
Periodic Autoregressive Models
with Multiple Structural Changes
by Genetic Algorithms

Francesco Battaglia, Domenico Cucina, and Manuel Rizzo

Abstract We present a model and a computational procedure for dealing with
seasonality and regime changes in time series. In this work we are interested in
time series which in addition to trend display seasonality in mean, in autocorrelation
and in variance. These type of series appears in many areas, including hydrology,
meteorology, economics and finance. The seasonality is accounted for by subset
PAR modelling, for which each season follows a possibly different Autoregressive
model. Levels, trend, autoregressive parameters and residual variances are allowed
to change their values at fixed unknown times. The identification of number and
location of structural changes, as well as PAR lags indicators, is based on Genetic
Algorithms, which are suitable because of high dimensionality of the discrete search
space. An application to Italian industrial production index time series is also
proposed.
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1 Model Description and Estimation

In this work we are interested in economic time series showing a trend and seasonal
fluctuations that are not very stable over time. This may be caused by economic
agents who have preferences, technologies, constraints, and expectations which are
not constant over the seasons [1]. In these kind of series it may happen that linear
seasonal adjustment filters, as in SARIMA models, are not likely to remove the
intrinsic seasonality. In that case the residuals from these models show patterns that
can be explained by the presence of dynamic periodicity [1]. Recently, economic
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models in which seasonally varying parameters are allowed attracted some attention
[2]. The present paper considersPAR models with linear piecewise trends, allowing
nonstationarity and seasonality simultaneously. There is empirical evidence of
the existence of discontinuities due to structural changes possibly originated by
policy changes [3]. Consequently, detecting the existence of structural changes and
estimating their number and locations in periodic time series is an important stage.
In this paper we propose an automatic procedure based on Genetic Algorithms
(GAs) for estimating number and locations of change points.

We refer to a seasonal time series of period s, observed s times a year for N

complete years (s = 12 for monthly data). This series is possibly divided in a
number of regimes up to M , specified by m = M − 1 change points τ1, . . . , τm

occurring at the end of the year τj − 1, and set τ0 = 1 and τM = N + 1. In order
to ensure reasonable estimates, it is required that each regime contains at least a
minimum number mrl of years, therefore τj ≥ τj−1 + mrl for any regime j . We
let Rj = {τj−1, τj−1 + 1, . . . , τj − 1}, j = 1, . . . ,M , so that if year n belongs to
set Rj then observation at time (n− 1)s + k is in regime j , where k = 1, . . . , s. For
the observation in season k of year n the model is:

X(n−1)s+k = aj + bj [(n − 1)s + k] + μ
j
k + Y(n−1)s+k, n ∈ Rj , 1 ≤ k ≤ s, 1 ≤ j ≤ M

(1)

where process {Y(n−1)s+k} is a PAR given by:

Y(n−1)s+k =
p∑

i=1

φ
j
i (k)Y(n−1)s+k−i + ε(n−1)s+k, n ∈ Rj , 1 ≤ k ≤ s, 1 ≤ j ≤ M. (2)

Model (1) is a pure structural change model where the trend parameters aj

and bj depend only on the regime, whereas means μ
j
k are allowed to change

also with seasons. The parameters φ
j
i (k), i = 1, . . . , p, represent the PAR

coefficients during season k of the j -th regime, and some of them may be allowed
to be constrained to zero, in order to get more parsimonious subset models. The
innovations process {εt } in Eq. (2) corresponds to a periodic white noise, with
E(ε(n−1)s+k) = 0 and V ar(ε(n−1)s+k) = σ 2

j (k) > 0, n ∈ Rj .
Our model is characterized by both structural parameters: the changepoints

number m, their locations τ1, τ2, . . . , τm and PAR lags indicator, which specifies
presence or absence of PAR parameters; and by regression parameters: the trend
intercepts aj , the slopes bj , the seasonal means μ

j

k , the AR parameters φ
j

i (k)

and the innovation variances σ 2
j (k). These regression parameters, assuming that

structural parameters are given, can be estimated by Ordinary Least Squares.
Identification of this complex model requires only selection of structural param-

eters. We adopt a procedure based on a GA [4] for optimization. The GA is a
nature-inspiredmetaheuristic algorithm, for which a population of solutions evolves
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through iterations by use of so-called genetic operators, until a stopping rule is
reached. Out implementation optimizes structural parameters simultaneously by
considering an objective function based on NAIC criterion, introduced in [5] for
threshold models selection, given by:

g = [
M∑

j=1

s∑

k=1

nj,k log(σ̂ 2
j (k)) + 2

M∑

j=1

s∑

k=1

Pj,k]/(Ns),

where σ̂ 2
j (k) is the model residual variance of series in regime j and season k,

nj,k is related sample size, Pj,k is related number of parameters. Other options
of penalization could be adopted basing on identification criteria literature. The
GA objective function to be maximized, named fitness, is a scaled exponential
transformation of g given by f = exp{−g/β}, where β is a positive scaling
constant.

2 Application and Conclusions

The industrial production index is an important macroeconomic variable since
it can reflect business cycle behaviour and changing directions of an underlying
trend. Forecasts of this variable are used by many decision makers [1]. Given that
decisions sometimes concern time intervals shorter than 1 year, forecasts for the
monthly observed industrial production index can be useful. The time series of
industrial production index in Italy (Ateco category C) for months 1990.1–2016.12
is displayed in Fig. 1. From this figure it can be observed that the time series shows
trend and a non-stable seasonal patterns.

The GA procedure, when applied to the original data, segmented the series in two
regimes with one structural change at τ1 = 2009 and an opposite trend behaviour
(see Fig. 1). To examine the effectiveness of subset piecewise PAR models, we
compared their performance, in terms of fitness, with that of some other models
used for seasonal data. Four types of models were considered in this study and
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Fig. 1 Italy Industrial Production Index series with estimated trend and changepoint at end 2008
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Table 1 Performance of
different models

Model Fitness Prediction MSE

Subset piecewise PAR(3) 0.799 20.22

Complete piecewise PAR(3) 0.789 26.64

Piecewise AR(3) 0.769 20.37

SARIMA(2, 0, 1) × (0, 1, 0)12 0.738 27.11

the corresponding fitness values are reported in the first column of Table 1. The
first two models are a complete and subset piecewise PAR, as described above.
The third model is a non-periodic AR(3) applied on data after removing the
break, the trend and the seasonal means. The fourth model is a more conventional
SARIMA(2, 0, 1) × (0, 1, 0)12 but estimated separately for each regime. The best
model, in terms of fitness, is the subset piecewise PAR, while the complete model
has a slightly smaller fitness. The non-periodic piecewise AR reaches an even
smaller fitness, while the SARIMA model is markedly less fit.

As far as diagnostic checking is concerned, the Box-Pierce statistics with 12 or
18 lags computed on residuals were not significant at level 0.01 for the piecewise
PAR(3) models, and largely significant for the other two models.

We computed also out-of-sample forecasts for the first 9 months of 2017. The
mean square prediction errors for the four models are reported in the second column
of Table 1. We may conclude that for the industrial production index dataset the
proposed procedure outperforms the other models both in terms of fitting and
forecasting.
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