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ABSTRACT
When a genetic algorithm (GA) is employed in a statistical problem,
the result is affected by both variability due to sampling and the
stochastic elements of algorithm. Both of these components should
be controlled in order to obtain reliable results. In the present work
we analyze parametric estimation problems tackled by GAs, and pur-
sue twoobjectives: the first one is related to a formal variability analy-
sis of final estimates, showing that it can be easily decomposed in the
two sources of variability. In the second one we introduce a frame-
work of GA estimation with fixed computational resources, which is
a form of statistical and the computational tradeoff question, crucial
in recent problems. In this situation the result should beoptimal from
both the statistical and computational point of view, considering the
two sources of variability and the constraints on resources. Simula-
tion studies will be presented for illustrating the proposed method
and the statistical and computational tradeoff question.
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1. Introduction

In recent years the increase in computing power and the huge growth in size of datasets
have introduced many novel problems in statistics. Statisticians must now carefully con-
sider computational complexity in efficiency and consistency analysis, in order to obtain
both efficient and feasible results, subject to resources or time constraints. This kind of anal-
ysis, as it aims at balancing statistical efficiency and computational complexity, is generally
named as statistical and computational tradeoff (or time-data tradeoff). For example, Dil-
lon and Lebanon [1] studied consistency of a stochastic extension of composite likelihood
estimators, whose formula depends also on parameters related to computational elements.
Wang et al. [2], in a sparse principal component analysis framework, addressed the ques-
tion of whether is possible to find an estimator which is computable in polynomial time,
and then analyzed its minimax optimal rate of convergence. Several other proposals can
be found in [3–10].

In a closely related contribution, due to Winker and Maringer [11], the limit behaviour
of an estimator based on threshold accepting algorithm is analyzed in a GARCH model
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estimation problem. They studied the joint convergence of the estimator, which depends
on sample size, and the algorithm, as the number of iterations increases, and corresponding
convergence rates were evaluated by simulation (see also [12,13]).

In the present paper we propose a statistical and computational tradeoff discussion
employing a similar analysis as in [11], for general model building problems using genetic
algorithms (GAs). At first we shall analyze variability of such methods when employed in
parametric estimation problems, as they introduce an additional source of variability in
the process. In this context we investigate the effect of both statistical and computational
components on efficiency of results, focusing on their limit behaviour. Given this frame-
work, the tradeoff is discussed by introducing cost functions in the analysis, related to both
data acquisition and runtime of the algorithm,when anoverall amount of resources is fixed.
This scheme will give indications on how to optimally allocate a fixed amount of resources,
and this is generally demanding when intractable or time-consuming problems are con-
cerned. A selection of simulation examples will illustrate the proposed method, in which
variability components will be empirically evaluated and several values for cost functions
will be considered.

The paper is organized as follows: Section 2 describes standard GAs and their imple-
mentation in parametric estimation problems; in Section 3 the variability analysis and the
tradeoff problem are specified; Section 4 displays the simulation examples selected for illus-
trating the proposedmethod; the last Section includes final comments and discusses future
developments.

2. Genetic algorithms for models building

2.1. Overview of the algorithm

GAs are among the most important evolutionary computation techniques, because of
their simplicity and versatility of applications. They were introduced by Holland [14] as
a method for describing the adaptive processes of natural systems, adopting metaphors
from biology and genetics. Main GAs application is linked to complex optimization prob-
lems [15–17], whose complexity might be due to the objective function, which might be
non-differentiable, or to the search space, possibly very large or irregular.

In this framework the goal is to find the global optimum of a function, called fitness,
which measures the goodness of solutions. In the metaphor the generic solution is repre-
sented by an individual, coded in a string called chromosome, whose elements represent
the genetic heritage of the individual (genes). In the standard binary coding case, genes
can only take values 0 or 1 (bits). At each iteration (or generation, in GA terminology)
the algorithm considers a population of fixed size N of individuals evolving by means of
genetic operators of selection, crossover andmutation. The selection randomly chooses solu-
tions for subsequent steps, in general proportionally to their fitness value; by crossover
two solutions are allowed to combine together, with a fixed rate pC, exchanging part of
their genes and creating two new individuals; lastly, the mutation step allows every bit to
flip its value from 0 to 1, or vice versa, with a fixed probability pM, providing a further
exploration of search space. The resulting population replaces the previous one, and the
generations flow stops when a certain condition is met, if for example a fixed number of
generations is reached. It is also possible, adopting the elitist strategy, to maintain the best
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individual found up to current generation, in spite of modifications made by genetic oper-
ators. In that case, the user interested in optimization may analyze the succession of such
solutions.

