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a b s t r a c t

The boxicity box(H) of a graph H is the smallest integer d such that H is the intersection
of d interval graphs, or equivalently, that H is the intersection graph of axis-aligned boxes
inRd. These intersection representations can be interpreted as covering representations of
the complement Hc of H with co-interval graphs, that is, complements of interval graphs.
We follow the recent framework of global, local and folded covering numbers (Knauer and
Ueckerdt, 2016) to define two new parameters: the local boxicity boxℓ(H) and the union
boxicity box(H) of H . The union boxicity of H is the smallest d such that Hc can be covered
with d vertex–disjoint unions of co-interval graphs, while the local boxicity of H is the
smallest d such that Hc can be covered with co-interval graphs, at most d at every vertex.

We show that for every graph H we have boxℓ(H) ≤ box(H) ≤ box(H) and that each
of these inequalities can be arbitrarily far apart. Moreover, we show that local and union
boxicity are also characterized by intersection representations of appropriate axis-aligned
boxes inRd.Wedemonstratewith a few striking examples, that in a sense, the local boxicity
is a better indication for the complexity of a graph, than the classical boxicity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this article are finite, undirected, simple (have neither loops nor multiple edges), and have at
least one edge. An interval graph is an intersection graph of intervals on the real line.1 Such a set {I(v) ⊆ R | v ∈ V (H)} of
intervals with vw ∈ E(H) ⇔ I(v)∩ I(w) ̸= ∅ is called an interval representation of H . A box in Rd, also called a d-dimensional
box, is the Cartesian product of d intervals. The boxicity of a graph H , denoted by box(H), is the least integer d such that H
is the intersection graph of d-dimensional boxes, and a corresponding set {B(v) ⊆ Rd

| v ∈ V (H)} is a box representation
of H . The boxicity was introduced by Roberts [17] in 1969 and has many applications in as diverse areas as ecology and
operations research [4].

As two d-dimensional boxes intersect if and only if each of the d corresponding pairs of intervals intersect, we have the
following more graph theoretic interpretation of the boxicity of a graph; also see Fig. 1(a).

Theorem 1 (Roberts [17]). For a graph H we have box(H) ≤ d if and only if H = G1 ∩ · · · ∩ Gd for some interval graphs
G1, . . . ,Gd.

* Corresponding author.
E-mail addresses: Thomas.Blaesius@hpi.de (T. Bläsius), torsten.ueckerdt@kit.edu (T. Ueckerdt).

1 Throughout, we shall just say ‘‘intervals’’ and drop the suffix ‘‘on the real line’’. Intervals may be open, half-open, or closed (even though restricting to
one kind does not affect the notion of an interval graph) and bounded or unbounded.
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Fig. 1. (a) The 4-cycle as the intersection of two interval graphs. (b) Example graph H . (c) An injective covering of H that is 3-global and 2-local. (d) A
(non-injective) 1-global 2-local covering of H .

I.e., the boxicity of a graphH is the least integer d such thatH is the intersection of d interval graphs. For a graphH = (V , E)
we denote its complement by Hc

= (V ,
(V
2

)
− E). Then by De Morgan’s law we have

H = G1 ∩ · · · ∩ Gd ⇐⇒ Hc
= Gc

1 ∪ · · · ∪ Gc
d, (1)

i.e., box(H) is the least integer d such that the complement Hc of H is the union of d co-interval graphs Gc
1, . . . ,G

c
d, where a

co-interval graph is the complement of an interval graph.2 In other words, box(H) ≤ d ifHc can be covered with d co-interval
graphs. Strictly speaking, we have to be a little more precise here. In order to use DeMorgan’s law, we should guarantee that
G1, . . . ,Gd in (1) all have the same vertex set. To this end, if G is a subgraph of H , let Ḡ = (V (H), E(G)) be the graph obtained
from G by adding all vertices in V (H)−V (G) as isolated vertices. (We use Ḡ to denote a graph obtained from G ⊆ H by adding
vertices of H not in G either as isolated or universal vertices.) Clearly we have

Hc
= Gc

1 ∪ · · · ∪ Gc
d ⇒ Hc

= Ḡc
1 ∪ · · · ∪ Ḡc

d ⇒ H = Ḡ1 ∩ · · · ∩ Ḡd

for any graph H and any set of subgraphs G1, . . . ,Gd of H . Nowwhenever G is a co-interval graph, then so is Ḡ, implying that
box(H) is the least integer d such that Hc can be covered with d co-interval graphs.

