edge uw, the better are the v-active angles. (c) The
(green) planarity region of v. (Color figure online)

let G = (V,E) be a graph and let Gp = (V ∪̇Vp, E
′∪̇Ep) be a planar graph

such that every edge in Ep is incident to at least one vertex in Vp. The vertices
in Vp are dummy vertices. Then Gp is a planarization of G if the following
conditions hold. (i) Dummy vertices have degree 4, (ii) E′ ⊆ E, (iii) for every
edge e = uw ∈ E\E′, Gp contains a planarization path from u to w whose
edges are in Ep and whose internal vertices are in Vp, (iv) for any two distinct
edges e, e′ ∈ E\E′ the paths pe and pe′ are edge-disjoint, and (v) the paths pe,
e ∈ E\E′ cover all edges in Ep. We call the planarization Gp k-planar if the
longest planarization path has k dummy vertices.

A dissected pair (u, v, w) is a pair uv, vw ∈ Ep of edges that belong to the
same planarization path. The crossing angle cr-α(u, v, w) of (u, v, w) is the angle
cr-α(u, v, w) = π − ∠(u, v, w); A crossing angle is active with respect to v (also
called v-active) if moving v can alter that angle. For a dissected pair (u, v, w), v
is a dummy vertex and u and w are tail vertices. A dummy that is not a tail is
called pure dummy and a tail that is not a dummy is called pure tail. Vertices
that are both, tail and dummy, are called hybrid. A vertex that is neither a
dummy nor a tail vertex is called independent .

Let P be a polygon and let v be a vertex of P . A point p in the interior of
P is visible from v if the straight line connecting p with v does not intersect an
edge of P . The visibility region is the set of all points in P that are visible from
v. The size of a polygon P is the number of its vertices.

A shrinked polygon P ′ of a polygon P is the result of moving the vertices
towards the interior of a polygon P with constant speed along the straight skele-
ton of P [10]. A geometric center of a polygon P is obtained by shrinking P to
a single point.

3 Geometric Planarization Drawing

The spring embedder described in the appendix restricts the movement of each
vertex in a very conservative manner, i.e., the restrictions ensure a preservation
of the given planar embedding. This may waste a lot of potential; see Fig. 1a. The
approach presented in this section aims to tap the full potential by making each
movement locally optimal. As the simultaneous movement of multiple vertices

298 T. Bläsius et al.

leads to non-trivial and non-local dependencies, we move only a single vertex in
each step.

To make this precise, we need to answer two questions. First, to which points
can a vertex v be moved such that the planar embedding is preserved? Second,
which of these points is the best position for v? Concerning the first question, we
call the set of points satisfying this property the planarity region of v and denote
it by PR(v). The (non-convex) planarity region is independent of the geometric
position of v within it surrounding. We show in Sect. 3.1 how to compute PR(v)
efficiently. Concerning the second question, we define the cost of a point p ∈
PR(v) to be the maximum of all v-active crossing angles when placing v to
p. A point in PR(v) is a locally optimal position for v if PR(v) contains no
other point with strictly smaller cost. In Sect. 3.2, we show how to compute an
arbitrarily exact approximation of the locally optimal position.

The overall algorithm can be described as follows. We iterate over all vertices
of the graph. In each step, the current vertex is moved to its locally optimal
position. We repeat until we reach a drawing that is stable or up to a limited
number of iterations.

One important degree of freedom in this algorithm is the order in which we
iterate over the vertices. Another choice we have not fixed so far is the placement
of independent vertices. As an independent vertex has no active angle, each point
in its planarity region is equally good. We propose and evaluate different ways
of filling these degrees of freedom in Sect. 4.

For a tail or dummy vertex v, it can happen that there exists no locally
optimal position due to the fact that PR(v) is an open set. The cost may for
example go down, the closer we place v to an edge connecting two other vertices;
see Fig. 1b. We therefore shrink PR(v) slightly and consider it to be a closed
set; see Sect. 4 for more details.

