
JoCG 9(1), 24–70, 2018 24

Journal of Computational Geometry jocg.org

SCALABLE EXACT VISUALIZATION OF ISOCONTOURS
IN ROAD NETWORKS VIA MINIMUM-LINK PATHS∗

Moritz Baum,†Thomas Bläsius,‡Andreas Gemsa,† Ignaz Rutter,†§ and Franziska Wegner†

Abstract. Isocontours in road networks represent the area that is reachable from a source
within a given resource limit. We study the problem of computing accurate isocontours
in realistic, large-scale networks. We propose isocontours represented by polygons with
minimum number of segments that separate reachable and unreachable components of the
network. Since the resulting problem is not known to be solvable in polynomial time, we
introduce several heuristics that run in (almost) linear time and are simple enough to be
implemented in practice. A key ingredient is a new practical linear-time algorithm for
minimum-link paths in simple polygons. Experiments in a challenging realistic setting show
excellent performance of our algorithms in practice, computing near-optimal solutions in a
few milliseconds on average, even for long ranges.

1 Introduction

How far can I drive my battery electric vehicle, given my position and the current state
of charge? This question expresses range anxiety (the fear of getting stranded) caused by
limited battery capacities and a sparse charging infrastructure. An answer in the form of
a map that visualizes the reachable region helps to find charging stations in range and to
overcome range anxiety. This reachable region is bounded by curves that represent points
of constant energy consumption; such curves are usually called isocontours (or isolines).
Isocontours are typically considered in the context of functions f : R2 → R, e. g., if f describes
the altitude in a landscape, then the terrain can be visualized by showing several isocontours
(each representing points of constant altitude). In our setting, f would describe the energy
necessary to reach a certain point in the plane. However, f is actually defined only for a
discrete set of points, namely for the vertices of the road network. Thus, we have to fill the
gaps by deciding how the isocontour should pass through the regions between the roads. The
fact that the quality of the resulting visualization heavily depends on these decisions makes
computing isocontours in road networks an interesting algorithmic problem.

Formally, we consider the road network to be given as a directed graph G = (V,E),
along with vertex positions in the plane and two weight functions len : E → R≥0 and

∗This work was partially supported by DFG Research Grant WA654/16–2 and the Helmholtz Program
Storage and Cross-linked Infrastructures, Topic 6 Superconductivity, Networks and System Integration. An
earlier version appeared in the Proceedings of the 24th Annual European Symposium on Algorithms [5].
†Karlsruhe Institute of Technology, Germany, firstname.lastname@kit.edu
‡Hasso Plattner Institute, Germany, thomas.blaesius@hpi.de
§TU Eindhoven, The Netherlands, i.rutter@tue.nl

http://jocg.org/

JoCG 9(1), 24–70, 2018 25

Journal of Computational Geometry jocg.org

cons : E → R≥0 representing length and resource consumption, respectively. For a source
vertex s ∈ V and a range r ∈ R≥0, a vertex v ∈ V belongs to the reachable subgraph if the
shortest path from s to v has a total resource consumption of at most r, i. e., shortest paths
are computed according to the length, while reachability is determined by the consumption.

Coming back to our initial question concerning the electric vehicle, the source vertex
is the initial position and the range is the current state of charge. There are different possible
notions of the reachable part of the road network in this situation. If we assume the driver is
traveling on fastest routes (as proposed by, e. g., an onboard navigation system), the length
corresponds to travel time and energy is the resource consumed on an edge. Alternatively, one
could be interested in vertices that are reachable on at least some route (typically, the shortest
route is not the most energy efficient one). In this case, both length and resource consumption
would correspond to the energy consumption on a road segment (i. e., len ≡ cons). For
simplicity, we assume that all edge weights are nonnegative. In fact, negative weights are
commonly used to model energy recovery of electric vehicles, but any issues arising in this
context can be resolved with known techniques [7, 36].

Note that our setting is sufficiently general to allow for other applications. By
setting the length as well as the resource consumption of edges to the travel time, one
obtains the special case of isochrones. There is a wide range of applications for isochrones,
including reachability analyses [4, 24, 25, 48], geomarketing [19], and environmental and
social sciences [35]. Known approaches focus on isochrones of small or medium range. But
isochrones can be useful in more challenging scenarios, for example, to visualize the area
reachable by a truck driver within a day of work. This motivates our work on fast isocontour
visualization.

Our algorithms for computing isocontours in road networks are guided by three major
objectives. The isocontours must be exact in the sense that they correctly separate the
reachable subgraph from the remaining unreachable subgraph; the isocontours should be
polygons of low complexity (i. e., consist of few segments, enabling efficient rendering and a
clear, uncluttered visualization); and the algorithms should be sufficiently fast in practice for
interactive applications, even on large inputs of continental scale.

Figure 1 shows an example of isocontours visualizing the range of an electric vehicle.
Figure 1a depicts a polygon that closely resembles the output of isocontour algorithms
considered state-of-the-art in recent works [18, 19, 25, 42]. However, the number of segments
becomes quite large even in this medium-range example (more than 10 000 segments).
Figure 1b shows the result of our approach presented in Section 5.3, which contains the same
reachable subgraph but uses 416 segments in total.

Related Work. Several existing algorithms consider the problem of computing the subnet-
work that is reachable within a given timespan. The MINE algorithm [24] runs a search based
on Dijkstra’s well-known algorithm [14] to compute isochrones in transportation networks.
Improved variants exist to reduce space requirement [25, 40] and compute multiple isocon-
tours with different ranges from a given source [41]. However, working on spatial databases,
MINE and its extensions are too slow for interactive applications (with running times in
the order of minutes for long ranges). To enable much faster shortest-path computation in

http://jocg.org/

JoCG 9(1), 24–70, 2018 26

Journal of Computational Geometry jocg.org

(a) (b)

Figure 1: Real-world example of isocontours in a mountainous area (near Bern, Switzerland).
Both figures visualize the range of an electric vehicle positioned at the black disk with a state
of charge of 2 kWh. Note that the polygons representing the isocontour contain holes, due to
unreachable high-ground areas. (a) An isocontour with over 10 000 segments computed by
the approach in Section 5.1, which resembles previous approaches [42]. (b) The result of one
of our new approaches, presented in Section 5.3, using only 416 segments.

practice, speedup techniques [3] separate the workflow into an offline preprocessing phase and
an online query phase. Recently, some speedup techniques were extended to the isochrone
scenario [6, 20], enabling query times in the order of milliseconds. Yet, these approaches only
deal with the computation of the reachable subgraph, rather than its visualization.

Regarding isocontour visualization, efficient approaches exist for shape characteriza-
tion of point sets, such as α-shapes [17], χ-shapes [16], or Voronoi Filtering [1]. However, we
are interested in separating subgraphs rather than point sets. A work by O’Sullivan et al. [48]
introduces basic approaches for isocontour visualization based on merging shapes covering
the reachable area. Alternatively, one can subdivide the plane into cells and highlight those
that cover the reachable area [39]. Marciuska and Gamper [42] present two approaches
to visualize isochrones in transportation networks. The first transforms a given reachable
network into an isochrone area by simply drawing a buffer around all edges in range. The
second one creates a polygon without holes, induced by the edges on the boundary of the em-
bedded reachable subgraph. Resulting isocontours are similar to the one shown in Figure 1a,
though omitting holes. Both approaches were implemented on top of databases, providing
running times that are too slow for many applications (several seconds for small and medium
ranges). Gandhi et al. [26] introduce an algorithm to approximate isocontours in sensor
networks with provable error bounds. They preserve the topological structure of the given
family of contours, forbidding intersections. Finally, there are different works presenting
applications which make use of isocontours in the context of urban planning [4, 35, 42, 48],
geomarketing with integrated traffic information [18, 19], and range visualization for electric
vehicles [11, 29, 46, 47]. For isocontour visualization, recent works typically resort to the
approach of Marciuska and Gamper [42] or less accurate solutions based on, e. g., the convex
hull of all reachable points.

http://jocg.org/

JoCG 9(1), 24–70, 2018 27

Journal of Computational Geometry jocg.org

Contribution and Outline. We propose algorithms for efficiently computing polygons
representing isocontours in road networks. All approaches compute isocontours that are
exact, i. e., they contain exactly the subgraph reachable within the given resource limit, while
having low descriptive complexity. Efficient performance of our techniques is both proven in
theory and demonstrated in practice on realistic instances.

In Section 2, we formalize the notion of reachable and unreachable subgraphs. More-
over, we state the precise problem and outline our algorithmic approach to solve it. Section 3
attacks the first resulting subproblem of computing border regions, that is, polygons that
represent the boundaries of the reachable and unreachable subgraph. An isocontour must
separate these boundaries. In Section 4, we consider the special case of separating two
hole-free polygons with a polygon with minimum number of segments. While this problem
can be solved in O(n log n) time [52], we propose a simpler algorithm that uses at most two
additional segments, runs in linear time, and requires a single run of a minimum-link path
algorithm. We also propose a minimum-link path algorithm that is simpler than previous
approaches [50]. Section 5 extends these results to the general case, where border regions
may consist of more than two components. Since the complexity of the resulting problem is
unknown, we focus on efficient heuristic approaches that work well in practice, but do not
give guarantees on the complexity of the resulting range polygons. Section 6 contains our
extensive experimental evaluation using a large, realistic input instance. It demonstrates
that all approaches are fast enough even for use in interactive applications. We close with
final remarks in Section 7.

2 Problem Statement and General Approach

Let G = (V,E) be a graph representing a road network, which we consider as a geometric
network where vertices have a fixed position in the plane and edges are represented by
straight-line segments between their endpoints. We consider G to be directed, i. e., edges
E ⊆ V × V have an orientation to capture constraints of real-world road networks (such
as one way streets). Also, note that weights of two opposing edges (u, v) and (v, u) may
differ (e. g., going uphill is more expensive than going downhill). For the sake of simplicity,
examples in this section use undirected graphs with uniform edge weights (as in a symmetric
directed graph). Finally, we assume that G is strongly connected, i. e., for every pair of
vertices s ∈ V and t ∈ V , there exists an s–t path in G.

A source s ∈ V and a range r ∈ R≥0 together partition the network into two parts,
one that is within range r from s, and the part that is not. An isocontour separates these
two parts. We are interested in visualizing such isocontours efficiently. In the following,
we give a precise definition of the (un)reachable parts of the network and formally define
range polygons, which we use to represent isocontours. We also describe the problem setting,
which, given some source vertex and a range, asks for a range polygon that fulfills certain
optimization criteria.

Range Polygons. A path π in G starting at s is passable if the consumption of π, i. e., the
sum of its edge consumption values, is at most r. A vertex v ∈ V is reachable (with respect

http://jocg.org/

JoCG 9(1), 24–70, 2018 28

Journal of Computational Geometry jocg.org

s

Figure 2: Graph with reachable (white) and unreachable (dark gray) vertices for a source s
and a range of 2, assuming uniform weights of 1 (for both length and consumption). Edges
drawn solid are passable (unreachable) if both endpoints are reachable (unreachable). Dashed
edges are boundary edges if they have an unreachable endpoint and accessible otherwise.
Note that the blue polygon (with shaded interior) is in fact a range polygon.

to the maximum range r) if the shortest s–v path is passable. A vertex that is not reachable
is unreachable. For edges the situation is more complicated. We partition the edges into
four types, namely unreachable edges, boundary edges, accessible edges, and passable edges.
Figure 2 shows an example of the different edge types. If both endpoints of an edge (u, v)
are unreachable, then also the edge (u, v) is unreachable. If exactly one endpoint is reachable,
then (u, v) is not part of the reachable network, and we call it boundary edge. However, the
fact that both u and v are reachable does not necessarily imply that (u, v) is part of the
reachable network. Let πu and πv denote the shortest paths from s to u and v, respectively.
If the resource consumptions of πu and πv do not allow the traversal of the edge (u, v) in
either direction, i. e., cons(πu) + cons((u, v)) > r and cons(πv) + cons((v, u)) > r, then we
do not consider (u, v) as reachable. Since we can reach both endpoints of (u, v), we call it
accessible. Otherwise, the edge can be traversed in at least one direction, so it is passable.

Let Vr be the set of reachable vertices and let Vu = V \ Vr be the set of unreachable
vertices. Similarly, let Eu, Eb, Ea, and Er denote the set of unreachable edges, boundary
edges, accessible edges, and passable edges, respectively. Note that for arbitrary pairs of
edges (u, v) and (v, u), both edges belong to the same set. The reachable part of the network
is Gr = (Vr, Er), and the unreachable part is Gu = (Vu, Eu). A range polygon is a plane (not
necessarily simple) polygon P separating Gr and Gu in the sense that its interior contains Gr

and has empty intersection with Gu. Every range polygon P intersects each boundary edge
an odd number of times and each accessible edge an even number of times. In particular, an
accessible edge may be totally or partially contained in the interior of a range polygon.

If the input graph G is planar, one can construct a range polygon by first slightly
growing the outer face of the subgraph induced by all reachable vertices. Then, shrinking
the inner faces and making each shrunk face a hole results in a valid range polygon, though
it may contain many holes; see the range polygon in Figure 2. However, if G is not planar,
a range polygon may not even exist. If a passable edge intersects an unreachable edge,
the requirements of including the passable and excluding the unreachable edge obviously
contradict. To resolve this issue, we consider the planarization Gp of G, which is obtained
from G by considering each intersection point p as a dummy vertex that subdivides all edges
of G containing p. We transfer the above partition of G into reachable and unreachable

http://jocg.org/

JoCG 9(1), 24–70, 2018 29

Journal of Computational Geometry jocg.org

(a) (b) (c) (d)

Figure 3: Different cases of crossing edges. (a) Intersection of a passable and an unreachable
edge. The dummy vertex (center) is reachable. The unreachable edge is split into two
boundary edges. (b) Intersection of an accessible and an unreachable edge. The dummy
vertex is unreachable, dashed edges indicate new boundary edges. (c) Intersection of an
unreachable edge and a boundary edge, creating unreachable edges and a new boundary edge.
(d) An intersection of accessible edges creates an unreachable vertex and four boundary edges.

parts to Gp as follows. A dummy vertex is reachable if and only if it subdivides at least one
passable edge of the original graph. As above, an edge of Gp is unreachable if both endpoints
are unreachable, and it is a boundary edge if exactly one endpoint is reachable. If both
endpoints are reachable, it is accessible (passable) if and only if the edge in G containing
it is accessible (passable). Clearly, after the planarization, a range polygon always exists.
Figure 3 shows different cases of crossing edges. Note that this way of handling crossings
ensures that a range polygon for Gp contains the reachable vertices of G and excludes the
unreachable vertices of G. However, unreachable edges of G may be partially contained in the
range polygon if they cross passable edges. Finally, to avoid special cases, we add a bounding
box of dummy vertices and edges to Gp, connecting each vertex in the bounding box to
its respective closest vertex in Gp with an edge of infinite length. Thereby, we ensure that
neither the reachable nor the unreachable subgraph is empty, as the reachable (unreachable)
subgraph contains at least the source (bounding box).

Problem Setting. Given the input graph G = (V,E) with edge lengths len : E → R≥0 and
consumption values cons : E → R≥0, a source vertex s ∈ V , and a range r ∈ R≥0, we seek to
compute a range polygon with respect to the planarized graph Gp that has the minimum
number of holes, and among these we seek to minimize the complexity of the range polygon,
i. e., its number of segments. Note that using Gp instead of G may increase the number of
holes (see also the case depicted in Figure 3d), but guarantees the existence of a solution.

