
484 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

Escaping Local Optima Using Crossover
With Emergent Diversity

Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto,
Dirk Sudholt, and Andrew M. Sutton

Abstract—Population diversity is essential for avoiding prema-
ture convergence in genetic algorithms (GAs) and for the effective
use of crossover. Yet the dynamics of how diversity emerges in
populations are not well understood. We use rigorous runtime
analysis to gain insight into population dynamics and GA per-
formance for the (µ + 1) GA and the Jump test function. We
show that the interplay of crossover followed by mutation may
serve as a catalyst leading to a sudden burst of diversity. This
leads to significant improvements of the expected optimization
time compared to mutation-only algorithms like the (1 + 1) evo-
lutionary algorithm. Moreover, increasing the mutation rate by
an arbitrarily small constant factor can facilitate the generation
of diversity, leading to even larger speedups. Experiments were
conducted to complement our theoretical findings and further
highlight the benefits of crossover on the function class.

Index Terms—Diversity, genetic algorithms (GAs), recombina-
tion, runtime analysis, theory.

I. INTRODUCTION

GENETIC algorithms (GAs) are powerful general-purpose
optimizers that perform surprisingly well in many appli-

cations, including those where the problem is not well under-
stood to apply a tailored algorithm. Their wide-spread success
is based on a number of factors: using populations to diversify
search, using mutation to generate novel solutions, and using
crossover to combine features of good solutions.

Prügel-Bennett [29] given several reasons for the success
of populations and crossover. Crossover can combine build-
ing blocks of good solutions and help to focus the search on

Manuscript received August 26, 2016; revised January 16, 2017 and May
4, 2017; accepted June 20, 2017. Date of publication August 29, 2017;
date of current version May 25, 2018. This work was supported in part by
the European Union Seventh Framework Programme (FP7/2007–2013) under
Grant 618091 (SAGE), in part by the EPSRC under Grant EP/M004252/1,
and in part by the COST Action through the European Cooperation in
Science and Technology under Grant CA15140 [Improving Applicability of
Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO)].
(Corresponding author: Per Kristian Lehre.)

D.-C. Dang is with the ASAP Research Group, School of Computer
Science, University of Nottingham, Nottingham NG81BB, U.K.

T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton are with the Chair
of Algorithm Engineering, Hasso Plattner Institute, 14482 Potsdam, Germany.

P. K. Lehre is with the School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: p.k.lehre@cs.bham.ac.uk).

P. S. Oliveto and D. Sudholt are with the Department of Computer Science,
University of Sheffield, Sheffield S1 4DP, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2017.2724201

bits where parents disagree [29]. For both tasks, the popula-
tion needs to be diverse enough; without sufficient diversity
in the population, crossover is not effective. A common prob-
lem in the application of GAs is the loss of diversity when the
population converges to copies of the same search point, often
called premature convergence. Understanding how populations
gain and lose diversity during the course of the optimiza-
tion is vital for understanding the working principles of GAs
and for tuning the design of GAs to get the best possible
performance.

Rigorous runtime analysis has emerged as a powerful the-
ory that has provided many insights into the performance of
GAs [1], [5], [17], [24], [26], [27], including the benefit of
crossover [9], [18], [20], [21], [25], [31]. It has guided algo-
rithm design, including the discovery of new variants of GAs
such as the (1+ (λ, λ)) GA [8], which has shown very good
performance across a range of hard problems [14].

However, understanding population diversity and crossover
has proved elusive. The first example function where crossover
was proven to be beneficial is called Jumpk. In this prob-
lem, GAs have to overcome a fitness valley such that all
local optima have Hamming distance k to the global optimum.
Jansen and Wegener [18] showed that, while mutation-only
algorithms such as the (1 + 1) EA require expected time
�(nk), a simple (μ + 1) GA with crossover only needs time
O(μn2k3 + 4k/pc). This time is O(4k/pc) for large k, and
hence significantly faster than mutation-only GAs. However,
their analysis requires an unrealistically small crossover prob-
ability pc ≤ 1/(ckn) for a large constant c > 0.

Kötzing et al. [20] later refined these results toward a
crossover probability pc ≤ k/n, which is still unrealistically
small. Both approaches focus on creating diversity through
a sequence of lucky mutations, relying on crossover to cre-
ate the optimum, once sufficient diversity has been created.
Their arguments break down if crossover is applied frequently.
Hence, these analyses do not reflect the typical behavior in GA
populations with constant crossover probabilities pc = �(1)

as used in practice [22].
Lehre and Yao [21] analyzed the runtime of the (μ+1) GA

with deterministic crowding for arbitrary crossover rates pc >

0, showing exponential runtime gaps between the case pc = 0
and pc > 0. The gain in performance in that analysis stems
from the ability of a diverse population to optimize multiple,
separated paths in parallel using a diversity-preservation mech-
anism. Similar results have been also shown for instances
of the vertex cover problem by generating diversity, either

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

mailto:p.k.lehre@cs.bham.ac.uk
http://ieeexplore.ieee.org
http://creativecommons.org/licenses/by/3.0/

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 485

TABLE I
SOME EXAMPLES OF RUNTIME BOUNDS WE OBTAIN FOR THE (μ+ 1) GA ON Jumpk

o
o

o

o
o
o o

o
o

through deterministic crowding [25] or through island mod-
els [23]. Recently in [7], we have shown that a small change
to the tie-breaking rule of the (μ+ 1) GA to introduce many
common principles of preserving diversity can lead to a size-
able advantage on the expected optimization time of Jumpk
function. The results hold for realistic crossover probabilities
pc = 1−�(1). In this paper, we will consider a very different
effect.

We provide a novel approach loosely inspired from popu-
lation genetics: we show that diversity can also be created by
crossover, followed by mutation. Note that the perspective of
crossover creating diversity is common in population genet-
ics [19], [33]. A frequent assumption is that crossover mixes
all alleles in a population, leading to a situation called linkage
equilibrium, where the state of a population is described by
the frequency of alleles [3].

For the maximum crossover probability pc = 1, we show
that on Jumpk diversity emerges naturally in a population: the
interplay of crossover, followed by mutation, can serve as a
catalyst for creating a diverse range of search points out of few
different individuals. This naturally emerging diversity allows
proving a speedup of order n/log n for k ≥ 3 and standard
mutation rate pm = 1/n compared to mutation-only algorithms
such as the (1+ 1) EA. Increasing the mutation rate to pm =
(1 + δ)/n for an arbitrarily small constant δ > 0, leads to a
speedup of order n. The detail can be seen in Table I.

Both operators are proven to be vital: mutation requires
�(nk) expected iterations to hit the optimum from a local opti-
mum. Also using crossover on its own does not help much.
As shown in [20, Th. 8], using only crossover with pc = �(1)

but no mutation following crossover, diversity reduces quickly,
leading to inefficient running times for small population sizes
(μ = O(log n)).

All our analyses are based on observing the dynamic behav-
ior of the size of the largest species, referring to a collection of
identical genotypes as species. A population contains no diver-
sity when only one species is present. However, mutation can
create further species, and then the combination of crossover
and mutation is able to rapidly create further species in a
highly stochastic process. This diversity can then be exploited
to find the global optimum on Jumpk efficiently. A higher
mutation rate facilitates the generation of new species and
leads to better performance, with respect to rigorous upper
runtime bounds and empirical performance.

Using Jumpk as a case study, our analyses shed light on
how diversity emerges in populations and how to facilitate the

emergence of diversity by tuning the mutation rate. The gen-
eral proof strategy we take is as follows. We characterize the
size of the largest species as a stochastic process and calculate
the transition probabilities of this process taking into account
both mutation and crossover. We prove that the size of the
largest species is described either by an almost-fair random
walk (for standard mutation rates), or by an unfair random
walk that is biased toward increased diversity (for higher muta-
tion rates). This ultimately allows us to bound the expected
time until sufficient diversity is present in the population to
perform a crossover that successfully generates the global
optimum. Our main results are stated in Theorems 2 and 3,
which yield our runtime bounds under the assumed condi-
tions. Critical lemmas are Lemma 1, which estimates the
time until the entire population has reached the plateau using
the method of fitness-based partitions, and Lemma 3, which
bounds the transition probabilities for the random walk dynam-
ics of the size of the largest species. The proof of Lemma 3
is carried out by a careful analysis of the different events
that can occur while the entire population resides on the
plateau.

This paper is based upon our preliminary study published
in [6]. Here we extend the analysis to higher mutation rates,
leading to the surprising conclusion that increasing the muta-
tion rates leads to smaller runtime bounds, compared to the
standard mutation rate 1/n. Furthermore, the analysis of stan-
dard mutation rates in [6] was restricted to very short jumps,
k = O(1). Here we generalize the results to a much larger class
of Jumpk functions, only requiring k = o(n). Experiments
were conducted to complement the theoretical results and
further highlight the benefits of combining crossover with
mutation. In fact, the experimental results showed that the
setting of high mutation rate can be as competitive as using
specific diversity mechanisms from [7].

II. PRELIMINARIES

The Jumpk : {0, 1}n → N class of pseudo-Boolean fit-
ness functions was originally introduced by Jansen and
Wegener [18]. The function value increases with the number
of 1 bits in the bit string until a plateau of local optima is
reached, consisting of all points with n − k 1 bits. However,
its only global optimum is the all-ones string 1n. Between the
plateau and the global optimum, there is a valley of bad fit-
ness, which we call the gap of length k, and the algorithm has
to jump over this gap to optimize the function.