Elitism is crucial as far as convergence is contemplated. In fact, most of convergence
results have been obtained for elitist GAs, generally by use of Markov Chain theory. A
fundamental theorem by Rudolph [18], that easily adapts to a wide class of evolutionary
algorithms (EAs), considers an elitist GA with pM>0 and models Xg , namely the best
solution found up to generation g, by a Markov Chain. It states that, under the assump-
tions given above, the sequence Dg = [f ∗ − f (Xg)], where f ∗ is the global optimum and
f (Xg) the fitness ofXg , is a non-negative supermartingale which converges almost surely to
zero. Generalizations have been proposed in order to extend Rudolph’s approach to either
time-varying mutation or crossover rates (or both) by modeling GA as a non homoge-
neous Markov Chain [19–21]. Reference [21] includes also a review of other contributions
analyzing GA convergence byMarkov Chain theory. In our paper we employ a simple GA,
so we shall refer to Rudolph theorem of convergence, which also allow to generalize the
framework to other EAs. It is worth noting that this theorem just states the convergence of
a GA, but it gives no information about its rate.

2.2. Parametric estimation

There are many complex statistical problems which are suitable for GAs application, like
outliers detection, cluster analysis or design of experiment (for a comprehensive account see
[22]). In this work we consider parametricmodel building problems, in which the function
to be maximized, a likelihood for example, is hard to analyze, and standard methods may
fail in finding good estimates (several applications can be found in [23–26]). In this situa-
tion a sample y is generated from a distribution known up to a parameters vector, and the
inference is made by maximizing an objective function depending on both the parameter
and y.

We shall now specify GA implementation, which consists in solutions coding and fit-
ness function specification, for the problem at issue. Although floating-point GAs have
been employed in literature to deal with real parameters optimization, we shall employ the
simple binary coded GA described above. The standard rule [27] for binary encoding a
parameter θ with values in the real interval [a, b] is:

θ = a + b − a
2H − 1

H∑
j=1

2j−1xj,

where xj is the jth bit (j = 1, . . . ,H). If the interest is focused on a vector θ = (θ1, . . . , θk)
then a chromosome of lengthM = k · H includes the coding of all components. LengthH
of each genes group is constant, but the coding interval [a, b] can vary for each parameter.
As far as we are considering a kind of discretization of a continuous search space, we aim at
building a fine grid in such away that the fitness function is adequately smooth on that grid,
so that the related loss of information is negligible. This may be done by selecting a suffi-
ciently large number of different values equispaced in the coding interval, or alternatively
specifying the difference between two consecutive coding values (e.g. 10−k).
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The fitness f is proportional to the objective function, say g(θ ; y). We shall consider a
scaled exponential transformation of g:

f (θ) = exp{g(θ ; y)/τ }, (1)

where τ > 0 is a problem dependent constant. This kind of scaling procedure allows to
modify the shape of fitness function without changing the ranking of solutions, and influ-
encesmainly the selection operator. Fitness scaling is awidely discussed issue inGA theory,
[15,28], [22, p.53], and it is generally recognized that the best choice depends on the prob-
lem nature. For the problems at hand we suggest to select τ = n, as will be explained in
Section 3.2.

As far as the choice of genetic operators is concerned, many options are possible and
many related studies are available [15,17,29,30]. It is generally known that there is no
universally dominant choice for any problem, so pilot studies are needed for a successful
implementation. We decided to employ basic genetic operators: roulette wheel selection, in
order to select chromosomes proportionally to their fitness value; single point crossover, for
which a chromosome can exchange up to k−1 parameters in every recombination; stan-
dard bit-flip mutation strategy. Lastly, elitism is adopted for guaranteeing convergence of
procedure.

3. Problem description

3.1. Variability decomposition

Following estimation theory, a parameter estimate is naturally subject to sampling variabil-
ity: in fact if we make inference using two different samples we may obtain two possibly
different results. When GAs are employed in the estimation process an additional form of
variability is introduced in the analysis, due to the stochastic nature of the algorithm. It is
related to the choice of starting population, selection mechanism, mutation and crossover
rates, the random choice of cutting point in crossover. As a result of this, if we run a GA
several times using the same sample we may obtain different results.

The total variability of a GA estimate can be easily decomposed in these two forms of
variability, as shown in [22, p.50] for the univariate case.

