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Abstract
Given a graph and a set of paths, we want to find the minimal set of vertices
such that each path is covered by at least one chosen vertex. Although this
problem is NP-hard, real-world instances can be solved almost completely by
a set of simple reduction rules. We examine this behavior from a theoretical
and empirical perspective. First, we show that the problem is easy to solve
for forests and cycle graphs. However, the problem is NP-hard for a feedback
vertex number of 2 and a treewidth of 3. This indicates that the explanation for
the effectiveness does not lie in the graph representation of problem instances.
Thus, we examine the Hitting Set problem that arises when ignoring the
graph representation and interpreting a path as a mere set of vertices. Through
this relation, we show that the problem remains NP-hard even for very strong
restrictions. Hitting Set instances that have a representation as a path
graph can be recognized as such in polynomial time. However, finding the
graph representation with the fewest edges is NP-hard.

Based on the analysis of publicly available transit datasets, we show that the
real-world instances are clustered and have heterogeneous stations, with the
number of lines per station distributed according to a power law. We describe
a model to generate random problem instances with adjustable clustering and
heterogeneity. We use this model to show that while the heterogeneity does
positively influence the effectiveness of the reduction rules, the largest effect
comes from the clustering.

Lastly, we show a strong relation between the reduction rules for the Hitting
Set problem and reduction rules for the Maximum Independent Set
problem on the intersection graph of the family of sets. We prove that the size
of any independent set is a lower bound on the size of the maximum hitting set
and show that the two bounds are very close for real-world instances. We show
that the reduction rules need to be effective for Maximum Independent
Set in order for them to be effective for Hitting Set.



Zusammenfassung
In einem gegebenen Graphen mit einer Menge von ausgezeichneten Pfaden
möchten wir eine minimale Menge von Knoten finden, sodass jeder Pfad von
mindestens einem gewählten Knoten abgedeckt wird. Obwohl dieses Problem
NP-schwer ist, können Echtwelt-Instanzen mithilfe von einfachen Reduktions-
regeln fast vollständig gelöst werden. Wir untersuchen dieses Verhalten aus
einer theoretischen und empirischen Perspektive. Zunächst zeigen wir, dass
das Problem für Wälder und Kreise effizient lösbar ist. Andererseits bleibt das
Problem NP-schwer, selbst wenn man die Eingabe beschränkt auf Graphen
mit einer Größe des Feedback Vertex Set von 2 oder einer Baumweite von
3. Dies deutet darauf hin, dass die Erklärung für die Effektivität nicht in
der Graphen-Repräsentation von Probleminstanzen zu finden ist. Daher un-
tersuchen wir das Hitting Set-Problem, welches entsteht, wenn wir die
Graphen-Repräsentation ignorieren und einen Pfad als Menge von Knoten in-
terpretieren. Durch diese Relation zeigen wir, dass das Problem selbst bei
starken Einschränkungen NP-schwer bleibt. Man kann in polynomieller Zeit
erkennen, ob eine Hitting Set-Instanz eine Repräsentation als Pfad-Graph
hat. Jedoch ist das Finden einer Graphen-Repräsentation mit möglichst weni-
gen Kanten NP-schwer.

Basierend auf einer Analyse von frei verfügbaren Verkehrs-Netzwerken zeigen
wir, dass Echtwelt-Instanzen geclustert sind und heterogene Haltestellen haben,
wobei die Anzahl von Linien pro Haltestelle nach einem Potenzgesetz verteilt
ist. Wir beschreiben ein Modell zur Generierung zufälliger Probleminstanzen
mit variablem Clustering und Heterogenität. Wir benutzen dieses Modell, um
zu zeigen, dass die Heterogenität zwar einen positiven Einfluss auf die Effek-
tivität der Reduktionsregeln hat, der stärkste Einfluss jedoch vom Clustering
kommt.