Practical approaches for fast retrieval of spatial data in road networks (e. g., shortest
paths between given pairs of points) often follow the paradigm of speedup techniques [3].
Assuming that the input graph is static, such techniques use a relatively costly offline
preprocessing stage to compute auxiliary data (typically, the resulting space overhead is
required to be at most linear in the graph size). During the online phase, queries asking for
the actual information are answered quickly by making use of the precomputed data. In our
setting, such a query consists of a source s ∈ V and a range r ∈ R≥0. Hence, we are allowed
to preprocess data that depends solely on the graph, but not on the source or the range.

General Approach. Consider the graph G′ consisting of the union of the reachable graph
Gr and the unreachable graph Gu. Clearly, all segments of the range polygon lie in faces
of G′. A face of G′ that is incident to both reachable and unreachable components is called

http://jocg.org/

JoCG 9(1), 24–70, 2018 30

Journal of Computational Geometry jocg.org

(a) (b) (c) (d) (e)

Figure 4: Removing unnecessary holes of a range polygon. (a) A hole that contains no
unreachable vertices can always be removed. (b) The resulting interior (shaded area) of the
range polygon. (c) Two holes that can be merged into one as they lie in the same border
region. (d) The resulting range polygon. (e) These two holes cannot be merged, as they are
separated by a passable edge.

a border region. Since a range polygon separates the reachable and unreachable parts, each
border region contains at least one connected component of a range polygon. Therefore,
the number of border regions is a lower bound on the number of holes. On the other hand,
components in faces that are not border regions can be removed and multiple connected
components in the same border region can always be merged, potentially at the cost of
increasing the complexity; see Figure 4. Therefore, a range polygon with the minimum
number of holes (with respect to Gp) can be computed as follows.

1. Compute the reachable and unreachable parts of G.

2. Planarize G, compute the reachable and unreachable parts of the planarization Gp.

3. Compute the border regions.

4. For each border region B, compute a simple polygon of minimum complexity that
is contained in B and separates the unreachable components incident to B from the
reachable component.

In the following sections, we discuss several alternative implementations for these steps. The
first three steps are described together in Section 3. The main part of this work is concerned
with Step 4. Each connected component of the boundary of a border region is a hole-free
non-crossing polygon. Note that these polygons are not necessarily simple in the sense that
they may contain the same segment twice in different directions; see Figure 5. Thus, each
border region is defined by two sets R and U of hole-free non-crossing polygons, where R
contains the boundaries of the reachable components and U contains the boundaries of the
unreachable components. For our range polygon, we seek a simple polygon with the minimum
number of links that separates U from R. This problem has been previously studied. Guibas
et al. [32] showed that the problem is NP-complete in general. In our case, however, |R| = 1
holds since the reachable part of the network is, by definition, connected. Guibas et al. left
this case as an open problem and, to the best of our knowledge, it has not been resolved.

In Section 4, we first consider border regions that are incident to only one unreachable
component, i. e., |R| = |U | = 1. In this case, a polygon with the minimum number of segments

http://jocg.org/

JoCG 9(1), 24–70, 2018 31

Journal of Computational Geometry jocg.org

s

u1
B

r

u3

u2

Figure 5: A border region B (shaded), with a reachable boundary R = {r} (blue) and
an unreachable boundary U = {u1, u2, u3} with three components (red). The reachable
boundary corresponds to the part that is reachable from the indicated source s with a range
of 2, assuming uniform edge costs of 1 (with respect to both length and consumption).

that separates R and U can be found in O(n log n) time (where n is the total number of
segments in the border region) using the algorithm of Wang [52]. This algorithm is rather
involved, but it contains a linear-time subroutine that computes an OPT+ 1 approximation
and is based on the computation of two minimum-link paths. Instead, we propose a simpler
algorithm that uses at most two more segments than the optimum, runs in linear time, and
relies on a single run of a minimum-link path algorithm. Clearly, spending an additional
segment to save about a factor of two in running time is a favorable tradeoff in practice.
Furthermore, we give a new linear-time minimum-link path algorithm that is simpler than
previous algorithms for this problem [50]. In Section 5, we consider the general case of our
problem, where a border region may be incident to more than one unreachable component.
We propose several algorithms for this problem. As mentioned above, the complexity of this
problem is unknown, so we focus on efficient heuristic approaches that work well in practice
but do not give provable guarantees on the number of segments.

3 Computing the Border Regions

We describe the computation of the reachable and unreachable part of the input graph G =
(V,E), the planarization of these parts, and extraction of all border regions. We modify Dijk-
stra’s algorithm [14] to compute the reachable and unreachable parts in time O(|V | log |V |),
presuming that |E| ∈ O(|V |) for graphs representing road networks. Afterwards, we map this
information to the planarized graph Gp in O(|E|) time. Finally, we extract the border regions
by traversing all faces of the planar graph that contain at least one boundary edge, which
requires linear time in the size of all border regions. We also discuss efficient implementations
of these three steps.

Given a source vertex s ∈ V and a range r ∈ R≥0, we first use a variant of Dijkstra’s
algorithm to compute

• for each vertex v ∈ V , whether v is reachable from s;

• the set Ex := Eb ∪ Ea of all boundary edges and accessible edges;

• for every edge (u, v) ∈ E \ Ex, whether (u, v) is passable or unreachable.

http://jocg.org/

JoCG 9(1), 24–70, 2018 32

Journal of Computational Geometry jocg.org

For the sake of simplicity, we assume that shortest paths are unique (with respect to the
length function). Thereby, we avoid the special case of two paths with equal distance but
different consumption, which requires additional tie breaking. Then, we can use Dijkstra’s
algorithm to compute a shortest-path tree from s (based on edge lengths). Afterwards, we
can traverse the tree starting at s to compute consumption values c(v) for all v ∈ V along
shortest paths originating at s in linear time. We then know that a vertex v ∈ V is reachable
if and only if c(v) ≤ r. The set Ex can be computed in a final linear scan over all edges
(u, v) ∈ E, by checking for each the consumption c(u) at its tail vertex and the consumption
value cons(u, v) of the edge itself. Finally, an edge (u, v) ∈ E \ Ex is passable if u (and thus,
also v) is reachable, and it is unreachable otherwise.

Although running time of the procedure outlined above is almost linear in the graph
size, it is impractical on large inputs [3]. In a recent work [6], faster techniques are presented
that extend Dijkstra’s algorithm to answer queries within milliseconds on large input graphs
after some preprocessing. While these techniques consider a more restricted scenario (only
boundary edges are computed, for the special case of len ≡ cons), they can easily be adapted
to our scenario. Therefore, we focus on the remaining steps of our general approach.

Planarization. We planarize G during the preprocessing stage to obtain Gp = (Vp, Ep).
Since edge weights and directions are irrelevant for all subsequent steps of our algorithms,
we consider Gp to be unweighted and undirected (this may also reduce space consumption
of Gp in practice). Our implementation uses the well-known sweep line algorithm [8, 12] to
compute Gp. It runs in O((|V |+ k) log |V |) time, where k is the number of edge crossings.
More involved algorithms with better asymptotic running times exist [2, 21]. However, the
value of k is usually small for road networks and somewhat higher preprocessing effort is not
an issue in our scenario. For each vertex in Gp, we store its original vertex in G (if it exists).
In practice, where vertices are represented by indices {1, . . . , |V |}, this mapping can be done
implicitly, since Vp is a superset of V .

After computing the reachable subgraph of the original graph G as described above,
we compute reachability of dummy vertices and the set Ex of boundary edges and accessible
edges in Gp as follows. We add a flag to all edges in G during preprocessing to indicate
whether an edge in G is also contained in Gp. Our search algorithm adds edges to Ex only if
this flag is set. After the search terminates, we check for each dummy vertex v ∈ Vp whether
it is reachable, by checking passability of all original edges in E that contain v. To this end,
we precompute an array of all original edges that were split during planarization, and for
each split edge a list of dummy vertices it contains (an original edge may intersect several
other edges). During a query, we scan this array of edges, and for each passable edge, we
mark all its dummy vertices as reachable. Finally, we scan all edges in Gp that have at least
one dummy vertex as endpoint, to determine any missing edges in Ex. To test whether some
edge is accessible, we store pointers to the original edges containing it. Note that the linear
scans produce limited overhead in practice, since the number of dummy vertices in graphs
representing road networks is typically small. A vertex in Vp is reachable if it is a dummy
vertex marked as reachable, or its corresponding original vertex is reachable (if it exists).
For edges in Ep \Ex, we check reachability of their endpoints to determine whether they are
passable or unreachable.

http://jocg.org/

JoCG 9(1), 24–70, 2018 33

Journal of Computational Geometry jocg.org

u

x

v

y

f1

f2

f3f4

f5

(a)

u

v

f1 f2

f3

f4

f5

(b)

Figure 6: Visited edges (blue) when extracting a reachable boundary. (a) Starting at
the boundary edge {u, v}, the face f1 is traversed first until the boundary edge {x, y} is
encountered. Afterwards, the faces f2, f3, f4, f3, f5 are visited in this order until {u, v} is
reached again. (b) Starting at the accessible edge {u, v}, the face f1 is traversed until {u, v}
is reached again (on the same side). Then, the faces f2, f3, f4, f5, f2 are processed before the
other side of {u, v} is reached.

An alternative approach modifies the search algorithm to work directly on a (weighted,
directed) planar graph Gp to avoid the additional linear sweeps. However, this produces
overhead during the search (e. g., case distinctions for dummy vertices). Consequently,
such approaches did not provide significant speedup in preliminary experiments. Moreover,
determining the reachable subgraph of Gp in a separate step simplifies the integration of
speedup techniques for the more expensive search algorithm [6].

Extracting the Border Regions. Given the set Ex of boundary edges and accessible edges
in Gp, we describe how to compute the actual border regions (i. e., the polygons describing R
and U). The basic idea is to traverse all faces of Gp that contain edges in Ex, to collect the
segments that form boundaries of the border regions. Clearly, all passable edges in these faces
are part of some reachable boundary, while all unreachable edges belong to an unreachable
boundary. Moreover, since Gp is (strongly) connected, all faces contained in a border region
must contain an edge in Ex. Thus, traversing these faces is sufficient to obtain all border
regions.

In somewhat more detail, we maintain two flags for every edge {u, v} in Ex indicating
whether u or v has been visited, respectively, each initially set to false. (We denote the
edge {u, v} because Gp is undirected.) Let {u, v} be the first edge of Ex that is considered,
and without loss of generality, let u be reachable. We compute the (unique) reachable
component R{u,v} of the border region B{u,v} containing {u, v}; see Figure 6. We mark u
as visited and traverse the face left of {u, v}, following the unique neighbor w of u in this
face that is not v. Every edge that we traverse is added to R{u,v}. As soon as we encounter
an edge {x, y} ∈ Ex, we continue by traversing the twin face of {x, y}, i. e., the unique face
of Gp that contains the other side of {x, y}. The edge {x, y} itself is not added to R{u,v},
but we mark the reachable endpoint x that was added to R{u,v} in the previous step as
visited. The current extraction step is finished as soon as the other side of {u, v} is reached;
see Figure 6. If v is unreachable, {u, v} is a boundary edge. Thus, we continue with the

http://jocg.org/

JoCG 9(1), 24–70, 2018 34

Journal of Computational Geometry jocg.org

extraction of the unreachable component U{u,v} containing v in the same manner and assign
it to B{u,v}.

We loop over the remaining edges in Ex and extract boundaries corresponding to
vertices not visited before. By extracting reachable components first, we ensure that the
corresponding reachable boundary of some unreachable component is always known before
extraction, namely, the boundary containing the reachable endpoint of the considered edge
in Ex. Therefore, the unreachable component is assigned to the unique border region that
contains this reachable boundary. To make sure that we only compute actual border regions
(in contrast to regions containing only accessible edges but not boundary edges), we can either
check for boundary edges explicitly during traversal of the faces or disallow the traversal to
start from an accessible edge.

Implementation Details. To extract the components of all border regions, we have
to traverse faces of the planar input graph. This can be done using established data structures,
such as doubly connected edge lists [12]. Instead, we propose a more cache-friendly data
structure to represent faces, which stores adjacent vertices of a face in contiguous memory.
We use a single array that holds all faces of the graph. For each face, we store the sequence
of vertices as they are found traversing the face in clockwise order starting at an arbitrary
vertex. At the beginning and at the end of this sequence, we store sentinels that hold the
index of the last and first entry of a vertex of the corresponding face, respectively. Traversing
the face in either direction requires only a single scan along the array, jumping at most once
to the beginning or end of the face. For consecutive vertices u ∈ Vp and v ∈ Vp in this array,
we store at v its index in the corresponding twin face of the edge {u, v}. Finally, we store for
every edge {u, v} in the graph the two indices of the head vertex v in this data structure,
i. e., its occurrence in the faces left and right of this edge.

To efficiently decide whether an edge is in Ex, or if an edge in Ex was marked as
visited, we store this list as an array and sort it (e. g., by the index of the head vertex) before
extracting the reachable components. Then we can quickly retrieve an edge in this array
using binary search (we also tried using hash sets as an alternative approach, but this turned
out to be slightly slower in preliminary experiments).

4 Range Polygons in Border Regions Without Holes

Given a border region B with reachable component R and a single unreachable component U ,
we present an algorithm for computing a polygon that separates R and U . In Section 5, we
describe how to generalize our approach to the case |U | > 1.

The basic idea is to add an arbitrary boundary edge e to B, thereby connecting both
components R and U . Since we presume that G is strongly connected, such a boundary
edge always exists. In the resulting hole-free non-crossing polygon B′, we compute a path
with minimum number of segments that connects both sides of e. The algorithm of Suri [50]
computes such a minimum-link path π′ in linear time. We obtain a separating polygon S′ by
connecting the endpoints of π′ along e. It is easy to see that this yields a polygon with at
most two additional segments compared to an optimal solution.

http://jocg.org/

JoCG 9(1), 24–70, 2018 35

Journal of Computational Geometry jocg.org

U
R

e

(a)

U
R

e

(b)

Figure 7: Separating polygons in a border region (shaded). (a) The polygon S (blue)
separating R and U with OPT = 3 links induces a path with four segments connecting both
sides of e. (b) The polygon S′ obtained by a minimum-link path from the depicted edge e
has OPT+ 2 = 5 segments.

Lemma 1. Let S be a polygon that separates R and U with minimum number of segments,
and let OPT denote this number. Then S′ has at most OPT+ 2 segments.

Proof. We can split S at e into a path π connecting both sides of e. Clearly, π has at
most OPT+1 links (if a segment of S crosses e, we split it into two segments with endpoints
in e; see Figure 7). Since π′ is a minimum-link path, we have |π′| ≤ |π| = OPT + 1.
Moreover, S′ is obtained by adding a single subsegment of e to π′, so its complexity is
bounded by OPT+ 2.

We now address the subproblem of computing a minimum-link path between two
edges of a simple polygon. The linear-time algorithm of Suri [50] starts by triangulating the
input polygon. To save running time for queries in our scenario, we triangulate all faces of
the planar graph Gp during preprocessing. Afterwards, in each step of Suri’s algorithm, a
window (which we formally define in a moment) is computed. To obtain the windows in
linear time, it relies on several calls to a subroutine computing visibility polygons. While
this is sufficient to prove linear running time, it seems wasteful from a practical point of
view. In the following, we present an alternative algorithm for computing the windows that
also results in linear running time, but is much simpler. It can be seen as a generalization of
an algorithm by Imai and Iri [34] for approximating piecewise linear functions.

Windows and Visibility. Let P be a simple polygon and let a and b be edges of P . We
want to compute a minimum-link polygonal path starting at a and ending in b that lies
in the interior of P . Let T be the graph obtained by arbitrarily triangulating P , i. e., the
graph T consists of the vertices and edges of P together with any edges that connect two
vertices according to the triangulation. Let ta and tb be the triangles in T incident to a
and b, respectively. As T is a binary tree by construction, its (weak) dual graph has a unique
path ta = t1, t2, . . . , tk−1, tk = tb from ta to tb; see Figure 8a. We call the triangles on this
path important and their positions in the path their indices.

