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1. Introduction

A dominating set of an undirected graph G = (V , E) is a set of vertices S ⊆ V such that all vertices outside of S have 
a neighbour in S . The problem of finding the smallest dominating set of a given graph is one of the most widely studied 
problems in computational complexity. In this paper, we focus on a related problem that “flips” the optimisation objective. 
In Upper Domination we are given a graph and we are asked to find a maximum cardinality dominating set that is still 
minimal. A dominating set is minimal if any proper subset of it is no longer dominating, that is, if it does not contain 
obviously redundant vertices.

The study of MaxMin or MinMax versions of a problem by “flipping” the objective is not a new idea; in fact, such 
questions have been posed before for many classical optimisation problems. Some of the most well-known examples are 
the Minimum Maximal Independent Set problem [14,13,30,35] (also known as Minimum Independent Dominating Set), the
Maximum Minimal Vertex Cover problem [11,45] and the Lazy Bureaucrat problem [4,8], which is a MinMax version of
Knapsack. The initial motivation for this type of question was rather straightforward: most classical optimisation problems 
admit an easy, naive heuristic algorithm which starts with a trivial solution and then gradually tries to improve it in an 
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obvious way until it gets stuck. For example, one can produce a (maximal) independent set of a graph by starting with a 
single vertex and then adding vertices to the current solution while maintaining an independent set. What can we say about 
the worst-case performance of such a basic algorithm? Motivated by this initial question the study of MaxMin and MinMax 
versions of standard optimisation problems has gradually grown into a sub-field with its own interest, often revealing new 
insights into the structure of the original problems. Upper Domination is a natural example of this family of problems and 
is also one of the six problems from the so-called domination chain (see [32] and Section 2), on which somewhat fewer 
results are currently known. The goal of this paper is to increase our understanding of this problem by investigating it from 
the different perspectives of approximability and classical and parameterised complexity.

1.1. Summary of results

We first link minimal dominating sets to a decomposition of the vertex set which turns out to be a useful tool throughout 
the whole paper.

From a classical complexity point of view, we show that Upper Domination is NP-hard on planar cubic graphs. Since 
the problem is easy on graphs of maximum degree 2, our results completely characterise the complexity of the problem in 
terms of maximum degree. Given the general behaviour of this type of problem, and the above results on Upper Domination

in particular, the questions remains why are such problems typically so much harder than their original versions. Consider 
in this context the following extension problem: Given a graph G = (V , E) and a set S ⊆ V , does there exist a minimal 
dominating set of any size that contains S? Even though questions of this type are typically trivial for problems such as
Independent Set, we show that this kind of extension problem for Upper Domination is NP-hard even for planar cubic 
graphs. This helps explain the added difficulty of this problem, and more generally of problems of this type, since any 
natural algorithm that gradually builds a solution would have to contend with (some version of) this extension problem. On 
the positive side, we derive an exact O ∗(1.348n)-algorithm for subcubic graphs which builds on the decomposition derived 
in Section 2.

From the approximation perspective, we find that while Dominating Set admits a greedy ln n approximation, Upper 
Domination does not admit an n1−ε approximation for any ε > 0, unless P = NP. We also show that Upper Domination

remains APX-hard on cubic graphs and complement these negative results by giving some approximation algorithms for the 
problem in restricted cases. Specifically, we show an O (�)-approximation on graphs with maximum degree �, as well as 
an EPTAS on planar graphs.

From a parameterised point of view, we show that Upper Domination is W[1]-hard with respect to standard parameteri-
sation (i.e. parameter k = �(G), where �(G) denotes the upper domination number). Conversely, Co-Upper Domination (i.e.
Upper Domination with parameterisation � = n −k), is shown to be in FPT, which we prove by providing both a kernelisation 
and a branching algorithm.

2. Preliminaries and combinatorial bounds

We only deal with undirected simple connected graphs G = (V , E). The number of vertices n = |V | is known as the 
order of G . As usual, N(v) denotes the open neighbourhood of v , and N[v] is the closed neighbourhood of v , i.e., N[v] =
N(v) ∪ {v}, which easily extends to vertex sets X , i.e., N(X) = ⋃

x∈X N(x) and N[X] = N(X) ∪ X . The cardinality of N(v)

is known as the degree of v , denoted as deg(v). The maximum degree in a graph is written as �. A graph of maximum 
degree 3 is called subcubic, and if all degrees equal 3, it is called cubic. In the area of parameterised and exact exponential 
algorithms, it has become customary not only to suppress constants (as in the O notation), but also polynomial-factors, 
leading to the so-called O ∗-notation.

Given a graph G = (V , E), a subset S of V is a dominating set if every vertex v ∈ V \ S has at least one neighbour in 
S , i.e., if N[S] = V . A dominating set is minimal if no proper subset of it is a dominating set. Likewise, a vertex set I is 
independent if N(I) ∩ I = ∅. An independent set is maximal if no proper superset is independent. In the following we use 
classical notations: γ (G) and �(G) are the minimum and maximum cardinalities over all minimal dominating sets in G , 
α(G) and i(G) are the maximum and minimum cardinalities over all maximal independent sets, and τ (G) is the size of a 
minimum vertex cover, which equals |V | − α(G) by Gallai’s identity. A minimal dominating set D of G with |D| = �(G) is 
also known as an upper dominating set of G , and �(G) is also called the upper domination number.

For any subset S ⊆ V and v ∈ V we define the private neighbourhood of v with respect to S as pn(v, S) := N[v] \ N[S \
{v}]. Any w ∈ pn(v, S) is called a private neighbour of v with respect to S . A set S is called irredundant if every vertex in it 
has at least one private neighbour, i.e., if |pn(v, S)| > 0 for every v ∈ S . The cardinality of the largest irredundant set in G
is denoted by IR(G), while ir(G) denotes the cardinality of the smallest maximal irredundant set in G . We can now observe 
the validity of the well-known domination chain:

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G)

The domination chain is largely due to the following two combinatorial properties: (1) Every maximal independent set is a 
minimal dominating set. (2) A dominating set S ⊆ V is minimal if and only if |pn(v, S)| > 0 for every v ∈ S . Observe that 
v can be a private neighbour of itself, i.e., a dominating set is minimal if and only if it is also an irredundant set. Actually, 
every minimal dominating set is also a maximal irredundant set.
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Fig. 1. Illustration of the FIPO structure imposed by minimal dominating sets.

Fig. 2. Differences between Minimum, (F , I, P , O )-, Upper and Upper Total Domination.

The following exposition is crucial for the development of the algorithms we derive in this paper and also for the 
general investigation of properties of minimal dominating sets. Any minimal dominating set D for a graph G = (V , E) can 
be associated with a partition of the set of V into four sets F , I, P , O given by: I := {v ∈ D : v ∈ pn(v, D)}, F := D \ I , 
P ∈ {B ⊆ N(F ) \ D : |pn(v, D) ∩ B| = 1 for all v ∈ F } and O  := V \ (D ∪ P ), see Fig. 1. This representation is not necessarily 
unique since there might be different choices for the sets P and O , but for every partition of this kind, the following 
properties hold:

1. Every vertex v ∈ F has at least one neighbour in F , called a friend.
2. The set I is an independent set in G .
3. The subgraph induced by the vertices F ∪ P has an edge cut set separating F and P that is a perfect matching; hence, 

P can serve as the set of private neighbours for F .
4. The neighbourhood of a vertex in I is always a subset of O . As the vertices in O can be deleted from the graph without 

changing the property of D being a minimal dominating set, they are called outsiders.

This partition is also related to a different characterisation of �(G) in terms of so-called upper perfect neighbour-
hoods [32]. Observe two important special cases: If F = ∅, then I is an independent dominating set. If I = ∅, then F is 
a minimal total dominating set, i.e., a set S ⊆ V such that V = N(S) and N(S ′) 
= V for all S ′ ⊂ S; both classical variations 
of domination in graphs (see [32]). Observe that finding a maximum cardinality minimal dominating set for which I = ∅
holds in an (F , I, P , O ) partitioning (called (F , P , O )-Domination set in the following) is not equivalent to the problem Up-

per Total Domination, which asks for a maximum cardinality minimal total dominating set. Fig. 2 illustrates the differences 
between optimal solutions (illustrated by the black vertices) for Minimum, (F , P , O )-, Upper and Upper Total Domination.

Lemma 1. For any graph G and any upper dominating set D for G with an associated partition (F , I, P , O ), if |D| = �(G) > α(G)

then |I| ≤ α(G) − 2.

Proof. Let D be an upper dominating set for a graph G with an associated partition (F , I, P , O ). First observe that if �(G) >
α(G) then |F | ≥ 2. Indeed, if |F | = 0, then the upper dominating set is also an independent set, and thus �(G) = α(G), and 
according to our definition of partition (F , I, P , O ), we have |F | 
= 1 (see Property 1 of this partition). Now, if |F | ≥ 2 then 
the subgraph of G induced by F ∪ P contains an independent set of size 2 consisting of a vertex in F , say v , and a vertex 
in P , say u, such that v and u are not adjacent. Since in the original graph G , there are no edges between the vertices in 
I and the vertices in F ∪ P (Property 4), I ∪ {u, v} forms an independent set of size |I| + 2. This sets a lower bound on the 
independence number and we have α(G) ≥ |I| + 2, that is, |I| ≤ α(G) − 2. �
Lemma 2. For any graph G we have:

α(G) ≤ �(G) ≤ max

{
α(G),

n

2
+ α(G)

2
− 1

}
. (1)

Proof. We consider a graph G with upper dominating set D with an associated partition (F , I, P , O ). The left inequality 
comes from the fact that any maximal independent set is a minimal dominating set. For the right inequality, we examine 
separately the following two cases.

1. �(G) = α(G). Then we trivially have �(G) ≤ α(G).
2. �(G) > α(G).

From |F | = |P | (Property 3) we have |F | = 1 (n − |I| − |O |) ≤
⌊

n−|I|⌋ and thus
2 2
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�(G) = |F | + |I| ≤
⌊

n + |I|
2

⌋
.

From the above and Lemma 1 we have

�(G) ≤
⌊

n + |I|
2

⌋
≤

⌊
n + α(G) − 2

2

⌋
≤ n

2
+ α(G)

2
− 1 .

This concludes the proof of the claim. �
Lemma 3. For any graph G of minimum degree δ and maximum degree �, we have:

α(G) ≤ �(G) ≤ max

{
α(G),

n

2
+ α(G)(� − δ)

2�
− � − δ

�

}
. (2)

Proof. Let G be a graph of maximum degree �, minimum degree δ and let D be an upper dominating set for G with 
an associated partition (F , I, P , O ). Our argument is similar to the one in Lemma 2: The left inequality comes from the 
fact that any maximal independent set is a minimal dominating set. For the right inequality, we examine separately the 
following two cases.

1. �(G) = α(G). Then we trivially have �(G) ≤ α(G).
2. �(G) > α(G). Again, we obtain:

�(G) = |F | + |I| = n + |I| − |O |
2

.

We next derive an improved lower bound on |O |. Let e be the number of edges adjacent to vertices from I . As G is of 
minimum degree δ, we have e ≥ δ|I|. As the vertices in I are only adjacent to vertices in O , there are at least e edges 
that have exactly one end vertex in O . Since G has maximum degree �, we have that |O | ≥ ⌈ e

�

⌉≥
⌈

δ|I|
�

⌉
.

From the above and Lemma 1 we have

�(G) ≤
⎢⎢⎢⎣n + |I| −

⌈
δ|I|
�

⌉
2

⎥⎥⎥⎦ ≤ n + |I| − δ|I|
�

2
= n + (�−δ)|I|

�

2

≤ n + (�−δ)
�

(α(G) − 2)

2
= n

2
+ � − δ

2�
α(G) − � − δ

�
. �

Note that Lemma 3 generalises the earlier result of Henning and Slater on upper bounds on IR(G) (and hence on �(G)) 
for �-regular graphs G [33]. Observe also that all bounds derived in this section are also valid for the upper irredundance 
number IR(G) instead of �(G).

3. Classical complexity

In this section, we strengthen the known NP-hardness result for Upper Domination and consider exact algorithms for 
graphs of bounded path- and treewidth. We further discuss the problem of computing minimal dominating sets with a 
different perspective by considering the problem of extending partial solutions. Throughout this section, we consider Upper 
Domination as the following classical decision problem:

Upper Domination

Input: A graph G = (V , E), integer k.
Question: Is �(G) ≥ k?

It has long been known that Upper Domination is NP-complete in general [19], and even for graphs of maximum de-
gree 6 [1]. Some polynomial-time solvable graph classes are also known. This is mainly due to the fact that on certain graph 
classes (like bipartite graphs) the independence number and upper domination number coincide and for those graph classes, 
the independence number can be computed in polynomial-time. In particular, Upper Domination is polynomial for bipartite 
graphs [20], chordal graphs [37], generalised series-parallel graphs [31] and graphs with bounded clique-width [21]. We 
refer to the textbook on domination [32] for further details. Recently, the complexity of Upper Domination in monogenic 
graph classes (i.e., classes of graphs defined by a single forbidden induced subgraph) has led to a complexity dichotomy: 
if the unique forbidden induced subgraph is a P4 or a 2K2 (or an induced subgraph of these), then Upper Domination is 
polynomial; otherwise, it is NP-complete [1].
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3.1. Hardness on cubic planar graphs

Upper Domination is known to be NP-hard on planar graphs of maximum degree 6 [1]. We strengthen this result to 
maximum degree 3. Given that Upper Domination is trivial for graphs of maximum degree 2, this result hence completely 
characterises the classical complexity of Upper Domination with respect to maximum degree.

Theorem 4. Upper Domination is NP-hard on cubic planar graphs.

