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Abstract
This paper considers the effect of non-metric distances for lower-bounded clustering, i.e., the
problem of computing a partition for a given set of objects with pairwise distance, such that each
set has a certain minimum cardinality (as required for anonymisation or balanced facility location
problems). We discuss lower-bounded clustering with the objective to minimise the maximum
radius or diameter of the clusters. For these problems there exists a 2-approximation but only
if the pairwise distance on the objects satisfies the triangle inequality, without this property no
polynomial-time constant factor approximation is possible, unless P = NP. We try to resolve
or at least soften this effect of non-metric distances by devising particular strategies to deal
with violations of the triangle inequality (conflicts). With parameterised algorithmics, we find
that if the number of such conflicts is not too large, constant factor approximations can still be
computed efficiently.

In particular, we introduce parameterised approximations with respect to not just the number
of conflicts but also for the vertex cover number of the conflict graph (graph induced by conflicts).
Interestingly, we salvage the approximation ratio of 2 for diameter while for radius it is only
possible to show a ratio of 3. For the parameter vertex cover number of the conflict graph
this worsening in ratio is shown to be unavoidable, unless FPT = W[2]. We further discuss
improvements for diameter by choosing the (induced) P3-cover number of the conflict graph as
parameter and complement these by showing that, unless FPT = W[1], there exists no constant
factor parameterised approximation with respect to the parameter split vertex deletion set.
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1 Introduction

For most clustering problems, the quality of a solution is usually assessed with respect to a
given pairwise distance on the input objects. Approximate solutions for such tasks often rely
on this distance to be a metric. But what happens if this property does not hold? Many
clustering problems are much more difficult to solve or even approximate if the pairwise
distance violates the triangle inequality. The problem Uncapacitated Facility Loca-
tion, for example, can be approximated with ratio 1.488 if restricted to metric instances,
see [20]. For general, possibly non-metric, distances, it is only possible to compute a log(n)-
approximation; see [18] for one of many algorithms with this performance. The relation
to the Set Cover problem does not just provide the basis for this positive approximation
result, but also transfers non-approximability. In particular, is known that that log(n) is the
best approximation ratio for Set Cover by [10], assuming P 6= NP, and this hardness trans-
fers to Uncapacitated Facility Location by a very simple approximation-preserving
reduction identifying sets with facilities and the universe with the set of customers.
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Such helpful consequences of a restriction to triangle inequality have lead to many ap-
proaches which assume that this property holds. Another example of this kind is given
in [13], where the properties that come with a restriction to distances which satisfy the tri-
angle inequality are used to speed up the famous heuristic algorithm k-means, named after
the clustering problem it is designed to approximate efficiently.

For many applications, the requirement that the associated distance is a metric seems to
be pretty natural and is not really considered a restriction. For lower-bounded clustering, the
problem of computing a partition for a given set of objects with pairwise distance such that
each set has a certain minimum cardinality, we also made this assumption in order to enable
approximation algorithms with a provable performance ratio, see [1]. In particular, with the
objective to minimise the maximum radius or diameter of the clusters, it turned out that,
unless P = NP, there exists no polynomial-time constant factor approximation if the pairwise
distance on the objects violates the triangle inequality while a ratio of 2 can be achieved
without such violations. With an attempt to use this problem to model a clustering which
can be used for recommender systems, we however found that the pairwise distance does not
in general satisfy the triangle inequality. The so-called Pearson distance, which is usually
used for recommendations, does not have this useful property and, as also observed in [23],
practical instances actually show this non-metric behaviour. Such unfortunate situations
seem to be unavoidable when it comes to human preferences which raises the question of
how the resulting negative effects can be avoided, or at least controlled.

One option that comes to mind concerning non-metric instances in general is editing, i.e.,
a pre-processing step which tries to transform a given instance, with preferably few changes,
such that triangle inequality holds and known algorithms for such well-behaved instances
can then be applied. This idea however has several drawbacks. Changes to a given instance
always come at the price of distortion; altering distances or even deleting objects results in
perturbation of the original input. This effect hence raises the task to find alterations which
bring as little change to the original instance as possible. Such editing problems are then
usually already difficult to solve themselves. In our specific case of lower-bounded clustering,
the task to find a minimum number of vertices such that their removal from a given instance
deletes all violations of the triangle inequality is closely related to the 3-hitting set problem.
But much more troublesome than the complexity of computing such minimal alterations
for these types of problems is the danger of accidentally worsening the optimum value with
vertex deletion. Observe that by requiring a lower bound on the cardinality of the clusters,
the optimum value is not necessarily monotone, in the sense that a larger set of input objects
might enable a better solution.

