
Reoptimization Times of Evolutionary Algorithms on
Linear Functions Under Dynamic Uniform Constraints

Feng Shi

Central South University

School of Inf. Sc. and Engineering

Changsha, China

Martin Schirneck

Hasso Pla�ner Institute

Potsdam, Germany

Tobias Friedrich

Hasso Pla�ner Institute

Potsdam, Germany

Timo Kötzing

Hasso Pla�ner Institute

Potsdam, Germany

Frank Neumann

�e University of Adelaide

School of Computer Science

Adelaide, Australia

ABSTRACT
�e investigations of linear pseudo-Boolean functions play a central

role in the area of runtime analysis of evolutionary computing

techniques. Having an additional linear constraint on a linear

function is equivalent to the NP-hard knapsack problem and special

problem classes thereof have been investigated in recent works.

In this paper, we extend these studies to problems with dynamic

constraints and investigate the runtime of di�erent evolutionary

algorithms to recompute an optimal solution when the constraint

bound changes by a certain amount. We study the classical (1+1) EA
and population-based algorithms and show that they recompute

an optimal solution very e�ciently. Furthermore, we show that a

variant of the (1+(λ, λ)) GA can recompute the optimal solution

more e�ciently in some cases.

CCS CONCEPTS
•Mathematics of computing → Evolutionary algorithms;
•�eory of computation→ Random search heuristics; •General
and reference→ General conference proceedings;

KEYWORDS
runtime analysis, reoptimization time, dynamic constraint, uniform

constraint, evolutionary algorithm

1 INTRODUCTION
Rigorous runtime analysis has contributed signi�cantly to the the-

oretical understanding of evolutionary computing techniques over

the last 20 years [1, 8, 15]. In this area of research the class of linear

pseudo-Boolean functions plays a crucial role. �e simplest linear

function OneMax has been the subject of the �rst runtime analysis

of the classical (1+1) EA [13]. Since then various proof techniques

have been developed for the analysis of the (1+1) EA on the class

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4920-8/17/07. . .$15.00

DOI: http://dx.doi.org/10.1145/3071178.3071270

of all linear functions. Besides inferring the asymptotic runtime we

also gained an understanding of the internal mechanisms leading

to the famous Θ(n logn) bound [5]. More detailed studies pushed

the insights into the optimization process even further and revealed

the leading constants [4, 10, 16].

We investigate the optimization of linear functions for which the

collection of feasible solutions is subject to additional constraints.

�emost general se�ing of linear functions under linear constraints

is known to be equivalent to the classical NP-hard knapsack prob-

lem [9]. �e (1+1) EA takes exponential time to solve the knap-

sack problem, even on instances that are optimizable using simple

greedy heuristics [17]. �erefore, we consider a subclass of uniform

constraints restricting the Hamming weight of a feasible solution.

Recent investigations have considered uniform constraints in a

static se�ing, where a �xed bound B on the number of 1-bits is

given [7]. We extend these studies to a dynamic change of con-

straints from B to some new value B∗. Our goal is to analyze the

number of generations needed by an evolutionary algorithm to

reoptimize an optimal solution of weight B to an optimal solution

observing the new bound B∗. We give bounds on the reoptimization

times depending on the problem size n, the order of the constraints
B and B∗ as well as the extent of the change D = |B∗ − B |.

In this work we compare the runtime of several nature-inspired

algorithms on both OneMax and general linear pro�t functions.

Our �ndings are summarized in Table 1. We start with the classical

(1+1) EA. It can reoptimize OneMax quickly. However, the elitist

selection and single-objective �tness makes it impossible to �nd

a direct improvement on a general linear objective once the cardi-

nality bound B∗ has been reached. �is requires the algorithm to

“swap” certain bits and causes a super-quadratic runtime.

Various constraint handling methods for evolutionary comput-

ing techniques have been discussed in the literature (see the survey

[12]). �e runtime analysis of evolutionary algorithms for prob-

lems with constraints such as minimum spanning trees or min-

imum vertex covers shows that signi�cant be�er upper bounds

can be achieved by considering the constraints as an additional

objective [6, 11, 14]. We investigate population-based EAs which

store individuals with respect to di�erent values/violations of the

constraint function. Our multi-objective evolutionary algorithm

(MOEA) maintains a population of candidate solutions, one for

each Hamming weight between B and B∗. �e MOEA avoids the

necessity of a swap but, in turn, the size of the population slows

1407

GECCO ’17, July 15-19, 2017, Berlin, Germany Shi et al.

down the optimization process. An improved variant of the MOEA,

the Multi-Objective Evolutionary Algorithm with single bit �ip

(MOEA-S), tackles the problem of a large population size. It is able

to emulate the swapping move with only two individuals.

Finally, we examine the performance of an adaption of the

(1+(λ, λ)) GA [3]. As opposed to many other GAs, it does not

use crossover to recombine good parts of candidate solutions but

instead to repair malicious mutations. It has been shown, using

an adaptive parameter se�ing, that the (1+(λ, λ)) GA can optimize

OneMax in linear time [2]. We use a variant of this algorithm,

called the Multi-Objective Genetic Algorithm (MOGA), to prove

that forOneMax, a reoptimization timewith sub-linear dependence

on n is possible when the change D = |B∗ − B | is a constant.
�e rest of the paper is structured as follows. Section 2 introduces

related de�nitions and the four algorithms. A detailed analysis of

the (1+1) EA, MOEA (and its variant MOEA-S), and MOGA are

given in Sections 3 through 5, respectively. We use Section 6 to

conclude this work.