3.1 Planarity Region

Let Gp be a planarization with a given drawing and let v be a vertex of Gp.
Let N(v) be the neighbors of v and let fv be the face of Gp − v that con-
tains the current position of v. Assume for now that fv is bounded by a simple
polygon surr(v), which we call the surrounding of v. Consider a point p in the
interior of fv and assume that we use p as the new position for v. Clearly, the
resulting drawing is planar if and only if p is visible from each of v’s neighbors;
see Fig. 1c. Thus, the planarity region PR(v) is the intersection of all visibility
regions in surr(v) with respect to the neighbors of v. It follows that the planarity
region can be obtained by first computing the visibility polygons of v’s neigh-
bors in surr(v), and then intersecting these visibility polygons. Let nv be the
number of vertices of the surrounding polygon surr(v) and let dv be the degree
of v. Computing the dv visibility polygons takes O(dvnv) time [12]. To intersect
these dv visibility polygons (each having size O(nv)), one can use a sweep-line
algorithm [15] consuming O((k + dvnv) log nv) time, where k is the number of
intersections between segments of the visibility polygons. As there are at most
dvnv segments, k ∈ O(d2

vn
2
v) holds, yielding the running time O(d2

vn
2
v log nv) for

How to Draw a Planarization 299

computing the planarity region. We can improve this running time as stated in
the following theorem; see Appendix for a proof.

Theorem 1. PR(v) has size O(nv) and can be computed in O(dvnv log nv)
time.

Now assume surr(v) is not a simple polygon. As we assume Gp to be bicon-
nected, surr(v) has a single connected component. It may, however, have cutver-
tices with multiple incidences to the interior of surr(v). We eliminate this issue
by slightly shrinking surr(v), yielding a simple polygon. Another special case is
the outer face. However, we can treat it like an interior face by basically placing
the whole drawing in a box.

3.2 Finding a Locally Optimal Position

In this section, we are given a vertex v together with its planarity region PR(v)
and we want to compute a locally optimal position. We consider the two cases
where v is a pure tail-vertex and the one where v is a pure dummy-vertex. These
two cases can be combined to also handle hybrid vertices. For both cases, our
approach is the following. For a given angle α, we show how to test whether
PR(v) contains a point with cost less or equal to α. For any ε > 0 we can then
apply O(log(1/ε)) steps of a binary search over the domain α ∈ [0, 2Π) to find
a position in PR(v) whose cost is at most ε larger than the cost of a locally
optimal position.

Placing a Pure Tail Vertex. Let v be a pure tail vertex and let D(v) ⊆ N(v)
be the set of dummy neighbors of v; see Fig. 2a. For each dummy neighbor
q ∈ D(v) there is a dissected pair (wq, q, v) whose angle is active. Note that
these are the only active angles of a pure tail vertex. Consider the (oriented) line
�(t) = q + t ·dq with the direction vector dq = q −wq. Clearly, placing v onto �(t)

v

+α
−α

qdq

wq

(a) �(t)

wq3q3

wq2

wq1

q1

q2

v

(b)

β

b

v
a

β

a

b

v

(c)

Fig. 2. (a) A cone with respect to one neighbor q of v. (b) The intersection of all cones
with the planarity region (dashed) includes possible positions for the vertex v. (c) The
angle ∠avb is at least β for β > 90◦ (β < 90◦) if and only if v lies in the intersection
(union) of two discs (including its boundary, but excluding a and b).

300 T. Bläsius et al.

(for t > 0) results in the crossing angle cr-α(wq, q, v) = 0. Moreover, all points
in the plane that yield cr-α(wq, q, v) ≤ α lie in a cone, i.e., in the intersection
(union if α ≥ π/2) of two appropriately chosen half planes.