Schließlich zeigen wir einen starken Zusammenhang zwischen den Reduktions-
regeln für das Hitting Set-Problem und Reduktionsregeln des Maximum
Independent Set-Problems auf dem Schnittgraph der Familie von Mengen.
Wir beweisen, dass die Größe jeder unabhängigen Menge eine untere Schranke
an die Größe des größten Hitting Set ist und dass die beiden Schranken für
Echtwelt-Instanzen sehr nah sind. Wir zeigen, dass die Reduktionsregeln für
Maximum Independent Set effektiv sein müssen, damit sie auch für Hit-
ting Set effektiv sind.
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1 Introduction

Consider the following problem in public transport. We are given a set of
stations as well as a set of transit lines going through some of the stations. We
want to select stations such that every line goes through at least one of the
selected stations. If we aim for a minimum number of selected stations, we
can find the stations that are most important for the transit network or choose
these stations for strategical placement of, e.g., maintenance facilities of trains.
For this problem, we can formulate two simple reduction rules. A station can
be removed if there is another station that would cover a superset of the lines
of the first station, because the second station is always at least as good of a
choice as the first station. Similarly, a line can be removed if there is another
line that stops at a subset of the stations that the first line stops at. If our
selected stations cover the second line, they are guaranteed to cover the first
line too.

We can model the stations and lines as vertices and paths in a graph, and we
want to find the minimum set of vertices such that all paths are covered by
at least one vertex. This problem is called Path Cover by Vertices. In
1998, Weihe introduced this problem and the above-mentioned reduction rules
[38]. In corporation with a subsidiary of the Deutsche Bahn AG, Germany’s
largest railway company, the author worked on solving this problem based on
the timetables of trains in the German railroad network. Surprisingly, the
reduction rules turned out to be very effective, completely solving the prob-
lem or leaving only a very small problem core that can be solved by brute
force. This is especially surprising considering that Path Cover by Ver-
tices is NP-hard by reduction a from Hitting Set, as shown by Weihe [38].
Thus, there is a substantial gap between our theoretical understanding of this
problem and the practical results that can be achieved by the reduction rules.
Closing this gap can lead to advantages in both ways. First, it would improve
our theoretical understanding of the problem, which would also improve our
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1 Introduction

understanding of related problems such as Hitting Set and Set Cover.
Second, the findings could be translated into algorithms that utilize the prop-
erties that lead to the effectiveness of the reduction rules, thereby allowing us
to tackle the problem in practice in new ways.

The main reason for this gap is that the theoretical analysis considers the
worst case, which does not match typical real-world instances. There are
two common approaches to closing such a gap. The first approach is the
parameterized complexity. The field of parameterized complexity was first
systematically researched by Downey and Fellows in 1999 [15]. A problem is
called fixed-parameter tractable in some parameter k if there is an algorithm
that solves the problem in run time f(k) · nO(1), where f is some computable
function depending only on k, and n is the problem input size. For a constant k,
such an FPT algorithm allows for a polynomial run time that is independent of
k (as opposed to a run time like O(nk)). One common parameter is the solution
size. Other possible parameters describe structural properties of the input
data. In the case of Path Cover by Vertices, one such property of the
input graph is the treewidth, which models the tree-likeness of a graph. Other
possible parameters are the maximum path length or the maximum vertex
degree of the input graph. An FPT algorithm in any of these parameters would
explain which properties allow for a Path Cover by Vertices problem to
be solved efficiently. If real-world instances also have these properties, the gap
is closed.

The second approach is to consider an average case rather than the worst case.
However, the definition of an average requires a probability distribution over
the input. This can be done by considering “typical” instances with the help of
a model that accurately depicts key properties of real-world problem instances.
As noted by Karp [26], “the approach seems to have considerable explanatory
power”. More on the field of average-case complexity can be found in the survey
by Bogdanov and Trevisan [6]. This approach requires a fine balance between
choosing a realistic model that is possibly harder to analyze and choosing a sim-
ple model that lacks explanatory power. Therefore, we aim towards a model
that captures the key properties of real-world instances. In the case of our
transit networks in particular, candidates for key properties are heterogeneity
and clustering. Heterogeneity means there are few stations with many lines
going through them (central stations) and many stations with only a hand-
ful of lines. Many large networks from various domains, including biological
and social networks, are known to be heterogeneous [12, 24], which usually
originates in the large differences in importance of the entities represented in
the network. This heterogeneity often follows a power-law distribution in the
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1 Introduction

degrees of the entities [17].