2 PRELIMINARIES
2.1 General Setting
We analyze the behavior of several evolutionary computation tech-

niques on the search space {0, 1}n of all bit strings with �xed

length n. �e objective is given as a linear function. �at is, for

a sequence (wi)1≤i≤n of positive real weights, let the pro�t of a
search point x = x1x2 . . . xn be de�ned as

P (x) =
n∑
i=1

wi xi .

W.l.o.g. the weights are not smaller than 1. We usewmax = maxi wi
to denote the maximum weight. �e simplest pro�t function is

OneMax(x) =
∑n
i=1 xi . We would like to point out that we distin-

guish between the pro�t and the �tness of an individual. �e la�er

is an implementation detail of the algorithm in question while the

general aim is to maximize the former (cf. Section 2.2).

�e constrained aspect of the optimization is modeled by declar-

ing a subset of the search space as the feasible region and disregard

infeasible search points as solutions to the optimization problem,

even if their pro�t would be higher than that of any feasible point.

An optimal solution is then a feasible bit string of maximum pro�t.

We content ourselves with restricting the number of 1-bits in a

feasible solution. It has been shown that the more general class

of “linear constraints” leads to exponential runtimes for many EAs

even on simple problems [7, 17]. Let |x |1 denote the Hamming
weight of x , that is, the number of 1-bits in x , and |x |0 = n− |x |1 the
number of 0-bits in x . Further, let the cardinality bound 0 ≤ B ≤ n
be a non-negative integer. In summary, we consider the following

general optimization problem,

max P (x)

s.t. |x |1 ≤ B.

We are not primarily interested in the time a given EA needs to

solve this problem. Instead, we �x a second integer 0 ≤ B∗ ≤ n
and investigate the number of generations the algorithm needs to

sample an optimal solution to the problem with the new cardinality

bound B∗ for the �rst time, starting from an optimal solution xorg

to the original problem. We refer to this se�ing as pro�t function P
being under dynamic uniform constraint. �e number of generations

needed is called the reoptimization time and symbol T is used to

denote this random variable. Its expectation E[T] (over the random
decisions of the algorithm) is the expected reoptimization time.

In our analysis we distinguish four cases depending on the type

of pro�t P and the relation of the two bounds B and B∗. �e pro�t

function can either be equal toOneMax or a general linear function.

Independently, B∗ can either be larger or smaller than B; the case
B = B∗ is trivial. Not surprisingly, the reoptimization time depends

on the absolute distance of B and B∗. To ease notation we let

D = |B∗ − B | denote this distance. Observe that D is then a positive

integer not larger than n.

2.2 Algorithms
We consider four nature-inspired algorithms, namely, the (1+1) Evo-
lutionary Algorithm, the Multi-Objective Evolutionary Algorithm,

the MOEA with single bit �ip and the Multi-Objective Genetic Al-

gorithm. All these methods employ their own �tness function for

the optimization, re�ecting di�erent ways to handle the constraint.

Algorithm 1: (1+1) EA
1 x ← xorg;

2 while stopping criterion not met do
3 y ← �ip each bit of x independently w/ probability 1/n;

4 if f(1+1) (y) ≥ f(1+1) (x) then
5 x ← y;

For the (1+1) EA (Algorithm 1) we use the notion of �tness that

has been suggested by Friedrich et al. in [7]. �e single-objective

�tness function f(1+1) , on bit strings x ∈ {0, 1}n , is de�ned as

f(1+1) (x) = P (x) − (nwmax + 1) ·max {0, |x |1 − B
∗}.

�is choice has two immediate consequences. �e large penalty

term scales with the extent of the constraint violation and thus

guides the search towards the feasible region (given by B∗). Also,
once the algorithm samples the �rst feasible solution, its elitist

selection bars it from adopting an infeasible search point ever again.

�e two variants of the Multi-Objective Evolutionary Algorithm

use a vector-valued �tness function by combining the Hamming

weight and the pro�t of a solution, fMOEA (x) = (|x |1, P (x)). We say

that a solution y dominates another solution z w.r.t. fMOEA, wri�en

y <MOEA z, if |y |1 = |z |1 while P (y) ≥ P (z). �is declares a partial

ordering on {0, 1}n in which two strings are comparable if and only

if they have the same number of 1-bits. We let y �MOEA z stand
for y <MOEA z ∧ P (y) , P (z).

�e idea of the MOEA (Algorithm 2) is to maintain a set S of

incomparable individuals, one for each Hamming weight between

B and B∗. �e population is initialized with an optimal solution xorg
having exactly B 1-bits. If standard bit mutation applied to a random

member of S results in an admissible o�spring y, the algorithm

checks whether it is already dominated by another individual in

S . If not, y is included and all solutions that are dominated by the

new string (excluding y itself, of course) are discarded. Note that

set S can grow up to size |B∗ − B | + 1 = D + 1.

1408

Reoptimization Times Under Dynamic Uniform Constraints GECCO ’17, July 15-19, 2017, Berlin, Germany

Pro�t Function (1+1) EA MOEA MOEA-S MOGA

OneMax

O

(
n log

(
n−B
n−B∗

))
O

(
nD log

(
n−B
n−B∗

))
O

(
n log

(
n−B
n−B∗

))
O

(
√
nD

3

2

)
if B < B∗

O

(
n log

(
B
B∗

))
O

(
nD log

(
B
B∗

))
O

(
n log

(
B
B∗

))
O

(
√
nD

3

2

)
if B > B∗

linear function O(n2 log (B∗wmax)) O(nD2) O(n logD) O(nD2)

Table 1: Overview of Results. Upper bounds on the expected reoptimization times of the (1+1) EA, the Multi-Objective Evolutionary Algorithm (MOEA),

its variant with single bit �ip (MOEA-S) and the Multi-Objective Genetic Algorithm (MOGA) on linear functions of length-n bit strings under dynamic

uniform constraint. B denotes the old and B∗ the new cardinality bound, D = |B∗ − B | their di�erence. Runtimes of the form O(n log(B/B∗)) are to be read

as O(n log B), if B∗ = 0. For comparison, the (1+1) EA needs Ω(n) iterations to optimize OneMax under uniform constraint from scratch in the static se�ing

(if B is not too close to 0, n or n/2) and Ω(n2) for general linear pro�t functions [7].