It follows, that v can be moved to a position with cost α if and only if the
intersection of all cones has a non-empty intersection with the planarity region
PR(v); see for example Fig. 2b. As v has at most dv dummy neighbors (recall
that dv is the degree of v), the intersections of all cones can be computed in
O(d2

v log dv) time using a sweep-line algorithm [15]. Let C be the resulting inter-
section of the cones. Testing whether C and PR(v) have non-empty intersection
can be done in O((nv + d2

v) log nv) time.

Lemma 1. Let v be a pure tail vertex and assume PR(v) has already been
computed. For any ε > 0, an absolute ε-approximation of the locally optimal
position can be computed in time O(log(1/ε)(nv + d2

v) log nv).

Placing a Pure Dummy Vertex. A pure dummy vertex v has only two active
crossing angles. Let N(v) = {a, p, b, q} be the neighbors of v so that (a, v, b) and
(p, v, q) are dissected pairs. Consider the angle β = ∠avb. By a generalization
of Thales’ Theorem, β does not change when moving v on a circular arc with
endpoints a and b. Thus, to make sure that β is at least π − α (i.e., to ensure
that cr-α(a, v, b) ≤ α), one has to place v in the intersection of two discs (union
if α > π/2); see Fig. 2c. These two disks must have a and b on their boundary
and basic geometry shows that their radii has to be |ab|/(2 sin(π − α)) (which
uniquely defines the two disks).

The same applies for ∠pvq. Thus, requiring both active crossing angles
cr-α(a, v, b) and cr-α(p, v, q) to be at most α restricts the possible positions of
the dummy vertex v either to the intersection of four disks, or to the intersection
of the union of two disks with the union of two other disks. The check whether
this intersection is empty requires time linear in the size of the planarity region.

Lemma 2. Let v be a pure dummy vertex and assume PR(v) has already been
computed. For any ε > 0, an absolute ε-approximation of the locally optimal
position can be computed in time O(log(1/ε)nv).

Placing a Hybrid Vertex. Let v be a dummy vertex with at least one dummy
neighbor. Combining the techniques from the two previous sections, we have to
check whether PR(v) has a non-empty intersection with the intersection of up to
four cones and up to four disks. This can again be done in linear time in the size
of the planarity region. We can thus conclude (for all three types of vertices)
with the following theorem.

Theorem 2. Let v be a vertex and assume PR(v) has already been computed.
For any ε > 0, an absolute ε-approximation of the locally optimal position can
be computed in time O(log(1/ε)(nv + d2

v) log nv).

How to Draw a Planarization 301

Overall Running Time. We have seen that the planarity region for a vertex v can
be computed in O(dvnv log nv) time (Theorem 1) and that a locally optimal posi-
tion can be approximated in O(log(1/ε)(nv + d2

v) log nv) time. In the following,
we assume that ε is a small constant and omit it from the running time.

As the degree dv of a vertex v is a lower bound for the size nv of its
surounding, the running time of computing the planarity region dominates
the time for computing the locally optimal position. Each iteration thus needs
O(

∑
v∈V dvnv log nv) time. Bounding vertex face degrees improve the running

time; see appendix.

Theorem 3. One iteration of Geometric Planarization Drawing takes
O(n3 log n) time.

4 Evaluation

We present an empirical evaluation of our planarization drawing methods. We
first discuss the remaining degrees of freedom in our Geometric Planarization
Drawing framework. Afterwards, we describe our experimental setup and the sta-
tistical tests we use for the evaluation. The first part of our evaluation focuses
on the quality of different configurations of our Geometric Planarization Draw-
ing approach. The second set of experiments focuses on the running time. The
first set of experiments has a limited time contingent and the second runs until
convergence limited by 100 iterations.

4.1 Degrees of Freedom in the Geometric Framework

As pointed out above, our algorithmic framework offers quite a number of degrees
of freedom and possibilities for tweaking the outcome of the algorithm.

