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ABSTRACT
The Univariate Marginal Distribution Algorithm (UMDA),
a popular estimation of distribution algorithm, is studied
from a run time perspective. On the classical OneMax
benchmark function, a lower bound of Ω(µ

√
n + n logn),

where µ is the population size, on its expected run time is
proved. This is the first direct lower bound on the run time
of the UMDA. It is stronger than the bounds that follow
from general black-box complexity theory and is matched
by the run time of many evolutionary algorithms. The re-
sults are obtained through advanced analyses of the stochas-
tic change of the frequencies of bit values maintained by the
algorithm, including carefully designed potential functions.
These techniques may prove useful in advancing the field of
run time analysis for estimation of distribution algorithms
in general.

Keywords
Estimation of distribution algorithm; run time analysis; lower
bound

1. INTRODUCTION
Traditional algorithms in the field of Evolutionary Com-

putation optimize problems by sampling a certain amount of
solutions from the problem’s domain, the so-called popula-
tion, and transforming them, such that the new population is
closer to an optimum. Estimation of distribution algorithms
(EDAs; [13]) have a very similar approach but do not store
an explicit population of sample solutions. Instead, they
store a probability distribution over the problem’s domain
and update it via an algorithm-specific rule that learns from
samples drawn from said distribution.

Although many different variants of EDAs (cf. [12]) and
many different domains are possible, theoretical analysis of
EDAs in discrete search spaces often considers run time ana-
lysis over {0, 1}n. Further, the focus is on EDAs that store a
Poisson binomial distribution, i. e., EDAs that store a prob-
ability vector p of n independent probabilities, each compo-
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nent pi denoting the probability that a sampled bit string
will have a 1 at position i.

The first theoretical analysis in this setting was conducted
by Droste [6], who analyzed the compact Genetic Algorithm
(cGA), an EDA that only samples two solutions each iter-
ation, on linear functions. Papers considering other EDAs,
like, e. g., analysis of an iteration-best Ant Colony Optimiza-
tion (ACO) algorithm by Neumann et al. [15] followed.

Recently, the interest in the theoretical analysis of EDAs
has increased [5, 10, 11, 18]. Most of these works derive
upper bounds for a specific EDA on the popular OneMax
function, which counts the number of 1s in a bit string
and is considered to be one of the easiest functions with a
unique optimum [17, 20]. The only exceptions are Friedrich
et al. [10], who look at general properties of EDAs, and Sud-
holt and Witt [18], who derive lower bounds on OneMax for
the aforementioned cGA and iteration-best ACO.

In this paper, we follow the ideas of Sudholt and Witt [18]
and derive a lower bound of Ω(n logn) for the Univariate
Marginal Distribution Algorithm (UMDA; [14]) on OneMax,
which is a typical lower bound for many evolutionary algo-
rithms on this function. The UMDA is an EDA that samples
λ solutions each iteration, selects µ < λ best solutions, and
then sets pi to the relative occurrence of 1s among these
µ individuals. The algorithm has already been analyzed
some years ago for several artificially designed example func-
tions [1, 2, 3, 4]. However, none these papers considers the
most important benchmark function in theory, the OneMax
function. In fact, the run time analysis of the UMDA on
the simple OneMax function has turned out to be rather
challenging; the first such result, showing the upper bound
O(n logn log logn) on its expected run time for certain set-
tings of µ and λ, was not published until 2015 [5]. Specific
lower bounds for the UMDA were to date missing; the pre-
vious best result Ω(n/log n) on the expected run time fol-
lowed from general black box complexity theory [7] and did
not shed light on the working principles of the UMDA.

The concepts of the proofs in this paper are based on the
prior work from Sudholt and Witt [18]. However, analyz-
ing the UMDA is much more difficult than analyzing the
cGA or iteration-best ACO, since the update of the latter
algorithms is bounded by an algorithm-specific parameter
and the algorithms only have up to three distinct successor
states for each value pi. The UMDA, on the other hand,
can change each of its pi to any value x/µ with a certain
probability, where x ∈ {0, . . . , µ}, due to the nature of the
UMDA’s update rule. This makes analyzing the UMDA
far more involved, because every single update has to be
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bounded probabilistically. Further, the simple update rules
for the cGA and iteration-best ACO allow for a distinction
into two cases that determines whether a value pi will in-
crease or decrease; a fact that is heavily exploited in the
analyses in [18]. For the UMDA, no such simple case dis-
tinction can be made.

This paper is structured as follows: In Section 2, we shortly
introduce the setting we are going to analyze and go into de-
tail about the UMDA’s update rule, that is, we explain and
analyze a property of the algorithm that leads to the lower
bound when optimizing OneMax.

Then in Section 3, we state our main result and prove
it step by step. The rough outline of the proof follows the
ones presented in [18], however, we think that our style of
presentation is more accessible, due to dissecting our proof
into many different (and often independent) lemmas.

Finally, we conclude and discuss our results and future
work in the Conclusions section.

We think that our results can be generalized to all func-
tions with unique optimum with moderate effort.

2. PRELIMINARIES
We consider the Univariate Marginal Distribution Algo-

rithm (UMDA [14]; Algorithm 1) maximizing the pseudo-
Boolean function OneMax, where, for all x ∈ {0, 1}n,

OneMax(x) =

n∑
i=1

xi .

Note that the function’s unique maximum is the all-ones bit
string. However, a more general version can be defined by
choosing an arbitrary optimum a ∈ {0, 1}n and defining, for
all x ∈ {0, 1}n,

OneMaxa(x) = n− dH(x, a) ,

where dH(x, a) denotes the Hamming distance of the bit
strings x and a. Note that OneMax1n is equivalent to the
original definition of OneMax. Our analyses hold true for
any function OneMaxa, with a ∈ {0, 1}n, due to symmetry
of the UMDA’s update rule.

Algorithm 1: Univariate Marginal Distribution Algo-
rithm (UMDA)

t← 0;

p1,t ← p2,t ← · · · ← pn,t ← 1
2
;

while termination criterion not met do
Pt ← ∅;
for j ∈ {1, . . . , λ} do

for i ∈ {1, . . . , n} do
x

(j)
i,t ← 1 with prob. pi,t, x

(j)
i,t ← 0 with prob.

1− pi,t;

Pt ← Pt ∪ {x(j)
t };

Sort individuals in P descending by fitness,
breaking ties uniformly at random;

for i ∈ {1, . . . , n} do

pi,t+1 ←
∑µ
j=1 x

(j)
i,t

µ
;

Restrict pi,t+1 to be within [ 1
n
, 1− 1

n
];

t← t+ 1;

We call bit strings individuals and their respective OneMax
values fitness.

The UMDA does not store an explicit population but does
so implicitly, which makes it an Estimation of distribution
algorithm (EDA). For each of the n different bit positions, it
stores a rational number pi, which we call frequency, deter-
mining how likely it is that a hypothetical individual would
have a 1 at this position. In other words, the UMDA stores
a probability distribution over {0, 1}n. The starting distri-
bution is the uniform distribution.

In each iteration, the UMDA samples λ individuals such
that each individual has a 1 at position i (i ∈ {1, . . . , n})
with probability pi, independent of all the other frequen-
cies. Thus, individuals are sampled according to a Poisson
binomial distribution with probability vector (pi)i∈{1,...,n}.

After sampling λ individuals, µ of them with highest fit-
ness are chosen, breaking ties uniformly at random (so-called
selection). Then, for each position, the respective frequency
is set to the relative occurrence of 1s in this position. That
is, if the chosen µ best individuals have x 1s among them,
the frequency pi will be updated to x/µ for the next itera-
tion. Note that such an update allows large jumps like, e. g.,
from (µ − 1)/µ to 1/µ, spanning almost the entire interval
of a frequency!

If a frequency is either 0 or 1, it cannot change anymore,
since then all bits at this position will be either 0 or 1. To
prevent the UMDA from getting stuck in such a way, we
narrow the interval of possible frequencies down to [1/n, 1−
1/n]. This way, there is always a chance of sampling 0s and
1s for each position. This is a common approach used by
other EDAs as well, such as the cGA or ACO algorithms
(mentioned in the introduction).

Overall, we are interested in a lower bound of the UMDA’s
expected number of function evaluations on OneMax until
the optimum is sampled. Note that this is the expected
number of iterations until the optimum is sampled times λ.

In all of our calculations, we always assume that λ =
(1 + β)µ, for some constant β > 0. Of course, we could also
choose λ = ω(µ) but then each iteration would be even more
expensive. Choosing λ = Θ(µ) lets us basically focus on the
minimal number of function evaluations per iteration, as µ
of them are at least needed to make an update.

2.1 Selecting Individuals
To optimize a function efficiently, the UMDA needs to

evolve its frequencies into the right direction, making it more
likely to sample an optimum. In the setting of OneMax, this
means that each frequency should be increased (toward a
value of 1− 1/n). This is where selection comes into play.

By selecting µ best individuals every iteration w. r. t. their
fitness, we hope that many of them have correctly set bits at
each position, such that the respective frequencies increase.
However, even in the simple case of OneMax, where a 1 is
always better than a 0, there is a flaw in the update process
that prevents the UMDA from optimizing OneMax too fast.
To see why this flaw occurs, consider an arbitrary position
j in the following.

When selecting individuals for an update to pj , the UMDA
does so by always considering the fitness of each entire in-
dividual. That is, although each frequency is independently
updated from the others, selection is done w. r. t. all po-
sitions at once. Thus, when looking at position j, it can
happen that we have many 0s, because the individuals cho-
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sen for the update may have many 1s in their remaining
positions, which can lead to a decrease of pj .

Since having a 1 at a position is always better than a 0
when considering OneMax, selection is biased, pushing for
more 1s at each position. However, this bias is not necessar-
ily too large: Consider that for each individual each bit but
bit j has already been sampled. When looking at selection
w. r. t. to only n − 1 bits in each individual, some individ-
uals may already be so good that they are determined to
be chosen for selection, whereas others may be so bad that
they definitely cannot be chosen for selection, regardless of
the outcome of bit j.

Consider the fitness of all individuals sampled during one
iteration of the UMDA w. r. t. n − 1 bits, i. e., all bits but
bit j, called level. Assume that the individuals are sorted
decreasingly by their level; each individual having a unique
index. Let w+ be the level of the individual with rank µ,
and let w− be the level of the individual with rank µ + 1.
Since bit j has not been considered so far, its value can
potentially increase each individual’s level by 1. Now assume
that w+ = w−+1. Then, individuals from level w− can end
up with the same fitness as individuals from level w+, once
bit j has been sampled. Thus, individuals from level w+

were still prone to selection.
Among the µ individuals chosen during selection, we dis-

tinguish between two different types: 1st-class and 2nd-class
individuals. 1st-class individuals are those which are chosen
during selection no matter which value bit j has. The re-
maining of the µ individuals are the 2nd-class individuals;
they had to compete with other individuals for selection.
Therefore, their bit value j is biased toward 1 compared to
1st-class individuals. Note that 2nd-class individuals can
only exist if w+ ≤ w− + 1, since in this case, individuals
from level w− can still be as good as individuals from level
w+ after sampling bit j.