Algorithm 2: MOEA; Assuming B ≤ B∗.

1 S ← {xorg};

2 while stopping criterion not met do
3 Choose x ∈ S uniformly at random;

4 y ← �ip each bit of x independently w/ probability 1/n;

5 if (B∗≥ |y |1≥B) ∧ (@w ∈ S : w <MOEA y) then
6 S ← (S ∪ {y}) \ {z ∈ S | y �MOEA z};

Algorithm 3: MOEA-S; Assuming B ≤ B∗.

1 S ← {xorg};

2 while stopping criterion not met do
3 Choose x ∈ S uniformly at random;

4 y ← �ip bit xi with i ∈ {0, . . . ,n} chosen u.a.r.;

5 if ∀z ∈ S : y ‖MOEA−S z then
6 S ← S ∪ {y}

7 if (B∗ ≥ |y |1 ≥ B) ∧ (∃z ∈ S : y <MOEA-S z) then
8 z ← y;

�e MOEA and its MOEA-S variant (Algorithm 3) have two

major di�erences. �e la�er uses the single-bit �ip operator usually

employed in Random Local Search (RLS). �e other distinction is

the notion of dominance, wri�en<MOEA−S, although both variants

use the same �tness function. If B ≤ B∗, bit strings y, z ∈ {0, 1}n ,
for which at most one value |y |1, |z |1 equals B∗ or B∗−1, are ordered
lexicographically,

y <MOEA−S z ⇔ (|y |1 ≥ |z |1) ∨ (|y |1 = |z |1 ∧ P (y) ≥ P (z)). (1)

If both |y |1, |z |1 ∈ {B
∗,B∗ − 1}, we put

y <MOEA−S z ⇔ |y |1 = |z |1 ∧ P (y) ≥ P (z).

As a result, two strings are incomparable, wri�en y ‖MOEA−S z, i�
|y |1 = B∗ and |z |1 = B∗ − 1 or vice versa. If B > B∗, we only switch

the dependency on the number of 1-bits in (1) to |y |1 ≤ |z |1. Again,
the population S of the MOEA-S collects incomparable solutions

during the optimization, but now can have at most 2 elements.

�e MOGA (Algorithm 4) is a multi-objective adaption of the

(1+(λ, λ)) GA [3]. Every iteration of the MOGA has three phases.

During the mutation phase the algorithm �rst draws a search point

x ∈ S u.a.r. and a number ` according to the binomial distribution

Bin(n,p) with parameters n and the mutation probability p. �en, λ
o�springs are generated by the mutation operator mutate` which

�ips exactly ` bits chosen u.a.r. �is means, the o�spring of x are

λ `-Hamming neighbors chosen uniformly. We call an o�spring

of x valid if |x |1 ≤ B∗ and at least one 0-bit was �ipped in the

creation, or |x |1 ≥ B∗ and at least one 1-bit �ipped. At the end of

the mutation phase the algorithm chooses a valid o�spring x ′ for
further processing, if there is any; otherwise, x ′ = x . �e crossover

phase recombines parent string x with its o�spring x ′. For some

�xed crossover probability c , the crossc (x ,x ′) operator creates a bit
string by choosing, in every position 1 ≤ i ≤ n, x ′i with probability

c and xi otherwise. �is crossover is tried λ times. To rank the

generated bit strings, we use the same notion of dominance as

the MOEA, i.e., y <MOEA z ⇔ |y |1 = |z |1 ∧ P (y) ≥ P (z). (Note
that this is di�erent from the one used in the MOEA-S.) Hence,

there is at most one <MOEA-maximal recombined individual that

has Hamming weight exactly one larger than x . �e result of the

crossover phase is this string, denoted y′, if it exists; otherwise,
y′ = x . In the selection phase the algorithm checks whether y′

meets the cardinality constraint and is not dominated by a solution

previously in S . If this test is successful, the population is updated

in the usual way.

3 ANALYSIS OF THE (1+1) EA
Theorem 3.1. �e expected reoptimization time of the (1+1) EA

on OneMax under dynamic uniform constraint is

E[T] =



O

(
n log

(
n−B
n−B∗

))
, if B < B∗;

O

(
n log

(
B
B∗

))
, if B > B∗.

Theorem 3.2. �e expected reoptimization time of the (1+1) EA
on a linear pro�t function under dynamic uniform constraint is
O(n2 log(B∗wmax)).

Due to limited space we omit the proofs of the theorems above and

only give the high-level ideas here. �e behavior of the (1+1) EA on

1409

GECCO ’17, July 15-19, 2017, Berlin, Germany Shi et al.

Algorithm 4: MOGA; Assuming B ≤ B∗. Concept from [3].