Here, we therefore seek a different approach which employs extra treatment for violations
of the triangle inequality within the approximations designed for metric instances. The basic
idea is to investigate the consequences of violations and devise strategies to deal with those
within moderate exponential time depending on, roughly speaking, how much the given
pairwise distance differs from a metric. More precisely, we will, for a pairwise distance d,
look at the set of pairs {u, v} which directly violate the triangle inequality, i.e., there exists
another object x such that d(u, v) > d(u, x) + d(v, x). We call such pairs conflicts. If the
set of conflicts for a given instance is empty, the associated distance obviously satisfies the
triangle inequality, which makes the cardinality of the set of conflicts a reasonable measure
for our purposes. Our strategy then is to alter the algorithms for metric instances in such a
way that they also yield constant-factor approximations for non-metric instances while only
spending exponential effort with respect to the conflicts. Formally, this gives a parameterised
approximation with structural parameterisation by the number of conflicts.
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This kind of parameterisation by conflicts to improve approximabilty can be seen as a
generalisation of the distance from triviality approach introduced in [17]. The idea there
is to define some distance which specifies how much a given instance differs from some
structural property which makes it easy to solve, and use this measure as parameter. The
term triviality there already refers to the broader case of polynomial time solvable instances,
not just trivial inputs as one might think, and in our case we go one step further and see the
number of conflicts as the distance to an instance which can be approximated efficiently.

We discuss conflicts for the problems of minimising the maximum radius or diameter for
lower-bounded clustering. We first develop parameterised approximations with respect to
conflicts and then improve those to only require exponential time with respect to the vertex
cover number of the conflict graph Gc (the graph induced by conflicts interpreted as edges).
For diameter, we then consider even smaller parameters given by the size of an (induced)
P3-cover of Gc, but conversely show that the even smaller size of a split vertex deletion set
for Gc is not a suitable parameter. Curiously, we find that while the ratio of 2 remains for
diameter, it is only possible to prove a ratio of 3 for radius. For the parameter vertex cover
of Gc, we prove that this worsening is unavoidable under the assumption that FPT 6= W[2].

2 Preliminaries

We mostly use standard notation and refer to textbooks such as [6] for graph theory, [3] for
approximation algorithms and [12] for parameterised complexity terminology.

When estimating running times we use O∗-notation which, compared to O-notation, also
suppresses factors which are polynomial in the input size. We use Bn to denote the nth Bell
number which is the number of partitions of a set of size n.

The algorithms discussed here combine parameterisation and approximation and fall
into the category of fpt-approximation algorithms with parameter κ, as discussed for example
in [22], i.e., approximation algorithms with provable ratio and running time in O(g(κ)·f(n)),
for computable function g and polynomial f , so O∗(g(κ)) in O∗-notation. For lower bounds
in this context, there does not seem to exist a unified notation, so for these kinds of results, we
will not use hardness notions but link the existence of certain parameterised approximations
to the (unlikely) equivalence of certain complexity classes.

2.1 Problem Definition
As formal model for lower-bounded clustering we use the abstract problem (‖·‖, f)-k-
cluster from [1]. An instance of this problem is an undirected graph G = (V,E) with
edge-weights wE : E → R+ and a lower bound k ∈ N. A feasible solution is any partition
P1, . . . , Ps of V such that |Pi| ≥ k for all i ∈ {1, . . . , s}, we refer to such a partition as
k-cluster.

For two vertices u, v ∈ V with u 6= v we define d(u, v) := wE({u, v}) if {u, v} ∈ E, and
if {u, v} /∈ E, the distance d(u, v) is defined by the shortest path from u to v in G. For
simplicity we always extend d to a function on the whole set V × V by defining d(v, v) = 0
for all v ∈ V . This definition of the induced distance d derived from weights only known
for a set E of given edges models missing information about pairwise distances.

For the objectives to minimise maximum radius or diameter we formally define rad(P ) :=
min{max{d(x, y) : y ∈ P} : x ∈ P} and diam(P ) := max{max{d(x, y) : y ∈ P} : x ∈ P}.
The resulting problems (‖·‖∞ , rad)-k-cluster and (‖·‖∞ , diam)-k-cluster ask for a k-
cluster P1, . . . , Ps minimising max{rad(Pi) : 1 ≤ i ≤ s} and max{diam(Pi) : 1 ≤ i ≤ s},
respectively. A vertex x ∈ V with max{d(x, y) : y ∈ P} = rad(P ) is called central for P .
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Figure 1 In the graph on the left, {c, d} has a weight larger than the shortest path from c to d

but is not in C. Lowering the weights on {a, d} and {b, c} to 2 to remove these conflicts turns {c, d}
into a conflict. The graph on the right has a 2-cluster of maximum radius and diameter 1. Removing
a to delete conflicts results in a graph for which only a trivial 2-cluster of radius ∆ is possible.