We shall adopt the following notation: y is the sample of observations, θ the parameter,
θ̂ (y) the best theoretical value (for example amaximum likelihood estimate), which can not
be computed in practice, and θ∗(y) the result of optimization obtained via GA, that is an
approximation to θ̂ (y) and depends on the observed sample as well. We assume stochastic
independence between data and the algorithm, and decompose total error of a GA estimate
as follows:

θ∗(y)− θ = [θ̂ (y)− θ] + [θ∗(y)− θ̂ (y)]. (2)

The first term in square brackets depends on consistency of the estimates, while the second
depends on the convergence of GA. The final convergence of the GA estimate is ensured
if both of these components converge to zero in probability.

As long as in real applications GAs are generally employed in complex, oftenmultipara-
metric problems, then we shall consider the multiparametric analogous to (2). In that case
θ = (θ1, . . . , θk) is the parameter vector of interest, θ̂ is the best theoretical value, while
random vector θ∗(y), for which sample y is held fixed, is the result of GA.
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If an elitist strategy is employed then we can define random vector θ∗(g)(y) as the best
estimate obtained up to generation g, that corresponds to the best individual of generation
g. In ourmethodwe shall evaluateGAvariability by analyzing the behaviour of this random
vector among GA runs, basing on Rudolph theorem that in our case implies that sequence
θ∗(g)(y), g = 1, . . . will converge to θ̂ (y) when g goes to infinity. This means that when g
increases then each GA run gets closer to convergence, so variability between runs tends
to decrease as a consequence. So, in our framework, evaluating the variability of the GA is
closely related with studying the convergence rate of the algorithm.

Having defined both random vectors θ̂ (y) and θ∗(y) we shall define their variance–
covariance matrices, respectively �S and �GA, in order to relate to (2). Generic (i, j)
elements of these matrices are:

σ S
ij = ES[(θ̂i − θi)(θ̂j − θj)], i, j = 1, . . . k,

σ ∗
ij = EGA[(θ∗

i − θ̂i)(θ
∗
j − θ̂j)], i, j = 1, . . . k.

σ S
ij and σ

∗
ij measure the dependence between the estimates of θi and θj induced, respec-

tively, by sampling andGA.To get a scalar summary of thesematrices, a possible choice is to
consider the traces, a strategy often adopted in literature. This is reasonable in an optimiza-
tion framework, because the optimum is reached when variances σ S

ii and σ
∗
ii (i = 1, . . . , k)

go to zero, with no practical interest on covariances. Therefore, if �TOT is defined as the
total variance–covariance matrix, then, using the linearity of trace and under the same
independence assumption of (2), we can write:

tr(�TOT) = tr(�S)+ tr(�GA). (3)

3.2. Tradeoff problem

Now we shall set the variability analysis of Section 3.1 in the framework of statistical and
computational tradeoff. Assuming that both statistical estimator and GA configurations
are fixed, we try to optimally balance statistical accuracy and GA efficiency.

If we consider estimators having the property of consistency, then statistical accuracy
can be naturally represented by sample sizen, because ifn increases then also estimator pre-
cision increases (and, in contrast, variability decreases), under some regularity conditions
(see [31, p.470], in the case of Maximum Likelihood Estimators).

As far as GA efficiency is concerned, we refer to Rudolph theoremof convergence. Infor-
mally, a GA converges when g tends to infinity, but it is worth noting that in every GA
generation each of the N chromosomes in the population is evaluated on the basis of fit-
ness function. Therefore, instead of considering the number of generations, we represent
GA efficiency by the number of fitness function evaluationsV, also because it is usually the
most computationally expensive step.

We shall study the behaviour of tr(�S) and tr(�GA) when, respectively, n → ∞ and
V → ∞. Let us introduce two functions f (n) and h(V) for which, respectively, f (n) → ∞
when n → ∞ and h(V) → ∞whenV → ∞. If we employ a consistent estimator and the
assumptions of Rudolph theorem are fulfilled, then we can write tr(�S) = O([f (n)]−1)
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and tr(�GA) = O([h(V)]−1). In that case:

tr(�TOT) = tr(WS)
1

f (n)
+ tr(WGA)

1
h(V)

, (4)

where matrices WS and WGA are constant with respect to n and V, and depend, respec-
tively, from the statistical model and from the GA. However it is plausible that the sample
size n has an effect onWGA, because e.g. if n is large and the estimator is consistent, then
the estimating function (e.g. the likelihood) is less variable around the optimum, so the
related fitness function is easier to optimize. For this reason we shall let τ depend on sam-
ple size in the fitness scaling procedure (1), a choice which could also be adopted in other
model building problems. Simulation studies showed us that adopting the choice τ = n
allows to decisively restrict the effect of n on behaviour of the algorithm. Thus we shall
employ this strategy so that we describe the total variability of aGA estimate by considering
decomposition (4).