In graphs, clustering means that vertices with a common neighbor are likely
to be neighbors with each other. Many real-world networks exhibit a kind of
clustering or transitivity [37, 22]. The canonical notion is the global clustering
coefficient, which is the ratio of the number of triangles to the number of
unordered connected triplets of vertices. This notion is not applicable in two-
mode networks such as our Hitting Set instances, since there are no cycles
of odd length. Lapaty et al. give an overview of the classical notions and their
variants as well as modifications that are suited for bipartite graphs [29]. We
will discuss some of these adjusted parameters in detail in Section 4.1.

Erdős and Rényi laid the foundation for the generation of random graphs with
the Erdős-Rényi model in 1959 [16]. A graph with n vertices is generated by
connecting each pair of vertices independently with probability p. While this
model is very simple and therefore easier to analyze, it lacks the properties
of heterogeneity and clustering. Numerous models have been introduced to
account for heterogeneity. One such model is the Barabási-Albert model [5].
In this model, vertices are gradually added, and they are connected to already
existing vertices with a probability proportional to their degree, creating a pref-
erential attachment. Another approach can be found in the Chung-Lu model
[11], in which vertices are assigned weights, and two vertices are connected
with a probability proportional to the product of their weights. While both
models allow for the generation of heterogeneous graphs, they are not clustered.
One approach to generating graphs with high clustering is to use an underlying
geometry. Random coordinates in an Euclidean geometry are assigned to each
vertex, and two vertices are connected if and only if they are close. Again,
while this approach yields high clustering [32], it does not yield a heteroge-
neous graph. The model of hyperbolic random graphs introduced by Krioukov
et al. [28] leads to graph with both of these properties. In this model, the
Euclidean geometry is replaced by a hyperbolic plane. This approach inherits
the clustering from the geometric approach while also displaying heterogeneity.
Bringmann et al. introduce the model of geometric inhomogeneous random
graphs (GIRGs) [8], which can be seen of a combination of the Chung-Lu
model with geometry. It also generates graphs which are both heterogeneous
and clustered and is in fact a generalization of the hyperbolic model.

In this thesis, we tackle the problem with both of these approaches; we eval-
uate possible parameters for a parameterized complexity, and we conduct an
empirical average-case analysis based on an instance generation model. We
find that the graph structure of a Path Cover by Vertices instance can
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1 Introduction

not be used as grounds for an explanation of the effectiveness of the reduction
rules. A parameterization in many parameters, including the solution size and
the treewidth, is impossible unless P=NP. Therefore, in order to understand
the Path Cover by Vertices problem, we should understand the under-
lying Hitting Set problem. Furthermore, we present a model to generate
Hitting Set instances that has structural properties similar to real-world
instances. In our empirical average-case analysis of this model, we show that
the properties of clustering and heterogeneity have a strong correlation to the
effectiveness of the reduction rules. Both of these properties are also present
in real-world instances of transit networks. We also present an interesting
relation between the Hitting Set problem and the Maximum Indepen-
dent Set problem, showing that a better understanding of the reduction
rules of the Maximum Independent Set problem might also lead to a
better understanding of the Hitting Set problem.