Graph covering parameters

In the general graph covering problem, one is given an input graph H , a so-called covering class G and a notion of how
to cover H with one or more graphs from G. The most classic notion of covering, which also corresponds to the boxicity as
discussed above, is that H shall be the union of G1, . . . ,Gt ∈ G, i.e., V (H) =

⋃
i∈[t]V (Gi) and E(H) =

⋃
i∈[t]E(Gi). (Here and

throughout the paper, for a positive integer t we denote [t] = {1, . . . , t}.) The global covering number, denoted by cGg (H),
is then defined to be the minimum t for which such a cover exists. Many important graph parameters can be interpreted
as a global covering number, e.g., the arboricity [15] when G is the class of forests, the track number [9] when G is the
class of interval graphs (Note that this is the smallest number of interval graphs covering a graph H , which is very different
from the track-number of H as defined in [5].), and the thickness [1,14] when G is the class of planar graphs, just to name
a few.

Most recently, Knauer andUeckerdt [10] suggested the followingunifying framework for three kinds of coveringnumbers,
differing in the underlying notion of covering. A graph homomorphism is a function ϕ : V (G) → V (H) with the property that
if uv ∈ E(G) then ϕ(u)ϕ(v) ∈ E(H), i.e., ϕ maps vertices of G (not necessarily injectively) to vertices of H such that edges
are mapped to edges. For abbreviation we shall simply write ϕ : G → H instead of ϕ : V (G) → V (H). Whenever G′

is a subgraph of G, ϕ(G′) denotes the (not necessarily induced) subgraph H ′ of H with V (H ′) = {ϕ(v) | v ∈ V (G′)} and
E(H ′) = {ϕ(u)ϕ(v) | uv ∈ E(G′)}. A copy of a graph G′ in H is a (not necessarily induced) subgraph H ′ of H that is isomorphic
to G′.

For an input graph H , a covering class G and a positive integer t , a t-global G-cover of H is an edge-surjective
homomorphism ϕ : G1 ∪· · · · ∪· Gt → H such that Gi ∈ G for each i ∈ [t]. Here ∪· denotes the vertex–disjoint union of
graphs. We say that ϕ is injective if its restriction to Gi is injective for each i ∈ [t]. A G-cover is called s-local if |ϕ−1(v)| ≤ s
for every v ∈ V (H).

Hence, if ϕ is a G-cover of H , then

ϕ is t-global if it uses only t graphs3 from the covering class G,
ϕ is injective if ϕ(Gi) is a copy of Gi in H for each i ∈ [t],
ϕ is s-local if for each v ∈ V (H) at most s vertices are mapped onto v.

2 Precisely, G is a co-interval graph if there is a set {I(v) ⊆ R | v ∈ V (G)} of intervals with vw ∈ E(G) ⇔ I(v) ∩ I(w) = ∅. Equivalently, these are the
comparability graphs of interval orders.

3 More precisely, ϕ uses a multiset of size t consisting of graphs from G, as the same graph may be used more than once.
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For a covering class G and an input graph H the global covering number cGg (H), the local covering number cGℓ (H), and the
folded covering number cGf (H) are then defined as follows; see also Fig. 1(b)–(d):

cGg (H) = min {t : there exists a t-global injective G-cover of H}

cGℓ (H) = min {s : there exists an s-local injective G-cover of H}

cGf (H) = min {s : there exists a 1-global s-local G-cover of H}.

Intuitively speaking, for cGℓ (H) we want to represent the input graph H as the union of graphs from the covering class
G, where the number of graphs we use is not important. Rather we want to ‘‘use’’ each vertex of H in only few of these
subgraphs. For cGf (H) it is convenient to think of the ‘‘inverse’’ mapping for ϕ. If ϕ : G1 → H is a 1-global G-cover of H ,
then the preimage under ϕ of a vertex v ∈ V (H) is an independent set Sv in G1. Moreover, for every u, v ∈ V (H) we have
uv ∈ E(H) if and only if there is at least one edge between Su and Sv in G1. So G1 is obtained from H by a series of vertex splits,
where splitting a vertex v into an independent set Sv is such that for each edge vw incident to v there is at least one edge
betweenw and Sv after the split. Now cGf (H) is the smallest s such that each vertex can be split into at most s vertices so that
the resulting graph G1 lies in the covering class G.

It is known that if the covering class G is closed under certain graph operations, we can deduce inequalities between the
folded, local and global covering numbers. For a graph class G we define the following.

• G is homomorphism-closed if for any connected G ∈ G and any homomorphism ϕ : G → H into some graph H we have
that ϕ(G) ∈ G.

• G is hereditary if for any G ∈ G and any induced subgraph G′ of Gwe have that G′
∈ G.

• G is union-closed if for any G1,G2 ∈ G we have that G1 ∪· G2 ∈ G.

Proposition 2 (Knauer–Ueckerdt [10]). For every input graph H and every covering class G we have

(i) cGℓ (H) ≤ cGg (H), and if G is union-closed, then cGf (H) ≤ cGℓ (H),
(ii) if G is hereditary and homomorphism-closed, then cGf (H) ≥ cGℓ (H).