The visibility polygon V (a) of the edge a in P is the polygon that contains all points
that are visible from a. More formally, V (a) contains a point q in its interior if and only

http://jocg.org/

JoCG 9(1), 24–70, 2018 36

Journal of Computational Geometry jocg.org

a

b

t1
t2

t3
t4

t5
t6

t7 t8
t9 t10

(a)

P ′ω(a)

a

b

(b)

π`
6

a

b6

πr
6

`(a) r(a)

`(b6)
r(b6)

(c)

a

b8

π`
8

πr
8

`(a) r(a)

`(b8)

r(b8)

(d)

Figure 8: Important triangles, visibility, and shortest paths. (a) The (shaded) important
triangles of a polygon with respect to indicated edges a and b. (b) The window ω(a) is the
dotted edge of the (shaded) visibility polygon. (c) The left and right shortest path (red) do
not intersect for i = 6. (d) The shortest paths (red) have an intersection for i = 8.

if there is a point p on a such that the line segment pq lies entirely inside P . Let i be the
highest index such that the intersection of the triangle ti with the visibility polygon V (a)
is not empty. The window w(a) is the edge of V (a) that intersects ti closest (with respect
to minimum Euclidean distance) to the edge between ti and ti+1; see Figure 8b. Note that
w(a) separates the polygon P into two parts. Let P ′ be the part containing the edge b that
we want to reach. A minimum-link path from a to b in P can then be obtained by adding an
edge from a to w(a) to a minimum-link path from w(a) to b in P ′. Thus, the next window is
computed in P ′ starting with the previous window w(a). In the following, we first describe
how to compute the first window and then discuss what has to be changed to compute the
subsequent windows.

Let Ti be the subgraph of T induced by the triangles t1, . . . , ti and let Pi be the
polygon bounding the outer face of Ti. The polygon Pi has two special edges, namely a and
the edge shared by ti and ti+1, which we call bi. Let `(a) and r(a), and `(bi) and r(bi) be
the endpoints of a and bi, respectively, such that their clockwise order is r(a), `(a), `(bi),
r(bi) (think of `(·) and r(·) being the left and right endpoints, respectively); see Figure 8c.
We define the left shortest path π`i to be the shortest polygonal path (shortest in terms of
Euclidean length) that connects `(a) with `(bi) and lies inside or on the boundary of Pi. The
right shortest path πri is defined analogously for r(a) and r(bi); see Figure 8c.

Assume that the edge bi is visible from a, i. e., there exists a line segment in the
interior of Pi that starts at a and ends at bi. Such a visibility line separates the polygon
into a left and a right part. Observe that it follows from the triangle inequality that the left
shortest path π`i and the right shortest path πri lie inside the left and right part, respectively.
Thus, these two paths do not intersect. Moreover, the two shortest paths are outward convex
in the sense that the left shortest path π`i has only left bends when traversing it from `(a) to
`(bi) (the symmetric property holds for πri); see the case i = 6 in Figure 8c. We note that the
outward convex paths are sometimes also called “inward convex” and the polygon consisting
of the two outward convex paths together with the edges a and bi is also called hourglass [30].
The following lemma, which is similar to a statement shown by Guibas et al. [31, Lemma 3.1],
summarizes the above observation. On the other hand, shortest paths that intersect are not
outward convex in general; see Figure 8d.

http://jocg.org/

JoCG 9(1), 24–70, 2018 37

Journal of Computational Geometry jocg.org

π`
i

πr
i

ti

`(a)

y

`(bi)

r(a)

x

r(bi)

(a)

π`
i

πr
i

ti

λ`i
λri

`(a)

y

`(bi)

r(a)

x

r(bi)

(b)

λ`i = λri

π`
i

πr
i

`(a)

`(bi)

r(a)

r(bi)

(c)

Figure 9: The visibility cone of an hourglass. (a) The shortest path (yellow) from r(a) to
`(bi) consists of a prefix of πri , the segment xy, and a suffix of π`i . (b) The two visibility lines
λ`i and λ

r
i (blue) spanning the (shaded) visibility cone. (c) A degenerated case, in which the

visibility cone collapses to a line (as points are not in general position).

Lemma 2. If the triangle ti is visible from a (i. e., there exists a line segment in the interior
of Pi that starts at a and ends at a point in ti), then the left and right shortest path in Pi−1
have empty intersection. Moreover, if these paths do not intersect, they are outward convex.

Guibas et al. [31] argue that the converse of the first statement is also true, i. e.,
if the two paths have empty intersection, then the triangle ti+1 is visible from a. Their
main arguments go as follows. The shortest path (with respect to Euclidean length) in the
hourglass that connects r(a) with `(bi) is the concatenation of a prefix of πri , a line segment
from a vertex x of πri to a vertex y of π`i , and a suffix of π`i ; see Figure 9a. We call the
straight line through x and y the left visibility line and denote it by λ`i . We assume λ`i to
be oriented from x to y and call x and y the source and target of λ`i . Analogously, one can
define the right visibility line λri ; see Figure 9b. We call the intersection of the half-plane to
the right of λ`i with the half-plane to the left of λri the visibility cone. It follows that the
intersection of the visibility cone with the edge bi is not empty and a point on the edge bi
is visible from a if and only if it lies in this intersection [31]. This directly extends to the
following lemma.

Lemma 3. If the left and right shortest path in Pi−1 have empty intersection, ti is visible
from a. Moreover, a point in ti is visible from a if and only if it lies in the visibility cone.

Note that when πri and π`i are both outward convex and intersect, the visibility cone
degenerates to a line; see Figure 9c. For the sake of simplicity, we presume that all points
are in general position, which prevents this special case. (In practice, it is handled implicitly
by the implementation of Line 4 in Algorithm 1.) The above observations then justify the
following approach for computing the window. We iteratively increase i until the left and
the right shortest path of the polygon Pi intersect. We then know that the triangle ti+1 is
no longer visible; see Lemma 2. Moreover, as the left and the right shortest path did not
intersect in Pi−1, the triangle ti is visible from a; see Lemma 3. To find the window, it
remains to find the edge of the visibility polygon V (a) that intersects ti closest to the edge
between ti and ti+1. Thus, by the second statement of Lemma 3, the window must be a

http://jocg.org/

JoCG 9(1), 24–70, 2018 38

Journal of Computational Geometry jocg.org

a

π`
i−1

πr
i−1

ti bi

λ`i−1 λri−1
`(bi)

(a)

a

π`
i

πr
i

ti bi

λ`i λ
r
i

(b)

a

π`
i−1

πr
i−1

ti
bi

λ`i−1 λri−1
`(bi)

(c)

a

π`
i

πr
i

ti
bi

λ`i λri

(d)

a

π`
i−1

πr
i−1

ti bi

λ`i−1 λri−1
`(bi)

(e)

a

ti bi

ω(a)

(f)

Figure 10: Visiting a new triangle. (a) The new vertex `(bi) lies in the visibility cone.
(b) The updated left shortest path π`i and left visibility line λ`i . (c) The vertex `(bi) lies to
the left of λ`i−1. (d) The left shortest path has to be updated, the left visibility line remains
unchanged. (e) The vertex `(bi) lies to the right of λri−1, i. e., ti+1 is not visible from a.
(f) The dotted window ω(a) is a segment of λri−1.

segment of one of the two visibility lines. It remains to fill out the details of this algorithm,
argue that it runs in overall linear time, and describe what has to be done in later steps,
when we start at a window instead of an edge.

Computing the First Window. We start with the details of the algorithm starting from an
edge; see also Algorithm 1. Assume the triangle ti is still visible from a, i. e., π`i−1 and πri−1
do not intersect. Assume further that we have computed the left and right shortest path
π`i−1 and πri−1 as well as the corresponding visibility lines λ`i−1 and λri−1 in a previous step.
Assume without loss of generality that the three corners of the triangle ti are `(bi−1), `(bi),
and r(bi) = r(bi−1). There are three possibilities shown in Figure 10, i. e., the new vertex `(bi)
lies either in the visibility cone spanned by λ`i−1 and λri−1 (Figure 10a), to the left of the left
visibility line λ`i−1 (Figure 10c), or to the right of the right visibility line λri−1 (Figure 10e).

By Lemma 3, a point in ti is visible from a if and only if it lies inside the visibility
cone. Thus, the edge bi between ti and ti+1 is no longer visible if and only if the new vertex
`(bi) lies to the right of λri−1; see Figure 10e. In this case, we can stop and the desired
window w(a) is the segment of λri−1 starting at its touching point with πri−1 and ending at
its first intersection with an edge of P ; see Figure 10f and Lines 4–6 of Algorithm 1.

In the other two cases (Figure 10a and Figure 10c), we have to compute the new left
and right shortest path π`i and πri and the new visibility lines λ`i and λ

r
i (Figure 10b and

Figure 10d). Note that the old and new right shortest path πri−1 and πri connect the same
endpoints r(a) and r(bi−1) = r(bi). As the path cannot become shorter by going through
the new triangle ti, we have πri = πri−1. The same argument shows that λri = λri−1 (recall
that the visibility lines were defined using a shortest path from `(a) to r(bi−1) = r(bi)).

We compute the new left shortest path π`i as follows; see Lines 7–9 of Algorithm 1.
Let x be the latest vertex on π`i−1 such that the prefix of π`i−1 ending at x concatenated with
the segment from x to `(bi) is outward convex. We claim that π`i is the path obtained by
this concatenation, i. e., this path lies inside Pi and there is no shorter path lying inside Pi.

http://jocg.org/

JoCG 9(1), 24–70, 2018 39

Journal of Computational Geometry jocg.org

Algorithm 1: Computes the first window w(a).
// initial paths (one-vertex sequences) and visibility lines

1 π` = [`(a)]; πr = [r(a)]; λ` = line(r(a), `(a)); λr = line(`(a), r(a))
2 for i = 1 to k do
3 if r(bi) = r(bi−1) then

// bi not visible ⇒ return window
4 if `(bi) lies to the right of λr then
5 x = first intersection of λr with P after target(λr)
6 return segment(target(λr), x)

// extend left path π` like in Graham’s scan
7 append `(bi) to π`

8 while last bend of π` is a right bend do
9 remove second to last element from π`

// `(bi) in visibility cone ⇒ update left visibility line λ`

10 if `(bi) lies to the right of λ` then
11 target(λ`) = `(bi)

12 while λ` is not a tangent of πr at source(λ`) do
13 source(λ`) = successor of source(λ`) in πr

14 else
// case `(bi) = `(bi−1) is symmetric to above case r(bi) = r(bi−1)

It follows by the outward convexity, that there cannot be a shorter path inside Pi from `(a)
to `(bi). Moreover, by the assumption that π`i−1 was the correct left shortest path in Pi−1,
the subpath from `(a) to x lies inside Pi. Assume for contradiction that the new segment
from x to `(bi) does not lie entirely inside Pi. Then it has to intersect the right shortest path
and it follows that the right shortest path and the correct left shortest path have non-empty
intersection, which is not true by Lemma 2.

To get the new left visibility line λ`i , we have to consider the shortest path in Pi that
connects r(a) with `(bi). Let x and y be the source and target of λ`i−1, respectively, i. e.,
the shortest path from r(a) to `(bi−1) is as shown in Figure 11a. If the new vertex `(bi) lies
to the left of λ`i−1 (Figure 11b), then the shortest path from r(a) to `(bi) also includes the
segment from x to y. Thus, λ`i = λ`i−1 holds in this case. Assume the new vertex `(bi) lies
to the right of λ`i−1 (Figure 11c). Let x′ be the latest vertex on the path πri such that the
concatenation of the subpath from r(a) to x′ with the segment from x′ to the new vertex
`(bi) is outward convex in the sense that it has only right bends; see Figure 11c. We claim
that this path lies inside Pi and that there is no shorter path inside Pi. Moreover, we claim
that x′ is either a successor of x in πri−1 or x′ = x. Clearly, the concatenation of the path
from r(a) to x with the segment from x to `(bi) is outward convex, thus the latter claim
follows. It follows that the segment from x′ to `(bi) lies to the right of the old visibility
line λ`i−1. Thus, it cannot intersect the path π`i (except in its endpoint `(bi)), as π`i−1 lies
to the left of λ`i−1. Moreover, as we chose x′ to be the last vertex on πri−1 with the above

http://jocg.org/

JoCG 9(1), 24–70, 2018 40

Journal of Computational Geometry jocg.org

y

λ`i−1

`(bi−1)

r(a)

x

(a)

y

λ`i

`(bi−1)

r(a)

x

`(bi)

(b)

x′

λ`i

`(bi−1)

r(a)

x

`(bi)

(c)

Figure 11: Updating the visibility line. (a) The shortest path from r(a) to `(bi−1) (yellow)
defining the left visibility line λ`i−1. (b) The visibility line does not change if `(bi) lies to the
left of λ`i−1. (c) Illustration of how the visibility line changes if `(bi) lies to the right of λ`i−1.

property, this new segment does not intersect πri (except in x′). Hence, the segment from x′

to `(bi) lies inside Pi. As before, it follows from the convexity that there is no shorter path
inside Pi. Thus, λ`i is the line through x′ and `(bi) (x′ is the new source and `(bi) is the new
target). It follows that Lines 10–13 correctly compute the new left visibility line.

Lemma 4. Let th be the triangle with the highest index h that is visible from a. Then
Algorithm 1 computes the first window w(a) in O(h) time.

Proof. We already argued that Algorithm 1 correctly computes the first window. To show
that it runs in O(h) time, first note that the polygon Ph has linear size in h. Thus, it suffices
to argue that the running time is linear in the size of Ph. In each step i, we first check
whether the next triangle is still visible by testing whether the new vertex `(bi) (or r(bi))
lies to the right of the visibility line λri−1 (or to the left of λ`i−1). This takes only constant
time. When updating the left and right shortest path, we have to iteratively remove the last
vertex of the previous path until the resulting path is outward convex. This takes time linear
in the number of vertices we remove. However, a vertex removed in this way will never be
part of a left or right shortest path again. Thus, the number of these removal operations
over all h steps is bounded by the size of Ph. When updating the visibility lines, the only
operation potentially consuming more than constant time is finding the new source x′. As x′

is a successor of the previous source x (or x′ = x), we never visit a vertex of Ph twice in this
type of operation. Thus, the total running time of finding these successors over all h steps is
again linear in the size of Ph.

Initialization for Subsequent Windows. As mentioned before, the first window w(a) we
compute separates P into two smaller polygons. Let P ′ be the part including the edge b
(and not a). In the following, we denote w(a) by a′. To get the next window w(a′), we have
to apply the above procedure to P ′ starting with a′. However, this would require to partially
retriangulate the polygon P ′. More precisely, let th be the triangle with the highest index
that is visible from a and let bh be the edge between th and th+1; see Figure 12a. Then bh
separates P ′ into an initial part P ′0 (the shaded part in Figure 12a) and the rest (having b on

http://jocg.org/

JoCG 9(1), 24–70, 2018 41

Journal of Computational Geometry jocg.org

b

a′
bhth

(a)

a′
bh

πr
0

π`
0

λ`0

λr0

(b)

v2

v3

v4 v5

a′
bh

v1

(c)

a′
bh

a′′

(d)

Figure 12: Initializing computation of the second window. (a) The polygon P ′ we are
interested in after computing the first window a′. The initial part P ′0 is shaded. (b) Initial
left and right shortest path π`0 and πr0 (red) with corresponding visibility lines λ`0 and λr0
(blue). (c) The sequence v1, . . . , v6 we use for Graham’s scan. Triangles of P intersected by
a′ are shaded. (d) Computing the shortest path from `(a′′) = `(a′) to `(bh) in the subdivided
polygon (shaded) using Algorithm 1 actually applies Graham’s scan to v1, . . . , v6.

its boundary). The latter part is properly triangulated, however, the initial part P ′0 is not.
The conceptually simplest solution is to retriangulate P ′0. However, this would require an
efficient subroutine for triangulation (and dynamic data structures that allow us to update P
and T , which produces overhead in practice). Instead, we propose a much simpler method
for computing the next window.