Initial Drawing. Both, our geometric approach and our implementation of
ImPrEd, improve an initial drawing of a planarization. While in principle an
arbitrary planar straight-line drawing may be used for creating the initial draw-
ing, we restrict ourselves to algorithms implemented within OGDF1, which offers
two algorithms: TutteLayout [20] and PlanarStraightLayout [13]. The
former may generate drawings with exponentially bad resolution (creating prob-
lems with the floating point arithmetic). Hence, we cannot use these layouts as
initial drawing. To gain a broader set of initial drawings we applied 100 iterations
of the following two algorithms to the PlanarStraightLayout: (i) ImPrEd

without the forces to optimize the planarization, (ii) the Geometric Center

heuristic places every vertex in the geometric center of its planarity region. Due
to space constraints we only present the results with ImPrEd as initial drawing.
For these drawings we observe the worst initial crossing-angles but result in the
potentially best overall quality. The results for the other initial drawings.

1 The Open Graph Drawing Framework: ogdf.net.

http://www.ogdf.net

302 T. Bläsius et al.

Vertex Orders. We propose different orders for processing the vertices. An
Outer Shell is obtained by iteratively removing the vertices of the outer face.
An Inner Shell order is the reverse of an Outer Shell, and an Alternating

Shell order is obtained by alternating between the two orders.

Placement of Independent Vertices. For independent vertices, every position in
the planarity region is equally good since all crossing angles are inactive. To
reduce the restrictions imposed by independent vertices on their neighbors, we
suggest two placement strategies for them: Randomized Placement, which
puts v at a random position in PR(v), and Geometric Center, where v is
placed in the geometric center of PR(v).

Shrinking the Planarity Region. As mentioned before, a locally optimal position
for a vertex v may not exists as PR(v) is an open set; see Fig. 1b. Moreover, it
is visually unpleasant when vertices are placed too close to non-incident edges.
We thus shrink PR(v) as follows. Let DB be the length of the smallest side of
the planarity region’s bounding box and let Dv be the distance of v from the
boundary of PR(v). We offset by the minimum of μDB and Dv, where μ is a
parameter. In our experiments we used μ = 0.1. Note that shrinking by at most
Dv ensures that the previous position of v remains valid. Thus, we do not have
to move v to a worse position due to the shrinking.

Angle Relaxation. While the placement of the tail and hybrid vertices introduced
in Sect. 3.2 works independently from the vertex order, it is natural to require
that unplaced vertices (i.e., vertices that will be moved later in the same itera-
tion) should have a smaller influence on positioning decisions. When performing
the binary search in the cone construction, we replace the opening angle α of
the cones of unplaced vertices by (1 − γ)α + γπ, where γ ∈ [0, 1] is the angle
relaxation weight, thus widening their cone depending on the value of γ.

Configurations. The presented degrees of freedom allow for many different con-
figurations of our algorithm. Due to space constraints, we focus on the three
configurations shown in Table 1 (see Appendix for additional configurations).

Table 1. Configurations for our geometric graph drawing approach.

Configuration Vertex order Angle relax. weight

Alternating Shell Alternating-Shell 0.0

Shell Outer-Shell 0.0

Relax-1 Alternating-Shell 0.1

The drawing area is always limited by a box that is twice as large as the
bounding box of the initial drawing and use the Geometric Center heuristic
for independent vertices.

To allow a fair comparison between all algorithms, each algorithm gets
exactly 5n s to optimize the drawings. For experiments regarding the running

How to Draw a Planarization 303

Fig. 3. (a): Initial drawing, (b): Final drawing computed with the Shell configura-
tion (c) Drawing with the optional post processing step; see Appendix. Unfilled disks
represent dummies.

time, we measure the time until convergence limited by 100 iterations. Figure 3
shows an example, where our geometric algorithm finds a nearly optimal solu-
tion; also see Appendix.