486 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

Fig. 1. Illustration of the Jumpk fitness function for the case n = 10 and
k = 3, including the levels A1, . . . , A10 defined in the proof of Lemma 1.

The function is formally defined as

Jumpk(x) =
{

k + |x|1 if |x|1 = n or |x|1 ≤ n− k,

n− |x|1 otherwise,

where |x|1 =∑n
i=1 xi is the number of 1 bits in x. Fig. 1 illus-

trates the function, with the number of 1 bits on the horizontal
axis, and the function value on the vertical axis.

We will analyze the performance of a standard steady-state
(μ+ 1) GA [18] using uniform crossover (i.e., each bit of the
offspring is chosen uniformly at random from one of the par-
ents) and standard bit mutation (i.e., each bit is flipped with
probability pm). The algorithm uses a population of μ indi-
viduals. In each generation, a new individual is created. With
probability pc, it is created by selecting two parents from the
population uniformly at random, crossing them over, and then
applying mutation to the resulting offspring. With probabil-
ity 1 − pc instead, one single individual is selected and only
mutation is applied. The generation is concluded by remov-
ing the worst individual from the population and breaking ties
uniformly at random. Algorithm 1 shows the pseudocode for
the (μ+ 1) GA. Note that P is a multiset.

The most interesting behavior of the population presented
in this paper occurs after the entire population is stuck at
local optima, the so-called plateau. That is because under the
right condition the population diversity will emerge during
this stage. Then after sufficient progress is made in diversity,
crossover and mutation can work together on the plateau to
create an optimal solution in o

(
nk
)

time. This is captured by
Lemma 10, which will be presented later in this paper.

For the sake of completeness, in the next section, we provide
the time bounds for the population to reach the plateau for the
general setting of pc = �(1). This covers the case of pc = 1
which we will actually focus on in the main results.

III. TIME TO PLATEAU

In the setting of pc = �(1), we direct the attention to the
steps that crossover occurs. We make use of the following
general result, which provides an upper bound on the expected
time for the (μ+1) GA to reach some region Am of the search
space. Here we consider a fitness-based partition (see [17] for
a formal definition) into levels (Ai)i∈[m] (thus, Am is the last
level) and define A≥j := ∪m

i=jAi.

Algorithm 1: (μ+ 1) GA

1 P← μ individuals, uniformly at random from {0, 1}n;
2 while 1n /∈ P do
3 Choose p ∈ [0, 1] uniformly at random;
4 if p ≤ pc then
5 Choose x, y ∈ P uniformly at random;
6 z← mutate(crossover(x, y));
7 else
8 Choose x ∈ P uniformly at random;
9 z← mutate(x, pm);

10 P← P ∪ {z};
11 Remove one element from P with lowest fitness,

breaking ties uniformly at random;

Theorem 1: Let (Ai)i∈[m] be a fitness-based partition of
the search space into m ∈ N levels. If there exist parame-
ters ε, s1, . . . , sm−1 ∈ (0, 1] such that for all j ∈ [m − 1]:
1) minx∈A≥j,y∈A≥j+1 Pr

(
mutate(crossover(x, y)) ∈ A≥j+1

) ≥ ε

and 2) minx,y∈Aj Pr
(
mutate(crossover(x, y)) ∈ A≥j+1

) ≥ sj,
then the expected number of iterations until the entire pop-
ulation of the (μ + 1) GA with pc = �(1) is in Am is
O((μm/ε) log(μ)+∑m−1

j=1 1/sj).
Proof: The proof follows [5], but we avoid a detailed drift

analysis because the algorithm is elitist, i.e., the maximum
fitness in the population does not decrease. Let the current
level be the smallest i ∈ [m] such that the population contains
less than μ/2 individuals in A≥i+1. By definition, there are at
least μ/2 individuals in A≥j, where j is the current level.

Since the algorithm is elitist, the number of individuals in
A≥j is nondecreasing for any j ∈ [m]. For an upper bound, we
ignore any improvements where mutation only is used (i.e.,
lines 8 and 9 in Algorithm 1).

Assume that there are i individuals in A≥j+1, hence 0 ≤
i < μ/2. If i = 0, then an individual in A≥j+1 can be cre-
ated by selecting two individuals from Aj, crossing them over,
and mutating them such that the offspring is in A≥j+1 and an
individual not in A≥j+1 is removed. The probability of this
event is at least pcsj/4, where the 1/4 is the probability of
selecting two individuals from Aj, which contains at least μ/2
individuals.

If 0 < i < μ/2, then the number of individuals in A≥j+1
can be increased by selecting an individual in A≥j and an
individual in A≥j+1, crossing them over, and mutating them
such that the offspring is in A≥j+1 and one of the μ− i > μ/2
individuals not in A≥j+1 is removed. This event occurs with
probability at least (pc/2)(i/μ)ε.

The expected time to increase the number of individuals
in A≥j+1 from 0 to μ/2, i.e., to increase the current level
by at least one, is 4/(pcsj) + 2μ/(pcε)

∑μ/2
i=1 1/i. Hence, the

expected time until at least half of the population is in Am is
O((μm/ε) log(μ)+∑m−1

j=1 1/sj).
We now consider the time to remove individuals from the

lowest fitness level in the population, assuming that at least
half of the population has reached the last level Am. Assume
that there are 0 < i′ < μ/2 individuals in the lowest level

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 487

j < m. The number of individuals in level j can be reduced by
crossing over an individual in level j and one of the at least
μ/2 individuals in level m, and mutating the offspring so that
it belongs to A≥j+1. By Condition 1, this event occurs with
probability at least pc(ε/2)(i′/μ). Hence, the expected time to
remove all individuals from the lowest level j is no more than
(2/pcε)μ

∑μ/2
i′=1 1/i′ = O((μ/ε) log μ). The expected time

until all individuals in fitness levels lower than m have been
removed is therefore O(μ(m/ε) log μ).

We apply Theorem 1 to bound the time until the entire
population reaches the plateau.

Lemma 1: Consider the (μ+1) GA optimizing Jumpk with
pc = �(1) and pm = �(1/n). Then the expected time until
either the optimum has been found or the entire population is
on the plateau is O(n

√
k(μ log μ+ log n)).

Proof: We divide the search space into m := n fitness levels
with the partition

Aj :=

⎧⎪⎨
⎪⎩
{x ∈ {0, 1}n | |x|1 = n− j} if 1 ≤ j < k,

{x ∈ {0, 1}n | |x|1 = j− k} if k ≤ j < n,

{x ∈ {0, 1}n | |x|1 ∈ {n− k, n}} if j = n.

We call any search point x ∈ {0, 1}n with n−k < |x|1 < n a
gap-point. Gap-points have worse fitness than any other search
point, hence once there are no gap-points left in the population,
the algorithm will not accept any further gap-points. We can
therefore divide the run into two phases, with phase 1 lasting
as long as the population contains at least one gap-individual,
followed by phase 2, which lasts until the optimum or a plateau
individual has been found.

We bound the duration of the two phases by applying
Theorem 1 twice, once for each of the two phases.

We start by estimating the expected duration of phase 2
using Theorem 1 with respect to levels Ak to level An. We
claim that the probability of producing a gap-point by crossing
over two individuals x ∈ A≥j and y ∈ A≥j+1 with k ≤ j < n+1
satisfies

Pr(n− k < |crossover(x, y)|1 < n) <
1

2
− 1

4
√

k
. (1)

To see why this claim holds, we first argue that the
probability of producing a gap-point is highest when both
parents, x and y, have n − k 1 bits. More formally, obtain
x′ by flipping an arbitrary 0-bit in x, and y′ by flipping
an arbitrary 0-bit in y. Then, we have the stochastic domi-
nance relationships |crossover(x, y)|1
 |crossover(x′, y)|1 and
|crossover(x, y)|1
 |crossover(x, y′)|1. By repeating this argu-
ment, we obtain |crossover(x, y)|1
 |crossover(x′′, y′′)|1 for
two bit strings x′′ and y′′ with |x′′|1 = |y′′|1 = n − k. The
probability of obtaining a search point with exactly k 0 bits
when crossing over two bit strings with k 0 bits each is min-
imized when all positions of the 0 bits in the two bit strings
differ. Hence, for bit strings x′′ and y′′, we have by Stirling’s
approximation the lower bound

Pr
(|crossover

(
x′′, y′′

)|1 = n− k
)

>

(
2k

k

)
· 2−2k

≥ 22k

2
√

k
· 2−2k = 1

2
√

k
.

Uniform crossover of the bit strings x′′ and y′′ creates two
bit strings u′′ and v′′, and returns either u′′ or v′′ with equal
probability. We then have

2(n− k) = ∣∣x′′∣∣1 + ∣∣y′′∣∣1 = ∣∣u′′∣∣1 + ∣∣v′′∣∣1. (2)

The event |u′′|1 = |v′′|1 = n − k therefore equals the event
|crossover(x′′, y′′)|1 = n − k. Otherwise, in the event that
|u′′|1 �= |v′′|1, we assume without loss of generality that
|u′′|1 > |v′′|1. We must then have |v′′|1 < n − k < |u′′|1
because

2
∣∣v′′∣∣1 <

∣∣u′′∣∣1 + ∣∣v′′∣∣1 = 2(n− k) = ∣∣u′′∣∣1 + ∣∣v′′∣∣1 < 2
∣∣u′′∣∣1.