1 S ← {xorg};

2 while stopping criterion not met do
/* Mutation phase. */

3 Choose x ∈ S uniformly at random;

4 Choose ` according to Bin(n,p);

5 for i = 1 to λ do
6 x (i) ← mutate` (x);

7 V = {x (i) | x (i) is valid};

8 if V , ∅ then
9 Choose x ′ ∈ V uniformly at random;

10 else x ′ ← x ;

/* Crossover phase. */

11 for i = 1 to λ do
12 y (i) ← crossc (x ,x

′);

13 M = {y (i) | y (i) is <MOEA-maximal ∧ |y (i) |1 = |x |1 + 1};

14 if M = {y} then
15 y′ ← y;

16 else y′ ← x ;

/* Selection phase. */

17 if (B∗ ≥ |y′ |1 ≥ B) ∧ (@w ∈ S : w <MOEA y′) then
18 S ← (S ∪ {y′}) \ {z ∈ S | y′ �MOEA z};

linear functions has been examined in literature, see e.g. [5, 8, 15].

A detailed discussion focussing on constrained problems can be

found in [7] and [17].

First, consider OneMax under dynamic uniform constraint. It

is convenient for the analysis to use di�erent potential functions

depending on whether the current bit string maintained by the

(1+1) EA is feasible or not. In the former case we use |x |1, and
|x |0 in the la�er. It is straightforward to show that in the infea-

sible region the expected dri� is Ω(|x |1/n), and Ω(|x |0/n) when
feasible. If B ≤ B∗, the initial solution xorg is feasible and the

Multiplicative Dri� �eorem [4] gives an expected number of

O(n log(|xorg |0/|x
∗ |0)) generations to reach any optimal solution

x∗ to the new problem with bound B∗. If B > B∗, the reasoning is
similar but with the optimization starting in the infeasible region.

�e �rst feasible solution sampled by the (1+1) EA might itself

not be optimal; however, the number of additional iterations until

optimality is immaterial.

In the general case the main di�culties arise once the (1+1) EA
reaches a non-optimal solution x with |x |1 = B∗. Now �ipping

a single 0-bit cannot improve on the �tness of x as the resulting

o�spring would be infeasible. Hence, the algorithm has to “swap”

a 1 for a 0 of higher weight in a single mutation, accounting for the

super-quadratic runtime.

4 ANALYSIS OF THE MOEA VARIANTS
In this section we analyze the Multi-Objective Evolutionary Algo-

rithm and its single bit �ip variant. �e MOEA aims at overcoming

the limitation of the (1+1) EA by maintaining a pool of candidate

solutions that so�ens the in�uence of the cardinality bound B∗. On
the other hand, the size of the population S can slow down the

optimization process.

Theorem 4.1. �e expected reoptimization time of the MOEA on
OneMax under dynamic uniform constraint is

E[T] =



O

(
nD log

(
n−B
n−B∗

))
, if B < B∗;

O

(
nD log

(
B
B∗

))
, if B > B∗.

Proof. First, assume B < B∗. In order to employ dri� analysis,

we de�ne the potential of theMOEA asM = minx ∈S |x |0. �is value

decreases as the maximum pro�t of solutions in S is maximized.

Recall that the cardinality of populations S can reach D + 1.
LetM ′ denote the potential a�er one iteration, starting from M .

By choosing the member of S with the minimum number of 0-bits,

M , �ipping one of them and nothing else, we get an expected dri�

of at least

E[M −M ′ | M] ≥
1

|S |

M

n

(
1 −

1

n

)n−1
≥

M

en (D + 1)
.

�e Multiplicative Dri� �eorem [4] now implies an expected run-

time of O(nD log((n − B)/(n − B∗))) iterations until the initial po-
tential of |xorg |0 = n − B is reduced down to n − B∗.

For B > B∗ the reasoning is the same but with potential M =
maxx ∈S |x |1 and the roles of 1-bits and 0-bits inverted. �

While the reoptimization time on OneMax under dynamic uni-

form constraint su�ers from the potentially large population of the

MOEA, the next theorem shows that the algorithm can speed up

the reoptimization on general linear pro�t functions signi�cantly

when D is small.

Theorem 4.2. �e expected reoptimization time of the MOEA on
a linear pro�t function under dynamic uniform constraint is O(nD2).

Proof. We only prove the case B < B∗, the other one is symmet-

ric. For every integer B ≤ u < B∗, let x (u) = argmax |x |1=u P (x)
be a solution of maximum pro�t among all solutions with Ham-

ming weight u. Suppose x (u) ∈ S , then choosing x (u) for mutation

and �ipping exactly one 0-bit of maximum weight creates solu-

tion x (u+1) , optimal among all solutions with u + 1 1-bits, within
an expected number of en (D + 1) generations. Observe that nei-

ther x (u) nor x (u+1) ever get deleted from S as they are maximal

w.r.t. <MOEA. Summing over the waiting times for all x (u+1) , start-

ing from the initial solution xorg = x (B) ∈ S , gives the claimed

bound. �

�e population size of the MOEA-S variant is bounded by a

constant in order to avoid long waiting times until a certain candi-

date solution is chosen for mutation. In the following lemma we

investigate the structure of the solutions in S .

Lemma 4.3. While no solution of Hamming weight B∗ − 1 (B∗, if
B > B∗) has been sampled by the MOEA-S, the population size is 1.
If the population has two members, their Hamming distance is 1.