1.1 Outline

In Chapter 2 we define the notions that will be used throughout this thesis
as well as the Path Cover by Vertices problem and its reduction rules.
As we show in Chapter 3, the usual parameterized approach based on the
underlying graph does not yield a satisfying explanation for the effectiveness
of the reduction rules. While Path Cover by Vertices is easy to solve
for forests and cycle graphs, a generalization of closeness to trees fails for sev-
eral metrics common in graph theory, in particular the feedback vertex number
and the treewidth. We give an overview of previous research on the underlying
Hitting Set problem in Section 3.2. We apply these results to the Path
Cover by Vertices problem and find that they also do not yield an expla-
nation for the effectiveness of the reduction rules. In Chapter 4, we introduce
a model for generating Hitting Set instances that allow for configurable
heterogeneity and clustering. We show that both of these structural proper-
ties are present in real-world instances, and both properties strongly correlate
to the effectiveness of the rules. Furthermore, we compare several parameters
for measuring the clustering of a Hitting Set instance. In Chapter 5, we
show an interesting relation between the reduction rules of Hitting Set and
those of a related problem, namely Maximum Independent Set. An in-
dependent set of a graph is a set of vertices such that none of them share any
edges. Similarly, we can look for a maximum set of sets such that none of
the sets share any elements. Any such independent set of sets forms a lower
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1 Introduction

bound on the best hitting set, and in fact, all hitting set reduction rules are
valid independent set reduction rules too. Through this connection and the
observation that the two solution sizes are very close for real-world instances,
we provide a foundation for future work in the understanding of the reduction
rules. Finally, we conclude our work in Chapter 6 and give pointers for possible
future research.
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2 Preliminaries

2.1 Graphs

A simple graph G (graph for short) is defined on a set of vertices V and a set
of edges E ⊆ {{u, v} | u, v ∈ V ∧ u 6= v}. A subgraph of a graph is given by a
subset of the vertices and edges of a graph, where for any edge {u, v} in the
subgraph, both u and v have to be in the subgraph as well. Two vertices u, v
are adjacent if {u, v} ∈ E. For a vertex v, the set of neighbors {u | {u, v} ∈ E}
is called the neighborhood of v. The number of neighbors of a vertex is called
its degree. A graph is planar if there is a way of drawing the graph in the plane
such that no two edges cross each other. A path is a sequence of vertices such
that consecutive vertices always share an edge, with no vertex occurring more
than once. The length of a path is the number of edges used. A cycle is a
sequence of adjacent vertices where all vertices are distinct, with the exception
that the first and last vertex have to be identical. A graph is cycle-free if it has
no cycle as a subgraph. A graph is called connected if there is a path between
any pair of vertices. A component of a graph is a maximal connected subgraph,
meaning no other vertex can be added without violating the connectedness. A
cycle-free connected graph is called a tree. A cycle-free graph is called a forest.
Each of its components forms a tree. In a forest or tree, vertices of degree 1
are called leaves.

Two parameters that capture the closeness of a graph to a tree are the feedback
vertex number and the treewidth of a graph. A subset of the vertices of a graph
is called a feedback vertex set if the removal of these vertices yields a cycle-free
graph. The feedback vertex number of a graph is the size of its minimum
feedback vertex set. A tree decomposition of a graph G = (V,E) is a tree on
so-called bags X1, . . . , Xn ⊆ V such that every vertex occurs in some bag, for
every edge, some bag contains both vertices of that edge, and for every vertex,
the bags that contain that vertex form a subtree in the tree decomposition.
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2 Preliminaries

The width of such a decomposition is defined as max{|Xi|}− 1. The treewidth
of a graph is the minimum width of a tree decomposition of that graph. Note
that trees have a treewidth of 1, hence the name.

2.2 Bipartite Graphs

A two-mode network, as opposed to one-mode networks (graphs), is a structure
in which there are two types of objects, with links between two objects of
different type, but not within the types. There are several ways to model this
type of network. The first type is a bipartite graph. A bipartite graph is a
graph where the set of vertices can be divided into two sets U and V such that
all edges of the graph are between vertices of different sets.

Another way of modeling two-mode networks is through hypergraphs. A hy-
pergraph is a generalization of graphs where edges are replaced by hyperedges,
which are non-empty subsets of the set of vertices. Two vertices u and v are
adjacent if there is a hyperedge that contains both u and v. The degree of a
vertex v is equal to the number of hyperedges that contain v. Hypergraphs
can also be seen as a family of sets over a universe.