The general idea is to compute the shortest paths in P ′0 from `(a′) to `(bh) and from
r(a′) to r(bh); see Figure 12b. We denote these paths by π`0 and πr0, respectively. Moreover,
we want to compute the corresponding visibility lines λ`0 and λr0. Afterwards, we can continue
with the correctly triangulated part as in Algorithm 1.

Concerning the shortest paths, first note that the right shortest path πr0 is a suffix
of the previous right shortest path, which we already know. For the left shortest path π`0,
consider the polygon induced by the triangles that are intersected by a′; see Figure 12c.
Let v1, . . . , vg be the path on the outer face of this polygon (in clockwise direction) from
`(a′) = v1 to `(bh) = vg. We obtain π`0 using Graham’s scan [28] on the sequence v1, . . . , vg,
i. e., starting with an empty path, we iteratively append the next vertex of the sequence
v1, . . . , vg while maintaining the path’s outward convexity by successively removing the
second to last vertex if necessary; see Algorithm 2. We note that applying Graham’s scan to
arbitrary sequences of vertices may result in self-intersecting paths [10]. However, we will see
that this does not happen in our case.

It remains to compute the visibility lines λ`0 and λr0 corresponding to the hourglass
consisting of a′, bh, and the shortest paths π`0 and πr0. Note that the whole edge bh is visible
from a′, since a′ intersects the triangle th. Thus, the visibility lines go through the endpoints
of bh. It follows that λ`0 is the line that goes through `(bh) and the unique vertex on πr0 such
that it is tangent to πr0; see Figure 12b. This can be clearly found in linear time in the length
of πr0. The same holds for the right visibility line.

Lemma 5. Algorithm 2 computes the initial left and right shortest paths π`0 and πr0 as well
as the corresponding visibility lines in O(|P ′0|) time.

http://jocg.org/

JoCG 9(1), 24–70, 2018 42

Journal of Computational Geometry jocg.org

Algorithm 2: Computes the initial left and right shortest paths with correspond-
ing visibility lines.

1 a′ = last window
2 πr = right shortest path computed in the previous step
3 πr0 = suffix of πr starting with r(a′)
// Graham’s scan on the sequence v1, . . . , vg

4 π`0 = empty path
5 for i = 1 to g do
6 append vi to π`0
7 while last bend of π`0 is a right bend do
8 remove second to last element from π`0

9 λr0 = tangent of π`0 through r(bh)
10 λ`0 = tangent of πr0 through `(bh)
11 return (πr0, π

`
0, λ

`
0, λ

r
0)

Proof. We mainly have to prove that the path π`0 obtained by applying Graham’s scan on the
sequence v1, . . . , vg actually is the shortest path from `(a) to `(bh) in P ′0 (which includes that
it is not self-intersecting). This can be seen by reusing arguments we made for computing
the first window. To this end, we reuse the triangulation we have for P by placing new
vertices where a′ crosses triangulation edges; see Figure 12d. Note that the resulting polygon,
which we denote by P ′′0 , is almost triangulated, i. e., each face is a triangle or a quadrangle.
We can thus triangulate P ′′0 by adding one new edge in each quadrangle as in Figure 12d.
Note that a′ is separated into several edges in P ′′0 ; let a′′ be the topmost of these edges (i. e.,
the last one in clockwise order). Assume we want to compute the minimum-link path from
a′′ to bh in P ′′0 . First note that the triangle th is visible from a′′. Thus, our algorithm for
computing the first window computes the shortest path from `(a′) = `(a′′) to `(bh). Note
further that the vertices visited in Lines 7–9 of Algorithm 1 are the vertices v1, . . . , vg in this
order. Thus, Algorithm 1 actually constructs the left shortest path by using Graham’s scan
on the sequence v1, . . . , vg. It follows that directly applying Graham’s scan to the sequence
v1, . . . , vg correctly computes the left shortest path in P ′0 from `(a′) to `(bh). Clearly, the
running time of Algorithm 2 is linear in the size of P ′0.

We compute subsequent windows as shown before, until the last edge b is found. The
actual minimum-link path π is obtained by connecting each window w(a) to its corresponding
first edge a with a straight line [50]. Linear running time of the algorithm follows immediately
from Lemma 4 and Lemma 5. Theorem 1 summarizes our findings.

Theorem 1. Given two edges a and b of a simple polygon P , our algorithm computes a
minimum-link path from a to b contained in P in linear time.

Implementation Details. To obtain the desired polygon that separates R and U , we can
connect the first and last segment of π along the boundary edge e, as described above.
However, to potentially save a segment and for aesthetic reasons, we first test whether

http://jocg.org/

JoCG 9(1), 24–70, 2018 43

Journal of Computational Geometry jocg.org

u w

v

ti−1
ti

ti+1
ti+2

(a)

u

v
w

ti−2

ti−1
ti

ti+1

(b)

Figure 13: Identifying the next important triangle. (a) The next important triangle ti+1

shares with ti the unique edge vw that is not uv and has exactly one reachable endpoint.
(b) The next important triangle ti+1 contains the edge uw.

the last window can be extended to the first segment of the path without intersecting the
boundary of neither R nor U . This can be done by continuing the computation of the last
window from t0 after b was found.

We do not construct P and its triangulation T explicitly, but work directly on the
triangulated input graph. The next important triangle is then computed on-the-fly as follows.
Consider an important triangle ti = uvw, and let uv be the edge shared by the current and
the previous important triangle; see Figure 13. Clearly, exactly one endpoint of uv is part
of the reachable boundary, so without loss of generality let u be this endpoint. Then the
next important triangle is the triangle sharing vw with ti if w is reachable, and the triangle
sharing uw with ti otherwise. In other words, the next triangle is determined by the unique
edge that has exactly one reachable endpoint. Triangles are stored in a single array, similar
to the data structure to store faces of the planar graph described in Section 3 (though we do
not need sentinels, as triangular faces have constant size). The minimum-link path algorithm
operates on this data structure to obtain the sequence of important triangles on-the-fly.

5 Heuristic Approaches for General Border Regions

A border region B = R ∪ U may consist of several unreachable components, i. e., |U | > 1,
while |R| = 1 always holds. In the general case, it is not clear whether one can compute a (non-
intersecting) range polygon of minimum complexity that separates R and U in polynomial
time [32]. Even for the simpler subproblem of computing a minimum-link path in a polygon
with several components (without assigning them to the reachable or unreachable boundary),
the fastest known algorithm has quadratic running time [37, 45]. This is impractical for large
instances. In fact, the problem was recently shown to be 3SUM-hard [44], so algorithms with
subquadratic running time may not even exist [23]. Therefore, we propose four heuristic
approaches with (almost) linear running time (in the size of B) that are simple and fast in
practice. Figure 14 shows example outputs of the different heuristics.

Given a border region B, the approach presented in Section 5.1 simply returns
the reachable boundary R; see Figure 14a. Results are similar to previous algorithms for
isochrones [42]. Since the complexity of the range polygons can become quite high, we propose
more sophisticated heuristics. The basic idea of the approach introduced in Section 5.2 is
to use the graph triangulation to separate B along edges for which either both endpoints

http://jocg.org/

JoCG 9(1), 24–70, 2018 44

Journal of Computational Geometry jocg.org

(a)

e1

e2

(b)

e

(c)

e

(d)

Figure 14: Example output of different heuristic approaches, for a (shaded) border region with
two unreachable components. Minimum-link paths are computed from indicated boundary
edges. (a) Output of the approach presented in Section 5.1, which returns the reachable
boundary. (b) The approach in Section 5.2 separates border regions into smaller subinstances.
(c) The approach in Section 5.3 connects unreachable components to obtain a simpler instance.
(d) Our last approach in Section 5.4 computes a polygon whose edges may cross each other.

are in R or both endpoints are in U . The modified instances consist of single unreachable
components that are separated from the reachable component by the algorithm in Section 4;
see Figure 14b. In Section 5.3, we propose to insert new edges that connect the components
of U to create an instance with |U | = 1. Then, we compute a minimum-link path in the
resulting border region as in Section 4; see Figure 14c. Finally, Section 5.4 details a heuristic
that modifies the approach of Section 4 to compute a possibly self-intersecting minimum-link
path separating R and U with minimum number of segments; see Figure 14d. Consequently,
the resulting polygon has at most two more segments than an optimal solution. We rearrange
this polygon at crossings to obtain a range polygon without self-intersections.

5.1 Extracting the Reachable Component

Given a border region B, the first approach returns the reachable boundary R. The resulting
range polygon closely resembles the results of known approaches, which essentially consist of
extracting the reachable subgraph [25, 42]. Note that this approach does not have to compute
the unreachable boundary explicitly. Thus, we can improve performance by modifiying the
extraction of border regions described in Section 3, such that only the reachable part of
the boundary is traversed. In a sense, our modified extraction algorithm can be seen as an
efficient implementation of previoues approaches [25, 42]. Its linear running time (in the
size of B) follows from the fact that we traverse every edge of R once, and every boundary
edge or accessible edge of the planar graph Gp contained in B a constant number of times.
Clearly, the number of these edges is linear in the size of B.

5.2 Separating Border Regions Along their Triangulation

The idea of this approach is as follows. For each border region B, we consider its triangulation.
We add all edges of the triangulation that either connect two reachable vertices or two

http://jocg.org/

JoCG 9(1), 24–70, 2018 45

Journal of Computational Geometry jocg.org

unreachable vertices of Gp to B, possibly splitting B into multiple regions B′ = R′ ∪ U ′ (see
edges separating the border region in Figure 14b). For each region B′, we obtain |U ′| ≤ 1,
since two components of U must be connected by an edge of the triangulation or separated
by an edge with two endpoints in R. Then, we run the algorithm presented in Section 4 on
each instance B′ with |U ′| = 1 to get the range polygon. Linear running time follows, as we
run the linear-time algorithm of Section 4 on disjoint subregions of B.

Clearly, the number of edges we add to B is not minimal, i. e., in general we could omit
some of them and still obtain |U ′| ≤ 1 for each region B′. On the other hand, computing the
set of separating edges described above is trivial, making our approach very simple. In what
follows, we describe how it is implemented without explicitly computing the border region B.
Instead, we use the set Ex to identify border regions that need to be handled. Recall that Ex

contains all boundary edges and accessible edges of the border regions; see Section 3. We
loop over all edges in this set and check for each boundary edge {u, v} ∈ Ex whether it was
already visited. If this is not the case, we start a minimum-link path computation from the
triangle to the left of this edge (accessible edges in Ex are skipped by this loop, since they
connect two reachable vertices and are thus considered part of the boundary). The sequence
of important triangles is then computed on-the-fly as described in Section 4. Whenever the
algorithm passes a boundary edge in Ex, it is marked as visited.

This heuristic can be seen as a simple but effective way of producing border regions
with a single unreachable component. It is very easy to implement and even simplifies
aspects of the minimum-link path algorithm described in Section 4, because modified border
regions contain only important triangles (all other triangles are removed from the modified
border regions). Thus, computational effort for finding the second endpoint of a new window
and the initial visibility lines is restricted to a single triangle, enabling the use of simpler
data structures. On the other hand, the result of the algorithm heavily depends on the
triangulation of the input graph. In addition to that, the number of modified regions B′ can
become quite large; see Section 6. Our next approach therefore proposes a more sophisticated
way to obtain regions with a single unreachable component.

5.3 Connecting Unreachable Components

This approach adds new edges to border regions with more than one unreachable component,
such that they connect all unreachable components without intersecting the reachable
boundary; see Figure 14c. We obtain a modified instance B′ with a single unreachable
component and apply the algorithm from Section 4. Note that in general, unreachable
components cannot be connected by straight lines; see Figure 15b. For a similar (more
general) scenario, Guibas et al. [32] propose an approach to compute a subdivision that
requires O(h) more segments than an optimal solution (where h is the number of components
in the input region). We propose a heuristic without any nontrivial worst-case guarantee.
However, it is easy to implement and produces good results in practice (see Section 6).

Given a border region B whose unreachable boundaries U consist of multiple compo-
nents, our algorithm runs a breadth first search (BFS) on the dual graph of the triangulation
of B to find paths that connect the unreachable components. Then, we add new edges that
connect the components and retriangulate the modified border region.

http://jocg.org/

JoCG 9(1), 24–70, 2018 46

Journal of Computational Geometry jocg.org

u1 u2

(a)

u1
u2

(b)

Figure 15: A border region with two unreachable components u1 and u2. (a) The indicated
components u1 and u2 are connected by a single edge (blue) of the triangulation. (b) The
unreachable components u1 and u2 are connected by two connecting edges (dark blue) and
several bridging edges (light blue), which use the inserted dummy vertices.

We distinguish two cases for connecting two unreachable components u1 and u2 in U .
First, u1 and u2 may be connected by a single edge of the triangulation, i. e., an edge that
has an endpoint in each component. Then, we can add this edge to B to connect u1 and u2;
see Figure 15a. Second, we have to deal with components that are not connected by such
an edge. In this case, there exists at least one edge e in the triangulation of B, such that
both endpoints of e are on the reachable boundary, and e separates B into two subregions
containing u1 and u2, respectively. Hence, any path connecting u1 and u2 in B crosses e.
Our goal is to find a short path in the dual graph of the triangulation that connects u1
and u2. Then, we add new edges to the corresponding sequence of triangles to connect u1
and u2 in B; see Figure 15b. Afterwards, we locally retriangulate the modified part of B.

Connecting Components. Our algorithm starts by checking for each pair of components,
whether they are connected by a single edge in the triangulation of B. This can be done
in a sweep over the vertices of each unreachable component, scanning for each vertex its
outgoing edges in the triangulation. Whenever an edge is found that connects two unreachable
components, we merge these components and consider them as the same component in the
further course of the algorithm (making use of a union-find data structure).

To connect all remaining unreachable components after this first step, we proceed as
follows. Consider the (weak) dual graph of the triangulation of B. Since no pair of remaining
unreachable components can be connected by a single edge in the primal graph, each triangle
intersects at most one unreachable component. We assign a component to each vertex in
the dual graph, namely, the reachable component if the corresponding triangle contains
only reachable vertices, otherwise the unique unreachable component this triangle intersects.
For each unreachable component, we add a super source vertex to the dual graph that is
connected to all vertices assigned to this component; see Figure 16. Now, our goal is to find
a tree of minimum total length in this graph that connects all super sources, i. e., a minimum
Steiner tree. Since this poses an NP-hard problem in general [27], we use the approach of
Kou et al. [38], which achieves an approximation ratio better than 2. Its basic idea is to
iteratively add shortest paths between two sources that are not connected yet in a greedy
fashion. A search proposed by Wu et al. [54] computes these paths in a given weighted
graph. (Faster algorithms exist for this weighted case [43, 53].) Since the given (dual) graph

http://jocg.org/

JoCG 9(1), 24–70, 2018 47

Journal of Computational Geometry jocg.org

s1

s2

Figure 16: The dual graph of a border region (red), with indicated super sources s1 and s2.
Shaded triangles are assigned to one of the two unreachable components.

is unweighted in our case, the search algorithm by Wu et al. boils down to a multi-source
variant of a BFS, which we now describe in detail.