Proof. For the �rst part, recall that the population is initialized

with a single bit string xorg. While the Hamming weight of this
solution is between B and B∗ − 1 (B∗, if B > B∗), a mutation is

1410

Reoptimization Times Under Dynamic Uniform Constraints GECCO ’17, July 15-19, 2017, Berlin, Germany

accepted if it �ips a 0-bit (1-bit). By the de�nition of the dominance

relation <MOEA−S, the o�spring replaces its parent. �e condition

in line 5 of Algorithm 3 is not met prior to S consisting of a single

solution of weight B∗ − 1 and another 0 �ipping (B∗ and a 1-bit �ip).
For the second part, consider the iteration inwhich said condition

is ful�lled. Due to the RLS operator the initial two incomparable

solutions have Hamming distance 1. May the di�erence be at posi-

tion 1 ≤ i ≤ n. Let z denote the solution with the larger number of

1-bits and y the one with fewer 1s. Necessarily, zi = 1 and yi = 0.

Flipping a 0 in z or a 1 iny is always discarded. Either it violates the

upper bound of B∗ (lower bound of B∗−1) in line 7 of the algorithm

or it creates an o�spring that is already dominated. A �ip at position

i transforms the two solutions into each other. �erefore, the only

possible way to update z is to �ip a 0-bit in y at index j , i . Note
that the resulting o�spring y′ now has Hamming weight one larger

than y and is supposed to replace z (if it yields at least the same

pro�t). String y′ looks almost the same as z, the only di�erence is

that zi = 1 and zj = 0 are now swapped. Similarly, y can only be

updated by �ipping a 1-bit at position j in z and thus switching the

yi = 0 and yj = 1. Both updates preserve the distance. �

Theorem 4.4. �e expected reoptimization time of the MOEA-S

on OneMax under dynamic uniform constraint is

E[T] =



O

(
n log

(
n−B
n−B∗

))
, if B < B∗;

O

(
n log

(
B
B∗

))
, if B > B∗.

Proof. �e proof is immediate from the observation that the

MOEA-S behaves like RLS on OneMax, see Lemma 4.3. �e run-

times di�er from those in�eorem 3.1 only by a constant factor. �

Theorem 4.5. �e expected reoptimization time of theMOEA-S

on a linear pro�t function under dynamic uniform constraint is
O(n logD).

Proof. W.l.o.g. the weights of the pro�t function P are ordered

monotonically non-increasing, i.e., wmax = w1 ≥ w2 ≥ · · · ≥ wn .

�us, the initial solution is xorg = 1
B
0
n−B

. We pessimistically

assume that the target optimum is also unique and equals 1
B∗
0
n−B∗

,

i.e., wB∗ > wB∗+1. For x ∈ {0, 1}
n
and indices 1 ≤ k ≤ l ≤ n, let

x
[k,l] = xkxk+1 . . . xl stand for the substring of x from position

k to l , including. We call x
[1,B∗] the �rst block and x

[B∗+1,n] the

second block of x .
We start the analysis at the �rst point in time at which set S

contains two search points. We claim that Algorithm 3 then needs

O(n logD) rounds in expectation to optimize the solution with

Hamming weight B∗. �is is indeed enough to establish the result

since �eorem 4.4 implies that the starting point |S | = 2 can be

reached in an initial phase of O (n logD) iterations.
It remains to prove the claim. First, suppose B < B∗. Lety denote

the member of S with Hamming weight B∗ − 1 and z the one with
Hamming weight B∗. We de�ne the potential of the MOEA-S to be

M = 2B∗ − 1 − |y
[1,B∗] |1 − |z[1,B∗] |1.

Intuitively, it measures the number of missing 1-bits in the �rst

block of the target solution z, but also considers the state of y. It is
easy to see that the potential is non-negative and thatM = 0 implies

|z
[1,B∗] |1 = B∗, that is, optimality. Conversely, when the MOEA-S

samples an optimal solution for the �rst time, the potential drops

to 0. To prove this, recall that z can only be updated by �ipping a

0-bit in y, a�erwards the two solutions di�er exactly in the position

i of the previous �ip (Lemma 4.3). If i > B∗, there is a bit set to 1 in

the second block z
[B∗+1,n], a contradiction to the optimality of z.

Hence, i ≤ B∗ and B∗ − 1 = |y
[1,B∗] |1 < |z[1,B∗] |1 = B∗, as desired.

We now examine the update behavior of the solutions in S w.r.t.

potential M . To this end, we only need to consider the cases in

which the position i of the defect and the �ipping position j are in
di�erent blocks. Suppose i ≤ B∗ < j, thus wi > w j . Flipping a 0

in z would be discarded; however, �ipping zj = 1 is the same as

trying to swap a 1 into the �rst block of y. �is is accepted since

the weight di�erence ensures a pro�t gain P (z′) > P (y). �e swap

decreases the potential by 1. If string y were to be mutated, a 0

needs to be �ipped. But this means swapping a 0 into the �rst

block of z and would be discarded for reducing the pro�t. �e case

j ≤ B∗ < i is symmetric, usingw j > wi .

We get from this analysis that the potential M cannot increase

during the optimization. Also, in the worst case all the 1-bits that

were added while S still was a singleton, fell in the second block.

Hence, the number of 1s in the �rst block did not change from

the initial point xorg and we get M ≤ 2B∗ − 1 − 2B = 2D − 1. We

now compute the expected dri� ofM towards 0. Let p denote the

probability that in the current round the position in which y and

z di�er is in the �rst block, this corresponds to i ≤ B∗. If so, the
potential is decreased by 1 if z is selected for mutation and a 1-bit

in its second block is �ipped, there are |z
[B∗+1,n] |1 = B∗ − |z

[1,B∗] |1
many of them. If i > B∗, the potential is decreased once one of

the B∗ − |y
[1,B∗] |1 0-bits in the �rst block of y �ips. Pu�ing it all

together yields

E[M −M ′ | M] = p
B∗ − |z

[1,B∗] |1

2n
+ (1 − p)

B∗ − |y
[1,B∗] |1

2n
≥

M

4n
.