The claimed inequality (1) now follows, because:

Pr
(
n > |crossover

(
x′′, y′′

)|1 > n− k
)

< Pr
(∣∣crossover

(
x′′, y′′

)∣∣
1 > n− k

)
= 1

2
Pr
(∣∣u′′∣∣1 �= ∣∣v′′∣∣1)

= 1

2

(
1− Pr

(∣∣u′′∣∣1 = ∣∣v′′∣∣1))
= 1

2

(
1− Pr

(∣∣crossover
(
x′′, y′′

)∣∣
1 = n− k

))
≤ 1

2
− 1

4
√

k
.

We now show that Condition 1 of Theorem 1 holds for the
parameter ε := (1 − pm)n/(4

√
k) = �(1/

√
k). Assume that

x ∈ A≥k+j and y ∈ A≥k+j+1 for j ≥ 0. By the same arguments
as above

2j+ 1 ≤ |x|1 + |y|1 = |u|1 + |v|1 ≤ 2|u|1,
where we assume without loss of generality that |u|1 ≥ |v|1.
A crossover between x and y therefore produces two offspring
u and v where |u|1 ≥ j+ 1, hence

Pr(j+ 1 ≤ |crossover(x, y)|1) ≥ 1/2. (3)

Combining (1) and (3) now yields

Pr
(
crossover(x, y) ∈ A≥k+j+1

)
= Pr(j+ 1 ≤ |crossover(x, y)|1)
− Pr(n− k < |crossover(x, y)|1 < n)

≥ 1

4
√

k
.

Finally, with probability (1−pm)n, none of the bits are flipped
during mutation, which implies

Pr
(
mutate(crossover(x, y)) ∈ A≥k+j+1

) ≥ ε.

We now show that Condition 2 of Theorem 1 holds. Assume
that x, y ∈ Aj+k for j ≥ 0. Then, following the same arguments
as above:

Pr
(
crossover(x, y) ∈ A≥k+j

) ≥ 1

4
√

k
.

The probability that the mutation operator flips at least
one of the n − j 0 bits, and no other bits, is at least
(n− j)pm(1− pm)n−1. Hence, we can use the parameter sj :=
(n− j)pm(1− pm)n−1/(4

√
k) = �((n− j)/(n

√
k)).

488 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

Fig. 2. Empirical investigation of diversity on the plateau.

We have shown that both Conditions 1 and 2 hold dur-
ing phase 2, which by Theorem 1 implies that the expected
duration of phase 2 is O(n

√
k(μ log μ+ log n)).

To estimate the expected duration of phase 1, we again apply
Theorem 1, but this time with respect to level A1 to level Ak.
We can reuse the bounds from phase 2, except that we count
the number of 0 bits rather than the number of 1 bits, and
we do not need to account for the probability of producing
gap individuals. Hence, we obtain the same upper bound for
the expectation duration of phases 1 and 2, and the theorem
follows.

In the following sections, we first show that once the plateau
of Jumpk has been reached by the (μ+1) GA with pc = 1, the
population diversity can emerge naturally from the interaction
between crossover and mutation. Based on such a result on
the population dynamics, bounds on the expected optimization
time of the function class are then deduced for two different
settings of the algorithm: standard and high mutation rates.

IV. POPULATION DYNAMICS

Assume that the algorithm has reached a population where
all individuals are identical and on the plateau, i.e., the less
diverse setting. We refer to identical individuals as a species,
hence, in this case, there is only one species. Eventually, a
mutation will create a different search point on the plateau,
leading to the creation of a new species. Both species may
shrink or grow in size, and there is a chance that the new
species will disappear and that we return to one species only.

However, the existence of two species also serves as a cata-
lyst for creating further species in the following sense. Say two
parents 0001111111 and 0010111111 are recombined, then
crossover has a good chance of creating an individual with
n− k+ 1 1s, e.g., 0011111111. Then mutation has a constant
probability of flipping any of the n− k− 1 unrelated 1 bits to
0, leading to a new species, e. g., 0011111011. This may lead
to a sudden burst of diversity in the population.

To further investigate these dynamics, we set up a prelimi-
nary experiment for n = 500 and k = 3, with population size
μ = 100 and mutation parameter χ from [0.1, 0.2, . . . 2.0].
Since we are only interested in the dynamics on the plateau,
the optimum is always rejected and the population is initialized
with copies of a single plateau solution. Hundred independent

runs are repeated for each setting, and as an indicator of diver-
sity, the size of the largest species is recorded for the first 105

iterations of each run. Fig. 2 illustrates the obtained result.
Clearly, we see that new species can emerge from time to
time and more importantly if the mutation rate χ/n is suffi-
ciently large then a diverse population can be maintained (size
of the largest species remains close to 1) after some time.

The above simulation indicates that the mutation rate and
the size of the largest species are important factors for describ-
ing the population diversity. With a large enough mutation
rate, the size of the largest species can perform a random
walk biased toward a reduction of its value. Once its size has
decreased significantly from its maximum μ, there is a good
chance for recombining two parents from different species.
This helps in finding the global optimum, as crossover can
increase the number of 1s in the offspring, compared to its
parents, such that fewer bits need to be flipped by mutation to
reach the optimum. This is formalized in the following lemma.

Lemma 2: The probability that the global optimum is con-
structed by a uniform crossover of two parents on the plateau
having Hamming distance 2d, followed by mutation, is:

2d∑
i=0

(
2d

i

)
1

22dnk+d−i

(
1− 1

n

)n−k−d+i

(4)

≥ 1

22dnk−d

(
1− 1

n

)n−k+d

. (5)

Proof: For a pair of search points on the plateau with
Hamming distance 2d, both parents have d 1s among the 2d
bits that differ between parents, and n− k− d 1s outside this
area. Assume that crossover sets i out of these 2d bits to 1,
which happens with probability

(2d
i

) · 2−2d. Then mutation
needs to flip the remaining k + d − i 0s to 1. The probability
that such a pair creates the optimum is hence

2d∑
i=0

(
2d

i

)
1

22dnk+d−i

(
1− 1

n

)n−k−d+i

.

The second bound is obtained by ignoring summands i < 2d
for the inner sum.

Note that even a Hamming distance of 2, i.e., d = 1,
leads to a probability of �(n−k+1), provided that such parents
are selected for reproduction. The probability is by a factor
of n larger than the probability �(n−k) of mutation without
crossover reaching the optimum from the plateau.

We will show that this effect leads to a speedup of nearly n
for the (μ+ 1) GA, compared to the expected time of �(nk)

for the (1+1) EA [10] and other EAs only using mutation.
The idea behind the analysis is to investigate the random

walk underlying the size of the largest species. We bound the
expected time for this size to decrease to μ/2 and then argue
that the (μ+ 1) GA is likely to spend a good amount of time
with a population of good diversity, where the probability of
creating the optimum in every generation is �(n−k+1) due to
the chance of recombining parents of Hamming distance at
least 2.

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 489

In the following, we refer to Y(t) as the size of the largest
species in the population at time t. Define

p+(y) := Pr(Y(t + 1)− Y(t) = 1 | Y(t) = y),

p−(y) := Pr(Y(t + 1)− Y(t) = −1 | Y(t) = y),

that is p+(y) is the probability that the size of the largest
species increases from y to y+ 1, and p−(y) is the probability
that it decreases from y to y− 1.

The following lemma gives bounds on these transition prob-
abilities, unless two parents of Hamming distance larger than 2
are selected for recombination (this case will be treated later
in Lemma 4). We formulate the lemma for arbitrary muta-
tion rates χ/n = �(1/n) and restrict our attention to sizes
Y(t) ≥ μ/2 as we are only interested in the expected time for
the size to decrease to μ/2.

Lemma 3: For every population on the plateau of Jumpk
for k = o(n), the following holds. Either the (μ + 1) GA
with mutation rate χ/n = �(1/n) performs a crossover of
two parents whose Hamming distance is larger than 2, or the
size Y(t) of the largest species changes according to transition
probabilities p−(μ) = �(k/n) and, for μ/2 ≤ y < μ

p+(y) ≤ y(μ− y)(μ+ y)

2μ2(μ+ 1)

(
1− χ

n

)n + O

(
(μ− y)2

μ2n

)

p−(y) ≥ y(μ− y)(μ+ χy)

2μ2(μ+ 1)

(
1− χ

n

)n
.

Proof: We call an individual belonging to the current largest
species a y individual and all the others non-y individuals. In
each generation, there is either no change, or one individual is
added to the population and one individual chosen uniformly
at random is removed from the population. In order to increase
the number of y individuals, it is necessary that a y individual
is added to the population and a non-y individual is removed
from the population. Analogously, in order to decrease the
number of y individuals, it is necessary that a non-y individual
is added to the population and a y individual is removed from
the population.

Given that Y(t) = y, let p(y) be the probability that a y
individual is created at time t+1, and q(y) the probability that a
non-y individual is created. Since all considered individuals are
on the plateau, the individual for deletion is selected uniformly
at random. Multiplying by the survival probabilities we have

p−(y) = q(y)

(
y

μ+ 1

)
and (6)

p+(y) := p(y)

(
1− y+ 1

μ+ 1

)
= p(y)

(
μ− y

μ+ 1

)
. (7)

We now estimate an upper bound on p(y). We may assume
that the Hamming distance between parents is at most 2 as
otherwise there is nothing to prove. A y individual can be
created in the following three ways.