Proof. We present a reduction from Maximum Independent Set restricted to cubic planar graphs, which is known remain 
NP-hard [29]. Let G = (V , E) be a cubic planar input graph for Maximum Independent Set. Construct a subcubic planar 
graph G ′ from G by adding for every (u, v) ∈ E six new vertices uv , u1

v , u2
v , vu, v1

u, v2
u and replacing the edge (u, v) by the 

graph illustrated below.
We claim that there exists an independent set of cardinality k for G if and only if there exists an upper dominating set 

of cardinality at least k + 3|E| for G ′ . If I S is an independent set of cardinality k for G , the corresponding vertex-set in G ′
can be extended to an upper dominating set S of cardinality at least k + 3|E| in the following way: For every edge (u, v)

with v /∈ I S add {vu, u1
v , u2

v} to S . Since I S is independent, this procedure chooses three vertices for each edge-gadget in G ′
and creates an independent set S of cardinality |I S| + 3|E|. If some vertex is not dominated by S we add it to S and finally 
arrive at a maximal independent and consequently minimal dominating set.

u uv

u1
v

u2
v

v1
u

v2
u

vu v

Let S be an upper dominating set of cardinality k + 3|E| for G ′ . We claim that for every edge (u, v) ∈ E at most three of 
the vertices uv , u1

v , u2
v , vu, v1

u, v2
u can be in S . First, observe that u1

v , v1
u ∈ S is impossible because S has to contain a vertex 

from N[v2
u] = {vu, v2

u, u2
v} in order to dominate v2

u and hence either u1
v or v1

u has no private neighbour. Also, uv and vu
together already dominate all vertices added for the edge (u, v), hence a minimal dominating set contains three vertices 
from {uv , u1

v , u2
v , vu, v1

u, v2
u} if it contains exactly one vertex from each of the sets {uv , vu}, {u1

v , v1
u} and {u2

v , v2
u}. Now, if 

u, v ∈ S for some edge (u, v), then S contains at most two vertices from {uv , u1
v , u2

v , vu, v1
u, v2

u}; observe that if uv ∈ S (or 
vu ∈ S), minimality requires either u1

v or u2
v to be a private neighbour for uv and hence {uh

v , vh
u} ∩ S = ∅ for either h = 1 or 

h = 2. Consider S ′ = S ∩ V as potential independent set for the original graph G . If there are two vertices u, v ∈ S ′ such that 
(u, v) ∈ E , the set S can only contain two vertices from the edge-gadget corresponding to (u, v). By successively deleting 
vertices from S ′ as long as there is a conflict with respect to independence, we arrive at an independent set of cardinality 
at least |S| − 3|E| ≥ k.

So far, G ′ is only subcubic, as for each edge (u, v) ∈ E the vertices uh
v , vh

u for h ∈ {1, 2} only have degree 2. Create a graph 
G ′′ from G ′ by adding five vertices connected as in the graph illustrated below for every vertex w of degree 2.

w

A minimal dominating set for G ′′ contains at most two vertices from each group of five new vertices. In case w chooses 
its new neighbour as private neighbour in some dominating set, minimality only allows one more vertex from the new set; 
in all other cases two vertices from the new subgraph can be included in the dominating set. As we add this subgraph 
exactly four times for each edge in the original graph, G has an independent set of cardinality k if and only if G ′′ has an 
upper dominating set of cardinality k + 11|E|. �

For classes defined by finitely many forbidden induced subgraphs, the boundary separating difficult instances of the 
problem from polynomially solvable ones consists of the so called boundary classes. Very recently, a boundary class for
Upper Domination is given by the graphs such that the vertex set can be partitioned into two (possibly empty) cliques U
and W such that (a) every vertex in W has at most two neighbours in U , (b) if x and y are two vertices of W each of 
which has exactly two neighbours in U , then their neighbourhood in U are distinct. Alternatively, this class can be defined 
as the class of graphs which does not contain eleven graphs as minimal forbidden induced subgraphs, see [1,2].

3.2. Exact algorithms

We will first construct an exact algorithm for graphs with a given path-decomposition, so let us first recall one important 
result on the pathwidth of subcubic graphs from [28].
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Theorem 5. Let ε > 0 be given. For any subcubic graph G of order n > nε , a path decomposition proving pw(G) ≤ n/6 + ε is com-
putable in polynomial time.

This result immediately gives an O ∗(1.2010n)-algorithm for solving Minimum Domination on subcubic graphs. We will 
take a similar route to prove moderately exponential-time algorithms for Upper Domination.

Proposition 6. Upper Domination on graphs of pathwidth p can be solved in time O ∗(7p), given a corresponding path decomposition.

Proof. We are considering all partitions of each bag of the path decomposition into 6 sets: F ∗ , F , I , P , O , O ∗, where:

• F ∗ is the set of vertices that belong to the upper dominating set and still need to be matched to a private neighbour;
• F is the set of vertices that belong to the upper dominating set and have already been matched to a private neighbour;
• I is the set of vertices that belong to the upper dominating set and is independent in the graph induced by the upper 

dominating set;
• P is the set of private neighbours already matched to vertices in F ;
• O is the set of vertices that are not belonging neither to the upper dominating set nor to the set of private neighbours 

but are already dominated;
• O ∗ is the set of vertices that are not dominated yet.

(Sets within the partition can be also empty.) For each such partition, we determine the largest minimal dominating set in 
the situation described by the partition, assuming optimal settings in the part of the graph already forgotten.

We can assume that we are given a nice path decomposition. So, we only have to describe the table initialisation (the 
situation in a bag containing only one vertex) and the table updates necessary when we introduce a new vertex into a bag 
and when we finally forget a vertex. In the following, −∞ always signals an error case when we try to introduce partitions 
which are not allowed.

initialisation We have six cases to consider:

• T [{v}, ∅, ∅, ∅, ∅, ∅] ← 1 ,
• T [∅, {v}, ∅, ∅, ∅, ∅] ← −∞ ,
• T [∅, ∅, {v}, ∅, ∅, ∅] ← 1 ,
• T [∅, ∅, ∅, {v}, ∅, ∅] ← −∞ ,
• T [∅, ∅, ∅, ∅, {v}, ∅] ← −∞ ,
• T [∅, ∅, ∅, ∅, ∅, {v}] ← 0 .

forget Assume that we want to update table T to table T ′ for the partition F ∗ , F , I , P , O , O ∗, eliminating a vertex v:

• T ′[F ∗ \ {v}, F , I, P , O , O ∗] ← −∞ ,
• T ′[F ∗, F \ {v}, I, P , O , O ∗] ← T [F ∗, F , I, P , O , O ∗] ,
• T ′[F ∗, F , I \ {v}, P , O , O ∗] ← T [F ∗, F , I, P , O , O ∗] ,
• T ′[F ∗, F , I, P \ {v}, O , O ∗] ← T [F ∗, F , I, P , O , O ∗] ,
• T ′[F ∗, F , I, P , O  \ {v}, O ∗] ← T [F ∗, F , I, P , O , O ∗] ,
• T ′[F ∗, F , I, P , O , O ∗ \ {v}] ← −∞ .

Clearly, it is not feasible to eliminate vertices which are not dominated or are supposed to be in F but do not have a 
private neighbour.

introduce We are now introducing a new vertex v into the bag. The neighbourhood N refers to the situation in the new 
bag, i.e., to the corresponding induced graph. T ′ is the new table and T the old one.

• If v /∈ N(I ∪ O ∗ ∪ P ) then set T ′[F ∗ ∪{v}, F , I, P , O , O ∗] to max{T [F ∗, F , I, P , O  \ R, O ∗ ∪ R] : R ⊆ N(v) \N(F ∗ ∪ F ∪ I)} +1.
• If v /∈ N(I ∪ O ∗) and {w} = N(v) ∩ P set T ′[F ∗, F ∪ {v}, I, P , O , O ∗] to max{T [F ∗, F , I, P \ {w}, O  \ R, O ∗ ∪ {w} ∪ R] : R ⊂

N(v) \ N(I ∪ F ∪ F ∗)} + 1.
• If N(v) ∩(F ∗ ∪ F ∪ I ∪ P ∪ O ∗) = ∅ set T ′[F , I ∪{v}, P , O , O ∗] to max{T [F ∗, F , I, P , O  \ R, O ∗ ∪ R] : R ⊆ N(v) \ N(I ∪ F )} +1.
• If v /∈ N(F ∗ ∪ I) and {w} = N(v) ∩ F set T ′[F ∗, F , I, P ∪ {v}, O , O ∗] to T [F ∗ ∪ {w}, F \ {w}, I, P , O , O ∗].
• If v ∈ N(F ∗ ∪ F ∪ I) set T ′[F ∗, F , I, P , O  ∪ {v}, O ∗] to T [F ∗, F , I, P , O , O ∗].
• If v /∈ N(F ∗ ∪ F ∪ I) set T ′[F ∗, F , I, P , O , O ∗ ∪ {v}] to T [F ∗, F , I, P , O , O ∗].

For all other cases set the entry for T ′ to −∞.

The formal induction proof showing the correctness of the algorithm is an easy standard exercise. As to the running time, 
observe that we cycle only in one case potentially through all subsets of O  ∩ N(v) for some vertex v , so that the running 
time follows by applying the binomial formula:
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p∑
i=0

(
p

i

)
5i2p−i = 7p . �

The upper bound of O ∗(7p) on the running time of the algorithm described in the proof of Proposition 6 can be improved 
for graphs of fixed constant maximum degree; in this case, considering all subsets of O  ∩ N(v) requires only constant effort 
and hence gives a bound of O ∗(6p) on the running time. With this we can especially conclude the following result with 
Theorem 5.

Corollary 7. Upper Domination on subcubic graphs of order n can be solved in time O ∗(1.348n), using the same amount of space.

Since this result will be used later to develop an approximation scheme for planar graphs, we like to point out that and 
idea similar to the pathwidth algorithm above can be used for treewidth.

Corollary 8. Upper Domination on graphs of treewidth p can be solved in time O ∗(10p), given a corresponding nice tree decompo-
sition.

Proof. For a given nice tree decomposition use the same partition F ∗, F , I, P , O , O ∗ and initialisation, forget and introduce 
for table entries just like for Proposition 6. For a join bag, we further have the following rule:

join To create the new table entry T ′[F ∗, F , I, P , O , O ∗] from existing tables T1 and T2, consider all partitions F1 ∪ F2 of 
F \ N(P ) and P1 ∪ P2 of P \ N(F ) and O 1 ∪ O 12 ∪ O 2 of O  \ N(F ∗ ∪ F ∪ I) and choose the partitions for which v1 :=
T1[F ∗ ∪ F2, F \ F2, I, P \ P2, O  \ O 2, O ∗ ∪ P2 ∪ O 2] 
= −∞ and v2 := T2[F ∗ ∪ F1, F \ F1, I, P \ P1, O  \ O 1, O ∗ ∪ P1 ∪
O 1] 
= −∞ such that v1 + v2 is maximised. For these numbers, set T ′[F ∗, F , I, P , O , O ∗] to v1 + v2 − |F ∗ ∪ F ∪ I|.

From a computational point of view, we consider all partitions of the vertices belonging to a bag into ten sets, namely, into 
F1, F \ F1, F ∗ , I , P1, P \ P1, O 1, O 12, O 2, O ∗ . Observe that F1, F \ F1, P1, and P \ P1 together describe the partitions 
F1 ∪ F2 of F \ N(P ) and P1 ∪ P2 of P \ N(F ). After first initialising T ′ to −∞ for all entries, we can then proceed updating 
the entries, considering the maximum of the current entry and the one that can be computed by looking up the tables T1
and T2 as described above.

As the join step is the most expensive one, the claimed running time follows. �
3.3. On Minimal Dominating Set Extension

Algorithms working on combinatorial graph problems often try to look at local parts of the graph and then extend 
some part of the (final) solution that was found and fixed so far. This type of strategy is at least difficult to implement 
for Upper Domination, as the following example shows. First, consider a graph Gn that consists of two cliques with ver-
tices Vn = {v1, . . . , vn} and Wn = {w1, . . . , wn}, where the only edges connecting both cliques are (vi , wi) for 1 ≤ i ≤ n. 
Observe that Gn has as minimal dominating sets Vn , Wn , and {vi, w j} for all 1 ≤ i, j ≤ n. For n ≥ 3, the first two are 
upper dominating sets, while the last n2 many are minimum dominating sets. If we now add a vertex v0 to Gn , arriv-
ing at graph G ′

n , and make v0 adjacent to all vertices in Vn , then Vn is still a minimal dominating set, but Wn is no 
longer a dominating set. Now, we have {vi, w j} for all 0 ≤ i ≤ n and all 1 ≤ j ≤ n as minimum dominating sets. But, if 
we add one further vertex, w0 to G ′

n to obtain G ′′
n and make w0 adjacent to all vertices in Wn , then all upper dominat-

ing sets are also minimum dominating sets and vice versa. This shows that we cannot consider vertices one by one, but 
must rather look at the whole graph. For many maximisation problems, like Upper Irredundance or Maximum Independent 
Set, it is trivial to obtain a feasible solution that extends a given vertex set by some greedy strategy, or to know that no 
such extension exists. This is not true for Upper Domination, as we show next. Formally, we want to discuss the following 
problem:

Minimal Dominating Set Extension

Input: A graph G = (V , E), a set S ⊆ V .
Question: Does G have a minimal dominating set S ′ with S ′ ⊇ S?

Notice that this problem is trivial on some input with S = ∅. If S is an independent set in G , it is also always possible to 
extend S to a minimal dominating set, simply by greedily extending it to a maximal independent set. If S however contains 
two adjacent vertices, we arrive at the problem of fixing at least one private neighbour for these vertices. This problem of 
preserving irredundance of the vertices in S while extending S to dominate the whole graph turns out to be a quite difficult 
task.
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In [12] it is shown that this kind of extension of partial solutions is NP-hard for the problem of computing prime 
implicants of the dual of a Boolean function; a problem which can also be seen as the problem of finding a minimal hitting 
set for the set of prime implicants of the input function. Interpreted in this way, the proof from [12] yields NP-hardness for 
the minimal extension problem for 3-Hitting Set. The standard reduction from Hitting Set to Dominating Set however does 
not transfer this result to Minimal Dominating Set Extension; observe that if we represent the hitting-set input-hypergraph 
H = (V , F ) with partial solution S ⊂ V (w.l.o.g. irredundant) by G = (V ∪ F , E) with E = {(v, f ) : v ∈ V , f ∈ F , v ∈ f } ∪
(V × V ), the set S can always be extended to a minimal dominating set by simply adding all edge-vertices which are not 
dominated by S . One can repair this by adjusting this construction to forbid the edge-vertices in minimal solutions in the 
following way: for each edge-vertex f , add three new a f , b f , c f with edges ( f , a f ), (a f , b f ), (b f , c f ) and include a f and b f

in S . This way, f is the only choice for a private neighbour for a f .
We will show that Minimal Dominating Set Extension remains hard even for very restricted cases. Our proof is based on 

a reduction from the NP-complete 4-Bounded Planar 3-Connected SAT problem (4P3C3SAT for short) [40], the restriction 
of 3-satisfiability to clauses in C over variables in V , where each variable occurs in at most four clauses and the associated 
bipartite graph (C ∪ X, {(c, x) ∈ C × X : (x ∈ c) ∨ (¬x ∈ c)}) is planar.