Given an undirected graph G and k source vertices, it keeps a list of vertex labels `(·)
to mark visited vertices, store their parents in the search, and the corresponding source
vertex of the path that reached this vertex. We use a union-find data structure (with k
elements) to maintain connectivity of sources. Initially, we mark all source vertices as visited
and set each as its own source. Moreover, all source vertices are inserted into a queue. Then,
the main loop is run until all source vertices are connected. In each step, the search extracts
the next vertex u from the queue and checks all incident edges {u, v}. If v was not visited, it
marks its label as visited, and sets its source as the source of the label of u. Additionally, v
is inserted into the queue. On the other hand, if v was already visited, we found a path
that connects two sources. We check whether the sources of the labels `(u) and `(v) are
not connected yet. If this is the case, we found the first path that connects them, so we
unify the sources (i. e., they are considered equal in the further course of the algorithm).
The actual path can be retrieved by backtracking from u and v, respectively, following the
parent pointers until the source is reached. The concatenation of both paths yields a path
that connects two source vertices. The algorithm stops when all sources are connected.

After the search terminates, we split some triangles by adding new vertices and edges
to B in the following manner; see Figure 15b. Consider a path in the dual graph connecting
two components u1 and u2. First, we remove the first and last vertex of this path (since these
are previously added super sources). For the remaining path, consider the corresponding
sequence of triangles in B. Clearly, all but the first and last triangle of this path only have
endpoints in the reachable component (otherwise, backtracking would have started or stopped
earlier). For every edge shared by two triangles in this path, we add a bridging vertex at
the center of this edge. Thus, a bridging vertex is always contained in an edge with two
reachable endpoints. Between any pair of bridging vertices contained in the same triangle,
we add a bridging edge connecting them. Finally, at the first and last triangle of the path, we
add a connecting edge from the unique endpoint that belongs to an unreachable component
to the bridging vertex. Assigning all added vertices and edges to the unreachable boundary,
the resulting border region B′ contains a connected unreachable component U ′ ⊇ {u1, u2}.

Finally, we add new edges (if necessary) to any created quadrangles to maintain the
triangulation. Thus, the resulting modified border region B′ is triangular and its unreachable

http://jocg.org/

JoCG 9(1), 24–70, 2018 48

Journal of Computational Geometry jocg.org

boundary consists of a single component. We run the algorithm described in Section 4 to
obtain the desired range polygon.

For correctness, we need to show that the union of all edges added according to the
computed Steiner tree creates no crossings. First, note that bridging edges in a triangle
(corresponding to different subpaths of the Steiner tree) never cross each other. Second,
we claim that if a connecting edge is inserted in some triangle, no other edge is added to
that triangle. Since a connecting edge has an endpoint in some unreachable component, at
most one edge of the triangle has two reachable endpoints. Hence, it contains at most one
bridging vertex, and therefore no bridging edge. Moreover, the triangle contains at least one
bridging vertex, which is the other endpoint of the connecting edge. Thus, it has exactly two
reachable endpoints and does not contain more than one connecting edge.

The BFS described above visits each vertex of the dual graph at most once. In
each step, a constant number of calls to the union-find data structure is made to check
whether sources of two given labels are connected and unify them if necessary (vertex degree
is constant except at super sources, where no checks are performed). All other operations
require constant time. Using path compression for the union-find data structure [51], this
yields a running time of O(nα(n)) of the BFS, where n is the number of vertices in the
dual graph (which is linear in the size of B) and α the inverse Ackermann function. Since
the remaining steps of the heuristic (adding vertices and edges to triangles, computing a
minimum-link path) require linear time, the overall running time is almost linear.

Improvements. In practice, the performance of the BFS is dominated by the number of
visited vertices. We propose tuning options that reduce this number significantly, without
affecting correctness of the approach (although results may change slightly).

One crucial observation is that realistic instances of border regions often have an
unreachable boundary consisting of one large component (the major part of the unreachable
subgraph), and many tiny components (e. g., unreachable dead ends in the road network),
similar to Figure 5. Then, the search from the large component dominates the running time.
Instead, we can run the BFS starting from all but the largest component. This requires only
negligible overhead (we identify the largest component in an additional linear scan), but
searches from small components are likely to quickly converge to the large component. In
preliminary experiments, this reduced running time significantly. Further, after extracting
the next vertex from the queue, we first check whether its source was connected to the largest
component in the meantime. If this is the case, we prune the search at this vertex (i. e., we
discard the vertex and do not check its incident edges), because it now represents the search
from the largest component. Similarly, before running the BFS we omit vertices of the largest
component when checking for edges in the triangulation that connect two components.

Going even further, we always expand the search from the component that is currently
the smallest. In its basic variant, the BFS uses a queue to process vertices in first-in-first-out
order. For better (practical) performance, we replace it by a priority queue whose elements
are components (represented by source vertices) instead of vertices. Additionally, we maintain
a queue for each component that stores vertices and extracts them in first-in-first-out order.
In the priority queue, each component uses its complexity (i. e., its number of edges in the

http://jocg.org/

JoCG 9(1), 24–70, 2018 49

Journal of Computational Geometry jocg.org

border region) as key. In each step of the BFS, we check for the component with the smallest
key in the priority queue, and extract the next vertex from the queue of this component. If it
has run empty, we remove the component from the priority queue. New vertices are always
added to the queue that corresponds to the component of their source label. Whenever two
components are unified, we also update them in the priority queue by removing one of the
two involved components, attaching its queue to the other component, and updating the
key accordingly. If components in the priority queue are implemented as lists of queues,
new queues can be removed and reattached in constant time. In total, the use of a priority
queue then increases the asymptotic running time of the BFS by a logarithmic factor, but
we observe a significant speedup in practice.

Data Structures and Implementation Details. When running a BFS on the dual graph
of a border region B, we implicitly represent the search graph using the triangulation of the
graph Gp. To determine incident edges of a vertex in the dual graph, we check the edges of
its triangle in the primal graph. If any of these edges is not contained in Gp (i. e., it was
added during triangulation), or if it is contained in Ex, there exists an edge in the dual graph
connecting the triangle to the twin triangle of this edge.

In the improved variant that makes use of a priority queue, our implementation
actually keeps a single queue per component, rather than a list of queues. Whenever some
components are unified, the keys of affected components in the priority queue are updated
in a scan over all elements it contains. This increases asymptotic running time of the BFS
by another linear factor (in the number of components, which can be linear in the size of
the border region). However, the number of components is usually small in practice and we
avoid overhead for maintaining dynamic lists of queues.

Recall that we consider a scenario where many subsequent queries for different range
polygons are made to the same graph. To avoid costly reinitialization of the vertex labels
between such queries, we make use of timestamps, implicitly encoded within the component
indices to save space. After every search, the global timestamp is increased by the number of
unreachable components in the border region. When storing a component index in a label,
it is increased by the global timestamp. A label is invalid if its index is below the global
timestamp. To retrieve the actual index of a valid label, we subtract the global timestamp.

Backtracking runs on-the-fly during the BFS and stops whenever we reach a previously
split triangle, since this means we have reached a previously computed path. We maintain
flags at each triangle, to determine whether a bridging edge or a connecting edge should be
inserted (and if so, between which pair of endpoints). We also build a list of all split triangles,
for fast (sequential) access to all triangles that were split, in order to add the corresponding
vertices and edges in the triangulation after the BFS has terminated. These additional edges
and vertices are stored as temporary modifications in the triangulation of Gp. We make use
of the following data structures. Edges of the triangulation that are added to U ′ (to connect
two unreachable components) are explicitly stored in a list. To quickly check whether some
edge of the triangulation was added to U ′, we sort this list (e. g., by head vertex index) after
the BFS terminated to enable binary search. In our setting (some 1 000 inserted edges for
the hardest queries), this was slightly faster than using hash sets. To store bridging edges

http://jocg.org/

JoCG 9(1), 24–70, 2018 50

Journal of Computational Geometry jocg.org

and connecting edges, we temporarily modify the triangulation. To this end, we add an
invalidation flag and a temporary index to the vertices of every triangle in the triangulation
of Gp. Moreover, we maintain a list of temporary triangles. Each vertex in a split triangle
is marked as invalid and its temporary index is set to the corresponding entry in this list.
Before retrieving a triangle vertex, we first check whether it is invalid and redirect to the
temporary vertex if this is the case. For faster reinitialization, we replace invalidation flags
by timestamps, similar to component timestamps described above.

When splitting triangles, we have to set the twins of all new edges. If the twin triangle
was not created yet, we store the pending edge in a list. This list is searched for existing
twins whenever a new triangle is added. If a twin is found, we set twins for both affected
edges, and remove them from the set.

5.4 Computing Self-Intersecting Minimum-Link Paths

Our last approach computes a minimum-link path in B that separates the reachable boundary
from the unreachable boundaries. While the resulting polygon has at most OPT+2 segments,
it may intersect itself; see Figure 14d. To obtain a range polygon from a self-intersecting
polygon, we rearrange it accordingly at intersections.

The remainder of this section focuses on computing minimum-link paths in border
regions with several unreachable components. To achieve this, we have to make some
modifications to the algorithm described in Section 4. First, note that the (weak) dual graph
of the triangulation of B is not outerplanar if |U | > 1. Consequently, paths between vertices
(in the dual graph) are no longer unique. In fact, some vertices may occur multiple times in a
path that separates reachable and unreachable boundaries; see the corresponding sequence of
triangles crossed by the polygon in Figure 14d. In what follows, we first show how to obtain
the sequence of important triangles in this general case. Then, we describe modifications
that are necessary to retain correctness of the algorithm described in Section 4 running on
this sequence of important triangles.

Computing the Important Triangles. Given a boundary edge e of the border region B,
we are interested in a minimum-link path that connects both sides of e and separates the
reachable boundary from all unreachable boundaries. We compute a sequence t1, . . . , tk of
triangles such that any minimum-link path with the above property must pass this sequence
in this order. Our approach runs in two phases. The first phase traverses the reachable
boundary of B and lists all encountered boundary edges in the triangulation, i. e., all edges
with one endpoint in each R and U , even if they are not present in the input graph Gp.
Clearly, the minimum-link path must intersect exactly these boundary edges in the same
order to ensure that all unreachable vertices are on the same side of the path. By construction,
any pair of consecutive boundary edges a and b in this list is connected by a path π in the
dual graph that contains no boundary edge besides a and b (where an edge in the dual graph
is called boundary edge if it corresponds to a boundary edge of the primal graph). In fact,
observe that π is actually unique, since any cycle in the dual graph contains at least one
boundary edge. The second phase computes this unique path π for each pair of consecutive

http://jocg.org/

JoCG 9(1), 24–70, 2018 51

Journal of Computational Geometry jocg.org

e

1

3 12
2 15

4

5
6

7

89
11

1013

14

16

17

u

v
w

(a)

e

1

3 12
2 15

4

5
6

7

89
11

1013

14

16

17

v

u

w

(b)

Figure 17: Border region with edge indices after starting traversal at the indicated edge e.
Note that edges have two indices (one for each direction of traversal). Indices are ∞ if not
specified. Indices of boundary edges are also stored in an array [1, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17].
(a) The third visited triangle in the second phase (shaded blue) has two possible next triangles
tuw and tvw (shaded red). The next triangle is tuw, because the index of the edge vw with
greater index (13) exceeds the next boundary edge index (4). (b) The next triangle in this
example is tuw. The index of the next boundary edge is updated from 16 to 17.

boundary edges. The concatenation of all these paths yields the actual sequence of important
triangles. It serves as input for the algorithm that computes a minimum-link path connecting
both sides of e in B.

During the first phase, we exploit the fact that the reachable boundary of B is always
connected. We assign indices to all edges in the triangulation that are contained in the
border region and intersect the reachable boundary, according to the order in which they are
traversed starting from e. In doing so, we distinguish both sides of edges; see Figure 17. For
consistency, sides of edges that are not traversed get the index ∞. Clearly, this information
can be retrieved in a single traversal of the reachable boundary, similar to the procedure
described in Section 5.1, but running on the triangulation of the border region. Moreover,
during this traversal we collect an ordered list of indices corresponding to boundary edges.
Observe that every boundary edge in B is traversed exactly once.

The second phase runs on the dual graph of the triangulation and retrieves the desired
sequence of triangles. A key observation is that this sequence must pass all boundary edges
exactly once and in increasing order of their indices. Therefore, we can compute the sequence
of important triangles as follows. We maintain the index of the next boundary edge that
was not traversed yet, initialized to the first element of the list. Starting at the triangle t1
containing the first boundary edge e, we add triangles to the sequence of important triangles
until e is reached again. Let ti = uvw denote the previous triangle that was appended to
this sequence. Then we determine the next triangle ti+1 as follows; see Figure 17. Let uv be
the unique edge shared by ti and ti−1 (in the case of i = 1, we have uv = e). To determine
the next triangle, we consider the two possible triangles tuw containing the edge uw and tvw
containing vw. Without loss of generality, let the index of uw be smaller than the index of vw
and thus, finite. This implies that uw is not contained in the boundary of B (otherwise, it
would have index ∞). If both u and w are part of the reachable boundary, we know that uw
separates B into two subregions; see Figure 17a. Thus, tuw is the next triangle if and only if
the subregion containing tuw contains a boundary edge that was not passed yet. Therefore,

http://jocg.org/

JoCG 9(1), 24–70, 2018 52

Journal of Computational Geometry jocg.org

b3a

b0

ω(a)

π`
3

πr
3

(a)

b2a

b0

ω(a)

π`
2

πr
2

(b)

Figure 18: Shortest paths in general border regions. Assume that vertices in the center of
the polygon are not connected to the remaining unreachable boundary (bottom). (a) The
shortest path πr3 from the right endpoint of the previous window ω(a) to the right endpoint
of b3 intersects itself. (b) The shortest path πr2 from the right endpoint of ω(a) to the right
endpoint of b2 contains a left bend after passing an unreachable vertex that is not connected
to the unreachable boundary.

we continue with tuw if and only if the index of the other edge vw is greater than of the next
boundary edge. If either u or w is part of an unreachable boundary, uw is the next boundary
edge; see Figure 17b. We update the index of the next boundary edge to the next element in
the according list.

We continue until the first edge e is reached again. Note that the second phase (travers-
ing the dual graph) can be performed on-the-fly during minimum-link path computation
(i. e., the sequence of triangles does not have to be built explicitly).

Computing Minimum-Link Paths. Given a sequence t1, . . . , tk of important triangles in a
border region B computed as described above, we discuss how to compute a minimum-link
path between both sides of e. In particular, we show which modifications to the approach
presented in Section 4 are necessary to preserve correctness.

Consider the computation of a window from an arbitrary initial edge shared by
two triangles in t1, . . . , tk as described in Section 4. Clearly, the subsequence of triangles
that is visited until a window is found does not contain several occurrences of the same
triangle, since this would imply that a straight visibility line intersects it at least twice.
Consequently, the fact that triangles may appear multiple times in t1, . . . , tk does not affect
window computation starting at an edge. A similar argument applies when initializing the
computation of a subsequent window. Recall that in this step, the visibility cone from the
last window to the next initial edge is computed. All triangles considered in this step are
intersected by the last window in a certain order (see Section 4) and because windows are
straight lines, we cannot encounter the same triangle twice.

However, the computation of the next window after this initialization step requires
some modification, since triangles visited during initialization may reoccur when computing
the window from the next initial edge. As a result, the subpaths computed during initialization
and when starting from this edge may cross each other; see Figure 18a. In this example, the
subpath of the right shortest path πr starting at the initial edge b0 intersects the segment from

http://jocg.org/

JoCG 9(1), 24–70, 2018 53

Journal of Computational Geometry jocg.org

the right endpoint of the previous window w(a) to the right endpoint of b0. Self-intersections
would not pose a problem per se if we generalized the definition of shortest paths to polygons
with self-intersections. However, without modifications, Algorithm 1 in Section 4 may produce
wrong results in certain special cases. Figure 18b shows such an example. Although the
shortest path from the right endpoint of w(a) to the right endpoint of b2 does not intersect
itself in this case, its second segment lies in the half plane to the left of the first segment.
Hence, Algorithm 1 will falsely remove the last bend. The resulting incorrect path consists
of the single segment from the right endpoint of w(a) to r(b0). Clearly, this leads to the
construction of an incorrect visibility cone. We say that the last segments of the right shortest
paths shown in Figure 18 are visibility-intersecting, as they reach into the area that is visible
from w(a). Formally, a segment is visibility-intersecting if it intersects the interior of the
hourglass H0 bounded by the previous window a′ := w(a), the next initial edge b0, and the
initial left and right shortest paths π`0 and πr0; see the shaded area in Figure 18a. Note that
visibility-intersecting segments can only occur in the shortest path that corresponds to the
unreachable boundary, since the reachable boundary consists of a single component.

