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ABSTRACT
Inspired by real world examples, e.g. the Internet, researchers have

introduced an abundance of strategic games to study natural phe-

nomena in networks. Unfortunately, almost all of these games have

the conceptual drawback of being computationally intractable, i.e.

computing a best response strategy or checking if an equilibrium

is reached is NP-hard. Thus, a main challenge in the field is to find

tractable realistic network formation models.

We address this challenge by establishing that the recently intro-

duced model by Goyal et al. [WINE’16], which focuses on robust

networks in the presence of a strong adversary, is a rare exception

which is both realistic and computationally tractable. In particular,

we sketch an efficient algorithm for computing a best response strat-

egy, which implies that deciding whether the game has reached a

Nash equilibrium can be done efficiently as well. Our algorithm es-

sentially solves the problem of computing a minimal connection to

a network which maximizes the reachability while hedging against

severe attacks on the network infrastructure.
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1 INTRODUCTION
Many of today’s important networks, most prominently the Inter-

net, are essentially the outcome of an unsupervised decentralized

network formation process among many selfish entities [20]. Cre-

ating links in such networks yields a connectivity benefit but also

harbors the risk of collateral damage if a neighbor is attacked.

Required features of any Internet-like communication network

are reachability and robustness. Such networks have to ensure that

even in case of cascading edge or node failures caused by technical

defects or malicious attacks, e.g. DDoS-attacks or viruses, most

participating nodes can still communicate. This focus on robustness

has long been neglected and is now a very recent endeavor in the

strategic network formation community, see e.g. [6, 14, 16, 18].

Our contribution is the proof that the recently introduced model

by Goyal et al. [13, 14] is one of the few examples of a tractable

realistic model for strategic network formation, which answers

an open question by these authors. In particular, we provide an
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efficient algorithm for computing a best response strategy for two

variants of their model which enables large-scale simulations to

analyze phenomena in real-world networks.

Related Work: The model by Goyal et al. [13, 14] essentially

augments the well-known reachability model by Bala & Goyal [2]

with robustness considerations. In particular, different types of

adversaries are introduced which attack (and destroy) a node of the

network. This attack then spreads virus-like to neighboring nodes

and destroys them as well. Besides deciding which links to form,

players also decide whether they want to buy immunization against

eventual attacks. The model is the first model which incorporates

network formation and immunization decisions at the same time.

On the one hand, the authors of [13, 14] provide beautiful struc-

tural results, e.g. they show that equilibrium networks are much

more diverse than in the non-robust version, that the amount of

edge overbuilding due to robustness concerns is small and that all

equilibrium networks achieve very high social welfare. On the other

hand, the authors raise the intriguing open problem of settling the

complexity of computing a best response strategy in their model
1
.

Computing a best response in network formation games can be

done efficiently for the reachability model [2] and if the allowed

strategy changes are simple [17]. However, these examples are

exceptions. For almost all related network formation models, e.g.

[4–6, 8, 10, 11, 15, 19], NP-hardness has been shown.

To the best of our knowledge, besides the model by Goyal et

al. [13, 14] there are only a few other models which combine selfish

network formation with robustness considerations and all of them

consider a much weaker adversary. The earliest are models by Bala

& Goyal [3] and Kliemann [16] and both augment the model [2]

with single edge failures. Other related models are by Meirom et

al. [18] and Chauhan et al. [6]. Both consider players striving for

centrality but who at the same time want to protect themselves

against single edge failures. The complexity status for computing a

best response was only settled for the model by Chauhan et al. [6]

where this problem was proven to be NP-hard.

Also vaccination games, e.g. [1, 7, 21], are related. There the

network is fixed and the selfish nodes only have to decide if they

want to immunize or not. Computing a best response in these

models is trivial but pure Nash equilibria may not exist.

2 MODEL
We work with the strategic network formation model proposed by

Goyal et al. [13, 14] and mostly use their notation. In this model

the n nodes of a network G = (V ,E) correspond to individual

players v1, . . . ,vn . The edge set E is determined by the players’

1
This question was raised in versions 1-4 of [13] and is replaced in later versions and

in [14] with a reference to a preprint [12] of the present paper.
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strategic behavior as follows. Each player vi ∈ V can decide to buy

undirected edges to a subset of other players, paying α > 0 per

edge, where α is some fixed parameter of the model.