4.2 Experimental Setup

For a set of graphs G we want to compare the quality of two sets of drawings
Γ1, Γ2 of these graphs. We use the crossing-angles to measure the quality of a
drawing. Aggregating the crossing-angles per graph yields a loss of information,
thus we compare the crossing-angles directly. Let D be the set of all dissected-
pairs in G and {cr-αi(u, v, w) | (u, v, w) ∈ D} the set of all crossing-angles in
drawing Γi, i = 1, 2. The drawings Γ1 have an advantage of Δ ∈ N0 over the
drawing Γ2 if for more then 50% of the dissected pairs (u, v, w) the inequality
cr-α1(u, v, w) + Δ < cr-α2(u, v, w) holds.

Further, we are interested in the smallest angle δ ∈ N0 such that the angles
in our drawings of a graph Gp are smaller then δ. We define a hypothetical
drawing called δ-drawing where each crossing angle is δ. For each algorithm, we
seek the smallest angle δ such that the resulting drawing has an advantage over
the δ-drawing.

To take the lengths of the planarization paths into account, we a priori define
three classes of instances: Low(L), Medium(M) and High(H). A planarization
belongs to L and to H if it is at most 4- and at least 9-planar, respectively.
Instances in the class M are k-planar with 4 < k < 9.

We ran the algorithms on 100 randomly selected non-planar Rome graphs2.
For each of them, we used the (single) non-planar biconnected component. There
are 68 graphs with in total 604 dummy vertices in L, 26 graphs with in total
959 dummy vertices in M, and 6 graphs with in total 443 dummy vertices in H.
We compare the crossing angles directly and do not aggregate them per graph.
Thus, we have 4012 samples in total (twice the number of dummy vertices). We
partitioned the set of samples into a training set, containing 20% of the samples,
and a verification set containing the remaining 80%.
2 graphdrawing.org/data.html.

http://www.graphdrawing.org/data.html

304 T. Bläsius et al.

We use OGDF3 to planarize the graphs [8] and to compute the initial
drawing [13]. We use the libraries CGAL

4 to compute line arrangements,
STALGO [10,11] to shrink polygons, and GMP5 to represent coordinates.

4.3 Statistical Test

Our evaluation focuses on the comparison of crossing angles in different draw-
ings of the same graph, e.g., the initial drawing vs. the final drawing of some
algorithm. Since the underlying distribution of the angles is unknown and not
likely to be, e.g., normal, the median and quantiles are not useful to compare
two drawings. Instead we use a binomial test, which compares two dependent
samples and is independent of the underlying distribution [17].

For each dissected pair (u, v, w) we compare the crossing angles cr-α1(u, v, w)
and cr-α2(u, v, w) generated by two different algorithms. The comparison
cr-α1(u, v, w) + Δ < cr-α2(u, v, w) yields a sequence of 0 s and 1 s. With the
binomial test we check whether 1 s occur significantly more often than 0 s at a
significance level of α = 0.05.

In order to formulate our hypothesis we compute the maximum Δ such that
the binomial test shows significance on the training set. In order to get a robust
and likely hypothesis we choose 3/4 · Δ as the conjectured value. Hypothesis
regarding the δ drawings conjecture that the angles are smaller then 4/3 · δ,
where δ was computed on the training set.

4.4 Quality of the Drawings

In this Section we discuss the quality of our drawings. The evaluation is guided
by the following hypotheses.

(I) Geometric Planarization Drawing approach and ImPrEd++ advantage of
at least 4◦ over the initial drawing.

(II) Geometric Planarization Drawing has an advantage of at least 6◦ over
ImPrEd++.

(III) In class H, Relax-1 has an advantage over Alternating-Shell (due to
the weakened influence of unplaced vertices).

We use Figs. 4 and 5a to show whether or not the binomial tests support our
hypotheses. A value Δ in a cell in Fig. 4 shows that the algorithm on the x-axis
has an hypothetical advantage of Δ over the algorithm on the y-axis. These
values are computed on the training set. A green cell means that we can accept
the hypothesis with a confidence of 95%. On the contrary, with a red cell we
have to reject the hypothesis. An empty cell, indicates that the algorithm did
not have an advantage on the training set.