Theorem 9. Minimal Dominating Set Extension is NP-complete, even when restricted to planar cubic graphs.

Proof. Membership in NP is obvious. NP-hardness can be shown by reduction from 4-Bounded Planar 3-Connected SAT

(4P3C3SAT) [40]: Consider an instance of 4P3C3SAT with clauses c1, . . . , cm and variables v1, . . . , vn . By definition, the 
graph G = (V , E) with V = {c1, . . . , cm} ∪ {v1, . . . , vn} and E = {(c j, vi) : vi or v̄ i is literal of c j} is planar. Replace every 
variable-vertex vi by six new vertices f 1

i , x1
i , t

1
i , t2

i , x2
i , f

2
i with edges ( f j

i , x j
i ), (t

j
i , x

j
i ) for j = 1, 2. If vi (positive) is a literal 

in more than two clauses, add the edge ( f 1
i , f 2

i ), else add the edge (t1
i , t2

i ).
By definition of the problem 4P3C3SAT, each variable appears in at most four clauses and this procedure of replacing the 

variable-vertices in G by a P6 preserves planarity. To see this, consider any fixed planar embedding of G and any variable 
vi which appears in clauses c1, c2, c3, c4, in the embedding placed like in the picture below.

vi

c1

c2

c3 c4

Depending on whether vi appears negated or non-negated in these clauses, we differentiate between the following cases; 
in the pictures, vertices plotted in black are the ones to be put into the vertex set S predetermined to be in the minimal 
dominating set.

t1
i

c2

c3 f 1
i c4f 2

i

c1

t2
i

x1
i

x2
i

t1
i

c2

c3 f 1
i c4t2

i

c1

f 2
i

x1
i

x2
i

t1
i

c2

c3 f 1
i c4f 2

i

c1

t2
i

x1
i

x2
i

vi ∈ c1, c2, c3, v̄ i ∈ c4 vi ∈ c2, c4, v̄ i ∈ c1, c3 vi ∈ c1, c2, v̄ i ∈ c3, c4

All other cases are rotations of the above three cases and/or invert the roles of vi and v̄ i . Also, if a variable only appears 
positively (or negatively), it can be deleted along with the clauses which contain it. The maximum degree of the vertices 
which replace vi is 3.

Replace each clause-vertex c j by the subgraph below. The vertices c1
j , c

2
j somehow take the role of the old vertex c j

regarding its neighbours: c1
j is adjacent to two of the literals of c j and c2

j is adjacent to the remaining literal. This way, 
all vertices have degree at most 3 and the choices of literals to connect to c1

j and c2
j can be made such that planarity is 

preserved.
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c1
j

c2
j

z1
j

z2
j

z js jp j

Let G ′ be the graph obtained from G by the procedure described above. We claim that G ′ with S := {x1
i , x

2
i : 1 ≤ i ≤

n} ∪ {s j, z j : 1 ≤ j ≤ m} is a “yes”-instance for Minimal Dominating Set Extension if and only if c1 ∧ c2 ∧ · · · ∧ cm is a 
“yes”-instance for 4P3C3SAT.

If the formula c1 ∧ c2 ∧ · · · ∧ cm is a “yes”-instance for 4P3C3SAT, consider any satisfying assignment φ for it and the 
corresponding vertex-set W := {t1

i , t2
i : φ(vi) = 1} ∪ { f 1

i , f 2
i : φ(vi) = 0} in G ′ . Let W ′ be an arbitrary inclusion-minimal 

subset of W such that {c1
j , c

2
j } ∩ NG ′ (W ′) 
= ∅ for all j ∈ {1, . . . , m}; W itself has this domination-property since φ satisfies 

the formula c1 ∧ c2 ∧ · · · ∧ cm . By the inclusion-minimality of W ′ , the set S ∪ W ′ is irredundant: Each vertex in W ′ has at 
least one of the ck

j as private neighbour, the vertices xk
i have either tk

i or f k
i as a private neighbour, pn(s j, S ∪ W ′) = {p j} and 

pn(z j, S ∪ W ′) = {z1
j , z

2
j }. The set S ∪ W might however not dominate all vertices ck

j . Adding the set Y := {zk
j : ck

j /∈ NG ′ (W )}
to S ∪ W creates a dominating set. Since for each clause c j either c1

j ∈ NG ′ (W ′) or c2
j ∈ NG ′ (W ′), either z1

j or z2
j remains 

in the private neighbourhood of z j . Other private neighbourhoods are not affected by Y . At last, each vertex zk
j ∈ Y has the 

clause-vertex ck
j as private neighbour, by the definition of Y , so overall the set S ∪ W ′ ∪ Y is a minimal dominating set 

for G ′ .
Conversely, if the input (G ′, S) is a “yes”-instance for Minimal Dominating Set Extension, the set S can be extended to 

a set S ′ which especially dominates all vertices ck
j and has at least one private neighbour for each z j . The latter condition 

implies that S ′ ∩ {zk
j, c

k
j} = ∅ for k = 1 or k = 2 for each j ∈ {1, . . . , m}. A vertex ck

j for which S ′ ∩ {zk
j, c

k
j} = ∅ has to be 

dominated by a variable-vertex, which means that tk
i ∈ S ′ ( f k

i ∈ S ′) for some variable vi which appears positively (negatively) 
in c j . Minimality of S ′ requires at least one private neighbour for each xk

i which, by construction of the variable-gadgets, 
means that either { f 1

i , f 2
i } ∩ S ′ = ∅ or {t1

i , t2
i } ∩ S ′ = ∅, so each variable can only be represented either positively or negatively 

in S ′ . Overall, the assignment φ with φ(vi) = 1 if {t1
i , t2

i } ∩ S ′ 
= ∅ and φ(vi) = 0 otherwise satisfies c1 ∧ c2 ∧ · · · ∧ cm .
Finally, G ′ can be transformed into a cubic planar graph, by adding the subgraph illustrated below once to every vertex 

v of degree 2, and twice for each vertex of degree 1. For these new subgraphs add the new black vertices to the set S .

v

With these alterations, the resulting graph is cubic and all new vertices are dominated and adding another one of them 
to the dominating set violates irredundance. The original vertex is not dominated, adding it to the dominating set does not 
violate irredundance within the new vertices and the new vertices can never be private neighbours to any original vertex 
so the structure of G ′ in the above argument does not change. �
4. Approximation perspective

We now want to discuss the properties of Upper Domination with respect to approximability. From this perspective we 
formally consider the following maximisation problem which we will also denote with Upper Domination for the sake of 
simplicity.

Upper Domination

Instance: A graph G = (V , E).
Feasible Solutions: S ⊆ V s.t. N[S] = V and pn(v, S) 
= ∅ for all v ∈ S .
Objective: Maximise |S|.

A typical pattern that often shows up is that MaxMin versions of classical problems turn out to be much harder than 
the originals, especially when one considers approximation. For example, Maximum Minimal Vertex Cover does not admit 
any n

1
2 −ε approximation, while Vertex Cover admits a 2-approximation [11]; Lazy Bureaucrat is APX-hard while Knapsack

admits a PTAS [4]; and though Minimum Maximal Independent Set and Independent Set share the same (inapproximable) 
status, the proof of inapproximability of the MinMax version is considerably simpler, and was known long before the 
corresponding hardness results for Independent Set [30].
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We will show that this pattern also holds for Upper Domination: while Dominating Set admits a greedy ln n approxi-
mation, Upper Domination does not admit an n1−ε approximation for any ε > 0, unless P = NP. Further, we discuss special 
graph classes and find that Upper Domination remains APX-hard on cubic graphs but can be approximated within some 
factor with respect to the maximum degree. Also, despite the hardness of the extension problem, we find that Upper Domi-

nation admits a PTAS on k-outerplanar graphs.

4.1. General graphs

We show that Upper Domination is hard to approximate in two steps: first, we show that a related natural problem,
Maximum Minimal Hitting Set, is hard to approximate, and then we show that this problem is essentially equivalent to
Upper Domination. Formally we consider the problem:

Maximum Minimal Hitting Set

Instance: A hypergraph G = (V , F ), F ⊆ 2V .
Feasible Solutions: H ⊆ V s.t. e ∩ H 
= ∅ for all e ∈ H (hitting set) and {e ∈ F : e ∩ H = {v}} 
= ∅ for all v ∈ H (mini-
mality).
Objective: Maximise |H |.

This problem generalises Upper Domination: given a graph G = (V , E), we can produce a hypergraph by keeping the 
same set of vertices and creating a hyperedge for each closed neighbourhood N[v] of G . An upper dominating set of the 
original graph is now exactly a minimal hitting set of the constructed hypergraph. We will also show that Maximum Minimal 
Hitting Set can be reduced to Upper Domination.

Let us note that Maximum Minimal Hitting Set, as defined here, also generalises Maximum Minimal Vertex Cover. We 
recall that for this problem there exists a n1/2-approximation algorithm, while it is known to be n1/2−ε-inapproximable [11]. 
Here, we generalise this result for arbitrary d ≥ 2 to d-uniform hypergraphs, i.e., hypergraphs G = (V , F ) with |e| = d for all 
e ∈ F .

Theorem 10. For all ε > 0, d ≥ 2, there is no n
d−1

d −ε-approximation for Maximum Minimal Hitting Set on d-uniform hypergraphs 
of order n in polynomial time, unless P = NP. This statement still holds for the restriction to hypergraphs with O (n) hyperedges.

Proof. Fix some constant hyperedge size d ≥ 2. We will present a reduction from Maximum Independent Set, which is 
known to be inapproximable [34]. Specifically, for all ε > 0, it is known to be NP-hard to distinguish for an n-vertex graph 
G if α(G) > n1−ε or α(G) < nε .

Take an instance G = (V , E) of Maximum Independent Set. If d > 2 we begin by turning G into a d-uniform hypergraph 
G ′ = (V , F ) such that any (non-trivial) hitting set of G ′ is a vertex cover of G and vice-versa (for d = 2 we simply set 
G ′ = G). We proceed as follows: for every edge e ∈ E and every S ⊆ V \ e with |S| = d − 2 we add to F the hyperedge e ∪ S
(with size exactly d). Thus, |F | = O (nd). Any vertex cover of G is also a hitting set of G ′ . For the converse, we only want to 
prove that any hitting set of G ′ of size at most n − d is also a vertex cover of G (this is without loss of generality, since d is 
a constant, so we will assume α(G) > d). Take a hitting set H of G ′ with at most n − d vertices; take any edge e ∈ E and a 
set S with S ⊆ V \ (H ∪ e) and |S| = d − 2 (such a set S exists since |V \ H | ≥ d). Now, (e ∪ S) ∈ F , therefore H must contain 
a vertex of e. We thus conclude that the maximum size of V \ H , where H is a hitting set of G ′ is either at least n1−ε or at 
most nε , that is, the maximum size of V \ H is α(G).

We now add some vertices and hyperedges to G ′ to obtain a hypergraph G ′′ . For every set S ⊆ V such that |S| = d − 1
and V \ S is a hitting set of G ′ , we add to G ′′ n new vertices, call them uS,i , 1 ≤ i ≤ n. Also, for each such vertex uS,i we 
add to G ′′ the hyperedge S ∪ {uS,i}, 1 ≤ i ≤ n. This completes the construction. It is not hard to see that G ′′ has hyperedges 
of size exactly d, and its vertex and hyperedge set are both of size O (nd).

Let us analyse the approximability gap of this reduction. First, suppose that there is a minimal hitting set H of G ′
with |V \ H | > n1−ε . Then, there exists a minimal hitting set of G ′′ with size at least nd−O (dε) . To see this, consider the set 
H ∪{uS,i : S ⊆ V \ H, 1 ≤ i ≤ n}. This set is a hitting set, since H hits all the hyperedges of G ′ , and for every new hyperedge 
of G ′′ that is not covered by H we select uS,i . It is also minimal, because H is a minimal hitting set of G ′ , and each uS,i
selected has a private hyperedge. To calculate its size, observe that for each S ⊆ V \ H with |S| = d − 1 we have n vertices. 
There are at least 

(n1−ε

d−1

)
such sets.

For the converse direction, we want to show that if |V \ H | < nε for all minimal hitting sets H of G ′ , then any minimal 
hitting set of G ′′ has size at most n1+O (dε) . Consider a hitting set H ′ of G ′′ . Then, H ′ ∩ V is obviously a hitting set of G ′ . 
Let S ⊂ V be a set of vertices such that S ∩ H ′ 
= ∅. Then uS,i /∈ H ′ for all i, because the (unique) hyperedge that contains 
uS,i also contains some other vertex of H ′ , contradicting minimality. Now, because V ∩ H ′ is a hitting set of G ′ we have 
|V \ H ′| ≤ nε . Thus, the maximum number of different sets S ⊆ V such that some uS,i ∈ H ′ is 

( nε

d−1

)
and the total size of H ′

is at most |H ′ ∩ V | + nε(d−1)+1 ≤ n1+O (dε) . �
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Corollary 11. For any ε > 0 there is no polynomial n1−ε-approximation for Maximum Minimal Hitting Set on hypergraphs of order 
n, unless P = NP. This statement still holds restricted to hypergraphs with O (n) hyperedges.

Proof. Assume there were, for some ε > 0, a polynomial approximation algorithm A with ratio n1−ε for Maximum Min-

imal Hitting Set. Then, choose d such that 1/d ≤ ε/2 and hence (d − 1)/d ≥ 1 − ε/2. Then, A would be a polynomial 
n(d−1)/d−ε/2-approximation algorithm for Maximum Minimal Hitting Set restricted to d-uniform hypergraphs, contradicting 
Theorem 10. �

A graph is called co-bipartite if its complement is bipartite. Using Corollary 11 and the reduction of [38] from Minimum 
Hitting Set to Minimum Dominating Set, the following holds.