This leads to the following problem, called Hitting Set. Given a universe U
of size n and a collection of sets S = {S1, . . . , Sk} with Si ⊆ U , a hitting set is
a set C ⊆ U such that ∀Si ∈ S : Si∩C 6= ∅. The problem Hitting Set in its
optimization version asks for a hitting set of minimum cardinality. Another,
similar problem is Set Cover. Given a universe U of size n and a collection
of sets S = {S1, . . . , Sk} with Si ⊆ U , a set cover is a subset C ⊆ S of the given
sets such that ⋃C = U . The problem Set Cover asks for a set cover of
minimum cardinality. In fact, the two problems are identical: When treating
the two-mode network as a bipartite graph, one problem can be converted to
the other by exchanging the two types of vertices.

Two-mode networks can be converted to one-mode networks through a projec-
tion. This projection is lossy, since not all original information can be preserved.
One such projection is the intersection graph.
Definition 2.1 (Intersection Graph). The intersection graph of a collection
of sets S = {S1, . . . , Sk} is defined as G = (V,E) with V = S and E =
{{Si, Sj}|Si ∩ Sj 6= ∅}.

In other words, the intersection graph connects two sets if and only if they
share an element. Again, there are two ways to look at this: from a two-mode
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2 Preliminaries
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Figure 2.1: A Path Cover by Vertices instance (up), the corresponding Hit-
ting Set instance as a bipartite graph (center), and two possible projections as intersec-
tion graphs based on the sets (on the left) and based on the vertices (on the right).

network, we can derive two intersection graphs, depending on the side we
choose as the universe. Figure 2.1 shows the two possible intersection graphs
of one bipartite graph.

2.3 Path Cover by Vertices

In this section, we introduce the Path Cover by Vertices problem and
reduction rules. They were initially introduced by Weihe [38].
Definition 2.2 (Path Cover by Vertices; [38]). Given an undirected
graph G = (V,E) and a set of paths P in G, such that, for each edge e ∈ G,
there is a path p ∈ P that uses the edge e. Let P (v) denote the set of paths that
include vertex v, and let V (p) denote the set of vertices that are part of path
p. The problem is to find a minimum path cover by vertices, that is, a subset
of the vertices C ⊆ V such that ∀p ∈ P : V (p) ∩ C 6= ∅, so each path contains
at least one chosen vertex.

For this problem, we introduce the following notion of dominance. Let v1, v2 ∈
V . We say v2 dominates v1 if P (v1) ⊆ P (v2). That means, every path that
contains v1 also contains v2. Let p1, p2 ∈ P . We say p1 dominates p2 if
V (p1) ⊆ V (p2). This means, every vertex that would cover p1 would also cover
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2 Preliminaries

v1 v2

Figure 2.2: The vertex v2 dominates v1.

p1
p2

Figure 2.3: The path p1 dominates p2.

p2. Note that, although the formulation is similar to vertex dominance, the
roles of p1 and p2 are reversed here. Figure 2.2 illustrates dominance between
vertices, while Figure 2.3 illustrates dominance between paths.

The following reduction rules can be defined and applied. They were initially
stated by Weihe [38], but are given here again for completeness. A vertex
reduction on a vertex v ∈ V can be applied if v is dominated and works as
follows:

• The vertex v and its incident edges are removed from G.

• For every path that contains v, v is removed from the path. If v was
neither the start vertex nor the end vertex of the path, an edge connecting
the predecessor and successor vertices is added to E if it is not contained
already.

Since v is dominated, we can discard the vertex from our instance: for every
path cover by vertices that would have included v, we can choose the dominat-
ing vertex instead of v.

Similarly, a path reduction on a path p ∈ P can be applied if p is dominated
and works as follows:

• The path p is removed from P .

• Every edge e ∈ E that does not belong to any path is removed.