3 ogdf.net.
4 cgal.org.
5 gmplib.org.

http://www.ogdf.net
http://www.cgal.org
http://www.gmplib.org

How to Draw a Planarization 305

Fig. 4. Advantage of each configuration (x-axis) compared to each configuration
(y-axis), factored by the classes L, M, and H.

For example, in the class H (see Fig. 4d), we conjecture, based on the obser-
vation in the training set, that the drawings of the Shell configuration have
an advantage of 9◦ over the drawings of ImPrEd++. Recall, that having an
advantage means that 50% of the crossing angles, plus an additional buffer of
9◦, of the first drawings are smaller then the crossing angles of the second. Since
the cell is green, the binomial test on the verification set says that we can accept
the hypothesis with a confidence of 95%.

By Fig. 5a, for class L we can say with 95% confidence that 50% of the
crossing angles of the Shell configuration are smaller then the crossing-angles
of a drawing where each crossing angle is 2◦. We now discuss our hypotheses.

Hypothesis (I) Advantage over the Initial drawing. The binomial tests support
this hypothesis for every configuration and for ImPrEd++; see Fig. 4. Note that
the advantage over the Initial drawing decreases with the length of the longest
planarization path in a drawing. The Figure indicates, that ImPrEd++ does
not have an advantage over the Initial drawing on long planarization paths.
Figure 4a indicates that there is support for the hypothesis when considering all
instances (not separated into classes).

Hypothesis (II) Advantage over ImPrEd++. Figure 4 shows that for Δ = 6 we
have can accept the hypothesis with high confidence for every configuration and
class.

Hypothesis (III) Angle relaxation helps with long planarization paths. Figure 4d
shows for instances of the class H that the Relax-1 configurations has a (small)
advantage. Figure 5a further shows that this configuration tends to produce
smaller crossing angle in instances of H in comparison to the other configu-
rations.

4.5 Running Time

We conclude the Section with a running time analysis. Table 2 shows a descrip-
tive evaluation of the running time of our Geometric Planarization Drawing
approach.

306 T. Bläsius et al.

Fig. 5. (a) The minimum δ for each configuration (x-axis) such that it has an advan-
tage over a δ-drawing, factored by the classes L, M, and H (y-axis). (b) Time until
convergence versus the δ-value. Symbol sizes indicate the classes L, M, and H. Note:
the δ-values of both figures are not coincident due to different experimental setups.
The setup for the quality assessment does not allow a running time analysis.

Table 2. Running time measurements for each configuration.

Configuration Time per iteration # iterations Total time

L M H L M H L M H
Alternating

Shell

8.3 s 15.0 s 24.8 s 20.2 82.4 93.0 2.9 min 20.6 min 39.6 min

Shell 8.1 s 18.0 s 25.1 s 5.5 22.4 66.6 0.7 min 6.4 min 28.4 min

Relax-1 8.2 s 20.3 s 33.5 s 59.8 100.0 100.0 9.5 min 33.6 min 55.3 min

Running Time vs. Quality. We use the δ-values to compare the quality of the
drawings with respect to the running time. Each point in Fig. 5b represents final
drawings of a different configuration, divided into the introduced classes. The
figure compares the average running time required to compute the final drawing
against the smallest δ computed with the introduced methodology; all δ-value
can be accepted with high confidence. For class L the configuration the (Alter-

nating) Shell configurations have small angles and require only few minutes
to finish. With increasing complexity of the drawings the relevance of the angle
relaxation increases. For class M the Alternating Shell configuration has
the smallest δ-value but is slower then the Shell configuration. For drawings
of class H, there is no clear dominance. In class H the Relax-1 configuration
yields the best results but the Shell configuration requires less time. We suggest
to use the Shell configuration for less complex drawings and when computing
time is relevant and for drawings with increasing complexity the Relax-1 con-
figuration.