Theorem 12. For any ε > 0 Upper Domination restricted to co-bipartite graphs of order n, is not n1−ε-approximable in polynomial 
time, unless P = NP.

Proof. We construct an approximation-preserving reduction from Maximum Minimal Hitting Set. Given a hypergraph G =
(V , F ) as an instance of Maximum Minimal Hitting Set, we define a graph G ′ = (V ′, E ′) as an instance of Upper Domination

as follows: V ′ contains a vertex vi associated to any vertex i from V , a vertex ue for any edge e ∈ F and a new vertex v . The 
set E ′ contains edges such that G ′[V ] and G ′[F ] are cliques. Moreover, v is adjacent to every vertex vi ∈ V , and (vi, ue) ∈ E ′
if and only if i ∈ e in G .

First we show that given a solution S that is a minimal hitting set in G , S is also a minimal dominating set in G ′ . Indeed 
if S is a hitting set in G then S is a dominating set in G ′ . If S is minimal, that is, any proper subset S ′ ⊂ S is no longer a 
hitting set, then it is also the case that S ′ is no longer a dominating set in G ′ . That implies that opt(G ′) ≥ opt(G).

Consider now an upper dominating set S for G ′ . To dominate the vertex v , S has to contain at least one vertex w ∈
V ∪ {v}. If S contains one vertex ue ∈ E , then the set {w, ue} is already dominating. If we want a solution of cardinality 
more than 2, then S ⊆ V . If S ⊆ V is a minimal dominating set in G ′ , S is also a minimal hitting set in G since S covers all 
hyperedges in G if and only if it dominates all edge-vertices in G ′ . So starting with any minimal dominating set S of G ′ of 
cardinality larger than 2, S is also a minimal hitting set of G . The result now follows from Corollary 11. �

Note that, in fact, the inapproximability bound given in Theorem 10 is tight, for every fixed d, a fact that we believe may 
be of independent interest. This is shown in the following theorem, which also generalises results on Maximum Minimal 
Vertex Cover [11]. To simplify presentation, we assume that we are given a hypergraph without isolates, meaning that every 
vertex appears in at least one hyperedge, and also such that there are no two hyperedges h, h′ ∈ F such that h ⊂ h′ . Observe 
that in this case h′ can be deleted without affecting the computation of a minimal hitting set, we will therefore call such a 
hyperedge redundant.

Theorem 13. For any d ≥ 1 and hypergraph of order n with maximum edge-size d, without isolates or redundant hyperedges, a min-

imal hitting set of size �(n1/d) can be computed in polynomial-time. This shows an O (n
d−1

d )-approximation for Maximum Minimal 
Hitting Set on hypergraphs with maximum edge-size d.

Proof. We will in fact prove a slightly stronger statement. For a vertex u of a hypergraph G = (V , F ) without isolates, 
we define its rank as the size of the smallest hyperedge that contains it, formally min{|e| : e ∈ F , u ∈ e}. Clearly, in any 
hypergraph where all hyperedges have size at most d, all vertices also have rank at most d. We will establish that in any 
hypergraph G = (V , F ), without isolates, where all vertices have rank at most d and no hyperedge is redundant, we can 
construct in polynomial time a minimal hitting set of size �(n1/d). The statement of the theorem will then follow.

The proof is by induction on d. For d = 1, if all vertices have rank at most d, all vertices belong in an edge of size 1, and 
since the graph contains no isolates, the only feasible hitting set is V . This yields a solution for Maximum Minimal Hitting 
Set of size �(n).

If all vertices have rank at most d, for some d > 1, we do the following: first, greedily construct a maximal set M ⊆ F of 
pair-wise disjoint hyperedges. If |M| ≥ n1/d then we know that any hitting set of G must contain at least n1/d vertices. So, 
we simply produce an arbitrary feasible solution by starting with V and deleting redundant vertices until our hitting set 
becomes minimal.

Suppose then that |M| < n1/d . Let H be the set of all vertices contained in M , so |H | < d|M| ∈ O (n1/d). Clearly, H is a 
hitting set of G (otherwise M is not maximal), but it is not necessarily minimal. Let us now consider all sets S ⊆ H with 
the following two properties: |S| ≤ d − 1 and all edges e ∈ F have an element in V \ S (in other words, V \ S is a hitting set 
of G). For such a set S and a vertex u ∈ V \ H we will say that u is seen by S , and write u ∈ B(S), if there exists e ∈ F such 
that e ∩ H = S , u ∈ e and for all e′ ∈ F such that u ∈ e′ we have |e′| ≥ |e|.

Intuitively, what we are trying to do here is finding a set S that will not be included in our hitting set. Vertices seen by S
are then vertices which are more likely to be contained in a maximum minimal hitting set. We observe here that all vertices 
of V \ H are seen by some set S with the above properties. To see this, let u ∈ V \ H and consider an edge e of minimal 
size that contains u. Then the set Su := e ∩ H has size at most d − 1 (since it does not contain u). Furthermore V \ Su is a 
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hitting set, since otherwise there would exist a hyperedge e′ ∈ F with e′ ⊆ Su , which would give e′ ⊂ e, a contradiction to 
the assumption that no hyperedge is redundant. Hence, Su is one of the sets that will be considered, and u ∈ B(Su).

Let Bi be the union of all B(S) for the sets S with |S| = i. As argued above, all vertices of V \ H are seen by at least one 
set S , and therefore belong to some Bi . Therefore, the union of all Bi has size at least |V \ H | ≥ n − O (n1/d) = �(n). The 
largest of these sets, then, has size at least |V \H |

d = �(n). Consider then the largest such set and let s be its index. By defini-

tion, this set Bs is build by the union of sets B(S) with |S| = s and there are at most 
(|H |

s

)= O (ns/d) different sets S of cardi-

nality s. Since all together they see �(n) vertices of V \ H , one of them must see at least �(n1− s
d ) vertices. Call this set Sm .

Consider now the following hypergraph: we start with the hypergraph induced by Sm ∪ B(Sm) and delete the vertices of 
Sm from every hyperedge; then we remove all redundant hyperedges. Call the resulting hypergraph G ′ . We can see that in 
G ′ every vertex has rank at most d − s, because for all u ∈ B(Sm), there exists a smallest hyperedge containing u which also 
contains all vertices in Sm . Furthermore, if we consider such a smallest hyperedge e incident to u ∈ B(Sm) that contains all 
of Sm , we see that e does not contain any other hyperedge in the new graph, hence the new hypergraph has no isolates. 
We can therefore proceed by induction. By induction hypothesis, we can in polynomial time find a minimal hitting set of 
G ′ with at least �((n1− s

d )
1

d−s ) = �(n1/d) vertices. Call this set H ′ .
We will now build our solution. Start with the set V \ (Sm ∪ B(Sm)) and add to it the vertices of H ′ . First, this is a hitting 

set, because any hyperedge not hit by V \ (Sm ∪ B(Sm)) is induced by Sm ∪ B(Sm), and H ′ hits all such hyperedges. We now 
proceed to make this set minimal by arbitrarily deleting redundant vertices. The crucial point here is that no vertex of H ′
is deleted, since this would contradict the minimality of H ′ as a hitting set of the hypergraph induced by Sm ∪ B(Sm). Thus, 
the resulting solution has size �(n1/d).

Finally, we note that we can obtain the approximation ratio in O (n
d−1

d ) on any hypergraph with maximum edge-size d, 
by first removing all isolates and all redundant hyperedges (the ones that contain ), and then using the arguments above. �
4.2. Bounded-degree graphs

Unlike the general case, Upper Domination admits a simple constant factor approximation when restricted to graphs of 
maximum degree �. This follows from the fact that any dominating set in such a graph has size at least n

�+1 . We will see 
that this factor can be improved however not arbitrarily as the following result shows.

Corollary 14. Upper Domination is APX-hard on cubic graphs.

Proof. We use the same construction as in the proof of Theorem 4, this time from Maximum Independent Set restricted to 
cubic graphs which remains APX-hard [42]. The input graph G is cubic which means that α(G) ∈ 
(|V |) and |E| ∈ 
(|V |). 
The reduction in the proof of Theorem 4 preserves APX-hardness, since it creates a graph G ′′ which has an upper dominating 
set of cardinality k + 11|E| ∈ 
(k) if G has an independent set of cardinality k. �

On the positive side, we can make use of approximation algorithms for Maximum Independent Set to derive approxima-
tions for Upper Domination.

Theorem 15. Consider some graph-class G(p, ρ) with the following properties:

• Every G ∈ G(p, ρ) can be properly coloured with p colours in polynomial time.
• For any G ∈ G(p, ρ), Maximum Independent Set is ρ-approximable in polynomial time.

Then, for every G ∈ G(p, ρ), Upper Domination is approximable in polynomial time within ratio at most

max

{
ρ,

�ρp + � − 1

2ρ�

}
. (3)

Proof. The approximation algorithm consists of running two independent set algorithms, by greedily augmenting solutions 
computed in order to become maximal for inclusion and of returning the best among them, denoted by U . Recall that any 
maximal independent set is a feasible upper dominating set.

The algorithms used are:

(i) the ρ-approximation algorithm for Maximum Independent Set assumed for G(p, ρ) and
(ii) the (also assumed) algorithm that colours the vertices of the input graph with p colours and takes the largest colour-

class as solution.

Recall that �(G) ≤ max
{
α(G), n

2 + α(G)
2 − 1

}
by Lemma 2. If the maximum on the right is realised by the first term α(G), 

then we are done since the ρ-approximation for Maximum Independent Set-algorithm, also achieves ratio ρ for Upper 
Domination.
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Suppose now that α(G) < n
2 + α(G)

2 − 1 and set α(G) = n/t , for some t ≥ 1 that will be fixed later. In order to simplify 
calculations we will use the following bounds for �(G), easily derived from Lemma 3:

�(G) ≤ n

2
+ α(G)(� − 1)

2�
= �(t + 1) − 1

2t�
n = �(t + 1) − 1

2�
α(G) . (4)

Expression (4) yields:

α(G) ≥ 2�

�(t + 1) − 1
�(G) . (5)

If the solution U returned by the algorithm is the maximal independent set computed by approximation algorithm (i), 
Equation (5) yields:

|U | ≥ ρα(G) ≥ 2ρ�

�(t + 1) − 1
�(G) ,

�(G)

|U | ≤ �(t + 1) − 1

2ρ�
. (6)

Assume now that the solution U is the one computed by approximation algorithm (ii) and note that the largest colour 
computed is assigned to at least n/p vertices of the input graph which, obviously, form an independent set. So, in this case, 
|U | ≥ n/p and using (4), the ratio achieved is:

�(G)

|U | ≤
�(t+1)−1

2t� n
n
p

= p(�(t + 1) − 1)

2t�
. (7)

Equality of ratios in (6) and (7) implies t = ρp and setting it to either one of those leads to the second term of the max
expression in (3). �

Any connected graph of maximum degree �, except a complete graph or an odd cycle, can be coloured with at most �

colours [41]; furthermore, the class G(�, (� + 3)/5) contains all graphs of maximum degree �, as for these graphs Maxi-

mum Independent Set is approximable within ratio (� + 3)/5.

Proposition 16. Upper Domination is approximable in polynomial time within a ratio of (6�2 +2� −3)/10� in graphs of maximum 
degree �.

Theorem 15 can be improved for regular graphs where �(G) ≤ n
2 [33].

Proposition 17. Upper Domination in regular graphs is approximable in polynomial time within ratio �/2.

4.3. Planar graphs

In this section we present an EPTAS (a PTAS with running time f ( 1
ε ) · poly(|I|)) for Upper Domination on planar graphs. 

We use techniques based on the ideas of Baker [5]. As we shall see, some complications arise in applying these techniques, 
because of the hardness of extending solutions to this problem.

We use the notion of outerplanar graphs. An outerplanar (or 1-outerplanar) graph G is a graph such that there is a 
planar embedding of G , where all vertices are incident to the outer face of G . For k > 1, graph G is a k-outerplanar 
graph if there is a planar embedding of G , such that when all vertices, incident to the outer face are removed, G is a 
(k − 1)-outerplanar graph. Removing stepwise the vertices that are incident to the outer face, the vertices of G can be 
partitioned into levels L1, . . . , Lk . We write |Li| for the number of vertices in level Li (if i < 1 or i > k we write |Li | = 0). 
Bodlaender [10] proved that every k-outerplanar graph has treewidth of at most 3k − 1. Together with Corollary 8, this 
implies the following:

Proposition 18. An upper dominating set of a k-outerplanar graph G can be computed in time f (k)n.

To obtain the EPTAS, we use that every planar graph is k-outerplanar for some k. By removing some of the levels Li
we split the graph G into several �-outerplanar subgraphs Gi of some small � < k. A maximum minimal dominating set 
of size �(Gi) can be computed using the corollary from above. Finally, the partial solutions of Gi are merged to obtain a 
minimal dominating set for G . In the following theorem, we analyse how the upper domination number of the subgraphs 
Gi correlates to �(G).
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Theorem 19. Let G = (V , E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆ V . For some i ≤ k, let G1 be the subgraph which is 
induced by levels L1, . . . , Li−1 and let G2 be the subgraph induced by levels Li+1, . . . , Lk. Then,

�(G1) + �(G2) ≥ �(G) −
i+3∑

j=i−3

|L j| .

Proof. Consider a given maximum minimal dominating set D of G with associated vertex set partition (F , I, P , O ) where 
�(G) = |F | +|I|. We construct minimal dominating sets for G1 and G2 from (F , I, P , O ) as follows. We perform the following 
operations on a graph G ′ = (V ′, E ′) with dominating set D ′ with associated partition (F ′, I ′, P ′, O ′) to remove the vertices 
from Li , where initially G ′ = G and D ′ = D . After each step, we obtain a minimal dominating set for the graph induced 
by vertices V ′ \ {v}, v ∈ Li , until V ′ ∩ Li = ∅ and we obtain minimal dominating sets for G1 and G2 by choosing the 
corresponding subsets.

Case 1: v ∈ O ′ . In this case v can be removed from G without violating any constraint of (F , I, P , O ).
Case 2: v ∈ P ′ . Consider vertex u ∈ F such that v ∈ pn(u, D ′). Since this especially implies u ∈ N(v) we know that u ∈ L j

for some i − 1 ≤ j ≤ i + 1. If pn(u, D ′) = {v}, we add u to O ′ and remove v . Otherwise, we select a vertex 
v ′ ∈ pn(u, D ′) \ {v} and add v ′ to P ′ and remove v .