Boxicity variants

Let us put the boxicity into the graph covering framework by Knauer and Ueckerdt [10] as described above. To this end,
let C denote the class of all co-interval graphs. Then we have box(H) = cCg (H

c) and we can investigate the new parameters

boxf (H) := cCf (H
c) and boxℓ(H) := cCℓ (H

c).

Clearly, if H is an interval graph, i.e., Hc
∈ C, then boxf (H) = boxℓ(H) = box(H) = 1. As it turns out, if H is not an interval

graph, then boxf (H) is not very meaningful.

Theorem 3. For every graph H we have boxf (H) = 1 if Hc
∈ C and boxf (H) = ∞ otherwise.

Basically, Theorem 3 says that if Hc is not a co-interval graph, there is no way to obtain a co-interval graph from Hc by
vertex splits. For example, if H has an induced 4-cycle and hence Hc has two independent edges, then Hc

̸∈ C and whatever
vertex splits are applied, the result will always have two independent edges, i.e., not be a co-interval graph. To overcome
this issue, it makes sense to define C to be the class of all vertex–disjoint unions of co-interval graphs4 and consider the
parameters

box(H) := cCg (H
c), boxℓ(H) := cCℓ (H

c), boxf (H) := cCf (H
c).

We have defined in total six boxicity-related graph parameters, one of which (namely boxf (H)) turned out to be
meaningless by Theorem 3. Somehow luckily, three of the remaining five parameters always coincide.

Theorem 4. For every graph H we have boxℓ(H) = boxℓ(H) = boxf (H).

With Theorems 3 and 4 we are left with three boxicity-related parameters, one of which is the well-known boxicity
itself. For the other two, which we refer to as the local boxicity boxℓ(H) and the union boxicity box(H), we can use again De
Morgan’s law to give the following definition. The join (also known as the Zykov sum) of (vertex–disjoint) graphs G1, . . . ,Gt
is the graph G = G1 + · · · + Gt obtained from the disjoint union of G1, . . . ,Gt and adding all edges between those graphs,
i.e., G = (Gc

1 ∪· · · · ∪· C c
t )

c .

4 Equivalently, C is the smallest union-closed class which contains C.
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Definition 5 (Local and Union Boxicity). The local boxicity of a graph H , denoted by boxℓ(H), is the smallest number k such
that H is the intersection of t interval graphs, for some integer t , with each vertex of H being non-universal in at most k of
these graphs.

The union boxicity of H , denoted by box(H), is the smallest number k such that H is the intersection of k graphs, each of
which is the join of some number of interval graphs.

The three parameters boxicity, local boxicity and union boxicity are non-trivial and reflect different aspects of the graph,
as will be investigated in more detail in this paper. Proposition 2 and Theorem 4 give boxℓ(H) = boxℓ(H) = cCℓ (H

c) ≤

cCg (H
c) = box(H) for every input graph H . As C ⊂ C we have box(H) = cCg (H

c) ≤ cCg (H
c) = box(H) for every input graph H .

Thus for every graph H we have

boxℓ(H) ≤ box(H) ≤ box(H). (2)

A graph H is an interval graph if and only if box(H) = 1, and in this case (2) gives boxℓ(H) = box(H) = 1 as well. It will
follow from our results (c.f. Theorem 7) that boxℓ(H) = 1 implies box(H) = 1. However, this is the only case in which we
can generally bound a more restricted boxicity variant from above in terms of a more relaxed variant. This is formalized in
the following theorem.

Theorem 6. For every positive integer k there exist graphs Hk,H ′

k,H
′′

k with

(i) boxℓ(Hk) ≥ k,
(ii) boxℓ(H ′

k) = 2 and box(H ′

k) ≥ k,
(iii) box(H ′′

k ) = 1 and box(H ′′

k ) = k.

We also give geometric interpretations of the local and union boxicity of a graph H in terms of intersecting high-
dimensional boxes. For positive integers k, d with k ≤ d we call a d-dimensional box B = I1 × · · · × Id k-local if for at
most k indices i ∈ {1, . . . , d} we have Ii ̸= R. Thus a k-local d-dimensional box is the Cartesian product of d intervals, at
least d− k of which are equal to the entire real lineR. Note that when B1 is a k1-local d1-dimensional box and B2 is a k2-local
d2-dimensional box, then the Cartesian product B1 × B2 is a (k1 + k2)-local (d1 + d2)-dimensional box.

Theorem 7. Let H be a graph and k ≥ 1 be an integer.