Let Xt be the number of 1s at position j sampled in it-
eration t of the UMDA, and let C∗ denote the number of
2nd-class individuals in iteration t+1. Note that the number
of 1s of 1st-class individuals during iteration t+ 1 follows a
binomial distribution with success probability Xt/µ. Since
we have µ−C∗ 1st-class individuals, the distribution of the
number of 1s of these follows Bin(µ−C∗, Xt/µ). Note that
the actual frequency in iteration t + 1 might be set to ei-
ther 1/n or 1 − 1/n if the number of 1s in the µ selected
individuals is too close to 0 or µ, respectively. We will be
able to ignore this fact in our forthcoming analyses since all
considerations are stopped when a frequency drops below
1/n or exceeds 1− 1/n.

2.2 The Number of 2nd-Class Individuals
As in the previous section, consider again a bit position j.

In this section, we again speak of levels as defined in the
previous section. Level n − 1 is the topmost, and level 0
is the lowermost. For all i ∈ {0, . . . , n − 1}, let Ci denote
the cardinality of level i, i. e., the number of individuals in
level i during an arbitrary iteration of the UMDA, and let
C≥i =

∑n−1
a=i Ca.

Let M denote the index of the first level from the top
such that the number of sampled individuals is greater than
µ when including the following level, i.e.,

M = max{i | C≥i−1 > µ} .

Note that M can never be 0, and only if M = n− 1, CM
can be greater than µ. Note further that CM can be 0.

Due to the definition of M , if M 6= n − 1, level M − 1
contains the individual of rank µ + 1, as described in the
previous section. Thus, levels M , M −1, and M −2 contain
all of the individuals that are prone to selection (if such ex-
ist at all). Hence, individuals in levels at least M + 1 are
definitely 1st-class individuals. 2nd-class individuals, if any,
have to come from level M , M−1, or M−2. We call the in-
dividuals from these three levels 2nd-class candidates. Note
that the actual number of 2nd-class individuals is bounded
from above by µ− C≥M+1 = µ− C≥M + CM , since exactly
µ individuals are selected.

Since the 2nd-class individuals are the only ones that
are prone to selection and thus the only ones that actively
help in progressing a single frequency toward 1, it is of ut-
most importance to understand the distribution of C∗ :=
µ−C≥M+1, that is, the biased impact to an update. More-
over, we will also need a bound on the number of 2nd-class
candidates.

Before we get to analyzing the 2nd-class individuals, we
introduce several auxiliary statements. We start with a very
useful lemma on conditional binomially distributed random
variables.

Lemma 1. Let X be a binomially distributed random vari-
able with arbitrary parameters. Then for any x, y ≥ 0, it
holds

Pr(X ≥ x+ y | X ≥ x) ≤ Pr(X ≥ y).

Proof. Let n and p be the parameters of the underlying bi-
nomial distribution. The event X ≥ x + y | X ≥ x is
equivalent to the following: given some index k ≤ n such
that there are exactly x successes in k trials, there are at
least y successes among the n − k remaining trials. Note
that the number of successes in the last set of trials follows
a binomial distribution with parameters n−k and p. Hence,
the probability of collecting at least y successes is no greater
than the probability of at least y successes in n independent
trials with success probability p, i. e., a binomial distribution
with parameters n and p.

Moreover, we are going to use a corollary that is based
on Lemma 8 from [18], the proof of which can be seen in
[19, Lemma 9]. Also, the idea behind the corollary is given
in [19] but not presented as an independent statement.

Lemma 2. Let S be the sum of m independent Poisson
trials with probabilities pi ∈ [1/6, 5/6] for all i ∈ {1, . . . ,m}.
Then, for all 0 ≤ s ≤ m, Pr(S = s) = O(1/

√
m).

Corollary 3. Let X be the sum of n independent Poisson
trials with probabilities pi, i ∈ {1, . . . , n}. Further, let Θ(n)
many pi-s be within [1/6, 5/6]. Then, for all 0 ≤ x ≤ n,
Pr(X = x) = O(1/

√
n).

Proof. Let m = Θ(n) denote the number of pi-s that are
within [1/6, 5/6]. When sampling X, assume w. l. o. g. that
the first m trials are the ones with pi ∈ [1/6, 5/6]. Let S
denote the sum of these trials, and let Y denote the sum of
the remaining n−m trials. Since the trials are independent,
we get Pr(X = x) =

∑x
s=0 Pr(S = s) Pr(Y = x− s).

We can upper-bound Pr(S = s) = O(1/
√
m) = O(1/

√
n)

by using Lemma 2 and m = Θ(n). Thus, we have Pr(X =
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x) = O(1/
√
n)
∑x
s=0 Pr(Y = x − s). Bounding the sum by

1 concludes the proof.

The corollary lets us easily get upper bounds for the prob-
ability that a sampled individual has a certain (and arbi-
trary) fitness (w. r. t. to either all n positions or all posi-
tions but j). To apply it, we have to make sure that Θ(n)
frequencies are still within [1/6, 5/6]. Thus, we assume from
now on that this assumption holds. In Section 3.2, we will
prove under which circumstances this assumption holds.

Note that all statements from now on regarding a specific
position j hold regardless of the bits at any other of the Θ(n)
positions that do not stay within [1/6, 5/6]. This means
that the statements are even true if the bits at those other
positions are chosen by an adversary.

We are now ready to analyze C∗ and the number of 2nd-
class candidates.

Lemma 4. Consider the UMDA with λ = (1+β)µ optimiz-

ing OneMax, and let Z̃ be a random variable that takes val-

ues in {1, . . . , λ} only with probability at most 2e−(ε2/(3+3ε))µ

= e−Ω(µ) and is 0 otherwise, where ε > 0 is a constant
such that ε < 1 − 1/(1 + β). If there are Θ(n) frequen-
cies in [1/6, 5/6], then the distribution of C∗ is stochasti-

cally dominated by Bin
(
λ,O(1/

√
n)
)

+ Z̃ and the distribu-
tion of CM + CM−1 + CM−2 is stochastically dominated by

1 + Bin
(
λ,O(1/

√
n)
)

+ Z̃.

Proof. The proof carefully investigates and then reformu-
lates the stochastic process generating the λ individuals (be-
fore selection), restricted to n − 1 bits. Each individual is
sampled by a Poisson binomial distribution for a vector of
probabilities p′ = (p′1, . . . , p

′
n−1) obtained from the frequen-

cies of the UMDA by leaving one entry out. Counting its
number of 1s, each of the λ individuals then falls into some
level i, where 0 ≤ i ≤ n − 1, with some probability qi de-
pending on the vector p′. Since the individuals are created
independently, the number of individuals in level i is bino-
mially distributed with parameters n− 1 and qi.

Next, we take an alternative view on the process putting
individuals into levels, using the principle of deferred deci-
sions. We imagine that the process first samples all individ-
uals in level 0 (through λ trials, all of which either hit the
level or not), then (using the trials which did not hit level 0)
all individuals in level 1, . . . , up to level n− 1.

The number of individuals C0 in level 0 is still binomially
distributed with parameters λ and q0. However, after all
individuals in level 0 have been sampled, the distribution
changes. We have λ − C0 trials left, each of which can hit
one of the levels 1 to n − 1. In particular, such a trial will
hit level 1 with probability q1/(1− q0), by the definition of
conditional probability since level 0 is excluded. This holds
independently for all of the λ−C0 trials so that C1 follows a
binomial distribution with parameters λ−C0 and q1/(1−q0).
Inductively, also all Ci for i > 1 are binomially distributed;
e. g., Cn−1 is distributed with parameters λ−Cn−2−· · ·−C0

and 1. Note that this model of the sampling process can also
be applied for any other permutation of the levels; we will
make use of this fact.

We first focus on C∗ = µ − C≥M+1 and will later use
bounds on its distribution to analyze CM +CM−1 +CM−2.
Formally, by applying the law of total probability, the dis-

tribution of C∗ looks as follows for k ∈ {0, . . . , λ}:

Pr(C∗ ≥ k) =

n−1∑
i=1

Pr(M = i) · Pr(µ− C≥i+1 ≥ k |M = i) .

(1)

We will bound the terms of the sum differently with respect
to the index i. First, we look into a particular value i∗ such
that Pr(M ≥ i∗) is exponentially unlikely, and then make a
case distinction via i∗.

Let X be the number of 1s in a single individual sampled
(without conditioning on certain levels being hit). Choose
i∗ such that Pr(X ≥ i∗−1) ≤ 1/

(
(1+ε)(1+β)

)
and Pr(X ≥

i∗ − 1) ≥ 1/
(
(1 + ε)(1 + β)

)
− O(1/

√
n). Such an i∗ must

exist, since every level is hit with probability O(1/
√
n) when

sampling an individual, according to Corollary 3. Clearly,
we also have i∗ ≤ n− 1.

A crucial observation is that Pr(M ≥ i∗) = e−Ω(µ), since
the expected number of individuals sampled with at least i∗−
1 1s is at most λ/

(
(1+ε)(1+β)

)
= µ/(1+ε), and the prob-

ability of sampling at least (1 + ε) ·µ/(1 + ε) = µ is at most

e−ε
2·µ/(3(1+ε)) = e−Ω(µ) by Chernoff bounds. Note that we

have considered level i∗−1 since C≥i∗−1 < µ impliesM < i∗.
In Equation (1), considering the partial sum for all i ≥ i∗,

we therefore immediately estimate

n−1∑
i=i∗

Pr(M = i) · Pr(µ− C≥i+1 ≥ k |M = i) ≤ Pr(M ≥ i∗)

≤ e−Ω(µ) ,

as shown just before.
For the terms with i < i∗ (in particular, the case i =

n − 1 is excluded), we take a view on the final expression
in Equation (1) and focus on Pr(µ − C≥i+1 ≥ k | M =
i), in which we want to reformulate the underlying event
appropriately. Here we note that

(µ− C≥i+1 ≥ k) | (M = i)

is equivalent to

(C≤i ≥ λ− µ+ k) | (M = i) ,

where C≤i =
∑i
j=0 Cj , and, using the definition of M , this

is also equivalent to

(C≤i ≥ λ− µ+ k) | (C≤i−2 < λ− µ ∩ C≤i−1 ≥ λ− µ) .