Case 3: v ∈ I ′ ∪ F ′ . First, in case v ∈ F and after deleting v there exists a vertex u ∈ F ′ such that N(u) ∩ F ′ = ∅, we move 
u to I ′ and its private neighbour to O ′ .

Consider the private neighbourhood W = pn(v, D ′). Then N[W ] ⊆ P ′ ∪ O ′ . Our goal is to extend D ′ to dominate 
W . We select a maximal independent set IW of the subgraph of G ′ induced by W (which is also a minimal 
dominating set of the same subgraph) and we add IW to I ′ . Dominating W this way might lead to conflicts as a 
vertex w ∈ W that is added to the dominating set D ′ might be adjacent to some vertex w ′ ∈ P ′ . We solve those 
conflicts in the same way as in Case 2.

Note that since all vertices in W belong to levels Li−1, Li, Li+1, w ′ belongs to levels Li−2, . . . , Li+2 and hence 
pn(w ′) belongs to levels Li−3, . . . , Li+3.

Using the above construction yields a minimal dominating set for the graph induced by vertices V \ {Li}. As vertices are 
moved from I or F to O , the dominating set for the resulting graph may be reduced. In each case we only modify the 
dominating set of vertices in Li−3, . . . , Li+3 and hence the dominating set is reduced by at most 

∑i+3
j=i−3 |L j|. �

Using the above theorem iteratively for several levels Li1 , . . . , Lis−1 yields the following corollary.

Corollary 20. Let G = (V , E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆ V . For indices 0 = i0 < i1 < . . . ≤ is = k, let G j be the 
subgraph which is induced by levels Li j , . . . , Li j+1 . Then,

s−1∑
j=0

�(G j) ≥ �(G) −
s∑

k=0

ik+3∑
j=ik−3

|L j| .

The following algorithm shows how partial solutions of subgraphs can be used to obtain a minimal dominating set for 
the whole graph G .

Algorithm 1: GreedyUD(G1,D1,G2,D2,Li).
input : Subgraphs G1 = (V 1, E1) and G2 = (V 2, E2) of G = (V , E) separated by level Li such that V 1 ∪ Li ∪ V 2 = V and minimal dominating sets D1 and D2

of G1 and G2 respectively.
output: A minimal dominating set for G.
D = D1 ∪ D2

repeat
choose v ∈ Li \ N[D]
D = D ∪ {v}
Remove vertices in N[N[v]] from D until D is inclusion minimal

until Li ⊆ N[D]
return D

Theorem 21. Let G = (V , E) be a k-outerplanar graph with levels L1, . . . , Lk ⊆ V . For some i ≤ k, let G1 be the subgraph which is 
induced by levels L1, . . . , Li−1 and let G2 be the subgraph induced by levels Li+1, . . . , Lk. Let S1 and S2 be a minimal dominating set 
of G1 and G2 , respectively. Then Algorithm 1 returns a minimal dominating set S with

|S| ≥ |S1| + |S2| − |Li−1| − |Li+1| .
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Proof. By definition of the algorithm, vertices v ∈ Li that are not covered by vertices in Li−1 or Li+1 are added to the 
dominating set. This may lead to conflicts that are resolved as in the proof of the Theorem 19.

Since we remove for every vertex w ∈ N[v] in Li−1 or Li+1 at most one vertex from the dominating set, at most 
|Li−1| + |Li+1| vertices are removed from the dominating set by Algorithm 1. �

We now state our EPTAS for planar Upper Domination.

Algorithm 2: ComputeUD(G, k, ε).
input : A k-outerplanar graph G = (V , E) for some k ∈ N with layers L1, . . . , Lk and parameter ε .
output: A minimal dominating set for G.

μ = � 36
ε �

x = argmin{∑ j∈N((
∑3

i=−3 |L jμ+x+i |) + |L jμ+x−1| + |L jμ+x+1|) : x < μ}
for 0 ≤ i ≤ � k

μ � do
Gi = G[L(i−1)μ+x+1 ∪ . . . ∪ Liμ+x−1]
Compute an upper dominating set Di for Gi with Proposition 18. Hi = G[L1 ∪ . . . ∪ Liμ+x−1]

/* note that Li with i < 1 or i > k are empty sets */

D̄0 = D0

for 0 ≤ i ≤ � k
μ � do

D̄i+1 = GreedyUD(Hi,D̄i,Gi+1,Di+1,Liμ+x)

return (D̄� k
μ �)

Theorem 22. Algorithm 2 returns a minimal dominating set S of cardinality at least (1 − ε)�(G) in time bounded by f ( 1
ε )n + O (n2).

Proof. Claim 1.

∑
j∈N

⎛
⎝
⎛
⎝ 3∑

i=−3

|L jμ+x+i|
⎞
⎠+ |L jμ+x−1| + |L jμ+x+1|

⎞
⎠= 9|V |

μ
.

Proof of Claim 1. The following term equals 9|V | as every level of G is counted exactly 9 times by the inner sum:

μ−1∑
x=0

∑
j∈N

⎛
⎝
⎛
⎝ 3∑

i=−3

|L jμ+x+i|
⎞
⎠+ |L jμ+x−1| + |L jμ+x+1|

⎞
⎠= 9|V | .

Since x is chosen minimally over all 0, . . . , μ − 1 we obtain Claim 1 by the pigeonhole principle.

Claim 2.

�(G) ≥ |V |
4

.

Proof of Claim 2. Since every planar graph is 4-colourable, there exists an independent set of size α(G) ≥ |V |
4 (by choosing 

the set of vertices with the most frequent appearing colour). Using α(G) ≤ �(G) we obtain Claim 2.

Proof of the main theorem. The minimal dominating sets Di for the subgraphs Gi have cardinality �(Gi). Then Algorithm 1
is used to obtain a minimal dominating set for G . By Theorem 21, the algorithm returns a solution of value:

� k
μ �+1∑
j=0

�(G j) −
� k

μ �∑
j=0

(|L jμ+x−1| + |L jμ+x+1|)

≥
� k

μ �+1∑
j=0

�(G j) −
∑
j∈N

(|L jμ+x−1| + |L jμ+x+1|)

≥ �(G) −
∑
j∈N

((

3∑
i=−3

|L jμ+x+i|) + |L jμ+x−1| + |L jμ+x+1|) (Cor. 20)

≥ �(G) − 9|V |
(Claim 1)
μ
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≥ �(G) − 9 · 4�(G)

μ
(Claim 2)

= �(G)(1 − ε) . �
5. Fixed parameter tractability

In this section we will investigate the fixed parameter tractability of Upper Domination as a parameterised problem. We 
mainly refer to a recent textbook [23] in the area of parameterised complexity. Important notions that we will make use of 
include the parameterised complexity classes FPT, W[1] and W[2], parameterised reductions and kernelisation. We discuss 
the following dual pair of parameterised problems:

Upper Domination

Instance: A graph G = (V , E).
Parameter: k ∈N.
Question: Is �(G) ≥ k?

Co-Upper Domination

Instance: A graph G = (V , E).
Parameter: � ∈N.
Question: Is �(G) ≥ |V | − �?

As we will only consider this natural parameterisation, we refrain from explicitly mentioning the parameter and again 
reuse the name Upper Domination to refer to the parameterised problem throughout this section. Notice that Co-Upper 
Domination could also be addressed as Minimum Maximal Nonblocker or as Minimum Maximal Star Forest; see [3] for 
further discussion.

5.1. General graphs

The problems Minimum Domination, Minimum Independent Domination and Maximum Independent Set were among 
the first problems conjectured not to be in FPT [22]. In fact, aside from Upper Domination, all other problems from the 
domination chain (see [32]) are now known to be complete for either W[1] or W[2] (see [9] and [24] for upper and lower 
irredundance respectively). It is perhaps not very surprising that Upper Domination is also unlikely to belong to FPT, and 
it looks rather unexpected that this question has been open for such a long time. We show that Upper Domination is 
W[1]-hard by a reduction from Multicoloured Clique, a problem introduced in [26,43] to facilitate W[1]-hardness proofs:

Multicoloured Clique

Input: A graph G = (V , E) with k colour-classes V = V 1 ∪ V 2 ∪ · · · ∪ Vk .
Parameter: k ∈N.
Question: Is there a C ⊆ V s.t. (v, w) ∈ E for all v, w ∈ C and |V i ∩ C | = 1 for all i ∈ {1, . . . , k}?

For this problem, one can assume that each set V i is an independent set in G , since edges between vertices of the same 
colour-class have no impact on the existence of a solution. Multicoloured Clique is known to be W[1]-complete. While the 
construction used in our reduction itself is not very complicated, proving its correctness turns out to be quite complex and 
technical.

Theorem 23. Upper Domination is W[1]-hard.

Proof. Let G = (V , E) be a graph with k different colour-classes given by V = V 1 ∪ V 2 ∪ · · · ∪ Vk . We construct a graph G ′
which has an upper dominating set of cardinality (at least) k + 1

2 (k2 − k) if and only if G is a “yes”-instance for Multi-

coloured Clique which proves W[1]-hardness for Upper Domination, parameterised by �(G ′).
Consider G ′ = (V ′, E ′) given by: V ′ := V ∪ {ve : e ∈ E} and

E ′ :=
k⋃

i=1

V i × V i ∪
k⋃

i=1

k⋃
j=1

{
(ve, ve′) : e, e′ ∈ (V i × V j) ∩ E

}

∪
k⋃

i=1

k⋃
j=1

{
(v(u,w), x) : (u, w) ∈ (V i × V j) ∩ E, x ∈ (

(V i ∪ V j) \ {u, w})} .

If C ⊂ V is a (multi-coloured) clique of cardinality k in G , the set S ′ := C ∪ {v(u,v) : u, v ∈ C} is an upper dominating set 
for G ′ of cardinality k + 1

2 (k2 − k): First of all, {v(u,v) : u, v ∈ C} ⊂ V ′ since (u, v) ∈ E for all u, v ∈ C . Further, by definition 
of the edges E ′ , u, v /∈ NG ′ (v(u,v)) and u /∈ NG ′ (v) for u and v from different colour classes so S ′ is an independent set in 
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G ′ and hence a minimal dominating set. It can be easily verified that S ′ is also dominating for G ′; observe that it contains 
exactly one vertex for each clique in the graph.

Suppose S is a minimal dominating set for G ′ . Consider the partition S =
(⋃k

i=1 Si

)
∪
(⋃

1≤i< j≤k S{i, j}
)

defined by: 
Si := S ∩ V i for i ∈ {1, . . . , k} and S{i, j} := S ∩ {ve : e ∈ V i × V j} for all 1 ≤ i < j ≤ k. The minimality of S gives the following 
properties for these subsets:

1. If |Si | > 1 for some index i ∈ {1, . . . , k}, minimality implies |Si | = 2 and for all j 
= i either S{i, j} = ∅ or S j = ∅:

u

v

v(v,w)

v(u,w ′)

w ′

w

V i V jV ′∩ {ve : e∈ V i× V j}

Since for every u ∈ V i and every j, j 
= i, by construction V i ⊂ N[u], and if there is more than one vertex in Si , then 
their private neighbours have to be in {ve : e ∈ E}. A vertex ve with e ∈ V i × V j is not adjacent to a vertex u ∈ V i if and 
only if e = (u, w) for some w ∈ V j . For two different vertices u, v ∈ V i all ve with e ∈ V i × V j are adjacent to either u
or v , a third vertex w ∈ V i consequently can not have any private neighbour. This also means that any vertex ve ∈ S{i, j}
has to have a private neighbour in V j , so if S{i, j} 
= ∅ the set S j has to be empty because one vertex from S j dominates 
all vertices in V j . These observations hold for all j 
= i.

2. If |S{i, j}| > 1 for some indices i, j ∈ {1, . . . , k} we find that |S{i, j}| = 2, |Si|, |S j | ≤ 1 and that Si 
= ∅ implies S j = S{ j,l} = ∅
for all l ∈ {1, . . . , k} \ {i, j} (and equivalently S j 
= ∅ implies Si = S{i,l} = ∅ for all l ∈ {1, . . . , k} \ {i, j}):

y

u

v

u j

v j

x

V i V jV ′∩ {ve : e∈ V i× V j} V ′∩ {ve : e∈ V j× Vl}

Let (ui, u j) and (vi, v j) be the edges in G corresponding to u, v ∈ S{i, j} . We know that pn(u, S) ⊆ {vi, v j} \ {ui, u j}, so 
assume w.l.o.g. that v j ∈ pn(u, S) which implies v j 
= u j , S j = ∅ and V j ⊂ N(u) ∪ N(v).
For a third vertex w ∈ S{i, j} with corresponding edge {wi, w j}, we know that w j = v j , since otherwise v j ∈ N(w). This 
means that both w and v have a private neighbour in V i which is not possible, since V i \ N(u) = {ui}. So we know that 
S{i, j} = {u, v}.
If there is a vertex y in Si , it already dominates all of V i so pn(v, S) = {u j}. Any x ∈ V ′ ∩ {ve : e ∈ V j × Vl, 1 ≤ l ≤ k}
is adjacent to at least u j or v j , so S j = S{ j,l} = ∅. Dominating the vertices in S{ j,l} for l 
= i then requires |Sl| = 2 for all 
l 
= i, which leaves no possible private vertices outside V i for vertices in V i , so |Si | = 1.

3. If |Si | = 2 there exists an index j 
= i such that S{i, j} = ∅ and |S j | ≤ 1.
Let u, v ∈ Si . By the structure of G ′ , u and v share all neighbours in V i and ve such that e = (x, y) ∈ V i × Vl with 
x /∈ {u, v} for all l 
= i, so especially the private neighbourhood of u is restricted to pn(u, S) ⊆ {ve : e = (v, y) ∈ E}. Let j
be an index such that there is a vertex z ∈ V j with v(u,z) ∈ pn(v, S) (there is at least one such index). No neighbour of 
v(u,z) beside v can be in S , which means that S{i, j} = ∅ and S j ⊆ {z}.