1) Two y individuals are selected. Crossing over two y indi-
viduals produces another y individual, which survives
mutation if no bits are flipped, i.e., with probability
(1− χ/n)n.

2) One y individual and one non-y individual are selected.
The crossover operator produces a y individual with

probability 1/4 (as the individuals have Hamming dis-
tance 2 by assumption), and mutation does not flip any
bits with probability (1− χ/n)n. If the crossover oper-
ator does not produce a y individual, then, to produce
a y individual, at least one specific bit-position must
be mutated, which occurs with probability O(1/n). The
overall probability is hence (1/4)(1− χ/n)n + O(1/n).

3) Two non-y individuals are selected. These two individu-
als are either identical or have Hamming distance 2 (i.e.,
by assumption). In the first case, they both have one of
the k 0-bit positions of a y individual set to 1. In the
second case, they either both have one of the k 0-bit
positions of a y individual set to 1, or they both have
one of the n− k 1-bit positions set to 0. In both cases,
crossover cannot change the value of such a bit. Thus,
at least one specific bit-position must be flipped, which
occurs with probability O(1/n).

Taking into account the probabilities of the three selection
events above, the probability of producing a y individual is

p(y) =
(

y

μ

)2(
1− χ

n

)n + 2

(
y

μ

)(
1− y

μ

)

×
[(

1

4

)(
1− χ

n

)n + O

(
1

n

)]
+ (μ− y)2

μ2
O

(
1

n

)

=
(

1− χ

n

)n
(

y

μ

)(
y

μ
+ μ− y

2μ

)

+ O

(
y(μ− y)

μ2
· 1

n

)
+ O

(
(μ− y)2

μ2
· 1

n

)

= y(μ+ y)

2μ2

(
1− χ

n

)n + O

(
μ− y

μ
· 1

n

)
.

We then estimate a lower bound on q(y). In the case where
y = μ, a non-y individual can be added to the population if:

1) two y individuals are selected and the mutation operator
flips one of the k 0 bits and one of the n−k 1 bits. This
event occurs with probability

q(μ) = k(n− k)
(χ

n

)2(
1− χ

n

)n−2
(8)

= �

(
k

n
− k2

n2

)
= �

(
k

n

)
, (9)

where we used that k = o(n) in the last equality.
In the other case, where y < μ, a non-y individual can be

added to the population in the following two ways.
1) A y individual and a non-y individual are selected.

Crossover produces a copy of the non-y individual with
probability 1/4, which is unchanged by mutation with
probability (1 − χ/n)n. Second, with probability 1/4,
crossover produces an individual with k − 1 0 bits.
Mutation then creates a non-y individual by flipping a
single of the n − k 1-bit positions that do not lead to
recreating y. Third, again with probability 1/4, crossover
produces an individual with k + 1 0 bits and mutation
then creates a non-y individual by flipping a single of
k 1 bits that do not lead back to y. The above three
events, conditional on selecting a y individual and a

490 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

non-y individual, lead to a total probability of

1

4
·
(

1− χ

n

)n + 1

4
· (n− k) · χ

n

(
1− χ

n

)n−1

+ 1

4
· k · χ

n

(
1− χ

n

)n−1

≥ χ + 1

4
·
(

1− χ

n

)n
.

2) Two non-y individuals are selected. In the worst case,
the selected individuals are different, hence, crossover
produces an individual on the plateau with probabil-
ity at least 1/2, which mutation does not destroy with
probability (1− χ/n)n.

Assuming that μ/2 ≤ y < μ and n is sufficiently large, the
probability of adding a non-y individual is

q(y) ≥ 2

(
y

μ

)(
1− y

μ

)
· χ + 1

4

(
1− χ

n

)n

+ 1

2

(
1− y

μ

)2(
1− χ

n

)n

= (μ− y)(μ+ χy)

2μ2

(
1− χ

n

)n
.

Plugging p(y) and q(y) into (6) and (7), we get

p−(y) ≥
[
(μ− y)(μ+ χy)

2μ2

(
1− χ

n

)n
](

y

μ+ 1

)

= (μ− y)(μ+ χy)y

2μ2(μ+ 1)

(
1− χ

n

)n
.

And we also have

p+(y) =
[

y(μ+ y)

2μ2

(
1− χ

n

)n + O

(
μ− y

μ
· 1

n

)](
μ− y

μ+ 1

)

=
(
μ2 − y2

)
y

2μ2(μ+ 1)

(
1− χ

n

)n + O

(
(μ− y)2

μ2n

)
.

Steps where crossover recombines two parents with larger
Hamming distance were excluded from Lemma 3 as they
require different arguments. The following lemma shows that
conditional transition probabilities in this case are favorable in
that the size of the largest species is more likely to decrease
than to increase.

Lemma 4: Assume that y ≥ μ/2 and that the (μ + 1) GA
on Jumpk with k = o(n) and mutation rate χ/n = �(1/n)

selects two individuals on the plateau with Hamming distance
larger than 2, then for conditional transition probabilities p∗−(y)
and p∗+(y) for decreasing or increasing the size of the largest
species, p∗−(y) ≥ 2p∗+(y).

Proof: Assume that the population contains two individuals
x and z with Hamming distance 2� ≤ 2k, where � ≥ 2. Without
loss of generality, let us assume that they differ in the first 2�

bit positions.
First assume that the individual y representing the largest

species has � 0 bits in the first 2� positions. Then a y individual
may be produced by creating the � 0 bits and � 1 bits in
the exact positions by crossover and no followed mutation.
Alternatively, at least 1 exact bit has to be flipped by mutation.

Then the probability of producing a y individual from x and z
and replacing a non-y individual with y is less than

p∗+(y) ≤
[(

1

2

)2�(
1− χ

n

)n + O

(
1

n

)](
μ− y

μ

)

≤
(

1

2

)2�+1(
1− χ

n

)n + O

(
1

n

)
.

On the other hand, the probability of producing an individual
on the plateau different from y and replacing a y individual is
at least

p∗−(y) ≥
((

2�

�

)
− 1

)(
1

2

)2�(
1− χ

n

)n
(

y

μ

)

≥ 3

(
1

2

)2�+1(
1− χ

n

)n ≥ 2p∗+(y)

for sufficiently large n.
In the other case, assume that the individual y does not

have � 0 bits in the first 2� bit-positions. Then the mutation
operator must flip at least one specific bit among the last n−2�

positions to produce y, which occurs with probability O(1/n).
The probability to produce a non-y individual on the plateau is
lower bounded by the probability of the event that recombining
x and z produces a bitstring with exactly k 0 bits in the first
2� bit-positions, none of the bits are mutated, and a majority
individual is replaced, that is

p∗−(y) ≥
(

2k

k

)
2−2k

(
1− χ

n

)n
(

y

μ

)

≥ 22k−1

√
k

2−2k
(

1− χ

n

)n
(

y

μ

)
= �(1/

√
k),

where the inequality follows by Stirling’s inequality. Taking
into account the assumption k = o(n), it holds for sufficiently
large n that p∗−(y) ≥ 2p∗+(y).

V. STANDARD MUTATION RATE

We first analyze the (μ+1) GA with the standard mutation
rate of 1/n, i.e., χ = 1. We show that the diversity emerging
in the (μ + 1) GA leads to a speedup of nearly n for the
(μ+ 1) GA, compared to the expected time of �(nk) for the
(1+1) EA [10] and other EAs only using mutation.

Theorem 2: The expected optimization time of the
(μ+ 1) GA with pc = 1 and μ ≤ κn, for some
constant κ > 0, on Jumpk, k = o(n), is

O
(
μn
√

k log(μ)+ nk/μ+ nk−1 log(μ)
)
.

For k ≥ 3, the best speedup is of order �(n/ log n) for
μ = κn. For k = 2, the best speedup is of order �(

√
n/ log n)

for μ = �(
√

n/ log n).
Note that for mutation rate 1/n, the dominant terms in

Lemma 3 are equal, hence the size of the largest species
performs a fair random walk up to a bias resulting from
small-order terms. This confirms our intuition from observ-
ing simulations. The following lemma formalizes this fact: in
steps where the size Y(t) of the largest species changes, an
almost fair random walk is performed.

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 491

Lemma 5: For the random walk induced by the size of the
largest species, conditional on the current size y changing,
for μ/2 < y < μ, the probability of increasing y is at most
1/2 + O(1/n), and the probability of decreasing it is at least
1/2− O(1/n).

Proof: We only have to estimate the conditional probabil-
ity of increasing y as the two probabilities sum up to 1. The
sought probability is given by p+(y)/(p+(y)+ p−(y)), which
is strictly increasing in p+(y). Lemma 4 states that whenever
the (μ+ 1) GA recombines two parents of Hamming distance
larger than 2, the claim on conditional probabilities clearly
follows. Hence we assume in the following that this does not
happen.