An application of the Multiplicative Dri� �eorem [4] proves the

claimed bound of O(n logD) for B < B∗.
For B > B∗, the reasoning is almost the same. Only that now

the number of 1-bits does decrease during the reoptimization. In

the worst case all deleted 1s are in the �rst block of length B∗. To
reach solution z with Hamming weight B∗, D successful �ips are

necessary; for solutiony with |y | = B∗−1,D+1 are necessary. �us,

the initial potential isM ≤ 2B∗ − 1− (B∗ −D − 1) − (B∗ −D) = 2D.
Once we have reached the two solutions S = {y, z}, the behavior is
identical. �

5 ANALYSIS OF THE MOGA
�e MOGA runs in a similar way to the MOEA, by constructing

the solution of maximum pro�t among all solutions with Hamming

weight B + i + 1 based on the solution of maximum pro�t among all

solutions with Hamming weight B+i for 0 ≤ i ≤ D−1 successively
(if B < B∗), to get the optimal solution with Hamming weight B∗.
�e major di�erence between the two algorithms is the operation

to construct the solution with Hamming weight B + i + 1 based

on the solution with Hamming weight B + i . �e MOEA uses the

standard mutation operator �ipping each bit with probability 1/n.
�e MOGA incorporates the idea of the (1+(λ, λ)) GA, using the

operations mutate` () and crossc (,) [3], to speed up the process

1411

GECCO ’17, July 15-19, 2017, Berlin, Germany Shi et al.

to get the solution of maximum pro�t among all solutions with

Hamming weight B + i + 1.
From the MOGA (given in Algorithm 4) and the de�nition of the

dominance <MOEA, we can get that the size of the population S is

bounded by D + 1. We will use this upper bound on the population

size for our analysis.

5.1 OneMax with Dynamic Uniform Constraint
We start by analyzing MOGA on OneMax with a dynamic uni-

form constraint and lower bound the probability of achieving an

improvement by a constant if the parameters are set in the right

way.

Lemma 5.1. Starting with a solution x of OneMax under dynamic
uniform constraint with Hamming weight A < B∗, the probability of
an iteration of the while-loop in the MOGA to get a solution y∗ with
Hamming weight A + 1 is greater than a constant C > 0, if p = λ

n ,
c = 1

λ , and λ =
√
n/(n − |x |1).

Proof. In the following discussion, we �rst analyze the proba-

bility without considering the parameter se�ing.

To get a solutiony∗ with Hamming weightA+1, it is a necessary
condition that the solution x∗ obtained by the mutation phase is

a valid o�spring of x , that is, there is an index j (1 ≤ j ≤ n)
such that x∗j = 1 and x j = 0. �e probability that the o�spring

x ′ = mutate` (x) of x is not a valid o�spring of x , is

`−1∏
t=0

|x |1 − t

n
.

�us the probability that none of the λ o�spring is a valid o�-

spring of x is

*.
,

`−1∏
t=0

|x |1 − t

n
+/
-

λ

≤

(
|x |1
n

)`λ
,

and the probability that x∗ is a valid o�spring of x , is at least

1 −

(
|x |1
n

)`λ
.

Assume that the solution x∗ obtained by the mutation phase is

a valid solution of x . �us for y (i) = crossc (x ,x
∗), the probability

that |y (i) |1 = |x |1 + 1 is at least c (1 − c)`−1, indicating that the

probability |y∗ |1 = |x |1 + 1 is at least

1 −
(
1 − c (1 − c)`−1

)λ
.

By the analysis above, we have that the probability of an iteration

of the while-loop to get a solution y∗ with Hamming weight A + 1
is at least

*
,
1 −

(
|x |1
n

)`λ
+
-

(
1 −

(
1 − c (1 − c)`−1

)λ)
.

Now we incorporate the parameter se�ing into the analysis

of the probability. Denote by L the random variable sampled by

Bin(n,p), and denote by K the success to get a solution y∗ with
Hamming weight A + 1. �en we have

Pr [K] ≥

b3λ/2c∑
`= dλ/2e

Pr [K |L = `] · Pr [L = `],

where Pr [K |L = `] ≥ (1 − (|x |1n)`λ) (1 − (1 − c (1 − c)`−1)λ).

Since λ ≥ 2, c = 1

λ , and that we only consider the values ` ∈

[λ/2, 3λ/2], we can get

(
1 − c (1 − c)`−1

)λ
≤ *

,
1 −

1

λ

(
1 −

1

λ

) 3λ
2 +
-

λ

≤

(
1 −

1

8λ

)λ
≤ e−

1

8 .

�e second inequality above holds because (1 − 1/a)a ≥ 1/4 for

any a ≥ 2. For 1 − (|x |1n)`λ , we have that

1 −

(
|x |1
n

)`λ
≥ 1 −

(
|x |1
n

) λ2
2

≥ 1 − e−
1

2 .

�us Pr [K |L = `] is greater than a positive constant, indicating

that Pr [K] is also bounded away from 0. �

Lemma 5.2. Starting with a solution x of OneMax under dynamic
uniform constraint with Hamming weight A > B∗, the probability of
an iteration of the while-loop in the MOGA to get a solution y∗ with
Hamming weight A − 1 is greater than a constant C > 0, if p = λ

n ,
c = 1

λ , and λ =
√
n/|x |1.

Proof. �e proof runs in a way similar to that of Lemma 5.1.

First, we analyze the probability without considering the parameter

se�ing.