(i) We have box(H) ≤ k if and only if there exist positive integers d1, . . . , dk such that H is the intersection graph of Cartesian
products of k boxes, where the ith box is 1-local di-dimensional, i = 1, . . . , k.

(ii) We have boxℓ(H) ≤ k if and only if there exists a positive integer d such that H is the intersection graph of k-local
d-dimensional boxes.

Of course, the most natural way to prove box(H) ≤ d for a graph H is to explicitly define an intersection representation
with d-dimensional boxes. One standard approach in the literature is to split H into few induced subgraphs H1, . . . ,Ht of H
in such a way that (a) every pair of vertices in H appear together in Hi for at least one i ∈ [t], and (b) each Hi, i ∈ [t], has
small boxicity. Then, adding all vertices in V (H) − V (Hi) as universal vertices to a box representation of Hi and taking the
Cartesian product of all t box representations prove box(H) ≤

∑
i∈[t] box(Hi). With Theorem 7we can conclude in such cases

that boxℓ(H) ≤ max{box(Hi) | i ∈ [t]}, which is usually significantly less than
∑

i∈[t] box(Hi).
Let us restrict here to one such case, which is comparably simple. For a graph H the acyclic chromatic number, denoted by

χa(H), is the smallest k such that there exists a proper vertex coloring ofH with k colors inwhich any two color classes induce
a forest. In other words, an acyclic coloring has no monochromatic edges and no bicolored cycles. Esperet and Joret [6] have
recently shown that for any graph H with χa(H) = kwe have box(H) ≤ k(k− 1). Indeed, their proof (which we include here
for completeness) gives an intersection representation of H with 2(k − 1)-local k(k − 1)-dimensional boxes, implying the
following theorem.

Theorem 8. For every graph H we have boxℓ(H) ≤ 2(χa(H) − 1).

Proof. Let c be an acyclic coloring of H with k colors. For any pair {i, j} of colors consider the subgraph Gi,j induced by the
vertices of colors i and j. As Gi,j is a forest, we have box(Gi,j) ≤ 2 (this follows from [18] but can also be seen fairly easily).
Moreover, since H is the union of all Gi,j, the complement Hc of H is the intersection of the complements of all Ḡi,j (here Ḡi,j
contains vertices in H not in Gi,j as isolated vertices).

Now take an intersection representation of Gi,j with 2-dimensional boxes and extend it to one for Ḡi,j by putting the box
R2 for each vertex colored neither i nor j. Then the Cartesian product of all these

(k
2

)
box representations is an intersection

representation ofH with 2(k−1)-local k(k−1)-dimensional boxes. This proves that box(H) ≤ k(k−1) and boxℓ(H) ≤ 2(k−1),
as desired. □
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Organization of the paper.

In Section 2 we prove Theorem 3, i.e., that boxf (H) is meaningless, and Theorem 4, i.e., that three of the remaining five
boxicity variants coincide. In Section 3 we consider the problem of separation for boxicity and its local and union variants,
that is, we give a proof of Theorem 6. In Section 4 we describe and prove the geometric interpretations of local and union
boxicity from Theorem 7. Finally, we give some concluding remarks and open problems in Section 5.

2. Local and union boxicity

Recall that a graph class G is homomorphism-closed if for every connected graph G ∈ G and any homorphism ϕ : G → H
into some graph H we have ϕ(G) ∈ G. Since ϕ is a homomorphism, ϕ(G) arises from G by a series of ‘‘inverse vertex
splits’’, i.e., an independent set in G is identified into a single vertex of ϕ(G). If G is not only homomorphism-closed, but
also closed under identifying non-adjacent vertices in disconnected graphs, then the folded covering number cGf turns out to
be somewhat meaningless.

Lemma 9. If a covering class G is closed under identifying non-adjacent vertices, then for every non-empty input graph H we have

cGf (H) < ∞ ⇐⇒ H ∈ G ⇐⇒ cGf (H) = 1.

Proof. The right equivalence follows by definition of cGf (H).
The implication H ∈ G ⇒ cGf (H) < ∞ in the first equivalence is thereby obvious, and it is left to show that cGf (H) = 1

whenever cGf (H) < ∞. So let ϕ : G1 → H be any 1-global cover of H . We prove the lemma by induction over |V (G1)|, the
number of vertices in G1.