Using the lower bound for p+(y) and the upper bound
for p−(y) from Lemma 3, with implicit constant c+ in the
asymptotic term for p+, we get

p+(y)

p+(y)+ p−(y)
≤

y(μ+y)(μ−y)
2μ2(μ+1)

·
(

1− 1
n

)n + c+(μ−y)2

μ2n

y(μ+y)(μ−y)
μ2(μ+1)

·
(

1− 1
n

)n + c+(μ−y)2

μ2n

= 1

2
+

c+(μ−y)2

2μ2n

y(μ+y)(μ−y)
μ2(μ+1)

·
(

1− 1
n

)n + c+(μ−y)2

μ2n

= 1

2
+

c+(μ−y)
2μn

y(μ+y)
μ(μ+1)

·
(

1− 1
n

)n + c+(μ−y)
μn

,

where in the last step we multiplied the last fraction by
μ/(μ − y). Now the numerator is O(1/n). Since μ/2 <

y < μ, we have [y(μ+ y)/μ(μ+ 1)] = �(1). Along with
(1 − (1/n))n = �(1) and [(c+(μ− y))/μn] = O(1/n), the
denominator simplifies to �(1)+ O(1/n) = �(1). Hence the
last fraction is O(1/n), proving the claim.

We use these transition probabilities to bound the expected
time for the random walk to hit μ/2.

Lemma 6: Consider the random walk of Y(t), starting in
state X0 ≥ μ/2. Let T be the first hitting time of state μ/2. If
μ = O(n), then E(T | X0) = O(μn+ μ2 log μ) regardless of
X0.

Proof: Let Ei abbreviate E(T | X0 = i), then Eμ/2 = 0.
Since p−(μ) = �(1/n) by Lemma 3, the expected time to
leave state μ toward state μ − 1 is 1/p−(μ) = O(n) and the
remaining time will be Eμ−1, thus Eμ = O(n)+ Eμ−1.

For μ/2 < y < μ, the probability of leaving state y is
always (regardless of Hamming distances between species)
bounded from below by the probability of selecting two y
individuals as parents, not flipping any bits during mutation,
and choosing a non-y individual for replacement

p+(y)+ p−(y) ≥ y2

μ2
·
(

1− 1

n

)n

· μ− y

μ+ 1
≥ μ− y

24μ
,

as y ≥ μ/2, μ+1 ≤ 3μ/2 (since μ ≥ 2), and (1−1/n)n ≥ 1/4
for n ≥ 2. Hence the expected time for leaving state i toward
either state i+ 1 or state i− 1 is at most 24μ/(μ− i). Using
conditional transition probabilities 1/2 ± δ for δ = O(1/n)

according to Lemma 5, Ei is bounded as

Ei ≤ 24μ

μ− i
+
(

1

2
− δ

)
Ei−1 +

(
1

2
+ δ

)
Ei+1.

This is equivalent to(
1

2
− δ

)
· (Ei − Ei−1) ≤ 24μ

μ− i
+
(

1

2
+ δ

)
· (Ei+1 − Ei).

Introducing Di := Ei − Ei−1, this is(
1

2
− δ

)
· Di ≤ 24μ

μ− i
+
(

1

2
+ δ

)
· Di+1

and equivalently

Di ≤
24μ
μ−i +

(
1
2 + δ

)
· Di+1

1
2 − δ

≤ 50μ

μ− i
+ α · Di+1

for α := [(1+ 2δ)/(1− 2δ)] = 1 + O(1/n), assuming n is
large enough. From Eμ = O(n) + Eμ−1, we get Dμ = O(n),
hence an induction yields

Di ≤
μ−1∑
j=i

50μ

μ− j
· αj−i + αμ−i · O(n).

Combining α = 1+O(1/n) and 1+ x ≤ ex for all x ∈ R, we
have αμ ≤ eO(μ/n) ≤ eO(1) = O(1). Bounding both αj−i and
αμ−i in this way, we get

Di ≤ O(n)+ O(μ) ·
μ−1∑
j=i

1

μ− j
= O(n+ μ log μ),

as the sum is equal to
∑μ−i

j=1 1/j = O(log μ).
Now

Dμ/2+1 + Dμ/2+2 + · · · + Di

= (Eμ/2+1 − Eμ/2
)+ (Eμ/2+2 − Eμ/2+1

)+ . . .

+ (Ei − Ei−1)

= Ei − Eμ/2 = Ei.

Hence, we get Ei =∑i
k=μ/2+1 Dk ≤ O(μn+ μ2 log μ).

Now we show that when the largest species has decreased
its size to μ/2 there is a good chance that the optimum will
be found within the following �(μ2) generations.

Lemma 7: Consider the (μ+1) GA with pc = 1 on Jumpk.
If the largest species has size at most μ/2 and μ ≤ κn for
a small enough constant κ > 0, the probability that during
the next cμ2 generations, for some constant c > 0, the global
optimum is found is �([1/(1+ nk−1/μ2)]).

Proof: We show that during the cμ2 generations the size of
the largest species never rises above (3/4)μ with at least con-
stant probability. Then we calculate the probability of jumping
to the optimum during the phase given that this happens.

Let Xi, 1 ≤ i ≤ cμ2 be random variables indicating the
change in the number of individuals of the largest species at
generation i. We pessimistically ignore self-loops and assume
that the size of the species either increases or decreases in
each generation, thus Xi ∈ {−1,+1}. Using the conditional
probabilities from Lemma 5, we get that the expected increase
in each step is

1 · (1/2+ O(1/n))− 1 · (1/2− O(1/n)) = O(1/n).

492 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

Then the expected increase in size of the largest species at the
end of the phase is

E(X) =
cμ2∑
i=1

Xi =
cμ2∑
i=1

O(1/n) =
(

c′μ2
)
/n ≤ c′κμ ≤ μ/8,

where we use that μ ≤ κn and κ is chosen small enough.
Using a Hoeffding bound, we get Pr (X ≥ E(X)+ λ) ≤

exp(−2λ2/
∑cμ2

i=1 c2
i). We then use that λ = μ/8 and ci = 2

(i.e., the length of the interval in which Xi lives), which gives
Pr (X ≥ (2/8)μ) ≤ exp(−c′) = 1 − �(1) for some con-
stant c′ > 0. We remark that the bounds also hold for any
partial sum of the sequence X1, . . . , Xcμ2 [1, Ch. 1, Th. 1.13],
i.e., with probability �(1) the size never exceeds (3/4)μ in
the considered phase of length cμ2 generations.

While the size does not exceed (3/4)μ, in every step there
is a probability of at least 1/4·3/4 = �(1) of selecting parents
from two different species. As these have Hamming distance
2d for some d ≥ 1, by Lemma 2, the probability of creating
the optimum is at least 2−2dn−k+d(1−1/n)n−k+d ≥ �(n−k+1)

for any d ≥ 1.
Finally, the probability that at least one successful gener-

ation occurs in a phase of cμ2 is, using 1 − (1 − p)λ ≥
(λp/(1 + λp)) for λ ∈ N, p ∈ [0, 1] [2, Lemma 10], the
probability that the optimum is found in one of these steps is

1−
(

1− 1

�
(
n−k+1

)
)cμ2

≥ �

(
μ2 · n−k+1

1+ μ2 · n−k+1

)
.

Finally, we assemble all lemmas to prove our main theorem
of this section.

Proof of Theorem 2: The expected time for the whole pop-
ulation to reach the plateau is O(μn

√
k log(μ)+ n

√
k log n)

by Lemma 1.
Once the population is on the plateau, we wait till the largest

species has decreased its size to at most μ/2. According to
Lemma 6, the time for the largest species to reach size μ/2
is O(μn+ μ2 log μ). By Lemma 7, the probability that in the
next cμ2 steps the optimum is found is �([1/(1+ nk−1/μ2)]).
If not, we repeat the argument. The expected number of such
trials is O(1+ nk−1/μ2), and the expected length of one trial
is O(μn+ μ2 log μ)+cμ2 = O(μn+ μ2 log μ). The expected
time for reaching the optimum from the plateau is hence at
most O(μn+ μ2 log(μ)+ nk/μ+ nk−1 log(μ)).

Adding up all times and subsuming terms μ2 log(μ) =
O(μn

√
k log μ) and n

√
k log n = O(nk/μ+ nk−1 log μ), not-

ing that k = o(n) completes the proof.

VI. HIGH MUTATION RATES

We now consider the runtime of (μ+ 1) GA with mutation
rate χ/n = (1 + δ)/n for an arbitrary constant δ > 0. The
following theorem states that in this setting the algorithm has
at least a linear speedup compared to the (μ+1) EA without
crossover [34]. By assuming a slightly higher mutation rate,
we not only obtain a bound which is by a log-factor better
than Theorem 2, but the analysis is also significantly simpler.

Theorem 3: The (μ+ 1) GA with mutation rate (1+ δ)/n,
for a constant δ > 0, and population size μ ≥ ck ln(n) for a
sufficiently large constant c > 0, has for k = o(n) expected
optimization time O(n

√
kμ log(μ)+ μ2 + nk−1) on Jumpk.

We again study the random walk corresponding to the size
of the largest species on the plateau. For mutation rate 1/n,
this is almost an unbiased random walk. For slightly higher
mutation rates, we will see that the random walk changes to
an unfair random walk where the size of the largest species
decreases by �(1/μ) in expectation. Formally, our analysis
assumes the following condition.

Condition 1: For a constant δ > 0 and all y, μ/2 ≤ y ≤ μ

p−(y) ≥

⎧⎪⎨
⎪⎩

�(1/n) if y = μ,

�(1/μ) if μ/2 ≤ y < μ, and

(1+ δ)p+(y) if μ/2 ≤ y < μ.