We now take the above-mentioned view on the stochastic
process and assume that levels 0 to i− 2 have been sampled
and a number of experiments in a binomial distribution is
carried out to determine the individuals from level i − 1.
Hence, given some C≤i−2 = a < λ−µ, our event is equivalent
to that the event

E∗ :=
(
Ci + Ci−1 ≥ (λ− µ− a) + k

)
| (Ci−1 ≥ λ− µ− a)

happens.
Recall from our model above that Ci−1 follows a binomial

distribution with λ − a trials and with a certain success
probability s; similarly, Ci follows a binomial distribution
with parameters λ − a − Ci−1 and s′. As we are interested
in a cumulative distribution, we may pessimistically upper-
bound the total number of trials for Ci−1 by λ. Regarding s,
note that it denotes the probability to sample an individual
with i−1 1s, given that it cannot have less than i−1 1s. Note
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further that Pr(X ≥ i∗−1), where X again denotes the level
of the individual sampled in a trial, is a lower bound for all
probabilities Pr(X ≥ i−1), since i < i∗. To upper-bound s,
we use Corollary 3, which tells us that the unconditional
probability to hit a level is in O(1/

√
n), regardless of the

level hit. However, we have to condition on the event that
certain levels (namely 0, . . . , i−2, where i < i∗) cannot be hit
anymore. We pessimistically exclude even some more levels
than possible, more precisely, we exclude the levels from 0
up to i∗ − 2. This means that we condition on Pr(X ≥
i∗ − 1). By the definition of conditional probability, the
probability of O(1/

√
n) from Corollary 3 thus gets increased

by a factor of 1/Pr(X ≥ i∗ − 1), which is constant. Hence,
Ci−1 is stochastically dominated by a binomial distribution
with parameters λ and O(1/

√
n).

Similarly, assuming that also level i−1 has been sampled,
Ci is dominated by a binomial distribution with parameters
λ− Ci−1 and O(1/

√
n).

To finally bound Pr(E∗), which involves a condition on the
outcome on Ci−1, we apply Lemma 1, where we let X :=
Ci−1 and x = λ − µ − a as well as y = k. Since we have
bounded Ci−1 (without the condition on Ci−1 ≥ x) by a
binomial distribution with success probability O(1/

√
n), we

get from the lemma that Pr(Ci−1 − x ≥ k | Ci−1 ≥ x) ≤
Pr
(
Bin(λ,O(1/

√
n)) ≥ k

)
. Note that the right-hand side is a

bound independent of C0, . . . , Ci−1. With respect to Ci, we
do not consider an additional condition on its outcome but
use the result Pr(Ci ≥ k) ≤ Pr

(
Bin(λ − Ci−1,O(1/

√
n)) ≥

k
)

derived in the last paragraph directly. Hence, both Ci−1−
x, conditioned on Ci−1 ≥ x, and Ci have been bounded by
binomial distributions with second parameter O(1/

√
n). In

E∗, we are confronted with the sum of these two random
variables and study the distribution of the sum. Together,
Pr(E∗) ≤ Pr

(
Bin(λ,O(1/

√
n)) ≥ k

)
, since we consider at

most λ trials. Pulling this term in front of the sum over i
for the terms i < i∗ in (1) and estimating this sum with 1
(since we sum over mutually disjoint events) leaves us with
an additional term of Pr

(
Bin(λ,O(1/

√
n)) ≥ k

)
for Pr(µ −

C≥M+1 ≥ k). This proves the lemma’s statement on the
distribution of C∗.

We are left with analyzing C∗∗ := CM + CM−1 + CM−2.
We handle the very unlikely case M = n−1, whose probabil-
ity is upper-bounded by Pr(M ≥ i∗), separately and cover

it by adding the random variable Z̃ to our result. By a
symmetrical argument to the above, for some index i∗∗ such
that Pr(X < i∗∗) = 1 − 1/

(
(1 − ε)(1 + β)

)
+ O(1/

√
n)), we

obtain that M ≤ i∗∗ also happens with probability at most

e−ε
2·µ/(2(1−ε)) ≤ e−ε

2·µ/(3+3ε)), for ε < 1 − 1/(1 + β). This

unlikely case is also included in Z̃. From now on, we assume
i∗∗ < M < n− 1. We note that by definition of M , we then
have C≥M ≤ µ and C≥M−1 ≥ µ + 1 and thus CM−1 ≥ 1.
Hence, we have to investigate the distribution of C∗∗ condi-
tional on C∗∗ ≥ 1 + (µ− C≥M+1), i. e., C∗∗ ≥ 1 + C∗.

We take the same view on the stochastic process as above
but imagine now that the levels are sampled in the order
from n − 1 down to 0. Conditioning on that levels n −
1, . . . ,M+1 have been sampled, levels M , M−1 and M−2
are still hit with probability O(1/

√
n) each, since Pr(X <

i∗∗) is a constant. Hence, we can use Lemma 1 similarly as
above and get

Pr(CM−1 ≥ 1+C∗+k) ≤ Pr
(
Bin(λ−CM ,O(1/

√
n)) ≥ k

)
.

Note that the right-hand side of the inequality is indepen-
dent of C∗. Applying the argumentation once more for
level M − 2 (where no conditions on the size exist), we get
Pr(CM−2 ≥ k) ≤ Pr

(
Bin(λ− CM − CM−1,O(1/

√
n)) ≥ k

)
.

Using our stochastic bound on C∗ from above, we altogether
obtain that C∗∗ is stochastically dominated by the sum of 1,
three binomially distributed random variables with a total
number of λ trials and success probability O(1/

√
n) each,

and the variable Z̃.

Now that we understand how C∗ is distributed, we can
look at the distribution of both the 1st- and 2nd-class in-
dividuals. We even can take a finer-grained view on the
number of 1s contributed by them.

Lemma 5. Consider the UMDA optimizing OneMax. Con-
sider further that Θ(n) frequencies are within [1/6, 5/6] and
that we are in iteration t. Let j be any position, and let Xt
denote the number of 1s at position j in iteration t.

The distribution Z1 of the number of 1s of 1st-class indi-
viduals is stochastically dominated by Bin(µ,Xt/µ), and the
distribution Z2 of the number of 1s of 2nd-class individuals
is stochastically dominated by C∗, where C∗ is distributed as
seen in Lemma 4. In particular, the expected value of Z2 is
at most O(µ/

√
n) + e−Ω(µ).

Further the expected value of Z2, given Xt, is at most
O
(
Xt/µ+Xt/

√
n
)

+ e−Ω(µ).

Proof. The distribution of Z1 has already been described in
Section 2.1 as Bin(µ − C∗, Xt/µ), which is dominated by
Bin(µ,Xt/µ). We also know that the number of 2nd-class
individuals is bounded from above by C∗, and their number
of 1s is trivial bounded by this cardinality too. The first
statement on the expected value of Z2 follows by taking the
expected value of the binomial distribution and noting that

E(Z̃) ≤ λe−Ω(µ) = e−Ω(µ), using λ = O(µ).
To show the second statement on the expected value of

Z2, we recall our definition of 2nd-class candidates from
above. These candidates have not been subject to selec-
tion yet. Each of these candidates samples a 1 at position j
independently of the others with probability Xt/µ, so the
expected total number of 1s in 2nd-class candidates is the
expected number of candidates multiplied with Xt/µ, by
Wald’s identity. By Lemma 4, there is an expected number
of at most 1 + O(µ/

√
n) + e−Ω(µ) of candidates, using again

λ = O(µ). Since the 2nd-class individuals are only selected
from the candidates, the claim on the expected value of Z2

follows.

3. LOWER BOUND ON ONEMAX
In the following, we derive a lower bound on the UMDA’s

run time on OneMax. First, we state the main theorem.

Theorem 6. Let λ = (1 + β)µ for some constant β >
0. Then the expected optimization time of the UMDA on
OneMax is Ω(µ

√
n+ n logn).

To prove the theorem, we will distinguish between differ-
ent cases for λ: small, medium, and large. We will cover
the lemmas we use to prove the different cases in differ-
ent sections. The first and the last case are fairly easy to
prove, hence we discuss them first, leaving the second case
of medium λ – the most difficult one – to be discussed last.

In each of the following sections, we will introduce the
basic idea behind each of the proofs.
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3.1 Small Population Sizes
In this section, we consider a population size of λ ≤ (1−

c1) log2 n, for some constant c1 > 0. If the population size is
that small, the probability that a frequency reaches 1/n is
rather high, and thus the probability to sample the optimum
will be quite small.

If enough frequencies drop to 1/n, we can bound the ex-
pected number of fitness evaluations until we sample the
optimum by Ω(n logn). The following lemma and its proof
closely follow [19, Lemma 13].

Lemma 7. Assume that Ω(nc1) frequencies, c1 > 0 being
a constant, are at 1/n. Then the UMDA will need with
high probability and in expectation still Ω(n logn) function
evaluations to optimize any function with a unique global
optimum.

Proof. Due to symmetry, we can w. l. o. g. assume that the
global optimum is the all-ones string.

We look at (c2n lnn)/(2λ) iterations, where c2 < c1 is a
positive constant, and show that it is very unlikely to sample
the all-ones string during that time. Note that this trans-
lates to Ω(n logn) function evaluations until the optimum is
sampled, as the UMDA samples λ offspring every iteration.

Consider a single position with frequency at 1/n. The
probability that this position never samples a 1 during our
time of (c2n lnn)/(2λ) iterations is at least(

1− λ

n

) c2n lnn
2λ

≥
(
1− o(1)

)
e−

c2
2

lnn ≥ n−c2

if n is large enough.
Given Ω(nc1) frequencies at 1/n, the probability that all of

these positions sample at least one 1 during (c2n lnn)/(2λ)
iterations is at most(

1− n−c2
)Ω(nc1 ) ≤ e−Ω(nc1−c2 ) ,

which is exponentially small in n, since c1 > c2, due to our
assumptions.

Hence, with high probability, the UMDA will need at least
Ω(n logn) function evaluations to find the optimum.

Since the expected value of function evaluations is finite
(due to the bound of 1 − 1/n and 1/n for the frequencies)
and it is Ω(n logn) with high probability, it follows that
the expected number of fitness evaluations is Ω(n logn) as
well.

We can now prove our lower bound for small population
sizes.

Theorem 8. Let λ ≤ (1 − c1) log2 n for some arbitrarily
small constant c1 > 0. Then, the UMDA will need with
high probability and in expectation Ω(n logn) function eval-
uations to optimize any function with a unique global opti-
mum.