In what follows, we show how we can avoid visibility-intersecting segments that may
spoil the algorithm presented in Section 4. As argued above, visibility-intersecting segments
only occur if a triangle that was visited during the initialization phase is visited again when
computing the next window from a boundary edge. We could resolve this issue conceptionally
easy by retriangulating parts of the border region, namely, the part called P ′0 in Section 4.
Below, we present an approach that avoids retriangulation by making use of few simple
checks instead. (In a sense, it simulates the situation after such a retriangulation.) To this
end, we show how we can easily detect visibility-intersecting segments. Then, we show that
we can simply omit such segments from the corresponding shortest path. As a result, our
adaptation is very easy to implement and produces negligible overhead in practice.

We claim that a segment that is appended to a shortest path πr is visibility-intersecting
if and only if this segment intersects the previous window and is not an endpoint of this
window. For the sake of simplicity, we assume general position. Thus, the window a′ and
the path πr share no common segment. In practice, such a segment can easily be detected
and removed from both the path and the window during initialization of πr0.

Lemma 6. Given the previous window a′, let b be the next initial edge in B. Let ti (i ≥ 1)
be an important triangle such that the shortest path πri−1 contains no visibility-intersecting
segments and the edge bi shared by ti and ti+1 is (partially) visible from a′. The next segment s
appended to πri−1 is visibility-intersecting if and only if s intersects the open line segment a′.

Proof. Note that we consider the previous window a′ to be an open line segment, since its
right endpoint coincides with an endpoint of the first segment of πri−1, which clearly is not
visibility-intersecting.

First, assume the segment s = pq is visibility-intersecting and assume for contradiction
that s does not intersect a′. Since s is visibility-intersecting, it intersects the interior of the
hourglass H0 enclosed by a′, b0, πr0 and π`0. Since the interior of H0 contains no vertices (in
particular, neither p nor q), the edge s of ti must intersect the boundary of H0 at least twice.
However, s does not intersect the interior of the edge b0, since both s and b0 are edges of
triangles. As s does not intersect a′ by assumption, it intersects πr0 or π`0. Moreover, since

http://jocg.org/

JoCG 9(1), 24–70, 2018 54

Journal of Computational Geometry jocg.org

both paths are concave in H0, s must intersect both paths. (If it intersects any path twice at
two points p′ and q′, the subsegment that connects p′ and q′ does not intersect the interior
of H0, so s has at least one additional intersection with the boundary of H0.) But s does not
intersect π`0, because this would imply that the paths πri and π`0 have non-empty intersection,
contradicting the fact that bi is visible from a′.

Second, assume that s intersects the open segment a′. Since a′ contains no endpoint
of s, we know that s intersects the interior of H0. Hence, s is visibility-intersecting.

Next, we show that visibility-intersecting segments can safely be omitted from the
shortest path computed by the algorithm. Let ti, . . . , tj be a subsequence of important
triangles, such that the edge of ti appended to πri−1 by the algorithm of Section 4 is visibility-
intersecting, and tj is the first triangle (i. e., with lowest index j > i) such that the edge bj
shared by tj and tj+1 does not intersect the open segment a′; see the sequence of shaded
triangles in Figure 18b. Thus, all edges bi, . . . , bj−1 intersect a′. Moreover, πri−1 and bj lie
on the same side of a′ (otherwise, the window a′ would cross the reachable boundary of B).
We distinguish two cases, depending on whether bj is visible from a′. We show that in both
cases, we can skip all right endpoints of the edges bi, . . . , bj−1 when updating the path πr to
obtain the correct next window.

First, assume that bj is (partially) visible from a′. We claim that no right endpoint
of an edge bi, . . . , bj−1 is contained in the shortest path πrj . To see this, let u denote the
last vertex of πri−1 and w the right endpoint of bj . Clearly, a′ separates u and w from all
right endpoints of the edges bi, . . . , bj−1. Since bj is visible, this implies that the segment uw
crosses all edges bi, . . . , bj−1. Therefore, it does not intersect the boundary of B and there
can be no shorter path from u to w passing any right endpoint of these edges.

Second, assume that bj is not visible from a′. We claim that no right endpoint v of
an edge bi, . . . , bj−1 is contained in the visibility cone from a′. Assume for contradiction that
such an endpoint v is visible from a′. We know that v and the edge bi−1 lie on opposite sides
of a′. Since v is visible from a′, there exists a straight line that crosses a′, bi−1 and v in this
order. Consequently, it must cross a′ twice, contradicting the fact that it is a straight line.
Since v is not part of the visibility cone from a′, it is not relevant for the computation of the
next window w(a′).

In both cases, we can safely ignore right endpoints of all edges bi, . . . , bj−1. We adapt
our algorithm as follows. Before adding a segment to the shortest path that corresponds to
the unreachable boundary, we check whether it intersects the previous window a′. If this is
the case, we do not add it to the path.

Finally, applying these modifications, we have to clear one last issue to enable correct
initialization of the computation of the next window. Recall that during this initialization,
one shortest path becomes the suffix of a previous path; see Section 4. Figure 19 shows an
example where this suffix is not available in the modified algorithm. Assume we want to
compute a minimum-link path between the indicated edges a and b. Figure 19a depicts the
first window w(a) = a′. Starting from a′, the shortest paths πr and π` are computed to obtain
the next window w(a′) (note that the right endpoint of w(a′) is an unreachable component
consisting of a single vertex). To compute the next window w(a′′) from w(a′) = a′′, we

http://jocg.org/

JoCG 9(1), 24–70, 2018 55

Journal of Computational Geometry jocg.org

a

b
a′

a′′

πr

π`

(a)

a

b
a′

a′′

πr
0

π`
0

b′
b′′

(b)

Figure 19: Computing initial shortest paths. Assume we want to compute a minimum-link
path from a to b, such that the (unreachable) vertex in the center is to the right of this path.
(a) The window a′′ = ω(a′) computed after the first window a′, with final shortest paths
(red). (b) The initial shortest paths π`0 and πr0 connecting the endpoints of a′′ and the next
initial edge b′′ when computing the next window ω(a′′). To resolve the issue, we compute
another shortest path from the right endpoint of b′, which equals πr0 when a′′ is found.

first have to compute the initial paths π`0 and πr0, as shown in Figure 19b. However, πr0
consists of a segment that is not present in the previous right shortest path, because it is
visibility-intersecting for this path; see πr in Figure 19a.

To resolve this problem, we maintain another shortest path π′ starting at the corre-
sponding endpoint of the initial edge b′, i. e., segments are added as in the original algorithm
in Section 4. As argued before, this path does not contain self-intersections. Then, the initial
shortest path is a suffix of π′, since the only segments omitted from π′ are on the shortest
path from the previous window w(a) = a′ to the previous initial edge b′. Clearly, these
segments cannot be part of the next initial shortest path, since b′ is fully visible from a′.
Hence, the first endpoint of the window w(a′) must be a point in π′.

Final Remarks. In summary, our algorithm consists of two steps. The first step traverses
the reachable boundary in the triangulation of B. The second step runs a modified version of
the algorithm described in Section 4, maintaining the next boundary edge index to compute
the sequence of important triangles on-the-fly. Both steps are modifications of previous
algorithms that clearly maintain their linear running time. While the resulting polygon P
may intersect itself, it has at most OPT+2 segments. To obtain a range polygon P ′ without
self-intersections, we can split P into several non-crossing polygons at intersections. From
the resulting smaller polygons, we discard those that contain no vertices of Gp or are fully
contained in another polygon. To ensure that P ′ consists of a single component, according
to our primary optimization criterion in Section 2, we can reuse (partial) segments of P to
connect the non-crossing components of P ′. The number of additional segments clearly is
linear in the number of self-intersections, which is small in practice (see Section 6).

6 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3, and 256KiB of L2 cache.

http://jocg.org/

JoCG 9(1), 24–70, 2018 56

Journal of Computational Geometry jocg.org

Table 1: Results of our algorithms when computing the range of an electric vehicle, for
different ranges (using travel time as edge length function). We report, for each algorithm
and scenario, the number of components of the resulting range polygon (Cp.), the complexity
of the range polygon (Seg.), the number of self-intersections (Int.), and the running time of
the algorithm in milliseconds (T.). Figures are average values of 1 000 random queries.

EV, 16 kWh EV, 85 kWh

Algorithm Cp. Seg. Int. T. [ms] Cp. Seg. Int. T. [ms]

RP-RC 41 19 396 — 4.50 131 92 554 — 9.46
RP-TS 69 610 — 4.30 219 1 973 — 7.78
RP-CU 41 561 — 10.15 131 1 820 — 25.11
RP-SI 41 549 4.79 7.52 131 1 781 15.06 22.25

Input Data. Our main benchmark instance is a graph representing the road network of
Europe, kindly provided by PTV AG (ptvgroup.com). We extract travel times on road
segments from the provided data. This enables us to generate edge weights for computing
isochrones. Energy consumption data for electric vehicles is derived from a detailed micro-
scale emission model [33], calibrated to a real Peugeot iOn. It has a battery capacity of
16 kWh, but we also consider batteries with 85 kWh, as in high-end Tesla models. Edges
for which no reasonable energy consumption can be derived (e. g., due to missing elevation
data) are removed from the graph [7]. To ensure that our graph is strongly connected, we
extract the largest strongly connected component of the remaining subgraph. This results
in a graph with 22 198 628 vertices and 51 088 095 edges. To improve spatial locality of the
input data, we reorder these vertices according to a vertex partition of the graph [7]. This
slightly improves query performance. We construct a planar graph, which is directed but
unweighted in our implementation. As mentioned in Section 2, we add four bounding box
vertices in each corner of the embedding, along with eight (directed) edges connecting each
vertex to the closest vertex of the input graph and the two closest bounding box vertices.
During planarization, 293 741 vertices are added and 654 765 edges are split. Note that a
dummy vertex may intersect more than two original edges, which explains why the number of
split edges is more than twice the number of dummy vertices. They are replaced by 1 591 914
dummy edges (creating 6 294 multi-edges due to overlapping original edges in the given
embedding). After planarization, the resulting graph has 22 492 373 vertices and 52 025 261
edges. After triangulating all faces, it has 131 977 245 edges. In total, data structures used
by our algorithms require about 20GiB of space for storing the graph, the faces of the planar
graph, its triangulation, and any additional data structures used by the different algorithms.
In a typical server-based scenario, this is not an issue, since the whole dataset fits into RAM.

Evaluating Queries. We evaluate query scenarios for range visualization of an electric
vehicle, as well as isochrones. For electric vehicles, we consider two scenarios, one for
medium (16 kWh) and one for large (85 kWh) battery capacity, corresponding to a range of
roughly 100 and 500 km, respectively. We compare the results provided by the algorithms
proposed in Section 5. Each algorithm was tested on the same set of 1 000 queries from source

http://jocg.org/
ptvgroup.com

JoCG 9(1), 24–70, 2018 57

Journal of Computational Geometry jocg.org

Table 2: Overview of the results of our algorithms when computing isochrones for different
ranges. Reported results are similar to Table 1. They were obtained by running 1 000 random
queries from the same set of source vertices.

Isochrones, 60min Isochrones, 500min

Algorithm Cp. Seg. Int. T. [ms] Cp. Seg. Int. T. [ms]

RP-RC 53 22 458 — 4.75 231 238 123 — 20.25
RP-TS 151 1 076 — 4.65 694 4 981 — 14.96
RP-CU 53 913 — 12.11 231 4 208 — 65.09
RP-SI 53 881 9.95 8.70 231 4 055 45.80 51.94

vertices picked uniformly at random. We denote by RP-RC (range polygon, extracted reachable
components) the approach presented in Section 5.1, by RP-TS (triangular separators) the
algorithm from Section 5.2, by RP-CU (connecting unreachable components) the approach
from Section 5.3, and by RP-SI (self-intersecting polygons) the algorithm from Section 5.4.
Below, we only evaluate Steps 2 to 4 of the algorithm outlined in Section 2. The first step,
i. e., the computation of the reachable and unreachable parts of the graph, was covered by
previous work [6]. It is briefly discussed at the end of this section.

Table 1 shows an overview of the results of all heuristics when visualizing the range
of an electric vehicle, organized in two blocks. The first considers the medium-range scenario,
while the second shows results for long ranges. For each, we report the average number of
components, complexity, and the number of self-intersection of the computed range polygons.
We also report the average running time in each case. For RP-SI, the number of components
and the complexity are reported as-is after running the modified minimum-link path algorithm
described in Section 5.4 (i. e., resulting polygons have the number of self-intersections reported
in the table). Thus, figures slightly change after resolving the intersections (both the number
of components and the complexity may increase slightly).

All algorithms perform very well in practice, with timings of 25ms and below even
for large battery capacities. The simpler algorithms, RP-RC and RP-TS are faster by a factor
of 2 to 3, compared to the more sophisticated approaches. On the other hand, we see that
range polygons generated by RP-RC have a much higher complexity, exceeding the optimum
by more than an order of magnitude. The heuristic RP-TS provides much better results
in terms of complexity, but is still outperformed by the other two approaches. Moreover,
the triangular separation increases the number of components by almost a factor of 1.7
(all other approaches in fact compute the minimum number of holes). Regarding the two
more involved approaches, RP-CU and RP-SI, we see that the additional effort pays off.
Both approaches compute range polygons with the optimal number of components, while
keeping the complexity close to the optimum. In fact, we know that each component in
the possibly self-intersecting polygon computed by RP-SI requires at most two additional
segments compared to an optimal solution. Taking into account that many small components
are triangles (which have optimal complexity), we derive lower bounds on the optimal average
complexity of 529 (16 kWh) and 1 720 (85 kWh) for a range polygon with minimum number
of components. Hence, our experiments indicate that the average relative error of both RP-CU

http://jocg.org/

JoCG 9(1), 24–70, 2018 58

Journal of Computational Geometry jocg.org

Table 3: Running times of different phases of the algorithms (where applicable) for isochrones
with a range of 500 minutes. For each algorithm, we report the total running time (Total)
together with the running time for transferring the input to the planar graph (TP), extracting
the border regions (BE), connecting components (CC), the range polygon computation with
minimum-link paths (RP), and the test for self-intersections (SI), given in milliseconds.

Algorithm TP BE CC RP SI Total

RP-RC 8.21 12.01 — — — 20.25
RP-TS 8.22 — — 6.45 — 14.96
RP-CU 8.23 26.66 22.99 7.81 — 65.09
RP-SI 8.20 31.79 — 9.53 2.34 51.94

(upper bounded by 6%) and RP-SI (upper bounded by 4%) is negligible in practice. The
number of intersections produced by RP-SI is also rather low, but the majority of computed
range polygons contains at least one intersection (97.2% for a range of 85 kWh; not reported
in the table).