2.2 Conflicts
A function d : V × V → R+ satisfies the triangle inequality if d(u, v) ≤ d(u,w) + d(w, v)
for all u, v, w ∈ V . We will call an instance of (‖·‖, f)-k-cluster metric if the induced
distance satisfies the triangle inequality although this does not necessarily make d a metric
in the classical definition of this word, as we allow the existence of u 6= v with d(u, v) = 0
(violation of the so-called identity of indiscernibles property of metrics); recall that by the
formal definition, d derived from edge-weights is just non-negative, symmetric and reflexive.

Observe that our definition allows non-metric instances, see Figure 1. We define the set
of conflicts for an instance (G, k) with G = (V,E) and induced distance d as the collection C
of vertex pairs {u, v} such that the triangle inequality is violated for u and v, formally:

C = {{u, v} ∈ V × V : ∃ x ∈ V : d(u, v) > d(u, x) + d(v, x)} .

One curious property is that the set of conflicts is not necessarily the whole set of edges
with a weight larger than the cheapest path in the graph (for a counterexample see Figure 1),
it however is always a subset of E. Considering the option of weight reduction to achieve
triangle inequality, C might be smaller than the set of edge-weights which have to be adjusted
in order to arrive at a graph without conflicts. Figure 1 also gives a small example which
illustrates why vertex removal can be a dangerous editing step for problems with non-
monotone objective function such as lower bounded clustering. Observe how the optimum
value may increase arbitrarily from the original graph to a graph created by deleting vertices
to avoid conflicts. This effect is another reason to favour parameterisation over editing.

Actually, we will mostly consider parameterisation by the cardinality of the set P of
conflict vertices, which simply are the vertices involved in a conflict, formally defined by:

P =
⋃

{u,v}∈C

{u, v} .

In the following we will use c and p for the parameters number of conflicts and number of
conflict vertices, respectively. Parameterisation by p yields the same general tractability as
parameterisation by p as the parameters are related by the inequalities p ≤ 2c ≤ (p(p−1)) .
For the concrete running times, it is however still relevant to distinguish between p and c as
the bounds given by this inequality are sharp.

We further refer to the graph Gc = (P,C) as conflict graph; observe that Gc is always a
subgraph of the input graph. The structure of the conflict graph reflects the entanglement
of conflicts in a given instance. When designing algorithms which devise specific strategies
to resolve conflicts, it is not surprising that the relations between these can be exploited
for improvement. The structure of the conflict graph hence yields further possibilities for a
parameterisation which measures the distance to a metric instance.
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3 Parameterisation by Conflict Vertices

Without restriction to metric instances, there exists no constant factor approximation in
polynomial time for (‖·‖∞ , rad)- or (‖·‖∞ , diam)-k-cluster, unless P = NP (see Propos-
ition 6 from [1]). The 2-approximation presented for these problems in [1], Theorem 9
hence highly relies on the assumption that the input instance is metric. In short, on input
((V,E), wE , k) with induced distance d, the approximation algorithm with the performance
ratio of 2 for both (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster simply performs a binary search
for the smallest value D for which the following 2-step greedy procedure is successful:
step (1) While V is not empty, pick some c ∈ V , build the set P (c) := {w ∈ V : d(c, w) ≤ D}

and set V = V \ P (c).
step (2) Let P (c1), . . . , P (cs) be the partition built in step (1). Try to create from this a

k-cluster P ′(c1), . . . , P ′(cs) such that ci ∈ P ′(ci) and d(v, ci) ≤ D for all v ∈ P ′(ci),
i ∈ {1, . . . , s}. (Such a partition can be efficiently computed with the help of a network
flow formulation over vertices V ∪ {s, t}. With arcs of capacity 1 from s to every v ∈ V ,
arcs of capacity k from ci to t and arcs of capacity 1 from v ∈ V to ci if d(v, ci) ≤ D for
each i ∈ {1, . . . , s}. A flow of value sk in this network interpreted as moving a vertex
v ∈ P (ci) into the set P (cj) if and only if the flow uses the arc from v to cj , gives a
polynomial procedure to create a k-cluster.)

The ratio of 2 for (‖·‖∞ , rad)- and (‖·‖∞ ,diam)-k-cluster can be shown by proving that
the greedy procedure is successful if D is fixed to be twice the optimum radius or the
optimum diameter, respectively, which is due to the following two properties for this choice
of D:
(i) By the choice of the vertices ci in step (1), it follows that d(ci, cj) > D for all i 6= j, which

means that ci and cj belong to different sets in an optimum solution. So, for each i there
exist enough vertices at distance at most D from ci to be put into P ′(ci) in step (2).