The statistical and computational tradeoff question will now be analyzed by introducing
some cost functions: S(n) is related to the cost of collecting a sample of n observations,T(n)
indicates the computational cost of one fitness function evaluation, which depends on the
number of observations aswell, because a solution is evaluated by analyzing the full sample.
Hence the total cost C of obtaining an estimate θ∗(y) using n statistical observations and
V fitness function evaluations is given by: C = S(n)+ VT(n). If total cost C is fixed and
functions S(·) and T(·) are specified, we can write the tradeoff question as an optimization
problem: ⎧⎪⎨

⎪⎩
min
n,V

tr(�TOT) = tr(WS)
1

f (n) + tr(WGA)
1

h(V)

s.t.
S(n)+ VT(n) = C

⎫⎪⎬
⎪⎭ .

Therefore, in this framework we aim at minimizing the total variance–covariance matrix,
which depends on intrinsic statistical and computational components. These latter, repre-
sented by tr(WS), tr(WGA), f (·) and h(·), can be estimated if a known form is not available
(details will be given in the following sections). Afterwards we search for optimal n and V
minimizing tr(�TOT), given the constraint on total cost.

A particular case that simplifies the analysis is the assumption of linearity in n for cost
functions T and S. This is reasonable because statistical observations are usually collected
in sequence and if GAfitness function includes a summation over the observations. In such
a case T(n) = nT, S(n) = nS and we can incorporate the cost constraint into the objective
function obtaining:

min
n

tr(�TOT) = tr(WS)
1

f (n)
+ tr(WGA)

1
h([C − nS]/nT)

. (5)

The optimal solution ñ can be found by minimizing numerically (5) conditionally on the
form of consistency and convergence rates f (·) and h(·). Ṽ is obtained by constraint:

Ṽ = C − ñS
ñT

. (6)

A particular case which allows to obtain a simple closed form expression for optimal n is
obtained when f (n) = n and h(V) = V . In that case, computing the derivative of objective
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function with respect to n, we obtain solutions:

ñ = −SC tr(WS)± C
√
CT tr(WS)tr(WGA)

CT tr(WGA)− S2 tr(WS)
. (7)

Since n is natural we are interested in the positive solution of (7).

3.3. Consistency and convergence rates

Functions f (n) and h(V) introduced in the previous subsection specify, respectively,
consistency rate of the statistical part and the convergence rate of algorithmic part in
Equation (4). The assumption of linearity is a particular case that simplifies the tradeoff
analysis. It is satisfied if we consider asymptotically efficient estimators: in that case, under
some regularity conditions, f (n) = n (see [31, p.472], in the case of Maximum Likelihood
Estimators).

On the other side, the behaviour of h(V) is related to GA convergence rate. This is an
essential issue for any optimization algorithm, and in the field of EAs it has been analyzed
in several ways. A part of literature focuses on comparing EAs with different configu-
rations and searching for the scenario which optimizes convergence time [29,32]; other
researchers have developed more rigorous approaches, focusing on the convergence rate
of single chromosome bits, limited to classic problems likeOneMax [33,34]; a different pro-
posal, inspired by statistical mechanics, studies GA behaviour by modeling it as a complex
system and summarizing its probability distribution through generations by considering
the cumulants [35–37]. In such a way GA convergence can be evaluated by considering the
limiting cumulants.

Recently, Clerc [38, p.69] proposed a theoretical framework for analyzing optimization
performances. For a general stochastic algorithm (deterministic algorithms are considered
a particular case of this class) he introduced a bivariate probability density p(ψ , r), called
Eff-Res, that is function of both optimization result r and computational effort ψ , spent for
obtaining r. By analyzing this function it is possible to deepen different useful questions: for
a given result r, the probability of obtaining r with a generic effort ψ ; for a given effort ψ ,
the probability of obtaining a generic result r. Our interest is focused on the latter question,
because if we fix a computational effort related to number of fitness evaluations, we are
interested in how the result r varies. The theoretical variance of results for fixed effort can
be written as:

σ 2(ψ) = μ(ψ)

∫
R̃
(r − r̄(ψ))2p(ψ , r) dr, (8)

where R̃ is the set of possible results, r̄(ψ) the theoretical mean result for fixed effort and
μ(ψ) the normalization coefficient of p(ψ , r). Expression (8) can be evaluated empirically:
conditioning on J observed results r(1), r(2), . . . , r(J), obtainedwith effortψ , the estimated
variance is given by:

σ̂ 2(ψ) = 1
J − 1

J∑
j=1

[r(j)− r̄J(ψ)]2, (9)

where r̄J(ψ) is the empirical mean of results.
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In our method we shall employ a similar approach for evaluating GA variability. As far
as we are interested in convergence of θ∗

i to the optimum θ̂i (i = 1, . . . , k), then in both (8)
and (9) we plug θ̂i in place of theoretical and empirical means, and θ∗

i in place of results.
In that case (8) corresponds to variance σ ∗

ii = EGA[(θ∗
i − θ̂i)

2] in matrix�GA. If we run a
GA J times, obtaining θ∗

1,i, θ
∗
2,i, . . . , θ

∗
J,i (i = 1, . . . , k), then we get the estimates by:

σ̂ ∗
ii = 1

J

J∑
j=1

[θ∗
j,i − θ̂i]2, i = 1, . . . , k. (10)

The latter gives information on generic GA result θ∗
i . As long as we are studying the

behaviour of algorithm when the number of generations increases, we shall specify an
expression such as (10) for each generation g. That is, we obtain the sequence of variances,
given a fixed maximum number of generations G:

σ̂ ∗(g) = (σ̂
∗(g)
11 , σ̂ ∗(g)

22 , . . . , σ̂ ∗(g)
kk ), g = 1, . . . ,G. (11)

In order to study GA convergence rate we shall conduct the following regression analysis
for each parameter indexed by i:

σ̂
∗(g)
ii = wGA,i

1
[V(g)]a

+ εg , g = 1, . . . ,G, (12)

where [V(g)]a is the a-th power of the number of fitness evaluations up to generation g
andwGA,i is the regression parameter. In principle each parameter θi could have a different
convergence rate, but the GA evolves each component in a similar way and with identical
operators. Thus, we consider a uniform convergence rate as a reasonable approximation,
and we shall refer to a unique a for which [V(g)]a is assumed to be the GA convergence
rate h(V) for all components θi, i = 1, . . . , k. In that case wGA,i will become part of matrix
WGA in (4).

4. Applications

Wewill now illustrate the proposed method with somemodel building problem examples:
we propose a Least Absolute Deviation Regression estimation (code LAD), a selection of
Autoregressive model building problems (code AR) and a g-and-k distribution maximum
likelihood estimation (code gk). In the following subsections we shall separately describe
these problems, discussing also motivations on choice of estimators and use of GAs. Then
we will present results related to variability estimates and the tradeoff analysis.

General indications onGA implementation are given in Section 2.2, and in the following
we will outline the specific issues for each problem. As far as GA operators are concerned,
we fixed crossover and mutation rates at, respectively, 0.7 and 0.1, maximum number of
generations G at 1400 and population size N at 50. If not otherwise specified the initial
populationwas generated uniformly at random. These configurations have been chosen on
the basis of empirical studies for guaranteeing stability and convergence of the procedure.
Software R [39] was used for all simulations and computations, along with package gk [40]
for the last application.
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4.1. LAD

LAD regression is an alternative to Ordinary Least Squares regression, proven to be more
robust to outliers [41, p.52]. In this framework the estimator, which is asymptotically effi-
cient [41, p.44], is the function that minimizes the sum of absolute values of errors. This
function is neither differentiable nor convex, so numerical methods must be employed to
find an optimal solution. Zhou and Wang [42] have already employed a real valued GA to
estimate the parameters of a LAD regression with censored data. In this paper we consider
a standard linear regression model:

yi = β0 + β1xi,1 + β2xi,2 + εi, i = 1, . . . , n,

where (y, x) is the observed dataset. The errors are not Gaussian, but distributed according
to a heavy-tailed Student’s t distribution with five degrees of freedom.

As far as our goal is maximization, then fitness function shall be:

f (β) = exp

{
−

n∑
i=1

∣∣yi − β0 − β1xi,1 − β2xi,2
∣∣ /n

}
.

Each chromosome length shall be M=24 and coding interval boundaries will be [−2, 2]
for all parameters. The parameters are encoded into 256 equispaced values between −2
and 2, and the difference between two consecutive values is about 0.015, that we consider
sufficiently small. The parameter vector used in the simulations is β = (0.5, 0.5,−0.5).