5 Conclusion

We presented two approaches for drawing planarizations such that the edges of
the original (non-planar) graph are as straight as possible. Our experiments show
that the Geometric Planarization Drawing approach has an significant advantage

How to Draw a Planarization 307

over our adaption of the force-directed algorithm ImPrEd. For instances with
short planarization paths, we get very good crossing angles. Even though the
crossing angles are worse for instances with longer planarization paths, our Geo-
metric Planarization Drawing approach still significantly improves the angles
of the initial drawing. Concerning future research, it would be interesting to
investigate the effect of different initial drawings and to see how our geometric
approach in Sect. 3 performs when additional optimization criteria such as the
angular resolution are incorporated.

References

1. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: The maximum
number of halving lines and the rectilinear crossing number of kn for n ≤ 27.
Electron. Notes Discrete Math. 30, 261–266 (2008)

2. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings
and planarization. In: Handbook of Graph Drawing and Visualization, pp. 43–85.
Chapman and Hall/CRC (2013)

3. Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in
the plane with a prescribed outer face and polynomial area. J. Graph Alg. Appl.
16(2), 243–259 (2012)

4. Didimo, W., Liotta, G., Romeo, S.A.: Topology-driven force-directed algorithms.
In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-18469-7 15

5. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph
layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–
241. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00219-9 22

6. Feng, Q.-W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In:
Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer,
Heidelberg (1995). doi:10.1007/BFb0030816

7. Grilli, L., Hong, S.-H., Kratochv́ıl, J., Rutter, I.: Drawing simultaneously embedded
graphs with few bends. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol.
8871, pp. 40–51. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45803-7 4

8. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph.
Algorithmica 41(4), 289–308 (2005)

9. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs.
In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol.
7434, pp. 335–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32241-9 29

10. Huber, S., Held, M.: Motorcycle graphs: stochastic properties motivate an efficient
yet simple implementation. J. Exper. Algo. 16, 1–3 (2011)

11. Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motor-
cycle graphs. Int. J. Comput. Geom. Appl. 22(05), 471–498 (2012)

12. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT
Num. Math. 27(4), 458–473 (1987)

13. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

14. Mnev, N.E.: The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.)
Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer,
Heidelberg (1988). doi:10.1007/BFb0082792

http://dx.doi.org/10.1007/978-3-642-18469-7_15
http://dx.doi.org/10.1007/978-3-642-00219-9_22
http://dx.doi.org/10.1007/BFb0030816
http://dx.doi.org/10.1007/978-3-662-45803-7_4
http://dx.doi.org/10.1007/978-3-642-32241-9_29
http://dx.doi.org/10.1007/BFb0082792

308 T. Bläsius et al.

15. Nievergelt, J., Preparata, F.P.: Plane-sweep algorithms for intersecting geometric
figures. Commun. ACM 25(10), 739–747 (1982)

16. Schaefer, M.: Complexity of some geometric and topological problems. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11805-0 32

17. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman and Hall/CRC (2003)

18. Simonetto, P., Archambault, D., Auber, D., Bourqui, R.: ImPrEd: an improved
force-directed algorithm that prevents nodes from crossing edges. Comput. Graph.
Forum (EuroVis 2011) 30(3), 1071–1080 (2011)

19. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

20. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. s3–13(1), 743–767
(1963)

http://dx.doi.org/10.1007/978-3-642-11805-0_32

	How to Draw a Planarization
	1 Introduction
	2 Preliminaries
	3 Geometric Planarization Drawing
	3.1 Planarity Region
	3.2 Finding a Locally Optimal Position

	4 Evaluation
	4.1 Degrees of Freedom in the Geometric Framework
	4.2 Experimental Setup
	4.3 Statistical Test
	4.4 Quality of the Drawings
	4.5 Running Time

	5 Conclusion
	References