(ii) If the greedy procedure is successful, the construction immediately yields d(v, ci) ≤ D

for each v ∈ P ′(ci), so the resulting k-cluster P ′(c1), . . . , P ′(cs) has maximum radius D
and maximum diameter 2D.

The above properties however do not hold in case the input instance is not metric. More
precisely, for each objective function (radius, diameter), one of them is no longer true. For
radius, property (i) fails, as without triangle inequality, vertices at distance more than twice
the optimum can still be contained in the same cluster in an optimum solution. For diameter,
property (ii) fails, as a radius of D does no longer guarantee a diameter of 2D.

We will now try to salvage these properties for non-metric instances by adding expo-
nential effort with respect to conflicts to the above approximation procedure. Given that
different properties are lost for the two objective functions, it is not surprising that this
approach yields two different parameterised approximations, the basic algorithmic idea of
fixing a maximum radius D, building a preliminary clustering with clusters of radius D and
then balancing the cardinalities with a network however always remains and we will only
sketch the crucial points which have to be adjusted in each case.

At first, we observe that starting from the approximation algorithm for metric instances,
it is not too hard to see that a constant number of conflicts does not yield too much trouble.
More precisely, we simply guess a suitable central vertex for each conflict vertex and fix the
resulting partition of P and centres for step (1). This optimal guessing for the problematic
vertices resolves the problems for both objective functions, as the fixed centres are optimal
by choice and the greedy algorithm is only responsible for partitioning remaining vertices in
V \ P for which the triangle inequality holds. This kind of guessing yields:

IPEC 2018



23:6 Resolving Conflicts for Lower-Bounded Clustering

I Theorem 1. A 2-approximation for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster can be
computed with a running time in O∗(np).

This result raises the question whether an improvement to a more efficient running time is
possible, i.e., some constant factor parameterised approximation. To this end, we want to
mention that an improvement of the approximation ratio of 2 is unlikely, as this is already
shown to imply P = NP for metric instances in [1], Corollaries 1 and 3.

For diameter, we have to only be careful with property (ii) which means that in the above
guessing, we did not really require the knowledge of centres but only the partition they imply
on the vertices in P . In fact, it can be shown that knowing this partition is enough, and
simply enforcing it in the metric approximation algorithm still yields a 2-approximation for
(‖·‖∞ , diam)-k-cluster. The cost of trying all partitions of P can be estimated with the
Bell number (which can be bounded by Bn <

(
0.792n

log(n+1)

)n

, see [5]) and yields:

I Theorem 2. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(Bp).

For radius, the fixed centres are important, but by compromising a little on the approxima-
tion ratio it is still possible to design a parameterised approximation with parameter p. This
algorithm only requires guessing which vertices in P are central in an optimal solution and
accordingly forcing step (1) to build clusters around those first; observe that this knowledge
salvages property (i). Picking a suitable cluster for the vertices in P which are not chosen
to be central however blows up the approximation ratio to 3 (an effect which is explained
later in connection to the lower bounds), which yields:

I Theorem 3. A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a run-
ning time in O∗(2p).

4 Structural Parameters of the Conflict Graph

One possibility to speed up the parameterised approximation algorithms presented so far, is
to choose a smaller parameter. In this section, we want to focus on strategies to only spend
exponential time for vertices in a subset of P . More precisely, as advertised in the section-
title, we will consider parameterisation by structural parameters of the conflict graph.

4.1 Vertex Cover
Looking closer at the problems caused by the conflicts in C, it is not necessary to consider
all vertices in P but it appears to be sufficient to pick a subset which covers all conflicts.
Formally, this idea translates into parameterisation by a vertex cover for the conflict graph
Gc = (P,C). In the following, we will use pc to denote the size of a minimum vertex cover
for Gc and discuss parameterised approximation with respect to this parameter.

Again, a first easy observation is that, at least for (‖·‖∞ , rad)-k-cluster, instances for
which pc is a constant can be approximated efficiently. In fact, we can simply switch from
the set P to a minimum vertex cover for Gc in the procedure discussed for Theorem 1, as
property (i) can only be violated if the algorithm can choose two vertices of a conflict as
centres. The additionally required computing of a constant size vertex cover for Gc is not
an expensive task, so this idea immediately yields:

I Theorem 4. A 2-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a run-
ning time in O∗(npc).
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The parameterised approximation for (‖·‖∞ , diam)-k-cluster from Section 3 requires little
algorithmic adjustment to switch from parameter p to parameter pc. Proving correctness of
the given procedure, i.e., guaranteeing a performance ratio, is however more complicated.