4.2. AR

GAs have been widely applied in the field of time series analysis [22, p.85]. In fact related
parameters estimation and model identification problems may not be straightforward due
to the intractability of objective functions or to the size of search spaces. The latter question
is common in model identification problems, and it has been studied also for standard
ARMA models [43,44]. Here we address the problem of how to simultaneously identify
and estimate subset AR models, given a fixed maximum order.

The general equation of an AR model of order p is:

Yt = φ1Yt−1 + · · · + φpYt−p + εt , (13)

where Yt is a zero mean random process, εt a Gaussian white noise and φ = (φ1, . . . ,φp)
the parameter vector, where some components may be constrained to zero.

Model (13) is usually identified by minimizing penalized likelihood criteria like AIC or
BIC. In this work we shall consider BIC, because of its property of consistency [45]:

BIC(φ; y) = n log σ̂ 2(p)+ k log n, (14)

where y is the observed time series, σ̂ 2(p) = ∑n
i=1(yt − φ1yt−1 − · · · − φpyt−p)

2/n and
k ≤ p is the number of unconstrained parameters in themodel. Sampling variability will be
estimated on the basis of asymptotic efficiency property ofARmodelsmaximum likelihood
estimator [46, p.386].
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Wewill consider a eight-dimensional parameter solution space, so thatARmodels up to
order p=8 can be identified and estimated by the procedure. A selection of four generating
processes will be analyzed:

• ARA: φ1 = 0.8,φ2 = φ3 = · · · = φ8 = 0
• ARB: φ1 = 0.7,φ2 = −0.1,φ3 = φ4 = · · · = φ8 = 0
• ARC: φ1 = 0.8,φ2 = 0,φ3 = −0.1,φ4 = φ5 = · · · = φ8 = 0
• ARD: φ1 = 0.6,φ2 = −0.1,φ3 = φ4 = · · · = φ8 = 0

Chromosome length shall beM=64 (8 genes for each parameter), and coding will nec-
essarily include the case of generic parameter φi = 0 equal to zero, having a crucial impact
on penalization term of (14). The chosen grid is similar to the LAD case. In order to facil-
itate the identification of subset models we shall force the starting population to include a
chromosome representing a white noise (all parameters are zero), and also eight chromo-
somes for which one of the parameters is zero, so that all φi = 0 (i = 1, . . . , 8) cases are
represented. The remaining chromosomes will be generated uniformly at random, coher-
ently with other applications. This may be a reasonable strategy in a situation of lack of
prior knowledge.

Fitness function shall be:

f (φ) = exp{−BIC(φ; y)/n},

and coding interval will be [−2, 2] for each φi.

4.3. gk

The g-and-k distribution was introduced by Haynes et al. [47], as a family of distributions
specified by a quantile function. It is a very flexible tool which has been applied to statisti-
cal control charts techniques [48] and non-life insurance modelling [49]. For a univariate
random sample x = (x1, . . . , xn) the quantile function is:

QX(ui |A,B, g, k) = A + Bzui

(
1 + c

1 − e−gzui

1 + e−gzui

)
(1 + z2ui)

k, i = 1, . . . , n,

where zui is the ui-th quantile of standard normal distribution,A andB>0 are location and
scale parameters, gmeasures skewness in the distribution, k>−0.5 is ameasure of kurtosis
and c is a constant introduced to make the distribution proper. By combining values of the
four parameters several essential distributions like Normal, Student’s t or Chi-square can
be derived.

Maximum Likelihood estimation of this distribution is a kind of so-called intractable
likelihood problem. The expression of likelihood is given by:

L(θ | x) =
( n∏
i=1

Q′
X(Q

−1
X (xi | θ) | θ)

)−1

, (15)

where x is the observed sample, θ = (A,B, g, k) and Q′
X(u | θ) = ∂QX/∂u.
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The main difficulty in computing (15) is the lack of a closed form for expression
Q−1
X (xi | θ), that must be obtained numerically, for example with Brent’s method.
A lot of research on g-and-k distributions estimation has been made in a Bayesian

framework, using Markov Chain Monte Carlo [50] or indirect inference methods like
Approximate Bayesian Computation [51,52].

In this paper we shall follow the pure likelihood approach proposed by Rayner and
MacGillivray [53]. In this situation a numerical procedure must be selected to maxi-
mize (15). They proposed a Nelder–Mead simplex algorithm, reporting some limitations,
related also to the need of using several starting points. In the final discussion they
also observed that metaheuristic methods like GAs could be more successful in this
optimization problem.

In our GA approach we shall consider the fitness:

f (θ) = exp{log L(θ | x)/}.