Proof. Due to symmetry, we can w. l. o. g. assume that the
global optimum is the all-ones string. We consider an arbi-
trary position i and study the first iteration of the UMDA.
The probability that all λ bits at position i are sampled as 0
equals 2−λ ≥ n−(1−c1). In this case, the frequency of the po-
sition is set to 1/n. The expected number of such positions
is nc1 , and by Chernoff bounds, with high probability Ω(nc1)
such positions exist (noting that c1 is a positive constant by
assumption).

Applying Lemma 7 yields the result, since we already
have Ω(nc1) frequencies at 1/n after a single iteration of
the UMDA with high probability.

3.2 Large Population Sizes
Here, we are going to show that a population size of λ =

Ω(
√
n logn) lead to a run time of Ω(n logn). To prove this,

we first show that it is unlikely that too many frequencies
leave the interval [1/6, 5/6] quickly in this scenario. Thus,
it is also unlikely to sample the optimum.

We start by proving that a single frequency does not leave
[1/6, 5/6] too quickly, for µ = ω(1). We make use of Corol-
lary 3 and the lemmas following from it, all of which make
use of the lemmas we prove here themselves. At the end of
this section, we will discuss why this seemingly contradictory
approach is feasible.

Lemma 9. Consider an arbitrary frequency of the UMDA
with λ = ω(1) optimizing OneMax. During at least γ ·
min{µ,

√
n} iterations, for a sufficiently small constant γ,

this frequency will not leave [1/6, 5/6] with a probability of
at least a constant greater than 0.

Proof. We consider the expected change of an arbitrary po-
sition’s frequency pt over time t. Let Xt, again, denote
the number of 1s of the µ selected individuals. Note that
pt+1 = Xt/µ.

Due to Lemma 5, we know that Xt is the sum of two ran-
dom variables Z1,t and Z2,t, where Z1,t ≺ Bin(µ,Xt−1/µ)
corresponds to the number of 1s due to the 1st-class indi-

viduals, and Z2,t ≺ Bin
(
λ,O(1/

√
n)
)

+ Z̃t corresponds to
the 2nd-class individuals’ number of 1s, pessimistically as-
suming that each 2nd-class individual contributes a 1.

First, we are going to upper-bound the probability of pt
reaching 5/6 during γ ·min{µ,

√
n} iterations. Then, we do

the same for reaching 1/6. Taking the converse probability
of a union bound over both cases yields the result.

Since Z1,t is dominated by a martingale which we want
to account for in the process, we analyze φt+1 := (Xt/µ)2,
with φ0 = (1/2)2. Note that the square function is injective
in this case because both Xt and µ are nonnegative. The
original process of pt reaching 5/6 translates into the new
process p2

t reaching 5/62.
We bound the expected change during one step:

E(φt+1 − φt | φt) =
1

µ2

(
E(X2

t | φt)−X2
t−1

)
=

1

µ2

(
E
(
(Z1,t + Z2,t)

2 | φt
)
−X2

t−1

)
=

1

µ2

(
E(Z2

1,t | φt) + E(Z2
2,t | φt)

+ 2E(Z1,t · Z2,t | φt)−X2
t−1

)
.

As discussed before, we will look at the dominating dis-
tributions of Z1,t and Z2,t. Further, note that Z1,t and Z2,t

are not independent, but their dominating distributions are.
We calculate the different terms separately:

E(Z2
1,t | φt) ≤ µ

Xt−1

µ
+ µ(µ− 1)

X2
t−1

µ2
≤ Xt−1 +X2

t−1 ,

i. e., the second moment of a binomially distributed random
variable, as seen by noting that E(Z2

1,t | φt) = Var(Z1,t |
φt) + E(Z1,t | φt)2.
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For Z2,t, let Z∗t ∼ Bin
(
λ,O(1/

√
n)
)
, and recall that Z̃

is a random variable that takes values in {1, . . . , λ} with

probability e−Ω(µ) and is 0 otherwise. Using, again, the
second moment of a binomially distributed random variable,
we get

E(Z2
2,t | φt) ≤ E

(
(Z∗t )2 | φt

)
+ E

(
(Z̃t)

2 | φt
)

+ 2E(Z∗t | φt)E(Z̃t | φt)

≤ O

(
µ√
n

)
+ O

(
µ2

n

)
+ µ2e−Ω(µ) + O

(
µ2

√
n

e−Ω(µ)

)
≤ max

{
O

(
µ√
n

)
,O

(
µ2

n

)
, µ2e−Ω(µ)

}
,

because the term O
(
µ2/(
√
neΩ(µ))

)
is always dominated by

another term. Note that O(µ/
√
n) dominates if the constant

in the Ω(µ) of e−Ω(µ) is at least 1/2 and if µ = o(
√
n). For

µ = Ω(
√
n), the term O(µ2/n) dominates. In the remaining

cases (when µ is logarithmic), the term µ2e−Ω(µ) dominates.
For the first moment of Z2,t, we can get a similar bound:

E(Z2,t | φt) ≤ max

{
O

(
µ√
n

)
, µe−Ω(µ)

}
,

where the term µe−Ω(µ) only dominates if the constant in
the Ω(µ) is less than 1/2.

Using our prior calculations and independence of the dom-
inating distributions, we can bound

2E
(
Z1,t · Z2,t | φt

)
≤ Xt−1 ·max

{
O

(
µ√
n

)
, µe−Ω(µ)

}
.

Thus, we get

E(φt+1 − φt | φt)

≤ 1

µ2

(
Xt−1 +X2

t−1 + max

{
O

(
µ√
n

)
,O

(
µ2

n

)
, µ2e−Ω(µ)

}

+Xt−1 ·max

{
O

(
µ√
n

)
, µe−Ω(µ)

}
−X2

t−1

)

≤ 1

µ2

(
max

{
O

(
µ√
n

)
,O

(
µ2

n

)
, µ2e−Ω(µ)

}

+Xt−1

(
1 + max

{
O

(
µ√
n

)
, µe−Ω(µ)

}))
Xt−1≤µ
≤ 1

µ2
µ

(
1 + max

{
O

(
µ√
n

)
, µe−Ω(µ)

})
≤ O

(
max

{
1

µ
,

1√
n

})
.

Let PT describe the Markov process p2
t = φt starting at

(1/2)2 and then progressing by φt+1 − φt for T iterations.
Due to our bounds, we get

E(PT ) =

(
1

2

)2

+

T−1∑
t=0

E(φt+1 − φt | φt)

≤ 1

4
+ ζT ·max

{
1

µ
,

1√
n

}
,

for a sufficiently large constant ζ.
Using Markov’s inequality gives us, for k > 1,

Pr

(
PT ≥ k

(
1

4
+ ζT ·max

{
1

µ
,

1√
n

}))
≤ Pr

(
PT ≥ kE(PT )

)

≤ 1

k
.

We want that (5/6)2 ≥ k(1/4 + ζT · max{1/µ, 1/
√
n}),

since then Pr(PT ≥ 25/36) is upper-bounded by Pr
(
PT ≥

k(1/4 + ζT ·max{1/µ, 1/
√
n})
)
≤ 1/k. We get

25

36
≥ k

(
1

4
+ ζT ·max

{
1

µ
,

1√
n

})
⇔ T ≤

(
25

36k
− 1

4

)
min{µ,

√
n}

ζ
,

which is positive as long as k < 25/9. Thus, we can bound
k ∈ (1, 25/9).

Hence, if T ≤ γ ·min{µ,
√
n}, for a constant γ sufficiently

small, then the probability of an arbitrary frequency ex-
ceeding 5/6 is at most a constant less than 1/2 (for k > 2 ∈
(1, 25/9)).

We now analyze how likely it is that pt hits 1/6 in a similar
amount of time. For this case, we define a slightly different
potential φ′t+1 := (1−Xt/µ)2 = 1− 2Xt/µ+ (Xt/µ)2, i. e.,
we mirror the process at 1/2 and then use the same potential
as before.

Looking at the difference during one step, we see that

φ′t+1 − φ′t = 1− 2
Xt
µ

+

(
Xt
µ

)2

− 1 + 2
Xt−1

µ
−
(
Xt−1

µ

)2

=
2

µ
(Xt−1 −Xt) + φt+1 − φt ,

where we only have to determine the expected value ofXt−1−
Xt, because we already analyzed φt+1 − φt before.

Considering just the 1st-class individuals, it holds that
E(Xt) = E(Xt−1), because we then have a martingale. But
due to the elitist selection of the UMDA, actually E(Xt) ≥
E(Xt−1) holds, because of the bias of the 2nd-class individ-
uals, which prefer 1s over 0s. Thus, E(Xt−1 −Xt | φ′t) ≤ 0,
and we get

E(φ′t+1 − φ′t | φ′t) ≤ E(φt+1 − φt | φt) ,

which we already analyzed.
Hence, we can argue analogously as before and get, again,

a probability of at most a constant less than 1/2 to reach
1/6 during at most γ ·min{µ,

√
n} iterations.

Taking a union bound over both cases finishes the proof.

We now expand the case from a single frequency to all
frequencies.

Lemma 10. During at least γ ·min{µ,
√
n} iterations of the

UMDA optimizing OneMax, for a sufficiently small constant
γ, Θ(n) frequencies stay in the interval [1/6, 5/6] with at
least constant probability.

Proof. We look at T ≤ γ · min{µ,
√
n} iterations. Thus,

the probability for a single frequency to leave [1/6, 5/6] is at
most a constant c < 1, according to Lemma 9. In expecta-
tion, there are at most cn frequencies outside of [1/6, 5/6],
and due to Markov’s inequality, the probability that there
are at least (1 + δ)cn such frequencies, for a constant δ > 0
with (1+δ)c < 1, is at most 1/(1 + δ). This means that with
at least constant probability, at least

(
1− c(1 + δ)

)
n = Θ(n)

frequencies are still within [1/6, 5/6].
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Note that the proof of Lemma 9 relies on Corollary 3, and
the proof of Corollary 3 also relies on Lemma 9. Formally,
this cyclic dependency can be solved by proving both propo-
sitions in conjunction via induction over the number of itera-
tions up to γ ·min{µ,

√
n}, for a sufficiently small constant γ.

For the base case, all frequencies are at 1/2 ∈ [1/6, 5/6], and
both propositions hold. For the inductive step, assuming
that t < γ · min{µ,

√
n}, we already now that both propo-

sitions hold up to iteration t. Thus, the requirements for
the proofs of Corollary 3 and Lemma 9 are fulfilled, and the
proofs themselves pass.

We now prove an easy lower bound.

Corollary 11. Consider the UMDA optimizing OneMax
with µ = Ω(

√
n logn). Its run time is then in Ω(n logn) in

expectation and with probability at least 1− e−Ω(n).