4. |S{i,l}| = 2 implies |S{ j,l}| ≤ 1 for all j 
= i.
Suppose |S{i,l}|, |S{ j,l}| ≥ 2 for some indices i, j, l ∈ {1, . . . , k}. By Property 2 both sets S{i,l}, S{ j,l} have cardinality 2 so 
let ui, wi ∈ S{i,l} and u j, w j ∈ S{ j,l} . Since each set {ve : e ∈ E ∩ (V s × Vt)} is a clique, the private neighbours for these 
vertices have to be in V i, V j, Vl . Suppose v ∈ pn(ui, S) ∩ Vl which means that wi, u j, w j are not adjacent to v . This is 
only possible if wi represents some edge (v, x) ∈ E ∩ Vl × V i and u j, w j represent some edges (v, y), (v, y′) ∈ E ∩ Vl ×
V j . By definition of E ′ , wi, u j, w j then share their neighbourhood in Vl (namely Vl \{v}) which means that pn(wi, S) ⊂
V i and pn(u j) ∪ pn(w j) ⊂ V j which implies Si = S j = ∅. So in any case, even if there is no v ∈ pn(ui, S) ∩ Vl , at least 
one of the sets V i or V j contains two vertices which are private neighbours for S{i, j} and Si = S j = ∅.
Suppose V j contains two private vertices y 
= y′ for u j and w j respectively. For any two arbitrary vertices n1, n2 ∈ V j , 
any vertex x ∈ {ve : e ∈ E ∩ (V i × V j)} is adjacent to at least one of them, which means that any x ∈ S{i, j} would steal 
at least y ∈ pn(u j) or y′ ∈ pn(w j) as private neighbour. Minimality of S hence demands Si = S j = S{i, j} = ∅. A set with 
this property however does not dominate any of the vertices ve with e ∈ E ∩ (V i × V j). (The set E ∩ (V i × V j) is not 
empty unless the graph G is a trivial “no”-instance for Multicoloured Clique.)
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According to these properties, the indices of these subsets of S can be divided into the following six sets: Ci := { j : |S j | = i}
and Di := {( j, l) : |S{ j,l}| = i} for i = 0, 1, 2 which then give |S| = 2(|C2| + |D2|) + |C1| + |D1|. If |C2| + |D2| 
= 0 and k > 3, we 
can construct an injective mapping f : C2 ∪ D2 ∪ {a} → C0 ∪ D0 with some a /∈ V ′ in the following way:

• For every i ∈ C2 choose some j 
= i with (i, j) ∈ D0 and j /∈ C2 which exists according to property 3 and set f (i) = (i, j). 
Since j /∈ C2 this f is injective.
If D2 = ∅ and C2 = {i}, choose some l 
= i and map a via f either to l or to (i, l), since, by property 1, one of them is 
in C0 or D0 respectively. If D2 = ∅ and |C2| > 1, choose some i, l ∈ C2 and set f (a) = (i, l) since S{i,l} = ∅ by property 1 
and neither i nor l is mapped to (i, l).

• For (i, j) ∈ D2, property 2 implies at least i or j lies in C0. By Property 4 we can choose one of them arbitrarily without 
violating injectivity. If both are in C0 we can use one of them to map a. If for all (i, j) ∈ D2 only one of the indices i, j
is in C0, we still have to map a, unless f (a) has been already defined. Assume for (i, j) ∈ D2 that i /∈ C0. By property 2 
{( j, l) : l /∈ {i, j}} ⊂ D0. If we cannot choose one of these index-pairs as injective image for a, they have all been used to 
map C2 which means {1, . . . , k} \ {i, j} ⊆ C2 and hence, by property 1, all index-pairs (l, h) with l, h ∈ {1, . . . , k} \ {i, j}
are in D0 and so far not in the image of f , so we are free to chose one of them as image of a, unless f (a) has been 
already defined.

This injection proves that |C2| + |D2| > 0 implies that |C2| + |D2| < |C0| + |D0|. This means that, regardless of the structure 
of the original graph G , the subsets Si and Si, j of S either all contain exactly one vertex or k + 1

2 (k2 − k) = |C1| + |D1| +
|C0| + |D0| + |C2| + |D2| > |C1| + |D1| + 2(|C2| + |D2|) = |S|.

So if |S| = k + 1
2 (k2 − k), the above partition into the sets Si, Si, j satisfies |Si | = |S{i, j}| = 1 for all i, j. A set with this 

property is always dominating for G ′ but only minimal if each vertex has a private neighbour. For some ve ∈ S{i, j} this 
implies that there is some private neighbour e′ = (u, v) ∈ V ′ ∩ (V i × V j) that is not dominated by the (existing) vertex u′ in 
Si or the vertex v ′ in S j ; (all vertices V i and V j are already dominated by {u′, v ′} ⊂ S and cannot be private neighbours for 
ve). By construction of E ′ , this is only possible if (u, v) = (u′, v ′) ∈ E . Since this is true for all index-pairs (i, j), the vertices 
{v : v ∈ Si, 1 ≤ i ≤ k} form a clique in the original graph G . �

We want to point out that the above reduction also works for the restriction of Upper Domination to solutions for which 
I is empty:

Corollary 24. (F , P , O )-Domination, that is the restriction of Upper Domination to solutions S such that V = N(S), is W[1]-hard.

Proof. The proof of Theorem 23 showed that there exists a minimal dominating set of cardinality k + 0.5(k2 − k) for G ′ if 
and only if each set Si and Si, j contains exactly one vertex. If we build G ′′ from G ′ by adding k new vertices w1, . . . , wk and 
edge sets {(wi, v) : v ∈ V i} for all i ∈ {1, . . . , k}, G ′′ has still has the same property that |Si | = 2 or |Si, j| = 2 is not possible 
without the same private neighbourhood situation as for G ′; in fact it immediately follows that |Si, j | ≤ 1, since dominating 
the new vertices requires at least one vertex from V i ∪ {wi} for each i, which leaves no possible private neighbours in 
V i ∪ V j for ve, ve′ ∈ E ∩ (V i × V j). For (F , P , O )-Domination, we can not include any of the vertices wi in a solution, since 
adding any neighbour violates minimality. This means that there can only exist a solution of cardinality k + 0.5(k2 − k) for 
(F , P , O )-Domination for G ′′ if |Si | = 1 or |Si, j| = 1 for each i and j as defined in the proof of Theorem 23, which is only 
possible if the vertices from Si are a clique in the original graph G .

It remains to show that in the “yes”-case for Multicoloured Clique, there exists a minimal dominating set S of car-
dinality k + 0.5(k2 − k) for G ′′ which has the (F , P , O )-structure. Let {v1, . . . , vk} be a multicoloured clique in G . We 
can extend this set to such a minimal dominating set of G ′ by adding for each pair (i, j) with i, j ∈ {1, . . . , k} and 
i 
= j an edge-vertex ve with e ∈ E and e ∈ (V i \ {vi}) × (V j \ {v j}). This way, ve is adjacent to vi and v j in G ′ and 
has as private neighbour the vertex v(vi ,v j) while the vertices vi and v j have private neighbours wi and w j respec-
tively. We can assume that a vertex e ∈ E ∩ (V i \ {vi}) × (V j \ {v j}) always exists since otherwise, if N(V i \ {vi}) = {v j}
for some pair (i, j), we know that each multicoloured clique for G contains either vi or v j . Branching on these two 
possibilities for all pairs (i, j) with this property yields a reduction in O (2k) to a graph which has a multicoloured 
k′-clique if and only if the corresponding graph G ′′ has an (F , P , O )-dominating set of cardinality k′ + 0.5(k′ 2 − k′) with 
k′ ≤ k. �

Corollary 24 means that if we consider somehow splitting the problem Upper Domination into the subproblems of 
computing the independent vertices I and (F , P , O )-Domination, we end up with two W[1]-hard problems. Consider-
ing Upper Total Domination, the construction in the proof of Theorem 23 is not very helpful, since unfortunately any 
set S with |S ∩ V i | = 1 for all i ∈ {1, . . . , k} and |S ∩ V i, j | = 1 for all i 
= j, regardless of the structure of the orig-
inal graph G , is a minimal total dominating set for G ′ . We can however use a much simpler construction to show 
W[1]-hardness for Upper Total Domination, a result which cannot be inferred from the known NP-hardness of the problem, 
see [25].
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Theorem 25. Upper Total Domination is W[1]-hard.

Proof. We reduce from Multicoloured Independent Set, which is equivalent to Multicoloured Clique on the complement 
graph. Let G = (V , E) be a graph with k different colour-classes given by V = V 1 ∪ V 2 ∪ · · · ∪ Vk . We construct a graph 
G ′ = (V ′, E ′) as follows: Starting from G , we add k vertices C = {c1, . . . , ck} and turn each vertex set V j ∪ {c j} into a clique. 
We claim that G admits a multicoloured independent set (of size k) if and only if G ′ has a minimal total dominating set 
with 2k vertices.

If K = {v1, . . . , vk} ⊆ V is a multi-coloured independent set, then D := K ∪ C is a total dominating set. It is minimal, 
because removing a vertex v ∈ {v j, c j} from D would yield u /∈ N(D) for u ∈ {v j, c j} \ {v}, since both v j and c j are not 
adjacent to any ci with i 
= j hence especially not to any vertex in K \ {v j}.

Conversely, any dominating set must contain at least one vertex from V j ∪ {c j} for each j in order to dominate c j . 
Let D be some minimal total dominating set for G ′ , with |D| ≥ 2k. If for some j, |D ∩ (V j ∪ {c j})| > 2, then, as V j ∪ {c j}
forms a clique, all � > 2 private open neighbours p1, . . . , p� of the vertices from {u1, . . . , u�} = D ∩ (V j ∪ {c j}) are from 
V ′ \ (V j ∪ {c j}), so in fact from V \ V j . Each pi belongs to some colour class f (i) ∈ {1, . . . , k}, and f : {1, . . . , �} → {1, . . . , k}
is an injective mapping; namely, suppose there were i 
= i′ with f (i) = f (i′) = s. The vertex cs needs to be dominated, 
which is then impossible without stealing the private neighbour from either ui or ui′ .

With the same argument, it is also clear that ui is the only vertex from D ∩ (V s ∪ {cs}) for s = f (i). Hence, |D ∩ {x ∈
(Vr ∪ {cr}) : r = j ∨ r ∈ f ({1, . . . , �})}| = 2�, but this affects � + 1 colour classes. Hence, D contains less than 2k vertices, 
a contradiction. Therefore, for all j, 1 ≤ |D ∩ (V j ∪ {c j})| ≤ 2. In order to satisfy |D| ≥ 2k, this means that, for all j, 1 ≤
|D ∩ (V j ∪ {c j})| = 2. We can argue as before that all vertices from D ∩ (V j ∪ {c j}) must find their private open neighbours 
within D ∩ (V j ∪ {c j}). This also means that K := D ∩ V forms an independent set in G with |I| ≥ k. �

We do not know if Upper Domination belongs to W[1], but we can at least place it in W[2], the next level of the 
W-hierarchy. We obtain this result by describing a suitable multi-tape Turing machine that solves this problem, see [16].

Proposition 26. Upper Domination belongs to W[2].

Proof. We employ a strategy as similarly used for showing that Minimum Domination belongs W[2] by providing an ap-
propriate multi-tape Turing machine [16]. First, the k vertices that should belong to the dominating set are guessed, and 
then this guess is verified in k further (deterministic) steps using n further tapes in parallel, where n is the order of the 
input graph, as in the standard proof showing that Minimum Domination belongs to W[2]. More precisely, for each vertex 
v guessed to be in the dominating set, all heads corresponding to vertices in N[v] are moved forward. If we detect that 
after processing all k vertices, some head on some of the n auxiliary tapes did not move, then the guessed vertex set was 
not a dominating set, while it is a dominating set if all heads did move. Then, we need to make sure that the guessed set 
of vertices is minimal. To this end, we copy the guessed vertices k times, leaving one out each time, and we also guess 
one vertex for each of the k − 1-element sets that is not dominated by this set. This takes O (k2) time altogether. Such a 
guess can be tested in the same way as sketched before using parallel access to the n + 1 tapes. Namely, we again move 
all heads corresponding to vertices in N[v] for all k − 1 vertices and then check if the head corresponding to the guessed 
non-dominated vertex did not move. The whole computation takes O (k2) parallel steps of the Turing machine, which shows 
the claim. �

Let us notice that very similar proofs also show membership in W[2] and hardness for W[1] for the question whether, 
given some hypergraph G and parameter k, there exists a minimal hitting set of G with at least k vertices. The same 
argumentation as for Proposition 26 also gives the following.

Corollary 27. Upper Total Domination belongs to W[2].

In the context of parameterised complexity, we would like to point out another difference between Upper Domination

and Minimum Domination. Despite its W[2]-hardness, there is at least a reduction-rule for Minimum Domination, which 
deals with vertices of degree one, as they can be assumed not to be contained in a minimum dominating set. One might 
suspect that any upper dominating set would conversely always choose to contain degree-one vertices.

As the example below illustrates, there can not be such a rule for Upper Domination, since the degree-one ver-
tex v is never part of a maximum solution; in fact, the black vertices form the unique optimal solution for this 
graph.

v w
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The parameterised dual of Minimum Domination, usually called Nonblocker, is known to be fixed parameter tractable, 
as are the duals of all other problems from the domination chain except Upper Domination. Hence, we now want to 
investigate the behaviour of Co-Upper Domination.

Theorem 28. Co-Upper Domination is in FPT. More precisely, it admits a kernel of at most �2 + � vertices and at most �2 edges.

Proof. Let G = (V , E) be an input graph of order n. Consider a vertex v ∈ V with deg(v) > � and any minimal dominating 
set D with partition (F , I, P , O ):

• If v ∈ I , all neighbours of v have to be in O which means |O | ≥ |N(v)| > �.
• If v ∈ F , exactly one neighbour p of v is in P and N[v] \{p} ⊆ F ∪ O , which gives |O | +|P | = |O | +|F | ≥ |N[v] \{p}| > �.
• If v ∈ P , exactly one neighbour p of v is in F and N[v] \ {p} ⊆ P ∪ O , so |O | + |P | > �.