(10)

The following lemma states that it is sufficient to increase
the mutation rate slightly above 1/n to satisfy the diversity
condition.

Lemma 8: If χ/n ≥ (1+ δ)/n for any constant δ > 0, then
Condition 1 holds.

Proof: The first two inequalities follow directly from
Lemmas 3 and 4. For any constant ε > 0, Lemma 3 implies
that

p+(y) ≤ y(μ− y)(μ+ y)(1+ ε)

2μ2(μ+ 1)

(
1− χ

n

)n
and

p−(y) ≥ y(μ− y)(μ+ χy)
(
1− ε2

)
2μ2(μ+ 1)

(
1− χ

n

)n
.

Thus, given that μ/2 < y < μ and χ ≥ 1+ δ

p−(y)

p+(y)
≥
(

μ+ χy

μ+ y

)
(1− ε) ≥ 1+ δ′

for some constant δ′ > 0 when ε is sufficiently small.
Given Condition 1, the additive drift theorem [16] implies

that the largest species quickly decreases to half the population
size.

Lemma 9: If Condition 1 holds, then the expected time until
the largest species has size at most μ/2 is O(μ2 + n).

Proof: Let Y(t) denote the size of the largest species at time
t. We consider the drift with respect to the distance function

h(y) := f (y)+ g(y)

which has the two terms

f (y) := y, and

g(y) := (n/μ)e−κ(μ−y),

with κ := ln(1 + δ) over the interval y ∈ [μ/2, μ]. Due to
linearity of expectation, we can consider the drift of the two
terms f (y) and g(y) separately. The second term g(y) is intro-
duced to handle the case y = μ and is defined exponentially
decreasing in μ−y to avoid negative drift in the case y = μ−1.
The total distance is h(μ)−h(μ/2) = O(μ+ n/μ), hence, we
need to prove that the drift of the process h(Y(t)) is �(1/μ).

We first consider the drift with respect to the first term
f (y) = y.

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 493

Case 1 (Y(t) = μ): Since Y(t + 1) ≤ μ for all t, the drift
in this case is

E(f (Y(t))− f (Y(t + 1)) | Y(t) = μ)

= E(μ− Y(t + 1) | Y(t) = μ) ≥ 0.

Case 2 (μ/2 < Y(t) < μ): By (10), the drift in this case is

E(f (Y(t))− f (Y(t + 1)) | Y(t) = y, μ/2 < y < μ)

= p−(y)(y− (y− 1))+ p+(y)(y− (y+ 1))

= p−(y)− p+(y) > δp−(y) = �(1/μ).

We then consider the drift with respect to the second term
g(y) = (n/μ)e−κ(μ−y).

Case 1 (Y(t) = μ): By (10)

E(g(Y(t))− g(Y(t + 1)) | Yt(t) = μ)

= �(1/n)(n/μ)(1− e−κ) = �(1/μ).

Case 2 (μ/2 < Y(t) < μ): By (10), p+(y)eκ ≤ p−(y). The
drift with respect to g is therefore

E(g(Y(t))− g(Y(t + 1)) | μ/2 < Y(t) < μ)

= p+(y)(g(y)− g(y+ 1))+ p−(y)(g(y)− g(y− 1))

= (n/μ)e−κ(μ−y+1)
(
eκ − 1

)(
p−(y)− p+(y)eκ

)
> 0.

To complete the proof, we now consider the drift of the overall
distance function h. In both cases 1 and 2, it holds that

E(h(Y(t))− h(Y(t + 1)) | Yt(t))

= E(f (Y(t))− f (Y(t + 1)) | Yt(t))

+ E(g(Y(t))− g(Y(t + 1)) | Yt(t)) = �(1/μ),

and the theorem follows.
After the population diversity has increased sufficiently on

the plateau, an optimal solution can be produced with the right
combination of crossover and mutation. This is captured by the
following lemma.

Lemma 10: Consider a population P on the Jumpk plateau
[f (x) = n− k for all x ∈ P]. We partition P into species. For
any constant 0 < c < 1, if the largest species has size at most
cμ, then the optimal solution is created by uniform crossover
followed by mutation with probability �((χ/n)k−1) assuming
the mutation rate is χ/n = �(1/n).

Proof: Since the size of the largest species is no larger than
cμ, the probability that two distinct parents are selected for
crossover is �(1). For the remainder of the proof, we assume
that two parents x and y are selected with x �= y.

Let 2d > 0 denote the Hamming distance between x and
y. Then x and y have d 1s among the 2d bits that differ
between parents and n − k − d 1s outside this area. Assume
that crossover sets exactly i out of these 2d bits to 1, which
happens with probability

(2d
i

)
2−2d. Then mutation needs to

flip the remaining k + d − i 0s to 1. The probability of this
occurring is

2d∑
i=0

(
2d

i

)
1

22d

(χ

n

)k+d−i(
1− χ

n

)n−k−d+i = �

((χ

n

)k−1
)

,

where we bound the sum by dropping all but the last term
(i = 2d) and use 4−d ≥ (1/4)((χ/n))d−1, since d > 0 and we
take n to be large enough.

We are now in a position to complete the runtime analysis of
the algorithm. By Lemmas 1 and 9, we quickly reach a diverse
population on the plateau. From this configuration, there is a
sufficiently high probability that before the diversity is lost the
algorithm has crossed over an appropriate pair of individuals
and jumped to the optimum. If the diversity is lost, we can
repeat the argument.

Proof of Theorem 3: By Lemma 1, the expected time for
the entire population to reach the plateau is O(n

√
kμ log μ),

and by Lemma 8, Condition 1 is satisfied.
Assume c′ is sufficiently large so that μ ≥ (c′k/δ) ln(n)

implies (1 + δ)μ/4 ≥ 4cnk−1 + 1 for a constant c that will
be determined. We consider a phase of length c(μ2 + 2nk−1)

iterations and define the following three failure events.
The first failure occurs if within the first c(μ2 + n) iter-

ations the largest species has not become smaller than μ/2
individuals. By Lemma 9, the expected time until less than
μ/2 individuals belong to the largest species is O(μ2 + n).
Hence, by Markov’s inequality, the probability of this failure
is less than 1/4 when c is sufficiently large.

The second failure occurs if within the next cnk−1 iterations
there exists a subphase which starts with μ/2+1 individuals in
the largest species and ends with the largest species larger than
(3/4)μ without first reducing to μ/2. We call such a subphase
a failure. We model the number of individuals in the largest
species by a Gambler’s ruin argument [12], where, by (10),
the probability of losing an individual in the largest species is
at least a (1+ δ)-factor larger than the probability of winning
such an individual. From standard results about the Gambler’s
ruin process [12], the probability that a subphase is a failure
is δ/((1+ δ)μ/4 − 1). By a union bound, the probability that
any of the at most cnk−1 subphases is a failure is no more
than cnk−1/((1+ δ)μ/4 − 1) < 1/4.

The third failure occurs if the optimum is not found during
a subphase of length cnk−1 iterations where the largest species
is always smaller than (3/4)μ individuals. In this configura-
tion, two individuals with Hamming distance at least 2 are
selected with probability at least (3/4)(1/4). By Lemma 10,
the probability of obtaining the optimum from two such
individuals is �(1/nk−1). Hence, the probability of not obtain-
ing the optimum during the subphase of length cnk−1 is
(1−�(1/nk−1))cnk−1 ≤ 1/4 for sufficiently large c.

By a union bound, given a sufficiently large constant c > 0,
the probability that none of the failures occur and the optimum
is found within a phase of length c(μ2 + 2nk−1) iterations is
at least 1/4. Therefore, the expected number of phases until
the optimum is found is no more than 4.

VII. EXPERIMENTS

Since the theoretical results presented in the previous section
are asymptotic and they only provide upper bounds on the
runtime of the algorithms, we also implemented the (μ+1) GA
and conducted experiments on Jumpk for various values of k,
n, and pm.

In each tested setting of the algorithm and the function, the
run is replicated 100 times with different random seeds. The
number of function evaluations, denoted as “# evaluations,”

494 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

(a) (b)

Fig. 3. Impact of enabling crossover. (a) k = 2. (b) k = 3.

is reported as the runtime. The population size is set to μ =
4e ln n so that a realistic population of at least 40 individuals
is always assumed (e.g., even for n = 50 in Fig. 3).

A. Impact of Crossover and Mutation Rates

Fig. 3(a) and (b) depicts the performance of the GA (pc =
1.0) compared to the algorithm using only mutation (pc = 0.0)
under the same setting (pm = 1/n). The range of n in this
experiment is set to n = [50, . . . , 300] with a step size of 10,
and k is in {2, 3}. Even with these small values of k and n, a
strong reduction of the average runtime can be observed, up
to a multiplicative factor of 104.

The impact of the jump length k on the runtime is illustrated
in Fig. 4(a). The experiment was set with n in [100, . . . , 5000]
(with a step size of 100) and k is in {3, 4, 5}. We notice
that the increase of k does not imply a large change in the
average runtime. The average runtime seems to still scale
linearly with n in this setting even for k = 4. By fixing
k = 3, we also experimented with different mutation rates,
i.e., pm in {0.9/n, 1.0/n, 1.1/n, 2.0/n}. The results are dis-
played in Fig. 4(b). We notice that the mutation rates above
1/n reduce the average runtime while a slightly lower muta-
tion rate increases it considerably. With mutation rate 2/n, the
average runtime and the stability of the runs are distinctively
improved.