Consider only guessing a partition of a vertex cover V of the conflict graph and fixing
this partition for step (1). The only further change required to make sure that property (ii)
remains true, is to adjust the algorithm when building clusters including the guessed sets
V1, . . . , Vt in the partition of V. Now, both when building the preliminary clusters including
some Vi in step (1) and moving vertices in step (2) into such a cluster, we not just require
a distance of at most D to one chosen centre but to all vertices in Vi. Then all distances
in a set of the resulting k-cluster involving vertices in the cover V are bounded by D. As V
is a vertex cover of Gc, distances not involving a vertex in V are not a conflict which means
triangle inequality can be used for all remaining cases to prove that property (ii) still holds.

This approach requires computing a vertex cover for the conflict graph, a problem which
can be solved by [9] with a running time in O∗(1.2738pc). As this single-exponential effort is
only performed once in the beginning and dominated by the Bell number, we can conclude:

I Theorem 5. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(Bpc).

For (‖·‖∞ , rad)-k-cluster, it is not obvious how to reduce p in Theorem 3 to pc. While
knowing which vertices in a vertex cover are central is sufficient to avoid picking centres from
the same cluster in step (1), the problem is finding a suitable cluster for the vertices from
the vertex cover which are not central. In particular, this is a problem when two vertices
from the vertex cover which are not central are wrongfully put in the same cluster; more
precisely, if two vertices u, v ∈ V are not central in any optimal solution but belong to two
different clusters, with centres cu, cv /∈ V, while these two correct centres are put into P (c)
with {u, c}, {v, c} ∈ C in step (1) of our algorithm. In such a case there is no general clean
way to identify how to split up P (c) into sets of cardinality at least k and such that u and
v can be assigned at a radius which can in any way be bounded by the optimum.

With a more involved algorithm which additionally guesses a partition, like for the dia-
meter measure, it is possible to find an approximation for (‖·‖∞ , rad)-k-cluster para-
meterised by pc. After guessing a partition and a set of centres for the vertex cover, this
approach further requires computing a suitable centre for each set in the partition before
running steps (1) and (2), which are altered to respect the fixed partition and central ver-
tices. This just means finding for each set Vi in the partition of the vertex cover V for
which no vertex in Vi is fixed as center, a vertex v ∈ V \ V such that d(v, w) ≤ D

2 for all
w ∈ Vi (where D

2 relates to the optimum radius). As two sets Vi and Vj might compete
over such candidates for centres, we use maximum matching to enable finding, in case our
fixed guesses are correct, a centre for each set Vi. These adjustments are sufficient to sal-
vage property (i). Although now there is no longer the problem of finding a suitable cluster
for vertices which are not allowed to be central, the performance ratio is still only 3, as
for this procedure the worst-case now comes from choosing a wrong center c′ ∈ V \ V for
some Vi: If P ⊆ V is the cluster containing Vi in an optimum solution and c is its correct
center, it follows that the distance of v ∈ P to the wrong center c′ can only be bounded
by d(v, c′) ≤ d(v, c) + d(c, c′) ≤ D

2 + d(c, vi) + d(c′, vi) ≤ 3 D
2 (using some vi ∈ Vi for this

equation). The asymptotic running time of this approach is dominated by guessing the
partition and centre-choice for a minimum vertex cover of Gc, so:

I Theorem 6. A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a run-
ning time in O∗(2pc ·Bpc

).
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4.2 P3-Covers
With more changes to the algorithms discussed for (‖·‖∞ , diam)-k-cluster, it is possible
to further reduce the size of the subset of P which requires the expensive guessing of the
partition. When building the first partition in step (1), it is always possible to correctly
assign conflict vertices to a set, by branching on the conflicts to decide which vertex has to
be excluded. This way it is possible to find a correct choice of central vertices. The network
used to model the reassignment of vertices according to the fixed centres can be altered to
prevent two conflict vertices to move into the same cluster, by routing their flow through an
additional network-vertex with a capacity of only 1 to move into a cluster. If the conflicts
are isolated, an additional network-vertex for each conflict can be used to correctly model
all conflict-free reassignments.

We can of course not assume that conflicts are pairwise disjoint, but we can fix the par-
tition of a subset of conflict vertices, as we did for the vertex cover of the conflict graph, and
use the above ideas for the remaining vertices which induce a graph with isolated conflicts.
The set of vertices which have to be removed in order to arrive at a graph with isolated
edges, or equivalently a graph which does not contain any path of length 2 usually denoted
P3, is smaller than the vertex cover of the conflict graph (unless the instance is initially
metric). Formally, such a set is called a P3-cover. In the following, we use p3c to denote the
cardinality of a smallest P3-cover for Gc and with the parameterised algorithm from [24],
such a set can be computed with a running time in O∗(1.7485p3c). Using the more expensive
strategy of guessing the correct partition only for a minimum P3-cover of the conflict graph
computed with the algorithm in [24], branching on the remaining isolated conflicts for the
pre-clustering and modifying the network to avoid conflicts as described above gives the
following result; observe that the number of remaining conflicts is bounded by p

2 :

I Theorem 7. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(

√
2p ·Bp3c

).