We always have either v ∈ O or |O | + |P | > �, in which case (G, �) is a “no”-instance for Co-Upper Domination. Consider 
the graph G ′ built from G by deleting the vertex v and all its edges. For any minimal dominating set D for G with partition 
(F , I, P , O ) such that v ∈ O , D is also minimal for G ′ , since pn(w, D) ⊇ {w} for all w ∈ I and |pn(u, D) ∩ P | = 1 for all 
u ∈ F . Also, any set D ′ ⊂ V \ {v} which does not dominate v has a cardinality of at most |V \ N[v]| < n − �, so if G ′ has a 
dominating set D ′ of cardinality at least n − �, N(v) ∩ D ′ 
= ∅; hence, D ′ is also dominating for G . These observations allow 
us to successively reduce (G, �) to (G ′, �′) with �′ = � − 1, as long as there are vertices v with deg(v) > �. Any isolated 
vertex in the resulting graph G ′ originally only has neighbours in O which means it belongs to I in any dominating set D
with partition (F , I, P , O ) and can hence be deleted from G ′ without affecting the existence of an upper dominating set 
with |P | + |O | ≤ �′ .

Let (G ′, �′) be the instance obtained after the reduction above with G ′ = (V ′, E ′) and let n′ = |V ′|. If there is an upper 
dominating set D for G ′ with |D| ≥ n′ − �′ , any associated partition (F , I, P , O ) for D satisfies |P | + |O | ≤ �′ . Since G ′ does 
not contain isolated vertices, every vertex in I has at least one neighbour in O . Also, any vertex in V ′ , and hence especially 
any vertex in O , has degree at most �′ , which means that |I| ≤ |N(O )| ≤ �′|O |. Overall:

|V ′| ≤ |I| + |F | + |P | + |O | ≤ (�′ + 1)|O | + 2|P | ≤ �′
max

j=0
{ j(�′ + 1),2(�′ − j)} ,

and hence |V ′| ≤ �′(�′ + 1), or (G ′, �′) and consequently (G, �) is a “no”-instance. Concerning the number of edges, we can 
derive a similar estimate. There are at most � edges incident with each vertex in O . In addition, there is exactly one edge 
incident with each vertex in P that has not yet been accounted for, and, in addition, there could be � − 1 edges incident to 
each vertex in F that have not yet been counted. This shows the claim. �

We just derived a kernel result for Co-Upper Domination, in fact a kernel of quadratic size in terms of the number 
of vertices and edges. This poses the natural question if we can do better also with respect to the question whether the 
brute-force search we could perform on the quadratic kernel is the best we can do to solve Co-Upper Domination in FPT 
time.

Proposition 29. Co-Upper Domination for a graph G = (V , E) and a parameter � can be solved with ComputeCoUD(G, �, ∅, ∅, ∅, 
�) in time O ∗(4.3077�).

Proof. Algorithm 3 is a branching algorithm, with halting rules (H1) and (H2), reduction rule (R1), and three branching 
rules (B1)–(B3). We denote by G = (V , E) the input graph and by � the parameter. At each call, the set of vertices V is 
partitioned into four sets: F , I , D and R . The set of remaining vertices R is equal to V \ (F ∪ I ∪ D), and thus can be 
obtained from G and the three former sets.

At each recursive call, the algorithm picks some vertices from R . They are either added to the current dominating set 
D := F ∪ I , or to the set D to indicate that they do not belong to any extension of the current dominating set. The sets F
and I are as previously described (i.e., if we denote by D the dominating set we are looking for, I := {v ∈ D : v ∈ pn(v, D)}
and F := D \ I).

Note that parameter κ corresponds to our “budget”, which is initially set to κ := �. Recall that any minimal dominating 
set of a graph G = (V , E) can be associated with a partition (F , I, P , O ). If we denote by D a minimal dominating set of G
and by D the set V \ D , then by definition, F , I is a partition of D and P , O is a partition of D . Also, by definition of F and 
P , it holds that |F | = |P | and there is a perfect matching between vertices of F and P . Since each vertex of F will (finally) 
be matched with its private neighbour from P , we define our budget as κ = � −

( |F |
2 + |P |

2 + |O |
)

. One can observe that if 
D is a minimal dominating set of size at least n − � then κ ≥ 0. Conversely, if κ < 0 then any dominating set D such that 
F ∪ I ⊆ D is of size smaller than n − �. This shows the correctness of (H1). We now consider the remaining rules of the 
algorithm. Note that by the choice of κ , each time a vertex x is added to D , the value of κ decreases by 1

2 (or by 1 if we 
can argue that x is not matched with a vertex of F and thus belongs to O ). Also, whenever a vertex x is added to F , the 
value of κ decreases by 1 .
2
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Algorithm 3: ComputeCoUD(G, �, F, I, D, κ).

input : Graph G = (V , E), parameter � ∈ N, disjoint sets F , I, D ⊆ V and κ ≤ �.
output: Answer “yes” if �(G) ≥ |V | − �; “no” otherwise.

Let R ← V \ (F ∪ I ∪ D)

if κ < 0 then return “no” ; (H1)
if R is empty then (H2)

if F ∪ I is a minimal dominating set of G and |F ∪ I| ≥ n − � then
return “yes”

else return “no”

if there is a vertex v ∈ R s.t. N(v) ⊆ D then (R1)
return ComputeCoUD(G, �, F, I ∪ {v}, D, κ)

if there is a vertex v ∈ R s.t. |N(v) ∩ F | ≥ 1 then (B1)
return ComputeCoUD(G, �, F ∪ {v}, I, D, κ − 1

2 ) ∨
ComputeCoUD(G, �, F, I, D ∪ {v}, κ − 1

2 )

if there is a vertex v ∈ R s.t. |N(v) ∩ R| = 1 then (B2)
Let u be the unique neighbour of v in R

return ComputeCoUD(G, �, F ∪ {u, v}, I, D, κ − 1) ∨ ComputeCoUD(G, �, F ∪ {u}, I, D ∪ {v}, κ − 1) ∨
ComputeCoUD(G, �, F, I ∪ {v}, D ∪ {u}, κ − 1)

else (B3)
Let v be a vertex of R

return ComputeCoUD(G, �, F, I ∪ {v}, D ∪ N(v), κ − 2) ∨
ComputeCoUD(G, �, F ∪ {v}, I, D, κ − 1

2 ) ∨
ComputeCoUD(G, �, F, I, D ∪ {v}, κ − 1

2 )

(H2) If R is empty, then all vertices have been decided: they are either in D := F ∪ I or in D . It remains to check whether 
D is a minimal dominating set of size at least n − �.

(R1) All neighbours (if any) of v are in D and thus v has to be in I ∪ F . As v will also belong to pn(v, D), we can safely 
add v to I . Observe also that this reduction rule does not increase our budget.

(B1) Observe that if v has a neighbour in F , then v cannot belong to I . When a vertex v is added to F , the budget is 
reduced by at least 1

2 ; when v is added to D , the budget is reduced by 1
2 , as well. So (B1) gives a branching vector of 

( 1
2 , 12 ).

(B2) If (R1) and (B1) do not apply and N(v) ∩ R = {u}, then the vertex v has to either dominate itself or be dominated by u. 
Every vertex in F has a neighbour in F , which in this case means that v ∈ F implies u ∈ F (first branch). Moreover, 
the budget is reduced by at least 2 · 1

2 .
If v is put in I , u has to go to D̄ (third branch). Thus u cannot be a private neighbour of some F -vertex, and the 
budget decreases by at least 1 (u ∈ O ).
If v does not dominate itself, u has to be in F ∪ I . In this last case it suffices to consider the less restrictive case u ∈ F , 
as v can be chosen as the private neighbour for u (second branch). If u is indeed in I for a minimal dominating set 
which extends the current I ∪ F , there is a branch which puts all the remaining neighbours of u in D̄ . Observe that we 
only dismiss branches with halting rule (H2) where we check if F ∪ I is a minimal dominating set, we do not require 
the chosen partition to be correct. As for the counting in halting rule (H1): whether we count u ∈ F and v ∈ P (recall 
that P ⊆ D) each with 1

2 or count v ∈ O (recall that O  ⊆ D) with 1 does not make a difference for κ . So the budget 
decreases by at least 1.
Altogether (B2) gives a branching vector of (1, 1, 1).

(B3) The correctness of (B3) is easy as all possibilities are explored for vertex v . Observe that by (R1) and (B2), vertex v
has at least two neighbours in R . When v is added to I , these two vertices are removed (and cannot be the private 
neighbours of some F -vertices). Thus we reduce the budget by at least 2. When v is added to F , the budget decreases 
by at least 1

2 . When v is added to D , we reduce the budget by at least 1
2 . Thus (B3) gives a branching vector of (2, 12 , 12 ). 

However, we can observe that the second branch (i.e., when v is added to F ) implies a subsequent application of (B1) 
(or rule (H1) would stops the recursion). Thus the branching vector can be refined to (2, 1, 1, 12 ).

The worst-case over all branching vectors establishes the claimed running time. �
Of course, the question remains to what extent the previously presented parameterised algorithm can be improved on. 

In this context, we briefly discuss the issue of (parameterised) approximation for this parameter.

Theorem 30. Co-Upper Domination is 4-approximable in polynomial time, 3-approximable with a running time in O ∗(1.0883τ (G))

and 2-approximable in time O ∗(1.2738τ (G)) or O ∗(1.2132n).
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Proof. First of all, observe by subtracting n from Eq. (1) that τ (G) relates to the co-upper domination number in the 
following way:

τ (G)

2
+ 1 ≤ n − �(G) ≤ τ (G) (8)

Using any 2-approximation algorithm one can compute a vertex cover V ′ for G , and define S ′ = V \ V ′ . Let S be a maximal 
independent set containing S ′ . V \ S is a vertex cover of size |V \ S| ≤ |V ′| ≤ 2τ (G) ≤ 4(n − �(G)). Moreover, S is maximal 
independent and hence minimal dominating set which makes V \ S a feasible solution for Co-Upper Domination with 
|V \S| ≤ 4(n −�(G)). The claimed running times for the factor-2 approximation correspond to the current best parameterised 
and exact algorithms for Minimum Vertex Cover by [18] and [39], and the one from the factor-3 approximation corresponds 
to the parameterised approximation in [15]. �
5.2. Graphs of bounded degree

In contrast to the case of general graphs, Upper Domination turns out to be easy (in the sense of parameterised com-
plexity) for graphs of bounded degree.

Proposition 31. Fix � > 2. Upper Domination is in FPT when restricted to graphs of maximum degree �. More precisely, the problem 
can be solved in time O ∗((� + 1)2k).

The statement of the proposition is of course also true for � ∈ {0, 1, 2}, but then the problem is (trivially) solvable in 
polynomial time. In the following, we give an argument based on branching.

Proof. Consider the simple branching algorithm that branches on all at most � + 1 possibilities to dominate a vertex that 
is not dominated. Once we have fixed a new vertex in the dominating set, we let follow another branch (of at most � + 1
possibilities) to determine the private neighbour of the new vertex in the dominating set. Assuming that we are only looking 
for sets of size k, we can find a “yes”-instance in each branch where we needed to put k vertices in the dominating set 
(so far); if that set is not yet dominating, we can turn it into a minimal dominating set by a greedy approach, respecting 
previous choices. The overall running time of the branching algorithm is hence O ∗((� + 1)2k). �

The astute reader might wonder why we have to do this unusual 2-stage branching, but recall Theorem 9 which shows 
that it is difficult to extend some set of vertices of size at most k to a minimal dominating set containing it. Brooks’ Theorem 
yields the following result.

Proposition 32. Fix � > 2. Upper Domination has a problem kernel with at most �k many vertices.

Proof. First, we can assume that the input graph G is connected, as otherwise we can apply the following argument sep-
arately on each connected component. Assume G is a cycle or a clique. Then, the problem Upper Domination can be 
optimally solved in polynomial time, i.e., we can produce a kernel as small as we want. Otherwise, Brooks’ Theorem yields a 
polynomial-time algorithm that produces a proper colouring of G with (at most) � many colours. Extend the biggest colour 
class to a maximal independent set I of G . As I is maximal, it is also a minimal dominating set. So, there is a minimal 
dominating set I of size at least n/�, where n is the order of G . So, �(G) ≥ n/�. If k < n/�, we can therefore immediately 
answer “yes”. In the other case, n ≤ �k as claimed. �

With some more combinatorial effort, we obtain:

Proposition 33. Fix � > 2. Co-Upper Domination has a problem kernel with at most (� + 0.5)� many vertices.

Proof. Consider any graph G = (V , E). For any partition (F , I, P , O ) corresponding to an upper dominating set D = I ∪ F
for G , isolated vertices in G always belong to I and can hence be deleted in any instance of Co-Upper Domination without 
changing �. For any graph G without isolated vertices, the set P ∪ O dominating for G , since ∅ 
= N(v) ⊂ O for all v ∈ I
and N(v) ∩ P 
= ∅ for all v ∈ F . This implies that n = |N[P ∪ O ]| ≤ (� + 1)� as any dominating set in a graph of maximum 
degree � has a cardinality of at least n

�+1 .
Since any connected component can be solved separately, we can assume that G is connected. For any v ∈ P , the 

structure of the partition (F , I, P , O ) yields |N[v] ∩ D| = 1, so either |N[v]| = 1 < � or there is at least one w ∈ P ∪ O such 
that N[v] ∩ N[w] 
= ∅. For any v ∈ O , if N[v] ∩ F 
= ∅, the F -vertex in this intersection has a neighbour w ∈ P , which means 
N[w] ∩ N[v] 
= ∅. If N(v) ⊆ I and N[v] 
= V , at least one of the I-vertices in N(v) has to have another neighbour to connect 
to the rest of the graph. Since N(I) ⊆ O , this also implies the existence of a vertex w ∈ O , w 
= v with N[w] ∩ N[v] 
= ∅. 
Finally, if N[v] 
⊂ I ∪ F , there is obviously a w ∈ P ∪ O , w 
= v with N[w] ∩ N[v] 
= ∅.
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Assume that there is an upper dominating set with partition (F , I, P , O ) such that |P ∪ O | = l ≤ � and let v1, . . . , vl be 
the l > 1 vertices in P ∪ O . By the above argued domination-property of P ∪ O , we have:

n = |
l⋃

i=1

N[vi]| = 1
2

l∑
i=1

|N[vi] \
i−1⋃
j=1

N[v j]| + 1
2

l∑
i=1

|N[vi] \
l⋃

j=i+1

N[v j]| .