If |V (G1)| = |V (H)|, i.e., no vertices are folded, then ϕ is injective and therefore cGf (H) = 1. So assume that |V (G1)| >
|V (H)| and let v,w be distinct vertices in G1 with ϕ(v) = ϕ(w). Consider the graph G′

1 that we obtain by identifying v andw
in G1. Since ϕ(v) = ϕ(w) is only possible if v andw are non-adjacent, and G is closed under identifying non-adjacent vertices
we know that G′

1 ∈ G. Now the 1-global G-cover ϕ : G1 → H induces a 1-global G-cover ϕ′
: G′

1 → H by ϕ = ϕ′
◦ ψ , where

ψ : G1 → G′

1 identifies v and w in G1 and fixes all other vertices. As |V (G′

1)| = |V (G1)| − 1, we can apply induction to ϕ′ to
conclude that cGf (H) = 1. □

Lemma 10. Let C be the class of all co-interval graphs and C be the class of all vertex–disjoint unions of co-interval graphs. Then

(i) C and C are hereditary,
(ii) C is closed under identifying non-adjacent vertices, and
(iii) C is homomorphism-closed.

Proof.

(i) Consider any graph G ∈ C. Then G = G1 ∪· · · · ∪· Gt for some G1, . . . ,Gt ∈ C. If G ∈ C, then t = 1. For i ∈ [t]
consider an intersection representation {Ii(v) | v ∈ V (Gi)} of Gc

i with intervals. For any vertex set S ⊆ V (G), consider
the induced subgraphs when restricted to vertices in S, i.e., G′

= G[S] and G′

i = Gi[V (Gi) ∩ S] for i ∈ [t]. Note that
{Ii(v) | v ∈ V (Gi) ∩ S} is an interval representation of (G′

i)
c , i.e., G′

i ∈ C. Hence G′
= G′

1 ∪· · · · ∪· G′
t ∈ C and G′

∈ C if
t = 1. This shows that C and C are hereditary.

(ii) Let G ∈ C, x, y be two non-adjacent vertices in G and {I(v) | v ∈ V (G)} be an intersection representation of Gc with
intervals. Let G′ be the graph obtained from G by identifying x and y into a single vertex z. Since xy ∈ E(Gc) we have
I(x) ∩ I(y) ̸= ∅ and hence I(z) := I(x) ∩ I(y) is a non-empty interval. As for any interval J we have J ∩ I(z) ̸= ∅ if and
only if J ∩ I(x) ̸= ∅ and J ∩ I(y) ̸= ∅, we have that {I(v) | v ∈ V (G), v ̸= x, y} ∪ {I(z)} is an intersection representation
of (G′)c and thus G′

∈ C, as desired.
(iii) If G ∈ C then G = G1 ∪· · · · ∪· Gt for some G1, . . . ,Gt ∈ C. If x, y are two non-adjacent vertices in the same connected

component, then x, y are in the same Gi, say G1. By (ii) identifying x and y in G1 gives a graph G′

1 ∈ C. Moreover,
identifying x and y inG gives a graphG′

= G′

1 ∪· G2 ∪· · · · ∪· Gt . AsG′

1 ∈ CwehaveG′
∈ C andhence C is homomorphism-

closed. □

Proof of Theorem 3. This is a direct corollary of Lemmas 9 and 10(ii). □

Proof of Theorem 4. We have that C is hereditary by Lemma 10(i), homomorphism-closed by Lemma 10(iii) and union-
closed by definition. Hence by Proposition 2 we have boxf (H) = cCf (H

c) = cCℓ (H
c) = boxℓ(H).

As C ⊂ C we clearly have boxℓ(H) = cCℓ (H
c) ≤ cCℓ (H

c) = boxℓ(H). Finally, consider any s-local t-global C-cover ϕ :

G1 ∪· · · · ∪· Gt → Hc . For i = 1, . . . , t we have Gi ∈ C and hence Gi is the vertex–disjoint union of some graphs in C. Thus we
can interpret ϕ as an s-local t ′-global C-cover of Hc for some t ′ ≥ t . This shows that boxℓ(H) = cCℓ (H

c) ≤ cCℓ (H
c) = boxℓ(H)

and thus concludes the proof. □
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3. Separating the variants

Proof of Theorem 6.

(i) For a fixed integer k ≥ 1 we consider an arbitrary graph Fk that is 2k-regular and has girth at least 6 (i.e., its shortest
cycle has length at least 6). Now let ϕ : G1 ∪· · · · ∪· Gt → Fk be an injective s-local C-cover of Fk, i.e., each ϕ(Gi), i ∈ [t],
is a subgraph of Fk and a disjoint union of co-interval graphs, every edge of Fk lies in at least one such ϕ(Gi), and every
vertex of Fk is contained in at most s such ϕ(Gi). Such a cover exists as we could for example cover each edge of Fk with
a separate K2, which is a co-interval graph. We shall show that s ≥ k, proving that cCℓ (Fk) ≥ k and hence boxℓ(Hk) ≥ k,
where Hk = F c

k denotes the complement of Fk.
A co-interval graph G does not contain any induced matching on two edges. Hence G does not contain any induced
cycle of length at least 6. (Moreover, as G is perfect, it also contains no induced cycles of length 5.) Since Fk has girth at
least 6, this implies that every subgraph of Fk that is a co-interval graph is a forest. In particular, every ϕ(Gi) ∼= Gi has
average degree less than 2, i.e.,