As already mentioned, branching on conflicts in step (1) works for any set of conflicts, not just
for the restriction to isolated ones. The reassignment restriction for conflict vertices modelled
with the capacities in the network however requires a situation where, in case of conflict,
at most one vertex can be moved into a cluster. Capacities on arcs from some additional
network-vertices which handle conflicts, can not model a scenario where out of three vertices
u, v, w, a cluster is restricted to either only contain u or any subset of {v, w}; this situation
occurs if u is in conflict with v and w but {u,w} is not a conflict. This structure means that
the vertices u, v, w induce a P3 in the conflict graph. If the conflict graph, or any graph for
that matter, does not contain an induced P3, its connected components are cliques. For this
structure, the network can be adjusted to correctly model conflict-free vertex-reassignments.
The problem to find, for a given graph, a smallest vertex set whose removal yields a P3-free
graph is called Induced P3-Cover or Cluster Vertex Deletion.

It is possible to, in a sense, generalise the algorithm for Theorem 7 to consider a cluster
vertex deletion set instead of a P3-cover to reduce the cost for guessing the partition. We de-
note the corresponding parameter, size of a cluster vertex deletion set for the conflict graph,
by p3d. While the relation p3d ≤ p3c obviously makes this generalisation an improvement, we
have to pay for this in the branching for the pre-clustering, as the remaining conflicts are no
longer bounded by 1

2 |P |. A minimum cluster vertex deletion set for Gc can be computed in
time O∗(1.9102p3d) with the help of the parameterised algorithm in [7], so again a negligible
effort compared to checking all partitions, and this idea hence yields the following result:
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pc p3c p3d

O∗(Bpc )
(Theorem 5)

O∗(
√

2p
Bp3c )

(Theorem 7 )
O∗(2cBp3d )
(Theorem 8 )

Table 1 Summary of the running time of the parameterised 2-approximation for (‖·‖∞ , diam)-
k-cluster, where pc, p3c and p3d denote the size of a minimum vertex, P3 and induced P3-cover
for the conflict graph, respectively.

I Theorem 8. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(2c ·Bp3d

).

The results to improve the parameterised approximation from Theorem 5 are presented here
in a way which suggest a stepwise improvement of the running time. In principle, reducing
the number of vertices which require partitioning appears to be the best option. But the
reductions of this set used for Theorems 7 and 8 require additional branching costs on conflict
vertices and conflicts, respectively. Depending on the structure of the conflict graph, any
one of the three algorithms can have the best worst-case running time. An overview of the
parameterised 2-approximations for (‖·‖∞ , diam)-k-cluster with respect to the structural
parameters of the conflict graph discussed in this section is given in Table 1.

5 Lower Bounds

In this section, we investigate the limitations of parameterised approximation for lower
bounded clustering with structural parameters of the conflict graph. Especially the in-
crease from ratio 2 for metric instances to ratio 3 for non-metric instances for (‖·‖∞ , rad)-
k-cluster appears strange. We will however see that ratio 3 is, under certain complexity
theoretic assumptions, optimal for parameter pc and that the approach we use to design
parameterised approximations is generally limited to the performance ratio of 3 for radius.
Further, we will discuss the limits of choosing structural parameters for (‖·‖∞ ,diam)-k-
cluster . More precisely, we will see that while the previous section gave approaches to
move from p to pc, p3c and p3d, a next step towards a parameterisation by a split vertex
deletion set does not seem to allow for a constant factor parameterised approximation.

For the negative results of this section, we use a kind of reduction which links the
existence of a parameterised approximation with certain ratio to a parameterised algorithm
for a problem which is believed not to be in FPT. Such an algorithm can be seen as fpt gap-
reduction as introduced in [4]. As the problem to reduce from for (‖·‖∞ , rad)-k-cluster
, we use Multicoloured Dominating Set, which asks for input graph G = (V,E) with
vertex partition V = V1, . . . , V` for the existence of a subset D ⊆ V such that N [D] = V

(D is a dominating set for G) and |D ∩ Vi| = 1 for all i ∈ {1, . . . , `}. The colour-coding
technique from [2] shows that the W[2]-hardness of classical Minimum Dominating Set,
which is shown in [11], transfers to this restricted version we called multicoloured in reference
to Multicoloured Clique and the corresponding reduction technique introduced in [15].