Further, by the above argument about neighbourhoods of vertices in P ∪ O , maximum degree � yields for every i ∈ {1, . . . , l}
either |N[vi] \⋃i−1

j=1 N[v j]| ≤ � or |N[vi] \⋃l
j=i+1 N[v j]| ≤ � which gives:

n = 1
2

l∑
i=1

|N[vi] \
i−1⋃
j=1

N[v j]| + |N[vi] \
l⋃

j=i+1

N[v j]| ≤ 1
2 l(2� + 1) ≤ (� + 0.5)�.

Any graph with more than (� + 0.5)� vertices is consequently a “no”-instance which yields the stated kernelisation, as the 
excluded case |P ∪ O | = 1 (or in other words N[v] = V for some v ∈ O ) can be solved trivially. �

This implies that we have a 3k-size vertex kernel for Upper Domination, restricted to subcubic graphs, and a 3.5�-size 
vertex kernel for Co-Upper Domination, again restricted to subcubic graphs. In [17, Theorem 3.1] it is shown that if a 
parameterised problem, for which the corresponding decision problem is NP-hard, admits a linear kernel of size αk and its 
parameterised dual admits a kernel of size αdkd , then (α − 1)(αd − 1) < 1 implies P = NP. With this, we can conclude the 
following:

Corollary 34. For any ε > 0, Upper Domination, restricted to subcubic graphs, does not admit a kernel with less than (1.4 − ε)k
vertices; neither does Co-Upper Domination, restricted to subcubic graphs, admit a kernel with less than (1.5 − ε)� vertices, unless 
P = NP.

6. Summary and conclusion

The motivation to study Upper Domination (at least for some of the authors) was based on the following observation 
based on enumeration; see [27].

Proposition 35. Upper Domination can be solved in time O ∗(1.7159n) on general graphs of order n.

So far there is no better algorithm (analysis) than this enumeration algorithm for Upper Domination although the min-
imisation counterpart can be solved in better than O ∗(1.5n) time [36,44]. As this appears to be quite a tough problem, it 
makes a lot of sense to consider approximative and parameterised approaches and also study restricted graph classes as we 
did in this paper. We summarise some open problems.

• Is Upper Domination in W[1]? Or, hard for W[2]?
• Are there smaller kernels for Upper and/or Co-Upper Domination on graphs of bounded degree?
• Is it possible to improve the 4-approximation of Co-Upper Domination?
• Can we find exact (e.g., branching or pathwidth-based) algorithms that beat the enumeration for Upper Domination?
• Conversely, are there better enumeration algorithms for minimal dominating sets in the degree-restricted scenario?

Acknowledgements

We are grateful for the helpful comments of the anonymous reviewers and for the financial support by the German 
Science Foundation (DFG), project FE 560 6/1. Some parts of this paper were presented at Algorithmic Aspects in Information 
and Management – 11th International Conference, in Bergamo, see [6] and other parts were presented at Combinatorial 
Algorithms – 27th International Workshop, in Helsinki, see [7].

References

[1] H. AbouEisha, S. Hussain, V.V. Lozin, J. Monnot, B. Ries, A dichotomy for Upper Domination in monogenic classes, in: Z. Zhang, L. Wu, W. Xu, D.-Z. Du 
(Eds.), Combinatorial Optimization and Applications – 8th International Conference, COCOA, in: LNCS, vol. 8881, Springer, 2014, pp. 258–267.

[2] H. AbouEisha, S. Hussain, V.V. Lozin, J. Monnot, B. Ries, V. Zamaraev, A boundary property for Upper Domination, in: V. Mäkinen, S.J. Puglisi, L. Salmela 
(Eds.), Combinatorial Algorithms – 27th International Workshop, IWOCA, in: LNCS, vol. 9843, Springer, 2016, pp. 229–240.

[3] F.N. Abu-Khzam, C. Bazgan, M. Chopin, H. Fernau, Data reductions and combinatorial bounds for improved approximation algorithms, J. Comput. System 
Sci. 82 (3) (2016) 503–520.

[4] E.M. Arkin, M.A. Bender, J.S.B. Mitchell, S. Skiena, The lazy bureaucrat scheduling problem, Inform. and Comput. 184 (1) (2003) 129–146.
[5] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1994) 153–180.

http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41626F484C4D5232303134s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41626F484C4D5232303134s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41626F484C4D5232303136s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41626F484C4D5232303136s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41627542434632303136s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41627542434632303136s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib41726B696E424D533033s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42616B3934s1


C. Bazgan et al. / Theoretical Computer Science 717 (2018) 2–25 25
[6] C. Bazgan, L. Brankovic, K. Casel, H. Fernau, K. Jansen, K.-M. Klein, M. Lampis, M. Liedloff, J. Monnot, V. Paschos, Algorithmic aspects of upper domi-
nation: a parameterised perspective, in: R. Dondi, G. Fertin, G. Mauri (Eds.), Algorithmic Aspects in Information and Management – 11th International 
Conference, AAIM, in: LNCS, vol. 9778, Springer, 2016, pp. 113–124.

[7] C. Bazgan, L. Brankovic, K. Casel, H. Fernau, K. Jansen, K.-M. Klein, M. Lampis, M. Liedloff, J. Monnot, V. Paschos, Upper domination: complexity and 
approximation, in: V. Mäkinen, S.J. Puglisi, L. Salmela (Eds.), Combinatorial Algorithms – 27th International Workshop, IWOCA, in: LNCS, vol. 9843, 
Springer, 2016, pp. 241–252.

[8] M.A. Bender, R. Clifford, K. Tsichlas, Scheduling algorithms for procrastinators, J. Sched. 11 (2) (2008) 95–104.
[9] D. Binkele-Raible, L. Brankovic, M. Cygan, H. Fernau, J. Kneis, D. Kratsch, A. Langer, M. Liedloff, M. Pilipczuk, P. Rossmanith, J.O. Wojtaszczyk, Breaking 

the 2n-barrier for Irredundance: two lines of attack, J. Discrete Algorithms 9 (2011) 214–230.
[10] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1–45.
[11] N. Boria, F. Della Croce, V.Th. Paschos, On the max min vertex cover problem, in: C. Kaklamanis, K. Pruhs (Eds.), Approximation and Online Algorithms 

– 11th International Workshop, WAOA 2013, in: LNCS, vol. 8447, Springer, 2014, pp. 37–48.
[12] E. Boros, V. Gurvich, P.L. Hammer, Dual subimplicants of positive boolean functions, Optim. Methods Softw. 10 (2) (1998) 147–156.
[13] N. Bourgeois, F. Della Croce, B. Escoffier, V.Th. Paschos, Fast algorithms for min independent dominating set, Discrete Appl. Math. 161 (4–5) (2013) 

558–572.
[14] N. Bourgeois, B. Escoffier, V.Th. Paschos, Fast algorithms for min independent dominating set, in: B. Patt-Shamir, T. Ekim (Eds.), Structural Information 

and Communication Complexity, 17th International Colloquium, SIROCCO, in: LNCS, vol. 6058, Springer, 2010, pp. 247–261.
[15] L. Brankovic, H. Fernau, A novel parameterised approximation algorithm for minimum vertex cover, Theoret. Comput. Sci. 511 (2013) 85–108.
[16] M. Cesati, The Turing way to parameterized complexity, J. Comput. System Sci. 67 (2003) 654–685.
[17] J. Chen, H. Fernau, I.A. Kanj, G. Xia, Parametric duality and kernelization: lower bounds and upper bounds on kernel size, SIAM J. Comput. 37 (2007) 

1077–1108.
[18] J. Chen, I.A. Kanj, G. Xia, Improved upper bounds for vertex cover, Theoret. Comput. Sci. 411 (40–42) (2010) 3736–3756.
[19] G. Cheston, G. Fricke, S. Hedetniemi, D. Jacobs, On the computational complexity of upper fractional domination, Discrete Appl. Math. 27 (3) (1990) 

195–207.
[20] E.J. Cockayne, O. Favaron, C. Payan, A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete 

Math. 33 (3) (1981) 249–258.
[21] B. Courcelle, A.J. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2) 

(2000) 125–150.
[22] R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness, Congr. Numer. 87 (1992) 161–187.
[23] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[24] R.G. Downey, M.R. Fellows, V. Raman, The complexity of irredundant set parameterized by size, Discrete Appl. Math. 100 (2000) 155–167.
[25] Q. Fang, On the computational complexity of upper total domination, Discrete Appl. Math. 136 (1) (2004) 13–22.
[26] M.R. Fellows, D. Hermelin, F. Rosamond, S. Vialette, On the parameterized complexity of multiple-interval graph problems, Theoret. Comput. Sci. 410 (1) 

(2009) 53–61.
[27] F.V. Fomin, F. Grandoni, A.V. Pyatkin, A.A. Stepanov, Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applica-

tions, ACM Trans. Algorithms 5 (1) (2008) 1–17.
[28] F.V. Fomin, K. Høie, Pathwidth of cubic graphs and exact algorithms, Inform. Process. Lett. 97 (2006) 191–196.
[29] M.R. Garey, D.S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math. 32 (4) (1977) 826–834.
[30] M.M. Halldórsson, Approximating the minimum maximal independence number, Inform. Process. Lett. 46 (4) (1993) 169–172.
[31] E.O. Hare, S.T. Hedetniemi, R.C. Laskar, K. Peters, T. Wimer, Linear-time computability of combinatorial problems on generalized-series-parallel graphs, 

in: D.S. Johnson, et al. (Eds.), Discrete Algorithms and Complexity, Academic Press, NY, 1987.
[32] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208, 

Marcel Dekker, 1998.
[33] M.A. Henning, P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1–3) (1996) 87–98.
[34] J. Håstad, Clique is hard to approximate within n1−ε , Acta Math. 182 (1999) 105–142.
[35] J. Hurink, T. Nieberg, Approximating minimum independent dominating sets in wireless networks, Inform. Process. Lett. 109 (2) (2008) 155–160.
[36] Y. Iwata, A faster algorithm for dominating set analyzed by the potential method, in: D. Marx, P. Rossmanith (Eds.), Parameterized and Exact Compu-

tation – 6th International Symposium, IPEC 2011, in: LNCS, vol. 7112, Springer, 2012, pp. 41–54.
[37] M.S. Jacobson, K. Peters, Chordal graphs and upper irredundance, upper domination and independence, Discrete Math. 86 (1–3) (1990) 59–69.
[38] M.M. Kanté, V.L.A. Mary, L. Nourine, On the enumeration of minimal dominating sets and related notions, SIAM J. Discrete Math. 28 (4) (2014) 

1916–1929.
[39] J. Kneis, A. Langer, P. Rossmanith, A fine-grained analysis of a simple independent set algorithm, in: R. Kannan, K. Narayan Kumar (Eds.), IARCS Annual 

Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, in: LIPIcs, vol. 4, Schloss Dagstuhl – Leibniz-Zentrum 
für Informatik, 2009, pp. 287–298.

[40] J. Kratochvíl, A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Appl. Math. 52 (1994) 233–252.
[41] L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B 19 (1975) 269–271.
[42] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (3) (1991) 425–440.
[43] K. Pietrzak, On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems, J. 

Comput. System Sci. 67 (4) (2003) 757–771.
[44] J.M.M. van Rooij, H.L. Bodlaender, Exact algorithms for dominating set, Discrete Appl. Math. 159 (17) (2011) 2147–2164.
[45] M. Zehavi, Maximum minimal vertex cover parameterized by vertex cover, in: G.F. Italiano, G. Pighizzini, D. Sannella (Eds.), Mathematical Foundations 

of Computer Science 2015 – 40th International Symposium, Part II, MFCS, in: LNCS, vol. 9235, Springer, 2015, pp. 589–600.

http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42617A6574616C3230313661s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42617A6574616C3230313661s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42617A6574616C3230313661s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42617A6574616C3230313662s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42617A6574616C3230313662s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42617A6574616C3230313662s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42656E64657243543038s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42696E6574616C32303131s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42696E6574616C32303131s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F643938s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F7243726F50617332303133s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F7243726F50617332303133s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib646F693A31302E313038302F3130353536373839383038383035373038s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F7543455032303133s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F7543455032303133s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F754565736350617332303130s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib426F754565736350617332303130s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib42726146657232303133s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib43657332303033s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4368656574616C32303037s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4368656574616C32303037s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4368654B616E58696132303130s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib43686573746F6E46484A3930s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib43686573746F6E46484A3930s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib436F636B61796E654650543831s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib436F636B61796E654650543831s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib72656631s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib72656631s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib446F7746656C393261s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib446F7746656C32303133s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib446F7746656C52616D32303030s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib46616E32303034s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib46656C48525632303039s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib46656C48525632303039s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib466F6D6574616C3230303861s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib466F6D6574616C3230303861s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib466F6D486F6932303036s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4761724A6F683737s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib48616C6C646F7273736F6E393361s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib48617265484C5050573837s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib48617265484C5050573837s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4848533938s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4848533938s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib48656E536C613936s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4861733939s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib487572696E6B4E3038s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib49776131313132s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib49776131313132s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4A61636F62736F6E503930s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib646F693A31302E313133372F313230383632363132s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib646F693A31302E313133372F313230383632363132s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4B6E654C616E526F7332303039s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4B6E654C616E526F7332303039s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4B6E654C616E526F7332303039s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4B72613934s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib4C6F763735s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib50593931s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib50696532303033s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib50696532303033s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib526F6F426F6432303131s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib5A65686176693135s1
http://refhub.elsevier.com/S0304-3975(17)30514-5/bib5A65686176693135s1

	The many facets of upper domination
	1 Introduction
	1.1 Summary of results

	2 Preliminaries and combinatorial bounds
	3 Classical complexity
	3.1 Hardness on cubic planar graphs
	3.2 Exact algorithms
	3.3 On Minimal Dominating Set Extension

	4 Approximation perspective
	4.1 General graphs
	4.2 Bounded-degree graphs
	4.3 Planar graphs

	5 Fixed parameter tractability
	5.1 General graphs
	5.2 Graphs of bounded degree

	6 Summary and conclusion
	Acknowledgements
	References