∑
x∈V (Gi)

degGi (x) < 2|V (Gi)|. We conclude that

2k · |V (Fk)| =

∑
v∈V (Fk)

degFk (v) ≤

t∑
i=1

∑
x∈V (Gi)

degGi (x)

<

t∑
i=1

2|V (Gi)| ≤ 2s · |V (Fk)|,

where the first inequality holds since every edge of Fk is covered and the last inequality holds since every vertex is
contained in at most s of the ϕ(Gi), i ∈ [t]. From the above it follows that s ≥ k, as desired.

(ii) Our proof follows the ideas ofMilans et al. [13], who consider L(Kn), the line graph of Kn, and prove that cIg (L(Kn)) → ∞

for n → ∞, while cIℓ (L(Kn)) = 2 for every n ∈ N, where I denotes the class of all interval graphs. However, instead of
using the ordered Ramsey numbers (which is also possible in our case) we shall rather use the following hypergraph
Ramsey numbers: Let K 3

n , n ∈ N, denote the complete 3-uniform hypergraph on n vertices, i.e., K 3
n = ([n],

(
[n]
3

)
). For

an integer k ≥ 1, the Ramsey number Rk(K 3
6 ) is the smallest integer n such that every coloring of the hyperedges of

K 3
n with k colors contains a monochromatic copy of K 3

6 . The hypergraph Ramsey theorem implies that Rk(K 3
6 ) exists for

every k [16].
Now for fixed k ≥ 1, choose an integer n = n(k) > Rk(K 3

6 ) and consider L(Kn), the line graph of Kn. Let ϕ :

G1 ∪· · · · ∪· Gt → L(Kn) be any injective t-global C-cover of L(Kn) with each Gi ∈ C being a disjoint union of co-interval
graphs for i ∈ [t] and some t ∈ N. Again, such ϕ exists as we could cover each edge of L(Kn) with a separate copy of
K2 ∈ C. We shall show that t ≥ k, proving that cCg (L(Kn)) ≥ k and hence box(H ′

k) ≥ k, where H ′

k = (L(Kn))c denotes the
complement of L(Kn).
Assume for the sake of contradiction that t < k. From the C-cover ϕ of L(Kn), we define a coloring c of E(K 3

n ) with t
colors. Given x, y, z ∈ [n] with x < y < z, let c(x, y, z) = min{i ∈ [t] | {xy, yz} ∈ E(ϕ(Gi))} be the smallest index of a
co-interval graph in {G1, . . . ,Gt} that covers the edge between xy and yz in L(Kn). Since n > Rk(K 3

6 ) ≥ Rt (K 3
6 ) under c

there is a monochromatic copy of K 3
6 , say it is in color i and that its vertices are x1 < · · · < x6. By definition of coloring

c , this means that ϕ(Gi) contains the path x1x2, x2x3, x3x4, x4x5, x5x6 in L(Kn). However, the two edges {x1x2, x2x3} and
{x4x5, x5x6} induce amatching in L(Kn) and hence also in a connected component K of ϕ(Gi) ∼= Gi. This is a contradiction
to Gi ∈ C, i.e., K being a co-interval graph, and thus implies that t ≥ k, as desired.
Finally, observe that for any n ∈ N the following is an injective 2-local C-cover of L(Kn): For each i ∈ [n] let Gi be the
clique in L(Kn) formed by all edges incident to vertex i of Kn. Then {G1, . . . ,Gn} is a set of n co-interval graphs in L(Kn)
with the property that every edge of L(Kn) lies in exactly one Gi and every vertex of L(Kn) lies in exactly two Gi. This
shows that cCℓ (L(Kn)) = boxℓ(H ′

k) ≤ 2.
(iii) For fixed k ≥ 1 consider Mk, the matching on k edges. We shall show that cCg (Mk) = 1 and cCg (Mk) = k, proving that

box(H ′′

k ) = 1 and box(H ′′

k ) = k, where H ′′

k = Mc
k is the complement of Mk. Indeed, as no co-interval graph contains an

inducedmatching on two edges, any C-cover ofMk contains at least k co-interval graphs to cover all k edges ofMk. Since
K2 is a co-interval graph, there actually is an injective k-global C-cover ofMk. Thus, we have cCg (Mk) = box(H ′′

k ) = k.
On the other hand, the class C is union-closed and, since K2 is a co-interval graph, C contains all matchings. In particular
Mk ∈ C and therefore we have cCg (Mk) = box(H ′′

k ) = 1. □

4. Geometric interpretations

Lemma 11. A graph H is the intersection graph of 1-local d-dimensional boxes if and only if Hc is the vertex–disjoint union of d
co-interval graphs.