Proof. Since we assume µ = Ω(
√
n logn), Lemma 10 yields

that within at most γ · min{µ,
√
n} = γ

√
n iterations, γ

sufficiently small, at least Θ(n) frequencies are at most 5/6
with probability Ω(1). Hence, assuming this to happen, the

probability to sample the optimum is at most (5/6)Θ(n) ≤
e−Θ(n), and, thus, the expected run time is in γ

√
nλ =

Ω(n logn).

3.3 Medium Population Sizes
In this section, we consider the remaining population sizes

of µ = O(
√
n logn) (and µ = Ω(log n)), where we recall that

λ = (1+β)µ. Basically, we lower-bound the probability that
a single frequency hits 1/n. To do so, we analyze the one-
step change of the number of 1s at the frequency’s position
and approximate it via a normal distribution. For this, we
are going to use a general form of the central limit theorem
(CLT), along with a bound on the approximation error.

Lemma 12 (CLT with Lyapunov condition, Berry-Esseen
inequality [9, p. 544] ). Let X1, . . . , Xm be a sequence of in-
dependent random variables, each with finite expected value
µi and variance σ2

i . Define

s2
m :=

m∑
i=1

σ2
i and Cm :=

1

sm

m∑
i=1

(Xi − µi) .

If there exists a δ > 0 such that

lim
m→∞

1

s2+δ
m

m∑
i=1

E
(
|Xi − µi|2+δ

)
= 0

(assuming all the moments of order 2 + δ to be defined),
then Cm converges in distribution to a standard normally
distributed random variable.

Moreover, the approximation error is bounded as follows:
for all x ∈ R,

|Pr(Cm ≤ x)− Φ(x)|≤ C ·
∑m
i=1 E

(
|Xi − µi|3

)
s3
m

where C is an absolute constant and Φ(x) denotes the cu-
mulative distribution function of the standard normal distri-
bution.

To make use of Lemma 12, we need to study the stochastic
process on the Xt values (which again denotes the number of
1s of an arbitrary position) and determine the accumulated
expectations and variances of every single one-step change.
Using the notation from Lemma 5, we note that the Xt value

in expectation changes very little from one step to the next
since E(Z1) = 0 and also E(Z2) is close to 0. However,
considerable variances are responsible for changes of the Xt
value, and it turns out that the variances are heavily depen-
dent on the current state. We get Var(Z1) = Xt(1−Xt/µ),
i. e., if Xt ≤ µ/2, then the 1st-class individuals are respon-
sible for a typical deviation of

√
Xt. This dependency of

Var(Z1) on Xt makes a direct application of Lemma 12 dif-
ficult.

To make the CLT applicable, we define a potential func-
tion that transforms Xt such that the expected difference
between two points in time is still close to 0, but the vari-
ance is independent of the state. This potential function
is inspired by the approach used in [18] to analyze two very
simple EDAs. Since the standard deviation of Z1 is Θ(

√
Xt),

we work with a potential function whose slope at point Xt
is Θ(1/

√
Xt), so that the dependency of the variance on the

state cancels out.
We proceed with the formal definition. Let g denote the

potential function, defined over {0, . . . , µ}. Our definition is
simpler than the one from [18], as we do not need g to be
centrally symmetric around µ/2. We define

g(x) :=
√
µ

µ−1∑
j=x

1√
j + 1

.

We will often use the following bounds on the change of
potential. For 0 ≤ y < x ≤ µ, we get

g(y)− g(x) =
√
µ

x−1∑
j=y

1√
j + 1

≤ √µ x− y√
y + 1

, and (2)

g(y)− g(x) =
√
µ

x−1∑
j=y

1√
j + 1

≥ √µ x− y√
x+ 1

. (3)

Let ∆t = g(Xt+1)− g(Xt).

3.3.1 Bounding the Expected Change of Potential
We start by bounding the expected value of ∆t and see

that also the transformed process moves very little in ex-
pectation (however, its variance will be large, as shown in
the following subsection). Because of the Lyapunov condi-
tion, which we will address in Section 3.3.3, we do so in both
directions.

Lemma 13. Let µ = O(
√
n logn). Then, for all t and all

Xt ∈ {1, . . . , µ− 1},

E(∆t | Xt)≥ −

(
e−Ω(µ) + O

(
Xt
µ

+
Xt√
n

))√
µ

Xt + 1

and E(∆t | Xt) ≤ 111

√
µ

Xt
.

Proof. We abbreviate Xt = x. Further, we always condition
on x without denoting this explicitly.

First, we derive the lower bound. We have E(∆t) =
E
(
g(Xt+1)

)
− g(x). Because g is convex we get by Jensen’s

inequality that E
(
g(Xt+1)

)
− g(x) ≥ g

(
E(Xt+1)

)
− g(x) ≥

g
(
x+ e−Ω(µ) + O(x/µ+ x/

√
n)
)
− g(x), where we used that

E(Xt+1) ≤ x+ e−Ω(µ) + O

(
x

µ
+

x√
n

)
,
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which follows from Lemma 5 by studying the expected num-
ber of 1s contributed by the two classes of individuals.

Applying (2), gives us the desired result of

g

(
x+ e−Ω(µ) + O

(
x

µ
+

x√
n

))
− g(x)

≥ −

(
e−Ω(µ) + O

(
x

µ
+

x√
n

))√
µ

x+ 1
.

The upper bound will be shown by ignoring 2nd-class in-
dividuals, since they are biased toward increasing x and,
therefore, decreasing ∆t. Hence, we now assume that Xt+1

follows a binomial distribution with parameters µ and x/µ,
i. e., E(Xt+1−x) = 0. In a delicate analysis, we will estimate
how much E(∆t) is shifted away from 0 due to the nonlin-
earity of the potential function. We use the inequalities

g(i) ≤ g(x) +

√
µ(x− i)
√
i+ 1

for i < x, and

g(i) ≤ g(x) +

√
µ(x− i)
√
i+ 1

for i > x,

which are just rearrangements of (2) and (3), noting that
x− i is negative in the second inequality.

E(∆t) =

µ∑
i=0

(
g(i)− g(x)

)
Pr(Xt+1 = i)

≤
x−1∑
i=0

(
g(x) +

√
µ(x− i)
√
i+ 1

− g(x)

)
Pr(Xt+1 = i)

+

µ∑
i=x+1

(
g(x) +

√
µ(x− i)
√
i+ 1

− g(x)

)
Pr(Xt+1 = i)

=

∞∑
i=0

(√
µ(x− i)
√
i+ 1

Pr(Xt+1 = i)

)
.

We now split the set of possible outcomes of i into intervals
of length

√
x. More precisely Ik := [x− (k+ 1)

√
x, x−k

√
x]

for k ∈ Z, i. e., also negative indices are allowed, leading to
intervals lying above x. We get

E(∆t) ≤
∞∑
k=0

∑
i∈Ik

( √
µ(x− i)√

i− (k + 1)
√
x+ 1

Pr(Xt+1 = i)

−
√
µ(x− i)√

i+ (k + 1)
√
x+ 1

Pr(Xt+1 = 2x− i)

)
,

noting that both i and 2x−i have a distance of x−i to x. We
take special care of intervals where x−(k+1)

√
x ≤ x/2 (i. e.,

k ≥
√
x/2 − 1) and handle them directly. The maximum

increase in potential is observed when Xt+1 = 0 and equals

√
µ

x−1∑
j=0

1√
j + 1

≤ √µ
(

1 +

∫ x

1

1√
z

dz

)
=
√
µ(1 + 2

√
x− 2

√
1) ≤

√
4µx .

By Chernoff bounds, the probability of Xt+1 ≤ x/2 is at

most e−x/24. Hence, the intervals of index at least kmax :=√
x/2 − 1 contribute only a term of S∗ :=

√
4µxe−x/24 ≤

100
√
µ/x to E(∆t).

1

1The inequality 2xe−x/24 ≤ 100/
√
x for x ≥ 1 can be

checked using elementary calculus.

For smaller k, we argue more precisely. Since√
x+ (k + 1)

√
x+ 1√

x− (k + 1)
√
x+ 1

= 1 +

√
x+ (k + 1)

√
x+ 1−

√
x− (k + 1)

√
x+ 1√

x− (k + 1)
√
x+ 1

≤ 1 +

2(k+1)
√
x

2
√
x−(k+1)

√
x+1√

x− (k + 1)
√
x+ 1

= 1 +
(k + 1)

√
x

x− (k + 1)
√
x+ 1

,

(where the last inequality follows from a− b ≤ (a2 − b2)/2b
for a ≥ b > 0), we have

E(∆t) ≤
kmax∑
k=0

∑
i∈Ik

( √
µ(x− i)√

x+ (k + 1)
√
x+ 1

(4)

·
(

1 +
(k + 1)

√
x

x− (k + 1)
√
x+ 1

)
Pr(Xt+1 = i)

−
√
µ(x− i)√

x+ (k + 1)
√
x+ 1

Pr(Xt+1 = 2x− i)

)
+ S∗ .

We now look more closely into the inner sum and work
with the abbreviation

E∗k :=
∑
i∈Ik

(
(x− i) · Pr(Xt+1 = i)

− (x− i) Pr(Xt+1 = 2x− i)
)
.

Coming back to (4), this enables us to estimate the inner
sum for arbitrary k:∑
i∈Ik

( √
µ(x− i)√

x+ (k + 1)
√
x+ 1

(
1 +

(k + 1)
√
x

x− (k + 1)
√
x+ 1

)
· Pr(Xt+1 = i)

−
√
µ(x− i)√

x+ (k + 1)
√
x+ 1

Pr(Xt+1 = 2x− i)

)

≤ E∗k ·
√
µ√

x+ (k + 1)
√
x+ 1

+
∑
i∈Ik

√
µ(x− i)√

x+ (k + 1)
√
x+ 1

(k + 1)
√
x

x− (k + 1)
√
x+ 1

Pr(Xt+1 = i)

≤
E∗k
√
µ√

x+ (k + 1)
√
x+ 1

+
∑
i∈Ik

√
µ(x− i)(k + 1)

x− (k + 1)
√
x+ 1

· Pr(Xt+1 = i) ,

where the last inequality estimated
√
x/
√
x+ (k + 1)

√
x+ 1

≤ 1. Since k ≤ kmax, i. e., (k+1)
√
x ≤
√
x/2, the last bound

is easily bounded from above by

E∗k
√
µ√

x+ (k + 1)
√
x+ 1

+
∑
i∈Ik

√
µ(x− i)(k + 1)

x
2

Pr(Xt+1 = i) .

