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Evolutionary algorithms (EAs) are randomized search heuristics that can be employed
to solve complex optimization problems, including multimodal or highly constrained
problems. EAs work by mimicking principles from natural evolution: maintaining
a collection of possible solutions (a population) and iteratively creating variants of
the individuals (the offspring) and then choosing a new set of individuals for the
next iteration (selection). EAs are popular because they represent general-purpose
optimizers that can be easily applied to various problems, even in cases where little or
no in-depth knowledge about the problem is available. In order to guide practitioners
devising new and effective algorithms, theoretical computer scientists employmethods
from the field of randomized algorithms to analyze the working principles of EAs with
mathematical rigor. Key questions concern the impact of parameter choices (such
as, for example, the offspring size or the choice of variation operators) as well as
foundational work on developing powerful analysis methods. The theory track of the
annual ACMGenetic and Evolutionary Computation Conference (GECCO) is the first
tier event for advances in this direction.

In this special issue six selected papers from the 2016 edition of the GECCO theory
track are collected, each one of them carefully revised and extended to meet the high
quality standards of Algorithmica.

Black box complexity is a complexity notion where computation steps are not
considered costly, but instead evaluations of a hidden (and to-be-optimized) fitness
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function are counted. Thus, the black box complexity gives a measure for how hard it
is to optimize a given problem class in terms of queries to the fitness function. Most
notably, this concept provides very general lower bounds, applying to a wide range
of algorithms. The paper The (1+1) Elitist Black-Box Complexity of LeadingOnes
considers the class of algorithmswhich keep only the best-so-far solution and construct
one offspring from that. The considered problem class is the permutation- and bit-
invariant LeadingOnes function class. The authors show a tight lower bound for the
black box complexity of Ω(n2) by employing a new information-theoretic technique
and a careful analysis of how information can be stored in the bit string during the
optimization process. This new technique is the main contribution of this paper: not
many tools for proving lower bounds are known, adding one to the toolbox is a major
achievement. Thus, it is not surprising that the paper won the best paper award of the
GECCO 2016 Theory track.

Many classic algorithms for optimization focuses on the case where the fitness
function is unimodal, that is, following improving moves necessarily leads to the
global optimum. Modern approaches to optimization try to deal with the problem
of multimodal optimization where local optima have to be overcome by somehow
crossing the fitness valley. The paper How to Escape Local Optima in Black Box
Optimization: When Non-Elitism Outperforms Elitism considers two properties of the
fitness valley, its depth and its length, and analyzes which of these properties has an
impact on how hard or easy it is for certain algorithms to cross that valley. Interestingly,
while the crossing time of the classic (1 + 1)-EA depends only on the length of the
valley, for the Metropolis algorithm and the SSWM algorithm (both of which can step
down into the valley) the crossing time depends mainly on the valley’s depth. This
notable result is one of few analyses of how non-elitist search heuristics can overcome
local optima.

TheMaze function is a simple benchmark for dynamic optimization in the Boolean
hypercube. In this benchmark, the optimum moves around the hypercube, and each
such transition consists of a long phase of oscillationwhere the old and the newoptimal
point alternate in having the best fitness. This allows (for some) algorithms to track
the optimum. Latest in a sequence of papers on theMaze function and on how differ-
ent algorithms can or cannot follow the optimum, The Impact of a Sparse Migration
Topology on the Runtime of Island Models in Dynamic Optimization extends previous
work on how island models can track local optima. The authors show that frequent
migration in a topology with small diameter leads to losing the optimum, while a suffi-
ciently large diameter (for example in a ring topology of at least c log n islands, where
c > 0 is a sufficiently large constant) allows for successfully tracking the optimum. In
particular, this gives an example where sparse migration topologies are advantageous.
These results are complemented by analyses of settings where migration occurs less
frequently (where denser migration topologies are better) and by experimental results
on parameter settings currently not accessible to a theoretical investigation.

The (1+ (λ, λ)) Genetic Algorithm is one of very few genetic algorithms for which
it could be proven that crossover leads to an asymptotic speedup. It is the first, and
so far only unbiased genetic algorithm proven to solve all OneMax-like functions
in time o(n log n). In Optimal Static and Self-Adjusting Parameter Choices for the
(1 + (λ, λ)) Genetic Algorithm the authors study the impact of the population size λ,
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the mutation probability p, and the crossover bias c. Contributions are as follows: first,
the authors improve previous upper bounds for fixed parameters p = λ/n, c = 1/λ,
and arbitrary choices of λ ≤ n. This refined bound matches a previously known lower
bound, allowing the authors to derive optimal values for the population size λ in
the setting of p = λ/n, c = 1/λ. Next, the authors question whether other choices
of p and c could lead to a better performance. They prove a lower bound for the
whole three-dimensional parameter space spanned by λ, p, and c, confirming that it is
optimal to fix p = λ/n, c = 1/λ. Along the way, the authors present newmethods and
insights for analyzing multi-dimensional parameter spaces where parameters interact
in unforeseenways. Finally, the authors replace a static choice ofλwith a self-adjusting
scheme using a discrete analogue of the one-fifth success rule. They prove that the
self-adjusting (1 + (λ, λ)) Genetic Algorithm needs only linear time on OneMax,
which is faster than any static parameter setting.

Many evolutionary algorithms use an offspring population: they create many search
points in one generation. The simplest such algorithm is the (1 + λ) Evolutionary
Algorithm, shortly (1 + λ) EA. In Optimal Mutation Rates for the (1 + λ) EA on
OneMax Through Asymptotically Tight Drift Analysis the authors refine existing
results on the run time of the (1+ λ) EA for arbitrary mutation rates c/n, for constant
λ, c > 0. They analyze the progress made in one generation, called drift, and derive
exact expressions for the drift for each possible fitness value of the current search
point. They further present a refined variable drift theorem for lower bounds, allowing
them to derive very tight upper and lower bounds on the expected optimization time.
This shows a surprisingly close relationship between drift and expected optimization
times: once the drift is known, the expected optimization time can be estimated very
closely, up to small-order terms. This finding, as well as their refined drift theorem, are
of independent interest and may prove useful in further studies. The authors conclude
that for small problem sizes n, the optimal mutation rate is slightly larger than the
asymptotically optimal one of 1/n, however absolute differences are small.

Almost all run time analyses of evolutionary algorithms consider the binary space
{0, 1}n . The paper Static and Self-AdjustingMutation Strengths forMulti-valuedDeci-
sion Variables considers variants of theOneMax function defined over a search space
{0, 1, . . . , r − 1}n of multi-valued decision variables, where each of n variables takes
values within {0, 1, . . . , r −1}. The main research question is: how to design efficient
mutation operators for the multi-valued domain? If every mutated variable is set to
a uniform random value within {0, . . . , r − 1}, the expected run time is �(nr log n).
If each mutated variable is only changed by ± 1, the expected run time reduces to
�(nr + n log n). The authors also consider a harmonic distribution where a step of
length ± i is chosen with a probability inversely proportional to the step length i , and
prove an upper bound of �(n log(r)(log n + log r)). A final, natural mechanism is
to self-adjust the mutation strength based on the success of previous iterations. This
leads to an expected run time of �(n(log n+ log r)), which is best possible among all
dynamic mutation strengths.

We hope that with this special issue we further increase the interest of the general
algorithms research community into evolutionary computation methods. We thank all
authors for their submissions, our reviewers for their helpful and detailed comments,
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and last but not least the Algorithmica team and the editor-in-chief Ming-Yang Kao
for their great support.

Timo Kötzing and Dirk Sudholt
Potsdam and Sheffield, August 2017
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