We will simulate data using the typical parameters generator vector θ = (A,B, g, k) =
(3, 1, 2, 0.5), with c=0.8, that leads to an ‘interesting far-from-normal distribution’ [51,
p.192].

Each chromosome will have length M=28, and coding interval boundaries shall be:
A ∈ [−10, 10], B ∈ [0, 10], g ∈ [−10, 10] and k ∈ [−0.5, 10]. In this case the grid includes
128 equispaced values for each parameter. If a decoded chromosomeprovides unacceptable
values B=0 or k=−0.5 then it is rejected and regenerated.

Concerning sampling variability, Rayner andMacGillivray [53] investigated the approx-
imation of maximum likelihood estimator variability by Cramer–Rao variance bound,
which is of order O(n−1). In estimating sampling variability we shall allow for this
asymptotic approximation of�S.

4.4. Results

4.4.1. Variability analysis
Sampling and algorithmic variabilities were estimated by simulation for each experiment,
using data of length n=200 generated according to parameters specified in previous
subsections.

We considered asymptotically efficient estimators, for which f (n) = n in formula (4).
We then estimated variability of estimators using 10,000 samples; the mean squared devi-
ations of estimates obtained by software optimization routines from the true parameters
allowed us to get a quantification ofWS in (4).

On the other side, GA variability has been estimated using 10 datasets. For each sample
we computed variance estimates using J=500GA runs as shown in formulas (10) and (11);
then we considered point by point average of these estimates with respect to g, obtaining
final estimates for regression analysis (12).

This latter has been conducted for the experiments with a = 1/3, 1/2, 1, 2: goodness of
fit results (R2 coefficients) are summarized in Table 1 for experiments LAD and gk, and in
Table 2 for experiments concerning AR. In the latter case we did not include the results for
a=2, because they showed a uniformly worse behaviour with respect to the other cases.



3092 M. RIZZO AND F. BATTAGLIA

Table 1. R2 coefficient values related to four different regression analysis conducted on the parameters
of experiments LAD and gk, in order to estimate the convergence rate of�GA.

Experiment Parameter a = 1/3 a = 1/2 a= 1 a= 2

LAD β0 0.1883 0.4781 0.9775 0.7247
β1 0.1943 0.4835 0.9792 0.7298
β2 0.1910 0.4790 0.9763 0.7250

gk A 0.3538 0.6635 0.9525 0.6370
B 0.2060 0.4949 0.9179 0.5984
g 0.2722 0.5883 0.7585 0.3511
k 0.1268 0.3563 0.9548 0.9071

Table 2. �GA convergence rate estimates for experiments AR.

Parameter ARA ARB ARC ARD

φ1 (0.84,0.95,0.91) (0.92,0.99,0.83) (0.91,0.98,0.85) (0.90,0.97,0.86)
φ2 (0.91,0.98,0.83) (0.99,0.99,0.67) (0.98,0.99,0.68) (0.99,0.95,0.55)
φ3 (0.91,0.98,0.82) (0.98,0.98,0.66) (0.99,0.92,0.51) (0.97,0.97,0.64)
φ4 (0.89,0.97,0.85) (0.96,0.99,0.73) (0.99,0.96,0.57) (0.95,0.98,0.71)
φ5 (0.88,0.97,0.85) (0.94,0.99,0.74) (0.96,0.98,0.69) (0.99,0.98,0.63)
φ6 (0.87,0.97,0.86) (0.89,0.97,0.80) (0.93,0.98,0.75) (0.91,0.97,0.77)
φ7 (0.85,0.95,0.88) (0.93,0.98,0.75) (0.93,0.98,0.77) (0.95,0.99,0.72)
φ8 (0.85,0.95,0.89) (0.98,0.99,0.68) (0.91,0.98,0.80) (0.99,0.97,0.62)

Note: R2 coefficient values are reported in parenthesis with respect to the convergence rate as follows: (a = 1/3,
a = 1/2, a = 1).

Figure 1. Observed (thick line) and estimated (dashed line) GA variability for parameter β1 of LAD
experiment (wGA = 7.9, R2 = 0.97).

Concerning LAD and gk the best fits are observed for a=1 (as an example, Figure 1
shows the fit for parameter β2 of LAD experiment), while a = 1/2 rate is generally dom-
inant for the AR experiments. In these latter the values of tr(WS) and tr(WGA) have been
estimated at, respectively, 12.26 and 17.74 forARA, 11.39 and 7.87 forARB, 12.34 and 17.89
for ARC, 10.59 and 5.46 for ARD. This can suggest that the complexity may be closely
related to the value of the largest parameter, because variability values decrease with φ1,
and because ARA and ARC show a similar behaviour. We shall perform the tradeoff anal-
ysis in the next subsection considering only experiment ARA (hereinafter referred to as
AR).