We proceed by bounding the sum over Ik, noting that we

have Pr(Xt+1 ∈ Ik) ≤ Pr(Xt+1 ≤ x − k
√
x) ≤ e−k

2/3 by
Chernoff bounds. Hence, since x− i ≤ (k+ 1)

√
x for i ∈ Ik,

we get∑
i∈Ik

√
µ(x− i)(k + 1)

x
2

Pr(Xt+1 = i)
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≤
2
√
µ

x

∑
i∈Ik

(k + 1)
√
xPr(Xt+1 = i)

≤
2
√
µ(k + 1)
√
x

∑
i∈Ik

Pr(Xt+1 = i) ≤
2
√
µ(k + 1)e−

k2

3

√
x

.

Altogether, we have obtained from (4) the simpler inequality

E(∆t) ≤
kmax∑
k=0

E∗k
√
µ√

x+ (k + 1)
√
x+ 1

+
2
√
µ(k + 1)e−

k2

3

√
x

+S∗,

(5)
which we will bound further. The idea is to exploit that∑

k≥0

E∗k = 0 , (6)

which is a reformulation of E(Xt+1) = x. Using similar
calculations as above, we manipulate the sum∑

k≥0

E∗k
√
µ√

x+ (k + 1)
√
x+ 1

,

stemming from the upper bound (5), and recognize that it
equals∑
k≥0

E∗k
√
µ√

x+
√
x+ 1

·

(
1 +

√
x+
√
x+ 1−

√
x+ (k + 1)

√
x+ 1√

x+ (k + 1)
√
x+ 1

)

≤
∑
k≥0
E∗k<0

E∗k
√
µ√

x+
√
x+ 1

(
1

− k
√
x

2
√
x+ (k + 1)

√
x+ 1

√
x+
√
x+ 1

)

+
∑
k≥0
E∗k≥0

E∗k
√
µ√

x+
√
x+ 1

· 1 ,

where we again used a− b ≤ (a2 − b2)/2b for a ≥ b > 0.
Similarly as above, we get, using Chernoff bounds,

E∗k ≥
x+(k+1)

√
x∑

i=x+k
√
x

(x− i) Pr(Xt+1 = i) ≥ −2(k + 1)e−
k2

3
√
x .

Combining this with (6), we arrive at the inequality

∑
k≥0

E∗k
√
µ√

x+ (k + 1)
√
x+ 1

≤
∑
k≥0

2(k + 1)e−
k2

3
√
x
√
µ√

x+
√
x+ 1

· k
√
x

2
√
x+ (k + 1)

√
x+ 1

√
x+
√
x+ 1

,

which is at most
∑
k≥0

(
k(k + 1)e−k

2/3√µ
)
/
√
x.

Substituting this into (5), we finally obtain

E(∆t) ≤
∑
k≥0

2(k + 1)e−
k2

3
√
µ

√
x

+
k(k + 1)e−

k2

3
√
µ

√
x

+ S∗

≤ 11

√
µ
√
x

+
100
√
µ

√
x

= 111

√
µ
√
x
,

which finally proves the upper bound.

3.3.2 Lower Bound on the Variance of the Potential
Change

Before we analyze the variance of ∆t, we introduce a
lemma that we are going to use.

Lemma 14 ([16, Lemma 6]). Let X ∼ Bin(µ, r/µ) with
r ∈ [0, µ], let ` = min{r, µ−r}, and let ζ > 0 be an arbitrary

constant. Then Pr
(
X ≥ E(X) + ζ

√
`
)

= Ω(1). Note that if

r ≤ µ/2, we get Pr
(
X ≥ E(X) + ζ

√
E(X)

)
= Ω(1).

In [16], the lemma is only stated for ζ = 1. However, in-
troducing the constant factor does not change the lemmas’s
proof at all.

With Lemma 14 in place, we now lower-bound the vari-
ance of ∆t. Note that the following lemma only applies up
to Xt ≤ (5/6)µ, which will be guaranteed in its application.

Lemma 15. Let µ = ω(1) and µ = O(
√
n logn). Then, for

all t and Xt ∈ {1, . . . , (5/6)µ},

Var(∆t | Xt) = Ω(µ) .

Proof. Again, we abbreviate Xt = x and always condition
on x without denoting so. Let E∗ := −

(
1 + γ(x/

√
n+1)

)
·√

µ/(x+ 1) be a lower bound on E(∆t) from Lemma 13,

where we pessimistically estimated e−Ω(µ) ≤ 1, x/µ ≤ 1
because x ≤ µ, and where γ is a sufficiently large constant
that captures the implicit constant in the O-notation. We
estimate

Var(∆t) = E
((

∆t − E(∆t)
)2)

≥ E
((

∆t − E(∆t)
)2 · 1{∆t < E∗}

)
≥ E

(
(∆t − E∗)2 · 1{∆t < E∗}

)
.

Note that we can ignore 2nd-class individuals, as they would
only increase Xt+1 even further, leading to a greater differ-
ence of ∆t and E∗.

We derive a sufficient condition for ∆t < E∗. For this,
we introduce the constant ζ and claim that g(x + ζ

√
x) ≤

g(x) + E∗ if ζ is sufficiently large. This claim is equivalent
to g(x)− g(x+ ζ

√
x) ≥ −E∗.

We lower-bound the left-hand side as follows: g(x)−g(x+

ζ
√
x) ≥ √µ · ζ

√
x/(
√
x+ ζ

√
x+ 1) ≥ √µ · ζ

√
x/
√

2ζx =√
µζ/2 (if ζ is sufficiently large), according to Inequality (3),

which should be at least −E∗.
The inequality

√
µζ/2 ≥ −E∗ is equivalent to

√
ζ/2 ·√

x+ 1 − 1 ≥ γ(x/
√
n + 1). We prove this inequality by

lower-bounding the left-hand side as follows:
√
ζ/2·
√
x+ 1−

1 ≥
√
ζx/2 if ζ is sufficiently large.

It is now evident that
√
ζx/2 ≥ γ(x/

√
n + 1) ⇔

√
ζ/2 ≥

γ(
√
x/n+ 1/

√
x) holds (for x 6= 0) if ζ is sufficiently large,

i. e., if ζ ≥ (4γ)2, because x ≤ µ and we assume µ =

O(
√
n logn), thus,

√
x/n + 1/

√
x ≤ 1 + o(1). For x = 0,

the inequality trivially holds.
Using the inequality derived above, we get:

∆t < E∗ ⇔ g(Xt+1)− g(x) < E∗ ⇔ g(Xt+1) < g(x) + E∗

⇐ g(Xt+1) < g(x+ ζ
√
x)⇔ Xt+1 > x+ ζ

√
x ,

where we used the definition of g and that it is a decreasing
function.

We proceed by estimating the expected value. First, we
see that, assuming Xt+1 > x+ ζ

√
x,

∆t − E∗ = g(Xt+1)−
(
g(x) + E∗

)
≤ g(Xt+1)− g(x+ ζ

√
x)
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= −√µ
Xt+1−1∑
j=x+ζ

√
x

1√
j + 1

,

by using the same bounds as before. Note that we derive an
upper bound of ∆t−E∗, because we only consider ∆t < E∗,
i. e., ∆t − E∗ < 0. Thus, its square gets minimized for an
upper bound.

Using Jensen’s inequality and thatXt+1 > x+ζ
√
x implies

∆t < E∗, we get

E
(

(∆t − E∗)2 · 1{∆t < E∗}
)

≥ E
(

(∆t − E∗)2 · 1{Xt+1 > x+ ζ
√
x}
)

≥ E
((
g(Xt+1)− g(x+ ζ

√
x)
)
· 1{Xt+1 > x+ ζ

√
x}
)2

=

 µ∑
i=0

(−√µ)

i−1∑
j=x+ζ

√
x

1√
j + 1

· 1{i > x+ ζ
√
x}

· Pr(Xt+1 = i)

)2

= µ

 µ∑
i=x+ζ

√
x+1

i−1∑
j=x+ζ

√
x

1√
j + 1

Pr(Xt+1 = i)

2

.

We now derive a lower bound for the second sum. Using
Inequality (3), we get

i−1∑
j=x+ζ

√
x

1√
j + 1

≥ i− x− ζ
√
x√

i
.

Substituting this back into the expectation gives us

µ

 µ∑
i=x+ζ

√
x+1

i−1∑
j=x+ζ

√
x

1√
j + 1

Pr(Xt+1 = i)

2

≥ µ

 µ∑
i=x+ζ

√
x+1

i− x− ζ
√
x√

i
Pr(Xt+1 = i)

2

≥ µ

 µ∑
i=x+2ζ

√
x+1

i− x− ζ
√
x√

i
Pr(Xt+1 = i)

2

,

where we narrowed the range for i. In this new range, (i −
x − ζ

√
x)/
√
i is monotonically increasing with respect to i

and hence minimal for i = x+ 2ζ
√
x+ 1:

x+ 2ζ
√
x+ 1− x− ζ

√
x√

x+ 2ζ
√
x+ 1

=
ζ
√
x+ 1√

x+ 2ζ
√
x+ 1

≥ ζ
√
x+ 1√
3ζx

=

√
ζ

3
+

1√
3ζx

= Ω(1) .

Hence, we finally have

Var(∆) ≥ Ω(µ)

 µ∑
i=x+2ζ

√
x+1

Pr(Xt+1 = i)

2

≥ Ω(µ) Pr(Xt+1 ≥ x+ 2ζ
√
x+ 1)2 ≥ Ω(µ) .

The last inequality used Lemma 14 to lower-bound the prob-
ability. The lemma can be used immediately for x ≤ µ/2.
Otherwise, we still have x ≤ (5/6)µ by assumption. Then

Lemma 14 gives us a bound on Pr(Xt+1 ≥ x + ζ
√
µ− x),

which only changes everything by a constant factor, since√
x/
√
µ− x ≤

√
(5µ/6)/(µ/6) = O(1).

3.3.3 Establishing the Lyapunov Condition
To establish the Lyapunov condition w. r. t. the sequence

∆t, it is by Lemma 12 crucial to bound the individual vari-
ances and the 2 + δ-th central absolute moment. The vari-
ances have already been studied in Lemma 15. Using δ = 1,
we are left with the analysis of the third central moment.
This is dealt with in the following lemma.

Lemma 16. If µ = ω(1) and µ = O(
√
n logn), then

E
(
|∆t − E(∆t)|3 | Xt

)
= O(µ3/2) .

Proof. We bound E
(
|∆t − E(∆t)|3 | Xt

)
by

E
((
|∆t|+ |E(∆t)|

)3 ∣∣∣ Xt) ,
aiming at reusing the bounds on E(∆t | Xt) we know from
Lemma 13.