To get a solutiony∗ with Hamming weightA−1, it is a necessary
condition that the solution x∗ obtained by the mutation phase is

a valid o�spring of x , i.e., there is an index j (1 ≤ j ≤ n) such that

x∗j = 0 and x j = 1 (since |x |1 > B∗). �e probability that x∗ is a

valid o�spring of x is at least

1 −
*.
,

`−1∏
t=0

n − |x |1 − t

n
+/
-

λ

≥ 1 −

(
n − |x |1

n

)`λ
.

Assume that the solution x∗ obtained by the mutation phase is a

valid o�spring of x . For the crossover phase, the probability that

|y∗ |1 = |x |1 − 1 is at least

1 −
(
1 − c (1 − c)`−1

)λ
.

�erefore the probability of an iteration of the while-loop to get

a solution y∗ with Hamming weight A − 1 is at least

*
,
1 −

(
n − |x |1

n

)`λ
+
-

(
1 −

(
1 − c (1 − c)`−1

)λ)
.

�e analysis of the probability incorporating the parameter set-

ting is almost the same as that given in Lemma 5.1. It is not hard

to get that the probability of an iteration of the while-loop in the

MOGA to get a solution y∗ with Hamming weightA− 1 is bounded
away from 0. �

Theorem 5.3. �e expected reoptimization time of the MOGA on
OneMax under dynamic uniform constraint is O (

√
nD

3

2) if p = λ
n ,

c = 1

λ , and λ =
√
n/(n − |x |1) when B∗ > B, or p = λ

n , c =
1

λ , and
λ =
√
n/|x |1 when B∗ < B.

1412

Reoptimization Times Under Dynamic Uniform Constraints GECCO ’17, July 15-19, 2017, Berlin, Germany

Proof. We start with the case B < B∗. Since the size of the

population is bounded by D + 1, by Lemma 5.1, the MOGA takes

expected time O (Dλ) = O (D
√
n/(n − B)) to get a solution with

Hamming weight B + 1 if starting with xorg (including the �tness
evaluations in Crossover phase).

By iteratively applying the analysis above, the MOGA takes

expected time O (D
∑B∗−1
i=B

√
n
n−i) = O (

√
nD

3

2) to �nd a solution

with Hamming weight B∗, because

B∗−1∑
i=B

√
1

n − i
≤

∫ B∗

B

√
1

n − i
di

= 2

√
n − B − 2

√
n − B∗ ≤ 2

√
D.

For the case that B > B∗, using the analysis similar to that given

above and Lemma 5.2, we can get that the MOGA takes expected

time O (D
√
n ·

∑B
i=B∗+1

√
1

i) = O (
√
nD

3

2) to �nd a solution with

Hamming weight B∗, because

B∑
i=B∗+1

√
1

i
≤

∫ B+1

B∗+1

√
1

i
di = 2

√
B + 1 − 2

√
B∗ + 1 ≤ 2

√
D.

�

5.2 Linear Function with Dynamic Uniform
Constraint

We now turn to linear functions under dynamic uniform constraints

and start by lower bounding the probability of an improvement if

the parameters are set in the right way.

Lemma 5.4. Starting with a solution x of a linear pro�t function
under dynamic uniform constraint that has the maximum pro�t
among all solutions with Hamming weight A < B∗, the probability of
an iteration of the while-loop in the MOGA to get a solution y∗ that
has the maximum pro�t among all solutions with Hamming weight
A + 1 is Ω(n−1/2), if p = λ

n , c =
1

λ , and λ =
√
n.

Proof. �e proof runs in a way similar to that of Lemma 5.1.

We �rst analyze the probability without considering the parameter

se�ing.

Let j be the index of the 0-bit in x such that w j is greater than

any element in {wi |xi = 0, 1 ≤ i ≤ n}. To get the solution y∗

that has the maximum pro�t among all solutions with Hamming

weight A + 1, it is a necessary condition that x∗j = 1, where x∗ is

the solution obtained by the mutation phase. For any o�spring

x ′ = mutate` (x) of x , the probability that x ′j = 0 is

∏`−1
t=0

n−1−t
n .

�us the probability for x
(i)
j = 0 for any x (i) ∈ {x (1) , . . . ,x (λ) } is

*.
,

`−1∏
t=0

n − 1 − t

n
+/
-

λ

≤

(n − 1
n

)`λ
.

Assume that we have go�en an o�spring whose j-th bit is 1

during the mutation phase. Since it may not be the unique valid

o�spring of x in {x (1) , . . . ,x (λ) }, the probability that the solution

is chosen as x∗ is at least 1/λ. �erefore, the event x∗j = 1 occurs

with probability
1

λ (1 − (n−1n)`λ).
Assume that the j-th bit of the solution x∗ obtained by the mu-

tation phase is 1. Again we consider the event to sample the

maximum-pro�t solution y∗ (among all strings with Hamming

weight A+ 1), based on x∗. For y (i) = crossc (x ,x
∗), the probability

that y (i) = y∗ is at least c (1 − c)`−1. �erefore, the probability to

get y∗ for the crossover phase is at least 1 − (1 − c (1 − c)`−1)λ .
Summarizing above analysis, we have that the probability of

an iteration of the while-loop to get the solution y∗ that has the
maximum pro�t among all solutions with Hamming weight A + 1
is at least

1

λ

(
1 −

(n − 1
n

)`λ) (
1 −

(
1 − c (1 − c)`−1

)λ)
.

Combing above conclusions and the analysis given in Lemma 5.1,

it is not hard to infer the probability of an iteration of the while-loop

in the MOGA to sample solution y∗ having the maximum pro�t

among all solutions with Hamming weightA+1, it is Ω(n−1/2). �

Using similar ideas as in the previous proof, we show the lemma

below for the case that the constraint bound decreases.