If player vi decides to buy the edge to node vj , then we say that

the edge {vi ,vj } is owned and paid for by player vi . Buying an

undirected edge entails connectivity benefits and risks for both par-

ticipating endpoints. In order to cope with these risks, each player

can also decide to buy immunization against attacks at a cost of

β > 0, which is also a fixed parameter. We call a player immunized if
this player decides to buy immunization, and vulnerable otherwise.

The strategy si = (xi ,yi ) of player vi consists of the set xi ⊆
V \ {vi } of the nodes to buy an edge to, and the immunization

choice yi ∈ {0, 1}, where yi = 1 if and only if player vi decides to
immunize. The strategy profile s = (s1, . . . , sn ) of all players then

induces an undirected graph G (s) =
(
V ,
⋃
vi ∈V

⋃
vj ∈xi {vi ,vj }

)
.

The immunization choices y1, . . . ,yn in s partitionV into the set of

immunized players I ⊆ V and vulnerable playersU = V \ I. The
components in the induced subgraph G[U] are called vulnerable
regions and the set of those regions will be denoted by RU . The

vulnerable region of any vulnerable player vi ∈ U is RU (vi ).
Immunized regions RI are defined analogously as the components

of the induced subgraph G[I].
After the network G (s) is built, we assume that an adversary

attacks one vulnerable player according to a strategy known to

the players. We consider mostly the maximum carnage adver-

sary [13, 14] which tries to destroy as many nodes of the network

as possible. To achieve this, the adversary chooses a vulnerable

region of maximum size and attacks some player in that region.

If there is more than one such region with maximum size, then

one of them is chosen uniformly at random. If a vulnerable player

vi is attacked, then vi will be destroyed and the attack spreads to

all vulnerable neighbors of vi , eventually destroying all players

in vi ’s vulnerable region RU (vi ). Let tmax = maxR∈RU {|R |} be
the number of nodes in the vulnerable region of maximum size

and T = {vi ∈ U | |RU (vi ) | = tmax } is the corresponding set of

nodes which may be targeted by the adversary. The set of targeted

regions is RT = {R ∈ RU | |R | = tmax }, and RT (vi ) is the tar-
geted region of a player vi ∈ T . Thus, if vi ∈ T is attacked, then

all players in the region RT (vi ) will be destroyed.
The utility of a player vi in network G (s) is defined as the ex-

pected number of nodes reachable by vi after the adversarial attack
on network G (s) (zero in case vi was destroyed) less vi ’s expendi-
tures for buying edges and immunization. More formally, letCCi (t )
be the connected component of vi after an attack to node vt ∈ T
and let |CCi (t ) | denote its number of nodes. Then the utility (or

profit) ui (s) of vi in the strategy profile s is

ui (s) =
1

|T |

*.
,

∑
vt ∈T

|CCi (t ) |
+/
-
− |xi | · α − yi · β .

Fixing the strategies of all other players, the best response of a

player vi is a strategy s∗i = (x∗i ,y
∗
i ) which maximizes vi ’s utility

ui
(
(s1, . . . , si−1, s

∗
i , si+1, . . . , sn )

)
. We will call the strategy change

to s∗i a best response for player vi in the network G (s), if changing
from strategy si ∈ s to strategy s∗i is the best possible strategy for

player vi if no other player changes her strategy.

A best response is calculated for one arbitrary but fixed player

va , which we call the active player. Furthermore let C be the set of

connected components which exist inG (s) \va . Let CU = {C ∈ C |
C ∩ I = ∅}, CI = C \ CU and Cinc = {C ∈ C | ∃u ∈ C : {u,v} ∈
E}, where CU is the set of components in which all vertices are

vulnerable, CI is the set of components which contain at least

one immunized vertex and Cinc is the set of components to which

player va is connected via edges bought by some other player.

3 THE BEST RESPONSE ALGORITHM
A naive approach to calculate the best response for playerva would

consider all 2
n
possible strategies and select one that yields the

best utility. This is clearly infeasible for a larger number of players.

Our algorithm exploits three observations to reduce the complexity

from exponential to polynomial:

Observation 1: The network G (s) \ va may consist of several

connected components that can be dealt with independently for

most decisions. As long as the set of possible targets of the adversary

does not change, the best response ofva can be constructed by first

choosing components to which a connection is profitable and then

choosing for each of those components an optimal set of nodes

within the respective component to build edges to.

Observation 2: Homogeneous components in G (s) \va , which
consist of only vulnerable or only immunized nodes, provide the

same benefit no matter whether va connects to them with one or

with more than one edge. Thus the connection decision is a binary

decision for those components.