To treat the binomial expression raised to the third power,
we use the simple bound

(a+ b)3 = a3 + 3ab2 + 3a2b+ b3 ≤ 4a3 + 4b3

for a, b ≥ 0.
Thus,

E
(
|∆t − E(∆t)|3 | Xt

)
≤ 4E(|∆t|3 | Xt) + 4|E(∆t | Xt)|3 ,

and we already have the bounds −O(
√
µ) ≤ E(∆t | Xt) =

O(
√
µ), which follow from Lemma 13 for all Xt ∈ {1, . . . , µ−

1} and x = O(
√
n logn).

The main task left is to bound E(|∆t|3 | Xt). We claim

that E(|∆t|3 | Xt) = O
(
µ3/2

)
. To show this, we assume an

arbitrary Xt value. To bound the third moment, we analyze
the distribution of g(Xt+1)−g(Xt). We recall from Lemma 5
that Xt+1 (i. e., the new value before applying the poten-
tial function) is given by the sum of two distributions, both
of which are binomial or ‘almost-binomial’. More precisely
Xt+1 = Z1 + Z(C∗), where Z1 is the number of 1s sampled
through 1st-class individuals, C∗ is the number of 2nd-class
individuals and Z(C∗) is the number of 1s sampled through
them. We note, using Lemmas 4 and 5, that Z(C∗) ≺ C∗ ≺
C∗ ≺ Bin(λ, c/

√
n) + Z̃, for some constant c > 0, and Z̃

takes some value from 1, . . . , λ only with probability at most
e−Ω(µ). Moreover, Z1 ∼ Bin(µ− C∗, Xt/µ),

To overestimate |∆t| = |g(Xt+1)− g(Xt)|, we observe
that

|Xt+1 −Xt| = |Z1 + Z(C∗)−Xt| · 1{Z1 + Z(C∗) < Xt}
+ |Z1 + Z(C∗)−Xt| · 1{Z1 + Z(C∗) ≥ Xt} .

Hence, to bound |∆t|, it is enough to take the maximum
of the two values

• Ψ1 :=
∣∣∣g(Bin

(
µ, Xt

µ

))
− g(Xt)

∣∣∣ and

• Ψ2 :=
∣∣∣g(Bin

(
µ, Xt

µ

)
+ Bin

(
λ, c√

n

)
+ Z̃

)
− g(Xt)

∣∣∣
and analyze it. The first expression covers the case that
Z1 + Z(C∗) < Xt. Then, we transform C∗ random vari-
ables whose success probability is greater than Xt/µ (since
2nd-class individuals are biased towards 1s) into variables
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with success probability exactly Xt/µ, which increases the
probability of Z1 +Z(C∗) being less than Xt. On the other
hand, if Z1 + Z(C∗) ≥ Xt, we get an even larger value by
including C∗ additional experiments.

We claim that E(|Ψ1|3 | Xt) = O(µ3/2). To show this, we
proceed similarly as in computing the first moment of ∆t and
define intervals of length

√
x, where x := Xt (hereinafter,

we implicitly condition on this outcome). More precisely
Ik := [x− (k+ 1)

√
x, x− k

√
x] for k ∈ Z, i. e., also negative

indices are allowed, leading to intervals lying above x. We
get

E(|Ψ1|3 | x) ≤
∞∑
k=0

∑
i∈Ik∪I−k

( √
µ(|i− x|)

x− (k + 1)
√
x

)3

Pr(|Ψ1| = |i|)

≤
∞∑
k=0

( √
µ(|i− x|)

x− (k + 1)
√
x

)3

Pr(|Ψ1| ≥ k
√
x) ,

by applying (2) to bound g(x) − g(y) for y < x. Note that
for k ≤

√
x, we have by Chernoff bounds that Pr(Xt+1 ∈

Ik) ≤ Pr(Xt+1 ≤ x− k
√
x) ≤ e−k

2/3 and Pr(Xt+1 ∈ I−k) ≤
Pr(Xt+1 ≥ x + k

√
x) ≤ e−k

2/4. Moreover, Pr(Xt+1 ≤
x/2) ≤ e−x/24. Using the standard form of Chernoff bounds,
we also bound the probability Pr

(
Xt+1 ≥ (1 + j/2)x

)
≤(

ej/2/(1 + j/2)1+j/2
)x ≤ e−jx/10 for j ≥ 1.

Using these different estimates while distinguishing be-
tween k ≤

√
x/2− 1 and k ≥

√
x/2, we get for x ≥ 1 that

E(|Ψ1|3 | x)

≤

√
x
2
−1∑

k=0

(√
µ(k + 1)

√
x

x
2

)3

2e−
k2

4

+
(
g(0)− g(x)

)3
Pr
(
Xt+1 ≤

x

2

)
+

∞∑
j=1

(
g(x)− g

(
x
(

1 +
j

2

)))3

Pr
(
Xt+1 ≥ x+ j

x

2

)
≤ O

(
µ

3
2

)
+ (x
√
µ)3e−

x
24 +

∞∑
j=1

(
j
x

2

√
µ
)3

e−j
x
10 = O

(
µ

3
2

)
,

where we use the trivial bound g(x)− g(y) ≤ √µ|x− y| and
pessimistically assume Xt+1 = 0 in the case Xt+1 ≤ x/2.

With respect to Ψ2, we observe that

Ψ2 ≺
∣∣∣∣g(Bin

(
µ,
x

µ

))
− g(x)

∣∣∣∣
+ O(µ) Pr(Z̃ 6= 0) +

(
g(0)− g

(
Bin

(
λ,

c√
n

)))

by using g(x+a+b)−g(x) =
(
g(x+a)−g(x)

)
+
(
g(x+a+b)−

g(x+a)
)
, for arbitrary a, b ∈ R, and pessimistically estimat-

ing the contribution of Z(C∗) to occur at point 0, where the
potential function is steepest. Moreover, we pessimistically

assume that the event Z̃ 6= 0 leads to the maximum possible
change of g-value, which is g(0)− g(µ) = O(µ). Hence,

E(|Ψ2|3 | x) ≤ 4E

(∣∣∣∣g(Bin
(
µ,
x

µ

))
− g(x)

∣∣∣∣3
)

(7)

+ 4E

((
g(0)− g

(
Bin
(
λ,

c√
n

)))3
)

+ O(µ3) · Pr(Z̃ 6= 0) .

We recall that Pr(Z̃ 6= 0) ≤ e−Ω(µ), so that O(µ3)·Pr(Z̃ 6=
0) = O(µ3) · e−Ω(µ) = o(1) = O(µ3/2), for µ = ω(1). Hence,
the last term from Lemma 7 has already been bounded as
desired, and we only have to show bounds on the first two
terms of (7).

We recognize that the first term of (7) is O(µ3/2) since, up
to constant factors, it is the same as E(|Ψ1|3 | Xt). Hence,
we are left with the claim

E

((
g(0)− g

(
Bin

(
λ,

c√
n

)))3
)

= O
(
µ

3
2

)
,

which (as the derivative of −g is at most
√
µ) will be proved

by establishing the stronger claim

√
µ · E

(
Bin

(
λ,

c√
n

)3
)

= O
(
µ

3
2

)
.

To show this, we let Z ∼ Bin(λ, c/
√
n) and consider different

intervals Ik, k ≥ 0, that Z can fall into. The definition of
intervals distinguishes two cases.

Case 1: λ ≥
√
n/(2ec). We define I0 := [0, 2ecλ/

√
n]

and Ik := [(1 + k)ecλ/
√
n, (2 + k)ecλ/

√
n] for k ≥ 1. Then

(similar to the analysis of E(|Ψ1|3 | x), we get

E

(
Bin
(
λ,

c√
n

)3
)
≤
(

2ecλ√
n

)3

+

∞∑
k=1

(
(2 + k)ecλ√

n

)3

Pr(Z ∈ Ik) .

We use the Chernoff bound Pr(X ≥ t) ≤ 2−t for t ≥
2eE(X). This gives us Pr(Z ∈ Ik) ≤ e−(2+k)eλ/

√
n ≤ e−k/2

by our assumption on λ. We get

E

(
Bin
(
λ,

c√
n

)3
)
≤ O

(
λ3

n
3
2

)
+ O

(
λ3

n
3
2

) ∞∑
k=1

(2 + k)3e−
k
2

= O

(
λ3

n
3
2

)
= O

(
µ3

n
3
2

)
,

hence
√
µ · E

(
Bin(λ, c/

√
n)3
)

= O(µ7/2/n3/2). Since µ =
O(
√
n logn) by assumption of the lemma, the bound is at

most O
(
n1/4(logn)7/2

)
, and this is clearly O(µ3/2) since µ =

Ω(
√
n) in this case.

Case 2: λ <
√
n/2e. Then Ik := [k, k + 1] for k ≥ 0. We

note that E(Z) = O(1) since µ = O(λ) = O(
√
n). Hence, by

Chernoff bounds for k > E(Z), Pr(Z ≥ k) = e−αk for some
constant α > 0. We get

E
((
g(0)− g(Z)

)3)
≤ (
√
µ)3 · E(Z3) ≤ µ3/2 · E(Z)3 +

∞∑
k>E(Z)

(µk)32−αk .

Thus, using µ = O(
√
n),

E
((
g(0)− g(Z)

)3) ≤ O
(
(
√
µ)3)+ (

√
µ)3

∞∑
k=1

k32−αk

= O
(
µ

3
2

)
,

which completes the proof.

Using Lemmas 15 and 16, we now establish the Lyapunov
condition, assuming Xt ≤ (5/6)µ for all t ≥ 0. Using
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Lemma 12, we get for s2
t :=

∑t−1
j=0 Var(∆j | Xj) that

1

s3
t

t−1∑
j=0

E
(
|∆j − E(∆j)|3 | Xj

)
= O

(
µ1.5t

µ1.5t1.5

)
= O(1/

√
t) ,

which is o(1) for t = ω(1). The sum of the ∆j can then be
approximated as stated in the following lemma.

Lemma 17. Let Yt :=
∑t−1
j=0 ∆j and t = ω(1). Then

Yt − E(Yt | X0)√∑t−1
j=0 Var(∆j | Xj)

converges in distribution to N(0, 1). The absolute error of
this approximation is O(1/

√
t).

3.3.4 Likelihood of a Frequency Getting Very Small
We will now apply Lemma 17 to prove how likely it is for

a single frequency to either get close to 1/n or exceed 5/6.
For this, we will use the following estimates for Φ(x). More
precise formulas exist, but they do not yield any benefit in
our analysis.

Lemma 18 ([8, p. 175]). For any x > 0,(
1

x
− 1

x3

)
1√
2π

e−
x2

2 ≤ 1− Φ(x) ≤ 1

x

1√
2π

e−
x2

2 ,

and for x < 0,(
−1

x
− −1

x3

)
1√
2π

e−
x2

2 ≤ Φ(x) ≤ −1

x

1√
2π

e−
x2

2 .