Proof. For an illustration of the proof, see Fig. 2. First, if {B(v) | v ∈ V (H)} is an intersection representation of H with
1-local boxes in Rd, then for each v ∈ V (H) let B(v) = I1(v) × · · · × Id(v). Without loss of generality assume that for every
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Fig. 2. (a) The octahedron H . (b) Its complement Hc . (c) Hc as the vertex–disjoint union of three co-interval graphs (given in their interval representation).
(d) The corresponding intersection representation of H with 1-local 3-dimensional boxes. The two long sides of each box have actually infinite length.

Fig. 3. (a, b) A graph H and its complement Hc . (c) Hc can be covered using three co-interval graphs. (d) The resulting intersection representation. Note
that the boxes are 3-dimensional as the cover uses three co-interval graphs and the boxes are 1-local and 2-local if the corresponding vertices are covered
once (1, 2, 5, 6) and twice (3,4), respectively. The long sides of each box have actually infinite length.

v ∈ V (H) there is some coordinate i ∈ [d] for which Ii(v) ̸= R is a bounded interval. For each i ∈ [d] consider the set
Vi = {v ∈ V (H) | Ii(v) ̸= R} of those vertices v for which B(v) is bounded in the ith coordinate. Then V1, . . . , Vd is a partition
of V (H) and for each i ∈ [d] the set {Ii(v) | v ∈ Vi} is an intersection representation with intervals of some graph Gi with
vertex set Vi. Then we have H = Ḡ1 ∩ · · · ∩ Ḡd, where Ḡi arises from Gi by adding all vertices of H not in Gi as universal
vertices. Hence Hc

= Ḡc
1 ∪ · · · ∪ Ḡc

d = Gc
1 ∪· · · · ∪· Gc

d. Thus Hc is the vertex–disjoint union of the d co-interval graphs, as
desired.

Now let Hc
= Gc

1 ∪· · · · ∪· Gc
d, where Gc

i ∈ C for i = 1, . . . , d. Consider for each i an intersection representation
{Ii(v) | v ∈ V (Gi)} of the complement Gi of Gc

i with intervals. For v ∈ V (H) we define

I ′i (v) =

{
Ii(v), if v ∈ V (Gi)
R, if v ̸∈ V (Gi).

Then B(v) = I ′1(v)× · · · × I ′d(v) is a 1-local d-dimensional box. Moreover, {B(v) | v ∈ V (H)} is an intersection representation
of H , which concludes the proof. □

From Lemma 11 we easily derive Theorem 7, i.e., the geometric intersection representations characterizing the local and
union boxicity, respectively.

Proof of Theorem 7.

(i) This follows easily from Lemma 11. Indeed, if box(H) = cCg (H
c) ≤ k, then Hc

= G1 ∪· · ·∪Gk where for i = 1, . . . , k the
graph Gi ∈ C is the vertex–disjoint union of di co-interval graphs. By Lemma 11 Gc

i has an intersection representation
with 1-local di-dimensional boxes. Similarly to the proof of Lemma 11, extending this 1-local box representation of Gc

i
to all vertices of H by adding a box Rdi for each vertex in H − Gi, and taking the Cartesian product of these k extended
1-local box representations, we obtain an intersection representation of H of the desired kind.
Similarly, consider any intersection representation {B1(v) × · · · × Bk(v) | v ∈ V (H)} of H , where for every v ∈ V (H)
and every i ∈ [k] the box Bi(v) is di-dimensional and 1-local. Then by Lemma 11 the set {Bi(v) | v ∈ V (H)} is an
intersection representation of some graph Gi whose complement Gc

i is in C. Moreover, Hc is the union of these k graph
Gc
1, . . . ,G

c
k ∈ C. This gives box(H) = cCg (H

c) ≤ k, as desired.
(ii) For an example illustrating this case, see Fig. 3. If boxℓ(H) = cCℓ (H

c) ≤ k, then there is a set {G1, . . . ,Gt} of t co-interval
graphs such that Gi ⊆ Hc for i = 1, . . . , t , E(Hc) = E(G1) ∪ · · · ∪ E(Gt ) and every v ∈ V (Hc) is contained in at most k
such Gi, i = 1, . . . , t . For each i ∈ [t] consider an interval representation {Ii(v) | v ∈ V (Gi)} of Gc

i . For v ∈ H − Gi we
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set Ii(v) = R. Then {Ii(v) | v ∈ V (H)} is an interval representation of the graph Ḡc
i obtained from Gc