On the other hand, an excessive increase of the mutation rate
may deteriorate the average runtime because of the likelihood
of multiple bit flips which imply harmful mutations. This can
be observed in the experiment depicted in Fig. 5 (in log-scale)
for n = 500. In this experiment, k is in {2, 3, 4}, and the range
of χ = pm · n is set to [0.6, . . . , 8] (with a step size of 0.1).
We note that the more k is increased, the stronger the negative
effect of high mutation rates can be noticed. Moreover, too
low mutation rates are also bad for the runtime. This can be
related to our theoretical analysis, in which a low mutation
rate could have made the random walk associated with the
size of the largest species biased toward the wrong direction.

(a) (b)

Fig. 4. Runtime for different jump lengths k and different mutation rates pm
with crossover. (a) pm = 1/n. (a) k = 3.

Fig. 5. Impact of different mutation rates pm = χ/n with crossover for a
problem size of 500.

This may lead to the reduction of the population diversity and
the loss of benefit from crossover.

B. Comparison With the Use of Diversity Mechanisms

In a previous study [7], we have shown that many common
mechanisms to preserve population diversity can speed up sig-
nificantly the expected optimization time of (μ+1) GA (with
standard mutation rate) on Jumpk when crossover is enabled.
The aim of this section is to compare by experiments the
setting of high mutation rate with the results taken directly
from [7] for six1 mechanisms: duplicate minimization and

1The maximization of Hamming distance was also counted as a diversity
mechanism in [7]. However, in that paper we have proved that under some
conditions the mechanism is equivalent to fitness sharing.

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 495

Fig. 6. Performance of the diversity mechanisms for jump length 4; the
mutation rate pm is set to 1/n unless specified.

elimination, deterministic crowding, convex hull maximiza-
tion, fitness sharing and island model.

Again full crossover is enabled (pc = 1.0), but the problem
size n is varied in [100, 1000] (with a step size of 25). The
result for k = 4 is shown in Fig. 6 which also includes the
setting of (μ+1) GA with standard mutation rate and without
any diversity mechanism as a reference. Here the high muta-
tion rate is set with pm = 2.6/n (the best choice for n = 500
and k = 4, previously suggested by Fig. 5). An interesting
observation from the experimental results is that it appears
the setting of high mutation rate can be as efficient as the
implementation of specific diversity mechanisms. Specifically,
in Fig. 6 the setting of high mutation rate is only worse than
convex hull maximization and fitness sharing.

VIII. CONCLUSION

A rigorous analysis of the (μ + 1) GA has been pre-
sented showing how combining the use of crossover with that
of mutation considerably speeds up the runtime for Jumpk
compared to algorithms using mutation only.

It is traditionally believed that crossover is useful only in
the presence of sufficient diversity, and the emergence of
this diversity is typically attributed to the mutation opera-
tor [11], [15], [35]. In general, the dynamics of mutation and
crossover are vastly complex, and the question of how the two
operators interact to balance exploration and exploitation has
been open for decades [30]. Nevertheless, previous theoretical

results on the benefit of crossover have relied solely on muta-
tion for establishing the diversity necessary for recombination.
For example, on the Jumpk function (with the exception of
our own work in [7]), proofs have required an unrealistically
small crossover probability in order to force long phases dur-
ing which mutation alone builds up enough diversity before a
useful crossover operation can be applied.

Diversity can also be enforced using artificial mechanisms,
and such techniques lead to more efficient evolutionary algo-
rithms both empirically [4], [32] and theoretically [13], [28].
Artificially enforced diversity can also be used in proofs that
crossover is beneficial without having to rely on mutation
alone to create sufficient variation [7].

The question to what degree the interplay between both
crossover and mutation promotes the natural emergence of
diversity in the population has been so far open. Our anal-
ysis shows that this interplay on the plateau of local optima
of the Jumpk function quickly leads to a burst of diversity
that is then exploited by both operators to reach the global
optimum.

The balance between the amount of mutation and crossover
impacts the runtime considerably. While mutation rates lower
than the standard 1/n rate considerably increase the expected
runtime, rates that are slightly higher than 1/n lead to
improved performance. These rates also depend on the pres-
ence of crossover. For instance, for k = 4, the best rate for
a mutation-only algorithm is 4/n while the best rate for the
(μ + 1) GA with pc = 1 is considerably lower than 4/n and
higher than 1/n.

It is an open problem for future work whether crossover
can lead to more than linear speedups on Jumpk for realis-
tic crossover probabilities. Our analysis could be improved by
taking into account crossover between plateau individuals with
Hamming distance larger than 2. For large k, this could lead to
super-linear speedups. In fact, our experiments reveal that the
average runtime of the (μ+1) GA does not increase consider-
ably when k is increased from 2 to 4. However, completely new
techniques may be required to improve our analysis. Finally,
future work should address the interplay between mutation
and crossover on fitness landscapes with different characteris-
tics than the Jumpk function, such as those featuring neutral
networks.

ACKNOWLEDGMENT

Ideas leading to this work were discussed at Dagstuhl
seminar 16011 “Evolution and Computing.”

REFERENCES

[1] A. Auger and B. Doerr, Theory of Randomized Search Heuristics.
Hackensack, NJ, USA: World Sci., 2011.

[2] G. Badkobeh, P. K. Lehre, and D. Sudholt, “Black-box complexity
of parallel search with distributed populations,” in Proc. FOGA XIII,
Aberystwyth, U.K., 2015, pp. 3–15.

[3] N. Barton and T. Paixão, “Can quantitative and population
genetics help us understand evolutionary computation?” in Proc.
GECCO, Amsterdam, The Netherlands, 2013, pp. 1573–1580. [Online].
Available: http://doi.acm.org/10.1145/2463372.2463568

http://doi.acm.org/10.1145/2463372.2463568

496 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018

[4] N. Chaiyaratana, T. Piroonratana, and N. Sangkawelert, “Effects of
diversity control in single-objective and multi-objective genetic algo-
rithms,” J. Heuristics, vol. 13, no. 1, pp. 1–34, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10732-006-9003-1

[5] D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre, “Level-based
analysis of genetic algorithms and other search processes,” in Proc.
PPSN XIII, Ljubljana, Slovenia, 2014, pp. 912–921.

[6] D.-C. Dang et al., “Emergence of diversity and its benefits for crossover
in genetic algorithms,” in Proc. PPSN XIV, Edinburgh, U.K., 2016,
pp. 890–900.

[7] D.-C. Dang et al., “Escaping local optima with diversity mechanisms
and crossover,” in Proc. GECCO, Denver, CO, USA, 2016, pp. 645–652.

[8] B. Doerr, C. Doerr, and F. Ebel, “From black-box complexity to design-
ing new genetic algorithms,” Theor. Comput. Sci., vol. 567, pp. 87–104,
Feb. 2015.

[9] B. Doerr, E. Happ, and C. Klein, “Crossover can provably be useful
in evolutionary computation,” Theor. Comput. Sci., vol. 425, pp. 17–33,
Mar. 2012.

[10] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1) evo-
lutionary algorithm,” Theor. Comput. Sci., vol. 276, nos. 1–2, pp. 51–81,
2002.

[11] L. J. Eshelman, “Genetic algorithms,” in Handbook of Evolutionary
Computation. New York, NY, USA: Oxford Univ. Press, 1997.

[12] W. Feller, An Introduction to Probability Theory and Its Applications.
New York, NY, USA: Wiley, 1968.

[13] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt, “Analysis
of diversity-preserving mechanisms for global exploration,” Evol.
Comput., vol. 17, no. 4, pp. 455–476, 2009. [Online]. Available:
http://dx.doi.org/10.1162/evco.2009.17.4.17401

[14] B. W. Goldman and W. F. Punch, “Fast and efficient black box opti-
mization using the parameter-less population pyramid,” Evol. Comput.,
vol. 23, no. 3, pp. 451–479, 2015.

[15] L. Davis, Handbook of Genetic Algorithms. New York, NY, USA:
Van Nostrand Reinhold, 1991.

[16] J. He and X. Yao, “A study of drift analysis for estimating computation
time of evolutionary algorithms,” Nat. Comput., vol. 3, no. 1, pp. 21–35,
2004.

[17] T. Jansen, Analyzing Evolutionary Algorithms—The Computer Science
Perspective. Berlin, Germany: Springer, 2013.

[18] T. Jansen and I. Wegener, “The analysis of evolutionary algorithms—
A proof that crossover really can help,” Algorithmica, vol. 34, no. 1,
pp. 47–66, 2002.

[19] N. L. Komarova, E. Urwin, and D. Wodarz, “Accelerated crossing
of fitness valleys through division of labor and cheating in asexual
populations,” Sci. Rep., vol. 2, p. 917, Dec. 2012.

[20] T. Kötzing, D. Sudholt, and M. Theile, “How crossover helps in
pseudo-Boolean optimization,” in Proc. GECCO, Dublin, Ireland, 2011,
pp. 989–996.

[21] P. K. Lehre and X. Yao, “Crossover can be constructive
when computing unique input–output sequences,” Soft Comput.,
vol. 15, no. 9, pp. 1675–1687, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s00500-010-0610-2

[22] K.-F. Man, K.-S. Tang, and S. Kwong, “Genetic algorithms: Concepts
and applications [in engineering design],” IEEE Trans. Ind. Electron.,
vol. 43, no. 5, pp. 519–534, Oct. 1996.