Lemma 19. Consider a bit of the UMDA on OneMax and
let pt be its frequency in iteration t. We say that the process
breaks a border at time t if min{pt, 1 − pt} ≤ 1/n. Given
s < 0 and any starting state p0 ≤ 5/6, let Ts be the smallest
t such that pt − p0 ≤ s holds or a border is broken.

Assume that Ω(n) other frequencies stay within [1/6, 5/6]
until time Ts. Choosing 0 < α < 1, where 1/α = o(µ) and
α = O(

√
n/µ), and −1 < s < 0 constant, we then have for

some constant κ > 0 that

Pr
(
Ts ≤ αs2µ or pt exceeds 5

6
before Ts

)
≥

(
(|s|α)

1
2

κ
− (|s|α)

3
2

κ3

)
1√
2π

e
− κ2

2|s|α −O

(
1
√
αµ

)
.

Proof. Throughout the analysis, we assume Xt ≤ (5/6)µ,
since all considerations are stopped when the frequency ex-
ceeds 5/6, i. e., when Xt ≥ (5/6)µ. By Lemma 13, we have

E(∆j | Xj) ≥ −
√
µ/(Xj + 1)

(
e−Ω(µ) + γ1(Xj/

√
n+Xj/µ)

)
for all j ≥ 0 and 1 ≤ Xj ≤ µ − 1, where γ1 > 0 is a suf-
ficiently large constant. Moreover, according to Lemma 15,
Var(∆j | Xj) ≥ cµ for some constant c > 0. Since the Lya-
punov condition has been established for Yt :=

∑t−1
j=0 ∆j in

Lemma 17, we know that
(
Yt − E(Yt | X0)

)
/st converges

in distribution to N(0, 1) if t = ω(1). The lemma chooses
t = αs2µ, which is ω(1) since α = ω(1/µ) by assumption.

For s2
t :=

∑t−1
j=0 Var(∆j | Xj), we obtain s2

t ≥ αs2cµ2.

Hence, recalling that s < 0 is assumed, we get st ≥
√
αc|s|µ.

The next task is to bound E(Yt). Using our bound on E(∆j |
Xj) and recalling that 0 ≤ Xt ≤ (5/6)µ and µ = ω(1), we
have

E(∆t | Xt) ≥ −

e−Ω(µ)

√
µ

1
+ γ1

5
6
µ√

5
6
µ+ 1

(√
µ
√
n

+
1
√
µ

)

≥ −
(

O(1) + γ2
µ√
n

)
,

for some constant γ2 > 0.
This implies E(Yt) ≥ −t

(
O(1)+γ2µ/

√
n
)

= −αs2µ
(
O(1)+

γ2µ/
√
n
)
. Therefore,

E(Yt)

st
≥ −

(αs2µ)
(
O(1) + γ2

µ√
n

)
√
αc|s|µ

≥ −γ3

√
1

cα
,

for some constant γ3 > 0 depending on α, using the assump-
tions |s| ≤ 1 along with both α ≤ 1 and α = O(

√
n/µ).

To bound Pr(Yt ≥ r) for arbitrary r, we note that

Yt ≥ r ⇐⇒
Yt
st
− E(Yt | X0)

st
≥ r

st
− E(Yt | X0)

st
,

and recall that the distribution of Yt/st − E(Yt | X0)/st
converges to N(0, 1) with absolute error O(1/

√
t). Hence,

Pr(Yt ≥ r) ≥ 1− Φ

(
r√

cα|s|µ
+ γ3

√
1

cα

)
−O

(
1√
t

)
(8)

for any r such that the argument of Φ is positive, where Φ
denotes the cumulative distribution function of the standard
normal distribution.

We focus on the event E∗ that Yt ≥ 2µ
√
|s|, recalling

that s < 0 and Xt ≥ X0 ⇔ Yt ≤ Y0. Note that E∗ means
g(Xt) − g(X0) ≥ 2µ

√
|s|, and this implies an upper bound

on the negative Xt − X0 as follows: Function g is steepest
at point 0, and from the definition for any y ≥ 1,

g(y)− g(0) ≤
y−1∑
j=0

√
µ

j + 1
≤ √µ

(
1 +

∫ y

1

1√
j

dj

)
=
√
µ(1 + 2

√
y − 2

√
1) ≤ 2

√
yµ .

Thus, the event g(Xt)−g(X0) ≥ a for a > 0 is only possible
if Xt ≤ X0 − a2/(4µ). In other words, event E∗ implies
Xt − X0 ≤ sµ, which is equivalent to pt − p0 ≤ s. Hence,
to complete the proof, we only need a lower bound on the
probability of E∗. Setting r := 2µ

√
|s| in (8), we bound the

argument of Φ according to

r√
cα|s|µ

+
γ3√
cα
≤ 2√

c|s|α
+

γ3√
cα
≤ γ4√

c|s|α
,

for some constant γ4 > 0, since |s| ≤ 1.
By Lemma 18,

1− Φ

(
γ4√
c|s|α

)

≥

(√
c|s|α
γ4

−
(
√
c|s|α)3

γ3
4

)
1√
2π

e−
γ24

2csα

=: p(α, s) ,

which means that the frequency changes by s (which is neg-
ative) until iteration αs2µ with probability at least p(α, s)−
O(1/

√
t) = p(α, s) − O(1/

√
αµ), where the last term stems

from the bound on the absolute error of the approximation
by the Normal distribution. Choosing κ := γ4/

√
c in the

statement of the lemma completes the proof.

3.4 Proof of the Lower Bound
Finally, we put all previous lemmas together to prove our

main theorem: Theorem 6.
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Proof of Theorem 6. As outlined above, we distinguish be-
tween three regimes for λ. The case of small λ (λ < (1 −
c1) log2 n) is covered by Theorem 8, noting that Ω(n logn)
dominates the lower bound for the considered range of µ.
The case of large λ (µ = Ω(

√
n logn)) is covered by Corol-

lary 11. We are left with the medium case (µ = Ω(log n)
and µ = o(

√
n logn)), which is the most challenging one to

prove.
In the following, we consider a phase consisting of T :=

s2γ · min{µ,
√
n} iterations, for the constant γ > 0 from

Lemma 10; without loss of generality, γ < 1 is assumed.
We conceptually split individuals (i. e., bit strings) of the
UMDA into two substrings of length n/2 each and apply
Lemma 10 w. r. t. the first half of the bits. In the following,
we condition on the event that Ω(n) frequencies from the
first half are within the interval [1/6, 5/6] throughout the
phase.

We show next that some frequencies from the second half
are likely to walk down to the lower border. Let j be an
arbitrary position from the second half. First, we apply
Lemma 9. Hence, pj does not exceed 5/6 within the phase
with probability Ω(1). In the following, we condition on this
event.

We then revisit bit j and apply Lemma 19 to show that,
under this condition, the random walk on its frequency pj
achieves a negative displacement. Note that the event of
not exceeding a certain positive displacement (more pre-
cisely, the displacement of 5/6 − 1/2 = 1/3) is positively
correlated with the event of reaching a given negative dis-
placement (formally, the state of the conditioned stochastic
process is always stochastically smaller than of the uncon-
ditioned process). We can therefore apply Lemma 19 for
a negative displacement of s := −5/6 within T iterations.
Note that the condition of the lemma that demands Ω(n)
frequencies to be within [1/6, 5/6] is satisfied by our as-
sumption concerning the first half of the bits. Choosing
α = T/(s2µ), we get 1/α = o(logn) (since µ = o(

√
n logn)

and T = Θ(min{µ,
√
n})), whereby we easily satisfy the

assumption 1/α = o(µ). As T = O(
√
n) and s constant,

we also satisfy the assumption α = O(
√
n/µ). Moreover,

α ≤ γ < 1 by definition. Now Lemma 19 states that
the probability of the random walk on pj reaching a total
displacement of −5/6 (or hitting the lower border before)
within the phase of length T is at least(

(|s|α)
1
2

κ
− (|s|α)

3
2

κ3

)
1√
2π

e
− κ2

2·|s|α −O

(
1
√
αµ

)
. (9)

To bound the last expression from below, we distinguish
between two cases. If µ ≤

√
n, then α = Ω(1) and (9) is at

least

Ω(1)−O

(
1
√
µ

)
= Ω(1)

since T = Ω(µ) = Ω(logn) = ω(1). If µ ≥
√
n, then we

have T = Ω(
√
n). Since 1/α = o(logn), we estimate (9)

from below by

Ω

(
1

o(
√

logn)
· e−o(lnn)

)
−O

(
logn

n1/4

)
≥ n−η ,

for some η = η(n) = o(1). Combining this with the prob-
ability of not exceeding 5/6, the probability of pj hitting
the lower border within T iterations is, in any case, Ω(n−η).
Note that this argumentation applies to every of the last n/2

bits, and, as explained in Section 2.2, the bounds derived
hold independently for all these bits. Hence by Chernoff

bounds, with probability 1 − 2−Ω(n1−η), the number of fre-
quencies from the second half that hit the lower border
within T iterations is Ω(n1−η).

A frequency that has hit the lower border 1/n somewhere
in the phase may recover (i. e., reach a larger value) by the
end of the phase. However, for each bit the probability of
not recovering is at least(

1− 1

n

)Tλ
≥ e−o(logn) = n−η

′

for some η′ = o(1), since we consider T = O(
√
n) iterations

and λ = o(
√
n logn) samples per iteration. Again applying

Chernoff bounds leaves Ω(n1−η−η′) bits at the lower border

at iteration T with probability 1− 2−Ω(n1−η−η′ ).
Now, making use of Lemma 7 gives us the desired run

time bound.

Conclusions
We have analyzed the UMDA on OneMax and obtained the
general bound Ω(µ

√
n + n logn) on its expected run time

for combinations of µ and λ such that λ = O(µ). This
lower bound analysis is the first of its kind and contributes
advanced techniques, including potential functions.

We also think that our lower bound for the UMDA is tight
and that an expected run time of O(n logn) can be achieved
on OneMax for carefully chosen parameters µ and λ. As the
best upper bound to date is O(n logn log logn) [5], a formal
proof of an improved upper bound would be interesting. We
also note that our results assume λ = O(µ). However, we do
not think that larger λ can be beneficial; if λ = αµ, for α =
ω(1), the progress due to 2nd-class individuals can be by a
factor of at most α bigger; however, also the computational
effort per generation would grow by this factor. Still, we
have not presented a formal proof in this case.

Further run time analyses of the UMDA or other EDAs for
other classes of functions are an obvious subject for future
research. In this respect, we hope that our technical con-
tributions are useful and can be extended towards a more
general lower bound technique at some point.
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