The path p is dominated by some other path p1 with V (p1) ⊆ V (p). Since p1
has to be covered in any path cover by vertices, the path p will be covered too.
Therefore, we can discard the path p.

An irreducible core or simply core of a Path Cover by Vertices instance
is created by repeatedly applying vertex reduction to a dominated vertex and
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2 Preliminaries

path reduction to a dominated path in an arbitrary order, until no reduction
can be applied anymore. Evidently, every application of a reduction rule is
computable in polynomial time, and every reduction reduces either the number
of vertices or the number of paths.

In an irreducible core, we call vertices that are contained in only one path
isolated vertices. These vertices cannot have any neighbors in G. The isolated
path of an isolated vertex can only contain that vertex and no other vertices,
otherwise the vertex would be dominated by another vertex.

We call an instance solved if all remaining vertices are isolated. The minimum
path cover by vertices of a solved instance is the remaining set of vertices. An
instance can be solved by reduction if its irreducible core is solved.

2.4 Fixed-Parameter Tractability

A problem of input size n is called fixed-parameter tractable in a parameter k if
there is an algorithm with runtime complexity f(k) ·nO(1) for some computable
function f . For a constant k, such an FPT algorithm allows for a polynomial
run time that is independent of k (as opposed to a run time like O(nk)). The
class of fixed-parameter tractable problems is called FPT. For some problems
and parameters, no FPT algorithm is known yet. These can be further catego-
rized with the W hierarchy, which defines several problem classes W [i]. It is
known that FPT = W [0] ⊆ W [1] ⊆ W [2] . . . . The Independent Set prob-
lem with solution size k is known to be in W [1]. The Hitting Set problem
with solution size k is in W [2].

10



3 Parameterized Complexity

In this chapter, we focus on the parameterized complexity of the Path Cover
by Vertices problem. Since a Path Cover by Vertices instance is
on a graph G, the natural first step is to try to classify the effectiveness of
the rules and the complexity of solving the problem based on the underlying
graph.

3.1 Complexity based on the Underlying Graph

In order to understand the circumstances under which the reduction rules are
the most effective, the first question we answer is:

Which underlying graphs allow for Path Cover by Vertices
instances to be solved by reduction?

The following lemmas answer that question: we show that this is the case for
forests, but for any other graph, it is impossible to tell without examining the
actual paths of the instance.
Lemma 3.1. If G is a forest, the Path Cover by Vertices instance can
be solved by reduction.

Proof. A forest always has a leaf. Let vl be this leaf and vn its neighbor. Then
it holds that either P (vl) ⊆ P (vn) or ∃p ∈ P (vl) : p /∈ P (vn). In the first
case, vl is dominated by vn, thus the leaf and its edge will be removed from
the graph. In the second case, there is a path p that includes the leaf vl, but
not its neighbor vn. Thus, p = (vl). The path p dominates all paths that
use the edge {vl, vn}, thus the path reduction can be applied to all of these
paths, eventually removing the edge. The leaf vl will remain isolated for the
remainder of the reduction. The remaining graph is still a forest but with at
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3 Parameterized Complexity

least one edge removed. Thus, by induction over the leaves, there is always
one reduction rule applicable until only isolated vertices remain.

Now that we have shown that the reduction rules are very effective for forests,
we examine the opposite case: we show that if the graph contains a cycle, we
cannot tell based on the graph alone whether the instance can be solved by
reduction.
Lemma 3.2. For any graph G that contains a cycle, there is a Path Cover
by Vertices instance on G that can not be solved by reduction.