[23] F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sudholt, “On the effec-
tiveness of crossover for migration in parallel evolutionary algorithms,”
in Proc. GECCO, Dublin, Ireland, 2011, pp. 1587–1594.

[24] F. Neumann and C. Witt, Bioinspired Computation in Combinatorial
Optimization—Algorithms and Their Computational Complexity. Berlin,
Germany: Springer, 2010.

[25] P. S. Oliveto, J. He, and X. Yao, “Analysis of population-based evolution-
ary algorithms for the vertex cover problem,” in Proc. CEC, Hong Kong,
2008, pp. 1563–1570.

[26] P. S. Oliveto and C. Witt, “On the runtime analysis of the simple genetic
algorithm,” Theor. Comput. Sci., vol. 545, pp. 2–19, Aug. 2014.

[27] P. S. Oliveto and C. Witt, “Improved time complexity analysis of the
simple genetic algorithm,” Theor. Comput. Sci., vol. 605, pp. 21–41,
Nov. 2015.

[28] P. S. Oliveto and C. Zarges, “Analysis of diversity mechanisms for opti-
misation in dynamic environments with low frequencies of change,”
Theor. Comput. Sci., vol. 561, pp. 37–56, Jan. 2015.

[29] A. Prügel-Bennett, “Benefits of a population: Five mechanisms
that advantage population-based algorithms,” IEEE Trans. Evol.
Comput., vol. 14, no. 4, pp. 500–517, Aug. 2010. [Online]. Available:
http://eprints.soton.ac.uk/270918/

[30] W. M. Spears, “Crossover or mutation?” in Proc. FOGA II, 1992,
pp. 221–237.

[31] D. Sudholt, “Crossover speeds up building-block assembly,” in Proc.
GECCO, Philadelphia, PA, USA, 2012, pp. 689–702.

[32] R. K. Ursem, “Diversity-guided evolutionary algorithms,” in Proc.
PPSN VII, Granada, Spain, 2002, pp. 462–471.

[33] D. B. Weissman, M. W. Feldman, and D. S. Fisher, “The
rate of fitness-valley crossing in sexual populations,” Genetics,
vol. 186, no. 4, pp. 1389–1410, 2010. [Online]. Available:
http://genetics.org/content/186/4/1389

[34] C. Witt, “Runtime analysis of the (μ+1) EA on simple pseudo-Boolean
functions,” Evol. Comput., vol. 14, no. 1, pp. 65–86, 2006.

[35] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and
exploitation in evolutionary algorithms: A survey,” ACM Comput.
Surveys, vol. 45, no. 3, pp. 1–33, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2480741.2480752

Duc-Cuong Dang received the Engineer’s degree in
computer and network, the M.Sc. degree in com-
puter science, and the Ph.D. degree in computer
science and operational research from the Université
de Technologie de Compiègne, Compiègne, France,
in 2008 and 2011, respectively.

From 2011 to 2012, he was a Lecturer with the
Université de Technologie de Compiègne, and held
a research fellow position with the University of
Nottingham, Nottingham, U.K., from 2013 to 2016.
His current research interests include applying math-

ematics and computer science to solve real-world optimization problems, and
theoretical aspects of heuristic and metaheuristic search.

Tobias Friedrich received the M.S. degree in com-
puter science from the University of Sheffield,
Sheffield, U.K., in 2003, the Diploma degree in
mathematics from the University of Jena, Jena,
Germany, in 2005, and the Ph.D. degree in com-
puter science from Saarland University, Saarbrücken,
Germany, in 2007.

He was a Post-Doctoral Fellow with the
Algorithms Group, International Computer Science
Institute, Berkeley, CA, USA. From 2011 to 2012,
he was a Senior Researcher with the Max Planck

Institute for Informatics, Saarbrücken, and an Independent Research Group
Leader with the Cluster of Excellence on Multimodal Computing and
Interaction, Saarbrücken. From 2012 to 2015, he was a Full Professor and
the Chair of theoretical computer science with the University of Jena, Jena,
Germany. Since 2015, he has been a Full Professor with the University of
Potsdam, Potsdam, Germany, and the Head of the Algorithm Engineering
Group, Hasso Plattner Institute, Potsdam. His current research interests include
randomized methods in mathematics and computer science and randomized
algorithms (both classical and evolutionary).

Timo Kötzing received the Ph.D. degree in com-
puter science from the University of Delaware,
Newark, DE, USA, in 2009.

He was a Post-Doctoral Fellow with the
Algorithms and Complexity Group, Max Planck
Institute for Informatics, Saarbrücken, Germany.
From 2013 to 2015, he was a Post-Doctoral
Researcher with the University of Jena, Jena,
Germany. Since 2015, he has been a Post-Doctoral
Researcher with the Algorithm Engineering Group,
Hasso Plattner Institute, Potsdam, Germany. His cur-

rent research interests include theoretical foundation of learning theory as
well as the analysis of randomized search heuristics and the development of
efficient tools for this goal.

Martin S. Krejca received the B.S. and M.S.
degrees in computer science from the University
of Jena, Jena, Germany, in 2012 and 2014, respec-
tively. He is currently pursuing the Ph.D. degree with
the Algorithm Engineering Group, Hasso Plattner
Institute, Potsdam, Germany.

His current research interests include theoretical
analysis of evolutionary algorithms, especially the
analysis of estimation of distribution algorithms.

http://dx.doi.org/10.1007/s10732-006-9003-1
http://dx.doi.org/10.1162/evco.2009.17.4.17401
http://dx.doi.org/10.1007/s00500-010-0610-2
http://eprints.soton.ac.uk/270918/
http://genetics.org/content/186/4/1389
http://doi.acm.org/10.1145/2480741.2480752

DANG et al.: ESCAPING LOCAL OPTIMA USING CROSSOVER WITH EMERGENT DIVERSITY 497

Per Kristian Lehre received the M.Sc. and Ph.D.
degrees in computer science from the Norwegian
University of Science and Technology, Trondheim,
Norway, in 2006.

He is a Senior Lecturer with the University
of Birmingham, Birmingham, U.K. He held
Post-Doctoral positions at the School of Computer
Science, University of Birmingham, Birmingham,
U.K., and the Technical University of Denmark,
Kongens Lyngby, Denmark. From 2011 to 2017, he
was a Lecturer with the School of Computer Science,

University of Nottingham, Nottingham, U.K. He was a Coordinator of the suc-
cessful 2M euro EU-funded project SAGE which brought together the theory
of evolutionary computation and population genetics. His current research
interests include theoretical aspects of nature-inspired search heuristics, in
particular, runtime analysis of population-based evolutionary algorithms

Dr. Lehre was a recipient of several best paper awards at GECCO 2006,
2009, 2010, 2013, ICSTW 2008, and ISAAC 2014. He is an Editorial Board
Member of Evolutionary Computation, and an Associate Editor of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION.

Pietro S. Oliveto received the Laurea degree in
computer science from the University of Catania,
Catania, Italy, in 2005, and the Ph.D. degree from
the University of Birmingham, Birmingham, U.K.,
in 2009.

He is a Senior Lecturer and an EPSRC Early
Career Fellow with the University of Sheffield,
Sheffield, U.K. His current research interests include
performance analysis of bio-inspired computa-
tion techniques, covering evolutionary algorithms,
genetic programming, artificial immune systems,

and hyperheuristics.
Dr. Oliveto was a recipient of the best paper awards at GECCO 2008,

ICARIS 2011, and GECCO 2014. He is a part of the Steering Committee
of the Annual Workshop on Theory of Randomized Search Heuristics,
an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the Chair of the IEEE CIS Task Force on Theoretical
Foundations of Bio-Inspired Computation, and a member of the IEEE Peer
Review College. He has been an EPSRC Ph.D. Fellow and an EPSRC
Post-Doctoral Fellow at Birmingham and the Vice-Chancellor’s Fellow at
Sheffield.

Dirk Sudholt received the Diploma and Ph.D.
degrees in computer science, under the supervision
of Prof. I. Wegener, from the Technische Universität
Dortmund, Dortmund, Germany, in 2004 and 2008,
respectively.

He is a Senior Lecturer with the Algorithms
Group, University of Sheffield, Sheffield, U.K. He
has held Post-Doctoral positions at the International
Computer Science Institute, Berkeley, CA, USA, and
the University of Birmingham, Birmingham, U.K.
He has over 70 refereed publications. His current

research interests include runtime analysis of randomized search heuristics,
such as evolutionary algorithms and swarm intelligence.

Dr. Sudholt was a recipient of the EU’s Future and Emerging Technologies
Scheme (SAGE Project) and eight best paper awards at GECCO and PPSN.
He is an Editorial Board Member of Evolutionary Computation and Natural
Computing.

Andrew M. Sutton received the M.S. and Ph.D.
degrees in computer science from Colorado State
University, Fort Collins, CO, USA, in 2006 and
2011, respectively.

He has held Post-Doctoral research fellow-
ships with the University of Adelaide, Adelaide,
SA, Australia, and the University of Jena, Jena,
Germany. He is currently a Researcher with
the Algorithm Engineering Group, Hasso Plattner
Institute, Potsdam, Germany. His current research
interests include theoretical analysis of randomized
search heuristics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