In Table 2, we provide the according figures for isochrones, considering a harder
scenario with a range of 500 minutes (roughly eight hours). Resulting isocontours are among
the most complex on average in our setting (for longer ranges, the border of the network is
reached by many queries). Despite the increase in running time and solution size, we make
similar observations as before. All approaches show great performance, with average running
times of 65ms and below in all cases. Again, the average complexity of range polygons
computed by RP-RC is larger compared to other heuristics by about a factor of 50, with
range polygons consisting of more than 200 000 segments on average for the long range.
This clearly justifies the use of our proposed algorithms, since a significant decrease of this
number is beneficial when efficient rendering or transmission over mobile networks is an issue.
Moreover, a lower number of segments leads to a more appealing visualization for ranges
of this order. For RP-TS, the number of components now exceeds the optimum by about
a factor of 3. Again, the two more sophisticated approaches RP-CU and RP-SI yield best
results with average relative errors bounded by 7% and 3%, respectively.

For the hardest scenario (isochrones, 500min.), we report more detailed information on
running times of the different phases of all algorithms in Table 3. Note that the total running
time slightly differs from the sum of all subphases, since it was determined independently.
The planarization phase (TP) consists of the linear sweeps described in Section 3. Since the
same work needs to be done for all approaches, the running time is identical in all cases (bar
measurement noise). Of course, the relative amount spent in this step differs per algorithm.
In case of RP-TS it requires more than half of the total running time. The time to extract
the border regions (BE) applies to all algorithms except RP-TS, where this is done implicitly
by checking the reachability of vertices. Since RP-RC extracts only the reachable boundary,
this phase takes less than half the time compared to RP-CU (the unreachable boundary is
typically larger). Finally, RP-SI spends most time in this step, since it runs the extraction
on the triangulated graph, which is significantly more dense. Recall that RP-SI in fact only
extracts the reachable border, similar to RP-RC, so this phase is slower by more than a factor

http://jocg.org/

JoCG 9(1), 24–70, 2018 59

Journal of Computational Geometry jocg.org

28 210 212 214 216 218 220 222 224

10
10

0

10
10

0

RP-RC
RP-TS

RP-CU
RP-SI

Rank

R
un

ni
ng

T
im

e
[m

s]

Figure 20: Running times of all approaches subject to Dijkstra rank. Smaller ranks indicate
queries of shorter range. For each rank, we report results of 1 000 random queries.

of 2.5. Connecting unreachable components (CC) is only necessary in RP-CU and takes less
time than the extraction of border regions. Computing the actual range polygon takes a
similar amount of time for all approaches that run this phase (6 to 10ms). For RP-TS, it is
slightly faster, since the algorithm works only on important triangles, reducing the number
of visited triangles and simplifying the algorithm. On the other hand, RP-SI is the slowest
approach in this phase. This can be explained by the overhead caused by the modifications
described in Section 5.4. Moreover, in contrast to RP-TS and RP-CU, there are no artificial
edges in the border regions. Hence, windows computed by RP-SI are longer on average,
increasing the number of triangles visited by the algorithm.

In summary, we see that extracting the border region takes a major fraction of the
total effort for all approaches that compute B explicitly. Despite the algorithmic simplicity
of this phase, this can be explained by the size of the border region. In our experiments, it
consisted of more than 500 000 segments on average. On the other hand, only a fraction of
the triangles in the border regions are visited by the minimum-link path algorithm.

Evaluating Scalability. Figure 20 analyzes the scalability of our algorithms, following the
methodology of Dijkstra ranks [3, 49]. The Dijkstra rank of a shortest-path query is the
number of queue extractions performed by Dijkstra’s algorithm, presuming that the algorithm
stops once the target is found. Thus, higher ranks reflect harder queries. To obtain queries of
different ranks, we run Dijkstra’s algorithm as described in Section 3 to obtain consumption

http://jocg.org/

JoCG 9(1), 24–70, 2018 60

Journal of Computational Geometry jocg.org

1

0 1 2 3 4 5 6 7 8 9 10 11

10
10
0

10
10
0

Border Region Size [×106]

R
u
n
n
in
g
T
im

e
[m

s]

y

RP-RC

(a)

1

0 1 2 3 4 5 6 7 8 9 10 11

10
10
0

10
10
0

Border Region Size [×106]

R
u
n
n
in
g
T
im

e
[m

s]

y

RP-TS

(b)

1

0 1 2 3 4 5 6 7 8 9 10 11

10
1
00

10
10
0

Border Region Size [×106]

R
u
n
n
in
g
T
im

e
[m

s]

y

RP-CU

(c)

1

0 1 2 3 4 5 6 7 8 9 10 11
10

1
00

10
10
0

Border Region Size [×106]

R
u
n
n
in
g
T
im

e
[m

s]

y
RP-SI

(d)

Figure 21: Running times of the same queries as in Figure 20, subject to border region size,
for (a) RP-RC, (b) RP-TS, (c) RP-CU, and (d) RP-SI, respectively.

values along shortest paths from 1 000 source vertices chosen uniformly at random. For a
search from some source s, consider the resource consumption c of the vertex that is extracted
from the queue in step 2i of Dijkstra’s algorithm (the maximum rank is bounded by the
graph size). We consider a query from s with range c as a query of rank 2i. For each rank
in {21, . . . , 2log |V |}, we evaluate the 1 000 queries generated this way.

Query times of all approaches increase with the Dijkstra rank, which correlates
well with the complexity of the border region. Moreover, scaling behavior is similar for
all approaches. In accordance with our theoretical findings, our experiment suggests that
it increases linearly in the size of the border region for queries beyond a rank of 212. For
queries of lower rank, transferring the input to the planar graph dominates running time,
as it is linear in the graph size and thus, independent of the rank. The approach RP-TS
is consistently the fastest approach on average for all ranks beyond 216. Except for a few
outliers, our algorithms answer all queries in well below 100ms. For more local queries (i. e.,
smaller ranges), query times are much faster (20ms and below if the rank is at most 220,
corresponding to about a million vertices visited by Dijkstra’s algorithm). The more expensive
approaches have a higher variance and produce more outliers, which is explained by their
more complex phases. For example, the performance of the BFS used by RP-CU heavily
depends on how close unreachable components of the border region are in the dual graph.

For each approach, Figure 21 shows query times depending on the border region
size for all queries whose rank is at least 8 (i. e., the same set of queries as in Figure 20).

http://jocg.org/

JoCG 9(1), 24–70, 2018 61

Journal of Computational Geometry jocg.org

Table 4: Performance of different minimum-link path algorithms. For each scenario, we
report the number of segments in the input polygon (|P |) and the minimum number of links
of resulting paths (Seg.). For Suri’s algorithm [50], we show the number of visibility polygon
computations (V.Pol.), the total number of segments in the input for these computations
(Pol. Seg.), and the total number of visible triangles in these inputs (Trng.). For FMLP, the
table provides the number of triangles visited by the algorithm (Trng.) and the running time
in milliseconds. Figures are average values for 1 000 queries. Running times exclude the time
for triangulating the input polygon, which is part of preprocessing.

Suri [50] FMLP

Scenario |P | Seg. V. Pol. Pol. Seg. Trng. Trng. T. [ms]

EV, 16 kWh 134 049 415 2 010 307 583 48 762 8 901 0.74
Iso, 60 min 135 112 700 3 413 320 244 57 549 11 250 1.05
EV, 85 kWh 357 335 1 328 6 442 850 293 178 574 31 657 3.17
Iso, 500 min 637 224 3 203 15 655 1 547 962 359 969 66 163 6.67

Query times clearly increase with border region size. However, we also see clusters of similar
running times at certain region sizes. These patterns can be explained by a small number
of huge faces in the graph corresponding to, e. g., long coastlines in the network. Including
such a face in the border region greatly increases its size, but has limited affect on running
time if it is not part of the reachable subgraph.

Evaluating the Computation of Minimum-Link Paths. We take a closer look at the
performance of our algorithm for computing minimum-link paths introduced in Section 4,
which we refer to as FMLP (fast minimum-link paths). To properly evaluate the algorithm in
the context of our experimental setting, we proceed as follows. For each query, we consider
the largest corresponding border region (with respect to number of segments). To obtain a
polygon without holes, as required by the algorithm, we first run our heuristic to connect all
unreachable components described in Section 5.3. Then, we add an arbitrary boundary edge
to the modified border region, and compute a minimum-link path that connects both sides
of this edge. Results are shown in Table 4. Each scenario is based on the respective sets of
random queries used in Table 1 and Table 2.

We also compare the performance of FMLP to Suri’s algorithm [50], which finds the
next window starting from an arbitrary window (or edge) a by computing several visibility
polygons as follows. It starts by computing the visibility polygon of a in the polygon bounding
all important triangles (as defined in Section 4) intersected by a. Then, it iteratively computes
new visibility polygons, each time doubling the number of important triangles in the input
polygon until there is an important triangle that is (partially) invisible from a. To obtain the
actual window, a final visibility polygon is computed for a polygon bounding the same set of
important triangles together with all non-important triangles whose closest important triangle
(with respect to distance in the dual graph) belongs to this set. Then, the next window is an
edge of this visibility polygon. Clearly, a practical implementation of this algorithm requires
a fast subroutine to compute visibility polygons. Moreover, it needs to fill certain degrees

http://jocg.org/

JoCG 9(1), 24–70, 2018 62

Journal of Computational Geometry jocg.org

of freedom, e. g., generating the input for this subroutine, or determining the window from
the resulting visibility polygon. A fair experimental comparison of running times requires
a tuned implementation of Suri’s algorithm that efficiently fills these degrees of freedom,
which is clearly beyond the scope of this work. Instead, Table 4 provides measures that are
independent of both the machine and the implementation, such as the number of calls to
the subroutine for computing visibility polygons and the total number of segments in the
generated input polygons. A recent experimental study on visibility polygon computation [9]
proposes a linear-time algorithm on hole-free polygons that is based on a triangulation of the
input. It outperforms other approaches in their evaluation because it processes only visible
triangles and thus, only a fraction of the input. For our purposes, this approach would have
to be generalized to compute visibility from windows (not just single points). Still, it is a
good candidate for a practical implementation of Suri’s algorithm. Therefore, we also report
the total number of visible triangles in all polygons constructed by Suri’s algorithm.

For all considered scenarios, Suri’s algorithm requires several thousand calls to the
subroutine for visibility polygons. The total number of segments in all polygons built by
Suri’s algorithm is over 1.5 million for the hardest scenario (500min isochrones), which even
rules out explicit construction of these polygons for practical applications. In addition to
that, the total number of triangles visited by Suri’s algorithm exceeds the number of triangles
visited by FMLP (using the practical visibility polygon algorithm proposed above [9]) by
about a factor of 5 to 6. For FMLP, the workload per visited triangle is very small (updating
visibility lines and shortest paths). On the other hand, the proposed visibility polygon
algorithm used by Suri’s algorithm is recursive [9] and therefore possibly less cache efficient.
Given that Suri’s algorithm requires additional overhead for constructing input polygons and
determining the actual windows from visibility polygons, we conclude that the algorithm
introduced in Section 4 is much more suitable for practical use.

Comparing the different scenarios evaluated in Table 4, each represents a certain level
of difficulty, with the average complexity of the input polygon ranging from some 100 000 to
600 000 segments. Clearly, the number of visited triangles, the number of segments of the
resulting path, and the running time increase with the complexity of the input. However, we
also see in Table 4 that the algorithm performs excellently in practice, computing minimum-
link paths in less than 7 milliseconds, even for input polygons with more than half a million
vertices. Somewhat surprisingly, the isochrone scenarios (60min) is slightly harder then the
range scenario (16 kWh), despite a similar input complexity. This can be explained by the
different shapes of the respective border regions. Isochrones in road networks reach further
on highways and other fast roads, leading to spike-like shapes in the resulting border regions;
see also Figure 22. On the other hand, isocontours representing the range of an electric
vehicle typically have a more circular shape as highways allow to move faster, but consume
more energy. Consequently, range polygons for isochrones require more segments and yield
the more challenging scenario.

Other Instances. We also present experiments for instances extracted from openly available
OpenStreetMap data. We consider the road network of Switzerland with 3 259 674 (3 269 666)
vertices and 6 488 514 (6 518 469) edges before (after) planarization and the road network
of Germany with 23 913 390 (23 966 527) vertices and 48 239 355 (48 398 283) edges before

http://jocg.org/

JoCG 9(1), 24–70, 2018 63

Journal of Computational Geometry jocg.org

Table 5: Results of our algorithms when computing isochrones for a range of 60 minutes on
two different instances. Reported results follow Table 1. They were obtained by running
1 000 random queries, as before.

Switzerland Germany

Algorithm Cp. Seg. Int. T. [ms] Cp. Seg. Int. T. [ms]

RP-RC 142 258 816 — 15.15 332 223 039 — 16.85
RP-TS 422 2 419 — 8.05 924 5 073 — 13.39
RP-CU 142 1 957 — 65.10 332 4 070 — 68.76
RP-SI 142 1 832 47.05 59.55 332 3 833 95.16 68.53

(after) planarization. Note that these instances have many degree-2 vertices for detailed
representation of road curvatures. This explains the relatively large size of the instances
(e. g., the graph of Germany contains more vertices than our main benchmark instance).

Table 5 shows results for 1 000 queries on each instance for a medium range of 60
minutes and source vertices picked uniformly at random. (We omit longer ranges, where
particularly for Switzerland major parts of the graph become reachable in every query.)
The larger graph sizes are reflected in average solution size and running time. However,
compared to previous experiments, the decrease in the number of segments of our sophisticated
approaches is even more significant. For Switzerland, the average result size drops by a factor
of more than 100 when using any of the approaches based on minimum-link paths. This is
explained by both the large number of degree-2 vertices and the fact that the Switzerland
instance contains many large faces (representing lakes or mountains). This allows the heuristic
to produce many long segments; see also the example shown in Figure 22. Lower bounds on
the optimal complexity yield similar error bounds as before (at most 6% and 7% for RP-SI
on Switzerland and Germany, respectively). For longer ranges (not reported in the table),
running times increase because due to the graph size, border region extraction becomes
rather expensive. However, even for the Germany instance running times are always below
200 milliseconds on average.

Computation of the Reachable Subgraph. In all scenarios considered above, we ignored
the computational effort to obtain the reachable subgraph, i. e., Step 1 of the general approach
in Section 2. We proposed a variant of Dijkstra’s algorithm to achieve this in Section 3.
However, it would become the bottleneck of the overall running time in all scenarios, as it
takes several seconds on average for long ranges. Similar observations were made for variants
of Dijkstra’s algorithm running on large-scale road networks in the context of speedup
techniques for shortest-path algorithms [3]. Recently, it was shown that algorithms producing
output similar to Step 1 can be made practical using preprocessing-based techniques [6]. As
a result, running times below 50 milliseconds can be achieved for this step (even less when
parallelized). Since these techniques can easily be adapted to produce the actual output of
Step 1 required by our algorithm, our approaches enable the visualization of isocontours in
road networks in less than 100 milliseconds in total on our benchmark instance. Thereby, we
enable interactive applications even on road networks of continental scale.

http://jocg.org/

JoCG 9(1), 24–70, 2018 64

Journal of Computational Geometry jocg.org

(a) (b)

Figure 22: The area reachable within five hours from KIT in Karlsruhe, Germany (black
disk). (a) Result of RP-RC from Section 5.1 with 295 015 segments. (b) Result of RP-CU from
Section 5.3 with 6 606 segments.

Case Study. To briefly discuss visualization quality, we present some examples of isocontour
visualization on our main instance. Figure 22 shows an isochrone for a range of five hours, using
the simple approach RP-RC and one of our more sophisticated methods, RP-CU. Comparing
the visualization of both approaches, we see that major parts of the isocontours look very
similar. However, the number of segments in the result of RP-RC shown in Figure 22a is
significantly larger, making the isocontour appear more cluttered. At certain points, though,
the isocontours differ: The result of RP-CU contains a long segment at the top left border
(covering the coast of Belgium and the Netherlands), while the result of RP-RC stays closer
to the shore. This difference is explained by the fact that the sea corresponds to a single
huge face in the planar embedding, allowing the minimum link path to cover long distances
with a single segment. Similar observations can be made at the southern boundary of the
reachable area, where many mountains and lakes correspond to huge faces in the embedding.
Besides long segments, huge faces can produce other undesirable artifacts, such as spikes. To
prevent this, one could add further constraints, e. g., forcing the range polygon to stay close
to the reachable boundary. Such constraints can be implemented by slightly shrinking faces
(during preprocessing) if their area exceeds a certain boundary. These shrunk dummy faces
could then be added to the unreachable boundary.