Proof. For the proof, we choose an arbitrary orientation u < v for every edge
{u, v} ∈ E. For the graph G = (V,E), fix an arbitrary cycle of vertices Vc and
set P = {(u, v) | {u, v} ∈ E ∧ u < v} ∪ {(v) | v ∈ V \ VC}, such that there is
a path for each edge as well as a path for each vertex that is not in the fixed
cycle. Then, all the edge-paths (u, v) not part of the cycle will be dominated
by the vertex-path (u) or (v), since one of them is not in the cycle. Thus, all of
these edge-paths and their edges will be removed. All vertices not in the cycle
are isolated and cannot be part of any other dominations. For the remaining
cycle, no further reduction is possible. There is no path dominance because all
paths in the cycle contain two elements, and no two paths contain the same
two elements. There can be no vertex dominance either since all vertices in
the cycle are part of two paths, and these two paths cannot be the same for
two different vertices. Since no further reductions can be applied, the instance
can not be solved by reduction.

However, with the right paths, even graphs that contain a cycle can be solved
by reduction, as we show in the following Lemma.
Lemma 3.3. For any graph G, there is a Path Cover by Vertices in-
stance on G that can be solved by reduction.

Proof. For the proof, we choose an arbitrary orientation u < v for every edge
{u, v} ∈ E. For the graph G = (V,E), set P = {(u, v) | {u, v} ∈ E ∧ u <
v} ∪ {(v) | v ∈ V }, such that there is a path for each edge as well as a path
for each vertex of the graph. Then, each edge-path (u, v) will be dominated
by the vertex-path (u). All edge-paths and all edges will be removed, leaving
only the vertex-paths. All remaining vertices are isolated, thus the instance is
solved.

These lemmas in combination with Lemma 3.1 yield the following corollary.
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Corollary 3.4. Any Path Cover by Vertices instance where G is a
forest can be completely solved by the reduction rules. For any other graph G,
either case is possible.

This means that, when only looking at the graph G, this classification is the
best possible. Thus, it completely answers which graphs allow for an instance
to be solved by reduction. But maybe the requirement of being solved by
reduction is too tight. Instead, we generalize this question and ask for graph
classes that allow for a polynomial time algorithm.

Which instance classes of Path Cover by Vertices can be
solved in polynomial time?

Since we have shown in Lemma 3.1 that all forests can be solved by reduction,
and the reduction runs in polynomial time, the following Corollary follows
directly.
Corollary 3.5. The class of Path Cover by Vertices instances on
forests can be solved in polynomial time.

The following lemma deepens the insights of Lemma 3.2. We show that, even
though instances with cycles might not always be solvable by reduction, in-
stances on a cycle graph (a graph that consists of a single cycle) can nonetheless
be solved in polynomial time.
Lemma 3.6. Path Cover by Vertices instances on cycle graphs can be
solved in polynomial time.

Proof. We prove this by giving a polynomial-time algorithm. If there is at
least one path to cover, the solution vertex-set is non-empty. We branch on
the decision which vertex to include in the cover. Suppose, in this branch,
v ∈ V has been chosen. We can remove v, its occurrences in paths and its
edges, such that a cycle-free graph remains. This can be solved in polynomial
time, as shown above. Since there are |V | vertices to branch on, this results
in a polynomial-time algorithm.

The previous results suggest that graphs that are tree-like might be easy to
solve. Trees can be solved by reduction, and cycles can be broken with some
extra effort. This raises the question whether a parameterization by tree-
likeness or some other parameter can aid at solving the Path Cover by
Vertices problem.

Are there FPT algorithms for Path Cover by Vertices on
parameters of the graph of the instance?

13
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We show that parameterizations by several variants of tree-likeness, namely
treewidth and feedback vertex number, are impossible unless P=NP. The proof
for the following lemma is based on a proof by Jansen [25], who shows NP-
completeness of Path Cover by Vertices in the feedback vertex number 2
based on a reduction from a problem called n-Totally Ordered Regular
Signed 3-SAT. We simplify the proof and give a detailed explanation for
both feedback vertex number and treewidth.
Lemma 3.7. Path Cover by Vertices is NP-hard for graphs of treewidth
3 and for graphs with the feedback vertex number 2.