i by adding vertices
in H not in Gi as universal vertices.
Now for v ∈ V (G) let B(v) = I1(v) × · · · × It (v) be the Cartesian product of the t intervals associated with vertex v.
As v is in Gi for at most k indices i ∈ [t], Ii(v) ̸= R for at most k indices i ∈ [t]. In other words, B(v) is a k-local box.
Finally, we claim that {B(v) | v ∈ V (H)} is an intersection representation of H . Indeed, if vw ̸∈ E(H), then vw ∈ E(Hc)
and hence vw ∈ E(Gi) for at least one i ∈ [t]. Then Ii(v) ∩ Ii(w) = ∅ and thus B(v) ∩ B(w) = ∅. And if vw ∈ E(H), then
vw ̸∈ E(Hc) and vw ̸∈ E(G′

i) for every i ∈ [t]. Thus Ii(v) ∩ Ii(w) ̸= ∅ for every i ∈ [t] and hence B(v) ∩ B(w) ̸= ∅.
This shows that if boxℓ(H) ≤ k, then H is the intersection graph of k-local boxes. On the other hand, if H admits an
intersection representation with k-local t-dimensional boxes, then for each i ∈ [t] projecting the boxes to coordinate i
and considering the bounded intervals in this projection give an interval representation of some subgraph Gi of Hc . As
before,we can check that {G1, . . . ,Gt} forms an injective k-local C-cover ofHc , showing that boxℓ(H) = cCℓ (H

c) ≤ k. □

5. Conclusions

In this paper we have introduced the notions of the local boxicity boxℓ(H) and union boxicity box(H) of a graphH . It holds
that boxℓ(H) ≤ box(H) ≤ box(H), where box(H) denotes the classical boxicity as introduced almost 50 years ago. Indeed,
both new parameters are a better measure of the complexity of H . For example, if H is the complement of a matching on n
edges, then box(H) = n, simply because the n non-edges each have to be realized in a different dimension. On the other hand,
we have boxℓ(H) = box(H) = 1, and as these non-edges are vertex–disjoint, they also should be ‘‘counted only once’’. We
have shown this phenomenon in a few more examples in the course of the paper. In fact, in many box representations from
the literature many (if not all) dimensions are only used by few vertices. The resulting high boxicity may be misintepreted
as the graph being very complex, which could be avoided by using local or union boxicity.

In future research, established boxicity results should be revisited to see whether one can improve the upper bounds
using local or union boxicity. For example, it is known that if H is a planar graph, then box(H) ≤ 3 [19]. Moreover, the
octahedral graph O is planar and has boxicity 3, because its complement Oc is the matching on three edges (c.f. the proof of
Theorem6(iii) and Fig. 2). By (2)we have that boxℓ(H) ≤ box(H) ≤ 3wheneverH is planar. However, boxℓ(O) = box(O) = 1,
because Oc is the vertex–disjoint union of co-interval graphs, i.e., Oc

∈ C. Hence it is natural to ask the following.

Question 12. Is there a planar graph H with boxℓ(H) = 3?

For general graphs H we proved that the local boxicity boxℓ(H) and the union boxicity box(H) can be arbitrarily far from
the classical boxicity box(H). But we do not know whether if box(H) is large, then boxℓ(H) and box(H) can be very close to
box(H). We construct graphs in the proof of Theorem 6(i) with large local boxicity, but one can show that these have even
larger boxicity.

Question 13. Is there for every k ∈ N a graph Hk such that boxℓ(Hk) = box(Hk) = box(H) = k?

Another interesting research direction concerns the computational complexity. It is known that for every k ≥ 2 deciding
whether a given graph H satisfies box(H) ≤ k is NP-complete [3,11]. When k = 1, one can decide if box(H) ≤ k and
box(H) ≤ k in polynomial time via interval graph recognition [2], because box(H) ≤ 1 if and only ifH is an interval graph and
box(H) ≤ 1 (equivalently boxℓ(H) ≤ 1, as already mentioned in the introduction) if and only if Hc

∈ C, i.e., the complement
of H is the vertex–disjoint union of co-interval graphs.

Question 14. For k ≥ 2, is it NP-complete to decide whether boxℓ(H) ≤ k (or box(H) ≤ k) for a given graph H?

Let us remark that for general covering numbers the computational complexity of computing cGg (H) tends to be harder
than that of cGℓ (H), which in turn tends to be harder than for cGf (H). For example, for G being the class of star forests,
computing cGg (H) is NP-complete [8,12], while computing cGℓ (H) and cGf (H) is polynomial-time solvable [10]. The same holds
when G is the class of all matchings as discussed in [10]. And for G being the class of bipartite graphs, computing cGg (H) and
cGℓ (H) is NP-complete [7], while computing cGf (H) is polynomial-time solvable since cGf (H) = 1 ifH is bipartite and cGf (H) = 2
otherwise.
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