We will in the following sketch a reduction from Multicoloured Dominating Set to
(‖·‖∞ , rad)-k-cluster which shows that a parameterised approximation with parameter pc

for the clustering problem could be used to show fixed parameter tractability of the W[2]-
hard domination problem. This kind of reduction yields a lower bound for parameterised
approximation of (‖·‖∞ , rad)-k-cluster under the assumption FPT 6= W[2].
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Figure 2 Illustration of the reduction used for Theorem 9, vertices in the vertex cover for the
conflict graph drawn with thick border.

For an instance G = (V,E) with V = V1, . . . , V` and |V | = n of Multicoloured
Dominating Set, we construct an instance ((V ′, E′), wE′ , n+ 2) of (‖·‖∞ , rad)-k-cluster
with vertex set V ′ containing V , a copy of V , denoted V̄ = {v̄ : v ∈ V }, `+2 vertices (which
will become the vertex cover of the conflict graph) denoted u1, . . . , u` and ur, uR and an
additional set X of (` − 1)n + ` vertices. These vertices are connected with the following
edges of weight 1 (see also the illustrated in Figure 9):
{v, w̄}, {w̄, v} ∈ E′ iff {v, w} ∈ E (these model the structure of the original graph),
{ui, v} ∈ E′ for all v ∈ Vi, i ∈ {1, . . . , `} (these force to pick one center from each Vi),
{v, x} ∈ E′ for all x ∈ X, v ∈ V ∪ {ur} (enables balancing cardinalities with the set X),
{ur, v} ∈ E′ for all v ∈ V and {ur, uR} ∈ E′ (forces ur to be central and allows to assign
v ∈ V not picked for the dominating set at radius 1 to the corresponding cluster).

Further E′ contains all other edges involving the vertices u1, . . . , u` and ur, uR with weight 3
which clearly makes this set of ` + 2 vertices a vertex cover of the conflict graph for the
resulting (‖·‖∞ , rad)-k-cluster instance ((V ′, E′), wE′ , n+ 2).

Assuming the existence of a parameterised approximation with parameter pc and ratio
better than 3 for (‖·‖∞ , rad)-k-cluster, this algorithm would be able to build clusters with
maximum radius less than 3 for ((V ′, E′), wE′ , n+2) if and only if there exists a multicoloured
dominating set for G = (V,E); more precisely, the centres of the clusters containing the
vertices u1, . . . , u` in a k-cluster of maximum radius less than 3 for ((V ′, E′), wE′ , n + 2)
correspond to a multicoloured dominating set for G = (V,E). To understand why this is
true, observe that the lower bound n+ 2 only allows to build at most `+ 1 clusters, while a
maximum radius of less than 3 requires at least one cluster with ur and one cluster with a
vertex from Vi∪{ui} for each i ∈ {1, . . . , `} as centre. A vertex V̄ can then only be at distance
less than 3 from a centre if the corresponding vertex in the original graph G is adjacent to
this centre. As this parameterised approximation has a running-time in O∗(g(pc)) for some
computable function g, and pc is bounded by ` + 2, the given polynomial construction of
((V ′, E′), wE′ , n + 2) combined with this assumed parameterised approximation could be
used to solve Multicoloured Dominating Set in O∗(g(`)), which formally yields:

I Theorem 9. There exists no (3 − ε)-approximation for (‖·‖∞ , rad)-k-cluster with a
running time in O∗(g(pc)) for any ε > 0 and computable function g, unless FPT = W[2].
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Figure 3 Illustration of the reduction used for Theorem 10, bold lines represent conflict edges
with weight r + 1, all other edges in the complete graph have weight 1. Vertices u, v ∈ V are such
that {u, v} ∈ E, 1 ∈ L(u), 1 /∈ L(v), 2 ∈ L(u) ∩ L(v) and ` /∈ L(u) ∪ L(v).

The reduction used to prove Theorem 9 also illustrates why our parameterised approximation
for (‖·‖∞ , rad)-k-cluster with parameter p does not have a performance ratio better than 3.
The situation illustrated in Figure 2 is also a case where our algorithmic strategy fails; if
the algorithm chooses w instead of v as central vertex in step (1) (observe that these two
are both not in the set P ), then q is one of the vertices in P \ P ′ (in fact P ′ = ∅ is the
only correct choice) which has to be put into a suitable cluster without choosing it as centre,
which places it at the worst possible distance (3 times the optimum) from the central vertex.