Observation 3: Mixed components in G (s) \va , which contain

both immunized and vulnerable nodes, consist of homogeneous

regions that again have the property that at most one edge per

homogeneous region can be profitable. Merging those regions into

block nodes forms an auxilliary tree, called Meta Tree, which we

use in an efficient dynamic programming algorithm to compute the

most profitable subset of regions to connect with.

The Algorithm: Due to space constraints we introduce our algo-

rithm, called BestResponseComputation, informally. A schematic

overview can be found in Fig. 1. We refer to [12] for details.

current strategy
s∅

SubsetSelect GreedySelect

PartnerSetSelect

MetaTreeConstruct

MetaTreeSelect

PossibleStrategy

drop current strategy

select partners
from CU \ Cinc

distinguish 3 cases to
fix T and RU (va)

repeat for each
Cj ∈ CI

try each leaf as root, run DP algo-
rithm and choose the best solution
with ≥ 2 edges

BestResponseComputation

0 edges best single
edge

choose edge set which
maximizes the profit
contribution

Figure 1: Schematic overviewof the best response algorithm.
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Our algorithm solves the problem of finding a best response strategy

by considering both options of buying or not buying immunization

and computing for both cases the best possible set of edges to buy.

Thus, the first step of BestResponseComputation is to drop the

current strategy of the active player va and to replace it with the

empty strategy s∅ = (∅, 0) in which player va does not buy any

edge and does not buy immunization. Then the resulting strategy

profile s′ and the set of connected components CU and CI with

respect to network G (s′) \va is considered.

The subroutine SubsetSelect determines the optimal sets of

components of CU to connect to ifva does not immunize by solving

an adjusted Knapsack problem which involes only small numbers.

Two such sets of components are computed, depending on player

va becoming targeted or not by connecting to these components.

Additionally, GreedySelect computes a best possible subset of

components of CU to connect to in case va buys immunization. It

does so by greedily connecting to all profitable components in CU .

The challenging part of the problem is to copewith the connected

components in CI which also contain immunized nodes. For such

components our algorithm detects andmerges equivalent nodes and

thereby simplifies these components. An auxiliary tree structure,

which we call the Meta Tree, is constructed (see Fig. 2). This tree is

vulnerable targeted mixed immunized

Figure 2: A mixed component; after merging the indicated
nodes (middle); another merge yields the Meta Tree (right).

then used in a dynamic programming fashion to efficiently compute

the best possible set of nodes to buy edges towards within the

respective component. Thus, we handle components in CI by first

performing a data-reduction similar to kernelization approaches in

the realm of Parameterized Algorithmics [9] and then solving the

reduced problem via dynamic programming.

The subroutine PossibleStrategy obtains the best set of nodes

in components in CI . As this set depends on the number of targeted

regions, it has to be determined for several cases independently.

These cases areva not being immunized and not being targeted,va
not being immunized but being targeted, and va being immunized.

For each case, the subroutine PossibleStrategy first chooses an

arbitrary single edge to buy into the previously selected compo-

nents from CU . Then the best set of edges into components in CI
to buy is computed independently for each component C ∈ CI via

the subroutines PartnerSetSelect, MetaTreeConstruct and

MetaTreeSelect. The union of the obtained sets is then returned.

Finally, the algorithm compares the empty strategy and the indi-

vidually obtained best possible strategies for the above mentioned

cases and selects the one which maximizes player va ’s utility.
The run time of our best response algorithm heavily depends on

the size of the largest obtained Meta Tree and we achieve a worst-

case run time of O (n4+k5) for the maximum carnage adversary and

O (n4+nk5) for the random attack adversary, where n is the number

of nodes in the network and k is the number of blocks in the largest

Meta Tree. This yields a run time in O (n5) and O (n6), respectively.
To contrast this upper bound, we also provide empirical results

showing that k is usually much smaller than n, which emphasizes

the effectiveness of our data-reduction.

4 CONCLUSION
For most models of strategic network formation computing a utility

maximizing strategy is known to be NP-hard. In this paper, we have

proven that the model by Goyal et al. [13, 14] is a notable excep-

tion to this rule. The presented efficient algorithm for computing a

best response for a player circumvents a combinatorial explosion

essentially by simplifying the given network and thereby making

it amenable to a dynamic programming approach. An efficient best

response computation is the key ingredient for using the model

in large scale simulations and for analyzing real world networks.

Moreover, our algorithm can be adapted to a significantly stronger

adversary and we are confident that further modifications for cop-

ing with other variants of the model are possible. One such variant

is the directed version which would more accurately model the

differences in risk and benefit which depend on the flow direction.
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