Lemma 5.5. Starting with a solution x of a linear pro�t function
under dynamic uniform constraint that has the maximum pro�t
among all solutions with cost A > B∗, the probability of an iteration
of the while-loop in the MOGA to get a solution y∗ that has the
maximum pro�t among all solutions with Hamming weight A − 1 is
Ω(n−1/2), if p = λ

n , c =
1

λ , and λ =
√
n.

Finally, we show the upper bound for MOGA on linear functions

with dynamic uniform constraints.

Theorem 5.6. Se�ing p = λ
n , c =

1

λ , and λ =
√
n, the expected

reoptimization time of theMOGA on a linear pro�t function under
dynamic uniform constraint is O (nD2)

Proof. We �rst consider the case that B < B∗. Since the pop-
ulation size is bounded by D + 1, by Lemma 5.4, the MOGA takes

expected time O (Dλ
√
n) = O (nD) to get a solution that has the

maximum pro�t among all solutions with Hamming weight B + 1,
if starting with xorg. By iteratively applying the above analysis,

the MOGA takes expected time O (nD2) to get the optimal solution

with Hamming weight B∗. �e analysis for the case that B > B∗ is
almost the same as that for the case B < B∗. �

6 CONCLUSION
Linear functions play a central role in the area of runtime analysis

of evolutionary computing techniques. In this paper, we have

investigated linear functions under dynamic uniform constraints.

Our results show that various types of evolutionary algorithms are

e�cient in recomputing the optimal solution if the constraint bound

changes. In particular, the algorithms achieve faster recomputation

than optimizing from scratch. Our analysis of population-based EAs

have shown that using a population including infeasible solutions

is helpful as it avoids the necessity of 2-bit �ips in the case of

linear functions. Furthermore, we have shown that the use of the

(1+(λ, λ)) GAhelps to achieve be�er upper bounds for the problems

under consideration in some cases.

ACKNOWLEDGMENTS
�e research leading to these results has received funding from

the German Research Foundation under grant agreement FR2988

1413

GECCO ’17, July 15-19, 2017, Berlin, Germany Shi et al.

(TOSU) and the Australian Research Council under grant agree-

ments DP140103400 and DP160102401.

REFERENCES
[1] A. Auger and B. Doerr. �eory of Randomized Search Heuristics: Foundations and

Recent Developments, volume 1. World Scienti�c, 2011.

[2] B. Doerr and C. Doerr. Optimal Parameter Choices �rough Self-Adjustment:

Applying the 1/5-th Rule in Discrete Se�ings. In Proc. of GECCO’15, pages
1335–1342, 2015.

[3] B. Doerr, C. Doerr, and F. Ebel. From Black-box Complexity to Designing New

Genetic Algorithms. �eoretical Computer Science, 567:87–104, 2015.
[4] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative Dri� Analysis.

Algorithmica, 64:673–697, 2012.
[5] S. Droste, T. Jansen, and I. Wegener. On the Analysis of the (1+1) Evolutionary

Algorithm. �eoretical Computer Science, 276:51–81, 2002.
[6] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Wi�. Approximating

covering problems by randomized search heuristics using multi-objective

models. Evolutionary Computation, 18(4):617–633, 2010.
[7] T. Friedrich, T. Kötzing, J. A. G. Lagodzinski, F. Neumann, and M. Schirneck.

Analysis of the (1+1) EA on Subclasses of Linear Functions under Uniform and

Linear Constraints. In Proc. of FOGA’17, pages 45–54, 2017.
[8] T. Jansen. Analyzing Evolutionary Algorithms - �e Computer Science Perspective.

Natural Computing Series. Springer, 2013.

[9] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
[10] T. Kötzing, A. Lissovoi, and C. Wi�. (1+1) EA on Generalized Dynamic OneMax.

In Proc. of FOGA’15, pages 40–51, 2015.
[11] S. Kratsch and F. Neumann. Fixed-parameter evolutionary algorithms and the

vertex cover problem. Algorithmica, 65(4):754–771, 2013.
[12] E. Mezura-Montes and C. A. C. Coello. Constraint-handling in nature-inspired

numerical optimization: Past, present and future. Swarm and Evolutionary
Computation, 1(4):173–194, 2011.

[13] H. Mühlenbein. How Genetic Algorithms Really Work: Mutation and

Hillclimbing. In Proc. of PPSN’92, volume 92, pages 15–25, 1992.

[14] F. Neumann and I. Wegener. Minimum spanning trees made easier via

multi-objective optimization. Natural Computing, 5(3):305–319, 2006.
[15] F. Neumann and C. Wi�. Bioinspired Computation in Combinatorial

Optimization: Algorithms and �eir Computational Complexity. Springer, 2010.
[16] C. Wi�. Tight Bounds on the Optimization Time of a Randomized Search

Heuristic on Linear Functions. Combinatorics, Probability and Computing,
22:294–318, 2013.

[17] Y. Zhou and J. He. A runtime analysis of evolutionary algorithms for

constrained optimization problems. IEEE Transactions on Evolutionary
Computation, 11:608–619, 2007.

1414

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 General Setting
	2.2 Algorithms

	3 Analysis of the (1+1) EA
	4 Analysis of the MOEA variants
	5 Analysis of the MOGA
	5.1 OneMax with Dynamic Uniform Constraint
	5.2 Linear Function with Dynamic Uniform Constraint

	6 Conclusion
	Acknowledgments
	References