Figure 23 compares results of all four approaches in a small-scale example. All three
algorithms based on minimum-link paths produce very similar results, though the resulting
polygon contains more holes when using RP-TS. Note that the result of RP-SI contains
self-intersections on its left side.

7 Conclusion

In this work, we proposed several approaches for computing isocontours in large-scale road
networks. Given the subgraph that is reachable within the given resource limit, this problem

http://jocg.org/

JoCG 9(1), 24–70, 2018 65

Journal of Computational Geometry jocg.org

(a) (b)

(c) (d)

Figure 23: Small-scale example showing different representations of a short-range isocontour
from the black disk in the city of Vienna, Austria. Polygons represent isocontours, the
corresponding border regions are shaded red. We show the results of (a) RP-RC, (b) RP-TS,
(c) RP-CU, and (d) RP-SI, respectively.

boils down to computing a geometric representation of this subgraph. We introduced range
polygons, following the three major objectives of exact results (reachable and unreachable
parts are correctly separated), low complexity (range polygons consist of few segments),
and practical performance. We presented three novel algorithms to compute near-optimal
solutions in (almost) linear time. Their key ingredient is a new linear-time algorithm for
minimum-link paths in simple polygons, making it the first practical approach to a problem
well-studied in theory [37, 44, 45, 50]. Our experimental evaluation reveals that all approaches
are fast enough for interactive applications on inputs of continental scale.

Regarding future work, we discuss interesting open issues and possible further im-
provements. First, our techniques exploit the fact that the reachable boundary of a border
region is always connected, i. e., |R| = 1. This might not be the case in related scenarios,
such as multi-source isocontours or in multimodal networks, where one can disembark from
public transit vehicles only at certain points [24]. Thus, it would be interesting to know
whether our approaches can be extended to the case of |R| > 1. Moreover, Gamper et al. [24]
consider the extent to which reachable edges can be passed in their definition of isochrones.
This is relevant particularly for short ranges, or if the graph consists of edges with very long
distance. Hence, we could modify our approaches to handle this slightly different model. For

http://jocg.org/

JoCG 9(1), 24–70, 2018 66

Journal of Computational Geometry jocg.org

aesthetic reasons, one could aim at avoiding long straight segments or spikes in the range
polygon, which are likely to occur in faces encompassing large areas corresponding to, e. g.,
big lakes or mountains. As discussed in Section 6, such constraints could be integrated by
adding (during preprocessing) artificial boundaries to faces whose area exceeds a certain
threshold. On the other hand, one could also aim at further line simplification, at the
cost of inexact results. However, such methods should avoid intersections between different
components of the range polygon (i. e., maintain its topology), and error measures should
consider the graph-based distance from the source to parts of the network that are incorrectly
classified by the range polygon (vertices that are close with respect to Euclidean distance
may in fact have a long distance in the graph). To this end, reusing ideas from known line
simplification algorithms [13, 15, 22] could be a promising approach. One could also aim at
exact approaches based on line simplification, by implementing additional constraints. Finally,
another interesting open problem is the consideration of continuous range visualization for a
moving vehicle. Instead of computing the isocontours from scratch, one could try to reuse
previously computed information.

Acknowledgements. We would like to thank Roman Prutkin for interesting discussions
and our anonymous reviewers for many helpful comments and suggestions.

References

[1] Nina Amenta and Marshall Bern. Surface Reconstruction by Voronoi Filtering. Discrete
& Computational Geometry, 22(4):481–504, 1999.

[2] Ivan J. Balaban. An Optimal Algorithm for Finding Segments Intersections. In
Proceedings of the 11th Annual Symposium on Computational Geometry (SoCG’95),
pages 211–219. ACM, 1995.

[3] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route
Planning in Transportation Networks. In Algorithm Engineering: Selected Results and
Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80. Springer,
2016.

[4] Veronika Bauer, Johann Gamper, Roberto Loperfido, Sylvia Profanter, Stefan Putzer,
and Igor Timko. Computing Isochrones in Multi-Modal, Schedule-Based Transport
Networks. In Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (GIS’08), pages 78:1–78:2. ACM, 2008.

[5] Moritz Baum, Thomas Bläsius, Andreas Gemsa, Ignaz Rutter, and Franziska Wegner.
Scalable Exact Visualization of Isocontours in Road Networks via Minimum-Link Paths.
In Proceedings of the 24th Annual European Symposium on Algorithms (ESA’16), vol-
ume 57 of Leibniz International Proceedings in Informatics (LIPIcs), pages 44:1–44:17.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

http://jocg.org/

JoCG 9(1), 24–70, 2018 67

Journal of Computational Geometry jocg.org

[6] Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Dorothea Wagner. Fast Exact
Computation of Isochrones in Road Networks. In Proceedings of the 15th International
Symposium on Experimental Algorithms (SEA’16), volume 9685 of Lecture Notes in
Computer Science, pages 17–32. Springer, 2016.

[7] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (GIS’13), pages 54–63. ACM,
2013.

[8] John L. Bentley and Thomas A. Ottmann. Algorithms for Reporting and Counting
Geometric Intersections. IEEE Transactions on Computers, 28(9):643–647, 1979.

[9] Francisc Bungiu, Michael Hemmer, John E. Hershberger, Kan Huang, and Alexander
Kröller. Efficient Computation of Visibility Polygons. In Proceedings of the 30th European
Workshop on Computational Geometry (EuroCG’14), 2014.

[10] Alex Bykat. Convex Hull of a Finite Set of Points in Two Dimensions. Information
Processing Letters, 7(6):296–298, 1978.

[11] Peter Conradi, Philipp Bouteiller, and Sascha Hanßen. Dynamic Cruising Range
Prediction for Electric Vehicles. In Advanced Microsystems for Automotive Applications
2011: Smart Systems for Electric, Safe and Networked Mobility, VDI Buch, pages
269–277. Springer, 2011.

[12] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, third edition, 2008.

[13] Mark de Berg, Marc van Kreveld, and Stefan Schirra. Topologically Correct Subdivision
Simplification Using the Bandwidth Criterion. Cartography and Geographic Information
Systems, 25(4):243–257, 1998.

[14] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[15] David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or its Caricature. The Canadian
Cartographer, 10(2):112–122, 1973.

[16] Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient Generation of
Simple Polygons for Characterizing the Shape of a Set of Points in the Plane. Pattern
Recognition, 41(10):3224–3236, 2008.

[17] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the Shape of a
Set of Points in the Plane. IEEE Transactions on Information Theory, 29(4):551–559,
1983.

[18] Alexandros Efentakis, Sotiris Brakatsoulas, Nikos Grivas, Giorgos Lamprianidis, Kostas
Patroumpas, and Dieter Pfoser. Towards a Flexible and Scalable Fleet Management

http://jocg.org/

JoCG 9(1), 24–70, 2018 68

Journal of Computational Geometry jocg.org

Service. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on
Computational Transportation Science (IWTCS’13), pages 79–84. ACM, 2013.

[19] Alexandros Efentakis, Nikos Grivas, George Lamprianidis, Georg Magenschab, and
Dieter Pfoser. Isochrones, Traffic and DEMOgraphics. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS’13), pages 548–551. ACM, 2013.

[20] Alexandros Efentakis and Dieter Pfoser. GRASP. Extending Graph Separators for the
Single-Source Shortest-Path Problem. In Proceedings of the 22nd Annual European
Symposium on Algorithms (ESA’14), volume 8737 of Lecture Notes in Computer Science,
pages 358–370. Springer, 2014.

[21] David Eppstein, Michael T. Goodrich, and Darren Strash. Linear-Time Algorithms for
Geometric Graphs with Sublinearly Many Edge Crossings. SIAM Journal on Computing,
39(8):3814–3829, 2010.

[22] Stefan Funke, Thomas Mendel, Alexander Miller, Sabine Storandt, and Maria Wiebe.
Map Simplification with Topology Constraints: Exactly and in Practice. In Proceedings
of the 19th Meeting on Algorithm Engineering & Experiments (ALENEX’16), pages
185–196. SIAM, 2017.

[23] Anka Gajentaan and Mark H. Overmars. On a Class of O(n2) Problems in Computational
Geometry. Computational Geometry, 5(3):165–185, 1995.

[24] Johann Gamper, Michael Böhlen, Willi Cometti, and Markus Innerebner. Defining
Isochrones in Multimodal Spatial Networks. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM’11), pages 2381–2384.
ACM, 2011.

[25] Johann Gamper, Michael Böhlen, and Markus Innerebner. Scalable Computation of
Isochrones with Network Expiration. In Proceedings of the 24th International Conference
on Scientific and Statistical Database Management (SSDBM’12), volume 7338 of Lecture
Notes in Computer Science, pages 526–543. Springer, 2012.

[26] Sorabh Gandhi, John E. Hershberger, and Subhash Suri. Approximate Isocontours
and Spatial Summaries for Sensor Networks. In Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (IPSN’07), pages 400–409.
ACM, 2007.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[28] Ronald L. Graham. An Efficient Algorithm for Determining the Convex Hull of a Finite
Planar Set. Information Processing Letters, 1(4):132–133, 1972.

[29] Stefan Grubwinkler, Tobias Brunner, and Markus Lienkamp. Range Prediction for EVs
via Crowd-Sourcing. In Proceedings of the 10th IEEE International Vehicle Power and
Propulsion Conference (VPPC’14). IEEE, 2014.

http://jocg.org/

JoCG 9(1), 24–70, 2018 69

Journal of Computational Geometry jocg.org

[30] Leonidas J. Guibas and John E. Hershberger. Optimal Shortest Path Queries in a
Simple Polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989.

[31] Leonidas J. Guibas, John E. Hershberger, Daniel Leven, Micha Sharir, and Robert E.
Tarjan. Linear-Time Algorithms for Visibility and Shortest Path Problems Inside
Triangulated Simple Polygons. Algorithmica, 2(1):209–233, 1987.

[32] Leonidas J. Guibas, John E. Hershberger, Joseph S. B. Mitchell, and J. S. Snoeyink.
Approximating Polygons and Subdivisions with Minimum-Link Paths. International
Journal of Computational Geometry & Applications, 3(4):383–415, 1993.

[33] Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical report I-20/2009, University
of Technology, Graz, 2009.

[34] Hiroshi Imai and Masao Iri. An Optimal Algorithm for Approximating a Piecewise
Linear Function. Journal of Information Processing, 9(3):159–162, 1987.

[35] Markus Innerebner, Michael Böhlen, and Johann Gamper. ISOGA: A System for
Geographical Reachability Analysis. In Proceedings of the 12th International Conference
on Web and Wireless Geographical Information Systems (W2GIS’13), volume 7820 of
Lecture Notes in Computer Science, pages 180–189. Springer, 2013.

[36] Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal
of the ACM, 24(1):1–13, 1977.

[37] Irina Kostitsyna, Maarten Löffler, Valentin Polishchuk, and Frank Staals. On the Com-
plexity of Minimum-Link Path Problems. In Proceedings of the 32nd Annual Symposium
on Computational Geometry (SoCG’16), volume 51 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 49:1–49:16. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2016.

[38] Lawrence T. Kou, George Markowsky, and Leonard C. Berman. A Fast Algorithm for
Steiner Trees. Acta Informatica, 15(2):141–145, 1981.

[39] Daniel Krajzewicz and Dirk Heinrichs. UrMo Accessibility Computer – A Tool for
Computing Contour Accessibility Measures. In Proceedings of the 8th International
Conference on Advances in System Simulation (SIMUL’16), pages 56–60. IARIA, 2016.

[40] Nikolaus Krismer, Doris Silbernagl, Günther Specht, and Johann Gamper. Computing
Isochrones in Multimodal Spatial Networks Using Tile Regions. In Proceedings of
the 29th International Conference on Scientific and Statistical Database Management
(SSDBM’17), pages 33:1–33:6. ACM, 2017.

[41] Nikolaus Krismer, Günter Specht, and Johann Gamper. Incremental Calculation of
Isochrones Regarding Duration. In Proceedings of the 26th GI-Workshop on Foundations
of Databases (GvDB’14), volume 1313 of CEUR Workshop Proceedings, pages 41–46.
CEUR-WS.org, 2014.

http://jocg.org/

JoCG 9(1), 24–70, 2018 70

Journal of Computational Geometry jocg.org

[42] Sarunas Marciuska and Johann Gamper. Determining Objects within Isochrones in
Spatial Network Databases. In Proceedings of the 14th East European Conference on
Advances in Databases and Information Systems (ADBIS’10), volume 6295 of Lecture
Notes in Computer Science, pages 392–405. Springer, 2010.

[43] Kurt Mehlhorn. A Faster Approximation Algorithm for the Steiner Problem in Graphs.
Information Processing Letters, 27(3):125–128, 1988.

[44] Joseph S. B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-Link Paths
Revisited. Computational Geometry, 47(6):651–667, 2014.

[45] Joseph S. B. Mitchell, Günter Rote, and Gerhard Woeginger. Minimum-Link Paths
Among Obstacles in the Plane. Algorithmica, 8(1):431–459, 1992.

[46] Peter Ondrús̆ka and Ingmar Posner. Probabilistic Attainability Maps: Efficiently
Predicting Driver-Specific Electric Vehicle Range. In Proceedings of the 10th IEEE
Intelligent Vehicles Symposium (IV’14), pages 1169–1174. IEEE, 2014.

[47] Peter Ondrús̆ka and Ingmar Posner. The Route Not Taken: Driver-Centric Estimation
of Electric Vehicle Range. In Proceedings of the 24th International Conference on
Automated Planning and Scheduling (ICAPS’14), pages 413–420. AAAI Press, 2014.

[48] David O’Sullivan, Alastair Morrison, and John Shearer. Using Desktop GIS for the
Investigation of Accessibility by Public Transport: An Isochrone Approach. International
Journal of Geographical Information Science, 14(1):85–104, 2000.

[49] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest
Path Queries. In Proceedings of the 13th Annual European Conference on Algorithms
(ESA’05), volume 3669 of Lecture Notes in Computer Science, pages 568–579. Springer,
2005.

[50] Subhash Suri. A Linear Time Algorithm for Minimum Link Paths Inside a Simple
Polygon. Computer Vision, Graphics, and Image Processing, 35(1):99–110, 1986.

[51] Robert E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. Journal
of the ACM, 22(2):215–225, 1975.

[52] Cao An Wang. Finding Minimal Nested Polygons. BIT Numerical Mathematics,
31(2):230–236, 1991.

[53] Peter Widmayer. On Approximation Algorithms for Steiner’s Problem in Graphs.
In Proceedings of the 12th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’86), volume 246 of Lecture Notes in Computer Science, pages
17–28. Springer, 1987.

[54] Ying Fung Wu, Peter Widmayer, and Chak Kuen Wong Wong. A Faster Approximation
Algorithm for the Steiner Problem in Graphs. Acta Informatica, 23(2):223–229, 1986.

http://jocg.org/

	Introduction
	Problem Statement and General Approach
	Computing the Border Regions
	Range Polygons in Border Regions Without Holes
	Heuristic Approaches for General Border Regions
	Extracting the Reachable Component
	Separating Border Regions Along their Triangulation
	Connecting Unreachable Components
	Computing Self-Intersecting Minimum-Link Paths

	Experiments
	Conclusion