For diameter, we want to investigate the limits of choosing smaller sets of vertices which
require partitioning in our parameterised approximations. A graph G = (V,E) is called a
split graph, if its vertex set can be partitioned into two disjoint sets A and B such that A is
an independent set in G and G[B] is the complete graph on vertex set B. Especially for the
application to ratings to build recommendation systems, it appears that the conflict graph
almost has the structure of a split graph: with a small set of users which give unusual ratings
and are hence in conflict among each other (set B) and with a larger set of more average
users (set A). This observation raises the question whether it is helpful to turn the conflict
graph into a split graph, as this transformation appears to require very little change.

Formally, a split vertex deletion set of a graph G = (V,E) is a subset V ′ of V such that
G[V \ V ′] is a split graph. Looking at the previous strategies to lower the parameter from
vertex cover to P3-cover to cluster vertex deletion, the size of a minimum split vertex deletion
set appears to be a promising next smaller parameter-choice. Unfortunately, it seems that
this parameterisation can not be used for (‖·‖∞ , diam)-k-cluster as the following result
will show. We will use a similar kind of fpt gap-reduction between (‖·‖∞ , diam)-k-cluster
parameterised by split deletion set from the problem List Colouring, which for a given
graph G = (V,E), colours {1, . . . , `} and a set of possible colours for each vertex v ∈ V , given
by a list L(v) ⊆ {1, . . . , `} for each v ∈ V asks if there exists a colouring f : V → {1, . . . , r}
such that f(v) ∈ L(v) for all v ∈ V and f(v) 6= f(w) for all {v, w} ∈ E. List Colouring
with parameter τ(G) (vertex cover number of G) is W[1]-hard, see [14, 16].

Our reduction from List Colouring to (‖·‖∞ , diam)-k-cluster constructs a clustering
instance ((V ′, E′), wE′ , n+ 2) as sketched in Figure 3, where G is the input graph for List
Colouring and each Li, is a set of n+ 2 new vertices. Observe that a vertex cover for G
is a split vertex deletion set of the conflict graph for this instance. It can be shown that
a “yes”-instance for List Colouring corresponds to a k-cluster of maximum diameter 1
while a “no”-instance yields a diameter of at least r + 1.
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This would enable solving List Colouring in O∗(g(τ)) if there existed a parameterised
approximation with ratio r and cluster vertex deletion set as parameter for (‖·‖∞ , diam)-k-
cluster, hence:

I Theorem 10. There exists no constant factor approximation for (‖·‖∞ , diam)-k-cluster
with a running time in O∗(f(ps)), for any computable function f , unless FPT = W[1].

6 Conclusions

As the exponential time hypothesis implies FPT 6= W[1] by [8], the negative results in
this paper especially hold assuming the exponential time hypothesis [19]. Both reductions
used to show these create instances of (‖·‖, f)-k-cluster with large values for k. In most
applications however, k is a fixed, not too large integer, which raises the question whether an
additional parameterisation by k (additional to the number of conflicts) would help overcome
the negative results. For the greedy strategies used for the parameterised approximations
in this paper, it is not clear how k could be included in a useful way. An improvement with
parameterisation by both conflicts and k probably means using a very different algorithmic
approach. The gap between our positive results and the presented lower bounds further
suggests room for improvement. Stronger lower bounds seem to require new techniques for
reductions which consider both parameterisation and approximation.

We would like to mention that a relaxation of the cardinality constraint, i.e., asking for
an approximate solution in the sense that this partition is allowed to contain clusters with
only αk vertices, for some factor 0 < α ≤ 1, does not help with the problems caused by
conflicts. In fact, the inapproximability for general non-metric instances from [1] holds for
fixed values of k with k ≥ 3, which means that this kind of additional cardinality relaxation
either yields a polynomial time solvable problem, in case αk ≤ 2, or a problem with the
same approximation hardness.

One other aspect we did not consider here is the optimality of the asymptotic running
times of our positive results. Techniques for such more fine-grained considerations need a
more careful analysis. A concrete question in this regard is whether it is possible to im-
prove the parameterised approximations for (‖·‖∞ , diam)-k-cluster to only require single-
exponential time. In this regard it would be very interesting to see if slightly superexponen-
tial lower bounds as shown in [21] can be proven for a 2-approximation of (‖·‖∞ ,diam)-k-
cluster with parameter p. For improvement on the running time on the other hand, it
might be interesting to analyse the algorithms with a closer look at the enumerations of the
partitions of P . We always estimated this with the Bell number although we only consider
partitions with specific properties (those which are possible in a clustering of maximum dia-
meter D) which in a sense relate to colourings of the conflict graph. It might be possible to
enumerate the relevant partitions of P more efficiently with the help of colouring strategies.

Aside from the problems discussed here, there are many other related clustering-type
problems which exhibit similar difficulties with violations of the triangle inequality. The
parameterisation by conflicts and related parameters might provide a useful way to approach
these problems as well.
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