Table 3 reports the results on estimates of tr(WS) and tr(WGA) for the three applications,
obtainedwith a linear convergence rate forLAD and gk, andwith a square root convergence
rate for AR.
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Table 3. Sampling and GA variability compo-
nents estimates.

Experiment tr(WS) tr(WGA)

LAD 5.38 23.18
AR 12.26 17.74
gk 103.39 3897.25
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Figure 2. Behaviour of optimal n for experiment LAD.

2000 500

50

1
S

T
10002

100n

15003

150

Figure 3. Behaviour of optimal n for experiment AR.
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Figure 4. Behaviour of optimal n for experiment gk.

4.4.2. Tradeoff
The tradeoff will be discussed for the three applications by evaluating optimal sample size
ñ, minimizing tr(�TOT) under the costs constraint. We will assume a fixed total cost C =
105 and a grid of values for linear cost functions S (sampling) and T (computational), in
order to study the effect of costs on optimal allocation. Comments on Ṽ can be derived by
complement. We shall make some remarks also for the case in which computational cost T
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Figure 5. Optimal sample size with fixed estimated computational cost.

is estimated with time (in seconds) needed in our computer to evaluate fitness in the three
experiment, using gk as corner point. In this way we can make more realistic comparative
comments.

Figure 2 shows the behaviour of optimal n (on vertical axis) for LAD with respect to
a grid of values for cost functions S and T. It obviously increases to large values as costs
S and T decrease, and rapidly decreases as they increase. Figure 3 shows the analogous
plot for AR. This experiment has a slower GA convergence rate with respect to LAD and
gk, possibly because of the effect of model identification in the fitness (e.g. estimating a φi
value slightly different from zeromay imply a slight decrease of the residual sum of squares
but k is one unit larger in (14)). For this reason values of optimal n are generally lower than
LAD. Perspective plot for gk (Figure 4) shows a similar behaviour of optimal nwith respect
to AR, because even if in this case there is a linear GA convergence rate, the experiment is
more complex (tr(WGA)/tr(WS) ratio is much larger).

Lastly we shall make some comments on the behaviour of ñwhen sampling cost S varies
and fitness evaluation cost T is estimated in each experiment by elapsed execution time (in
seconds) of our computer for single fitness evaluation, taking gk as corner point. Results are:
TLAD/Tgk = 0.007 and TAR/Tgk = 0.101. Figure 5 shows the behaviour of ñ in this more
realistic scenario, where each computational cost ratio has been multiplied by a constant
to highlight the behaviour of each experiment. In this case the three curves are ranked
with respect to computational cost and experiment complexity, that is related on both GA
convergence rate and variability ratio tr(WGA)/tr(WS) magnitude. gk experiment shows
lowest values of ñ, but when S increases the three experiments tend to conform to common
values, suggesting that a large sampling cost could have a larger influence in the tradeoff
than model complexity.

5. Discussion

In this paper we considered parametric estimation problems involving GAs, for which we
proposed a theoretical framework for analyzing variability of results. In this context we
studied the effect of statistical and computational elements of the estimation process on
variability. Then we introduced some cost functions related to both data acquisition and
algorithm performance in order to specify a statistical and computational tradeoff analy-
sis. Lastly we illustrated the proposed framework on three model building examples, for
gaining some insights on optimal allocation of resources. Results of applications showed
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how the behaviour of optimal sample size changes with complexity of experiment. A com-
parative analysis of the three experiments in which computational cost was estimated also
suggested that large sampling cost could have a greater influence on optimal values than
model complexity.

The present study could be improved by considering other scalar summaries of statis-
tical and computational variability. For example the determinant of �S and �GA could be
more appropriate than trace. An other direction for further research is to generalize this
framework to other statistical problems in which GAs are involved. In fact there are many
complex optimization problems in the statistical field, and understanding variability and
tradeoff more in deep could facilitate the integration of GAs among standard statistical
methods. Lastly, the discussion of statistical and computational tradeoff could be extended
also to estimation problems inwhich other nature-inspired algorithms for continuous opti-
mization are employed, like differential evolution (DE) [54] or particle swarm optimization
(PSO) [55], for which there is direct real coding. In fact the specific stochastic elements
in these algorithms, for example the differential mutation in DE or the parameter regu-
lating particle velocity in PSO, could provide different convergence rates of algorithmic
variability.
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