Proof. We prove this by reducing from 3-SAT. Let ϕ be a propositional for-
mula on n variables. We create two vertices x and x for every literal and
connect them. Then, we add two vertices z0 and z1 which are connected to ev-
ery x vertex. For every literal, we add a path (x, x). For every clause (a∨b∨c)
we add a path (xa, z0, xb, z1, xc) where each xi is the vertex xi or xi based on
whether the variable is inverted or not. Figure 3.1 illustrates this reduction.

Now, if there is a path cover by vertices of size n (where n is the number of
variables), then the SAT instance is solvable. Since for every variable x, the
vertex x or x has to be chosen, and there are n such variables, exactly one
of the two vertices x and x is chosen. Thus, neither z0 nor z1 can be part of
the path cover by vertices. The correct variable assignment is given by setting
a variable x to false if x is chosen and true otherwise. Then, every clause
is fulfilled, since the path for that clause is covered by at least one vertex
belonging to a literal that is chosen. Similarly, every valid variable assignment
yields a path cover by vertices of size n. For every variable x, we choose the
vertex x if x is set to true and choose x otherwise. Thus, each path (x, x) is
covered. Additionally, all the paths corresponding to clauses are covered, since
either of the three literals was true in the variable assignment. This way, we
get a path cover by vertices of size n.

The graph created has a feedback vertex number of 2: if we remove both z0
and z1 from the graph, the only edges left are those between the vertices x and
x for each variable. The graph also has treewidth 3. Consider the following
tree decomposition. For every variable x, we add a bag {x, x, z0, z1}. Our
tree decomposition now consists of all of these bags in one single path in an
arbitrary order. Each vertex is in some bag. For every edge, there is a bag that
contains both of its vertices. Finally, the only vertices that occur in multiple
bags are z0 and z1, and since they are in every bag, this forms a subtree. Each
bag has a size of 4, thus the graph has a treewidth of 3.
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z1

a a

bb

c c

z0

Figure 3.1: Example for the reduction from 3-SAT to Path Cover by Vertices
with treewidth 3. The path shown in red is the path that is created for the clause a∨ b∨ c.

This result is surprising in the following sense. By Courcelle’s Theorem,
most graph-related problems admit FPT algorithms when parameterized in
treewidth [13]. However, we have shown that the problem is already hard for
constant treewidth. That means, assuming P6=NP does not only rule out a
polynomial algorithm for PVC, but also any FPT algorithm [18]. We have
shown that the problem is polynomial time solvable on trees (treewidth 1) and
NP-hard for treewidth at least 3. It remains open whether the problem is
NP-hard for graphs of treewidth 2.

Another hardness result comes from the problem’s relation to Vertex Cover.
Lemma 3.8. If Vertex Cover is NP-hard on a graph class, then Path
Cover by Vertices is NP-hard on that graph class too.

Proof. We prove this by reducing from arbitrary Vertex Cover instances to
Path Cover by Vertices instances on the same graph. Given a Vertex
Cover instance in the form of graph G = (V,E), we choose an arbitrary
orientation u < v for every edge {u, v} ∈ E. We create the Path Cover by
Vertices instance on the same graph G with the paths P = {(u, v) | {u, v} ∈
E ∧ u < v}. This yields a valid Path Cover by Vertices instance, since
every edge has a corresponding path. Clearly, any vertex cover corresponds to
the same path cover by vertices and vice versa.

Based on the reduction to Vertex Cover in Lemma 3.8, it follows that
Path Cover by Vertices is already difficult to solve even for very short
paths.
Corollary 3.9. Path Cover by Vertices remains NP-hard if each path
has length 1.
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Garey et al. [20] show that Vertex Cover remains NP-hard on planar
graphs with vertex degree at most 3. By Lemma 3.8, this leads to the following
corollary.
Corollary 3.10. Path Cover by Vertices remains NP-hard on planar
graphs with vertex degree at most 3.

All of these results on NP-hardness are very strong indicators that the effec-
tiveness of the reduction rules cannot be derived from the graph structure of a
Path Cover by Vertices instance. Instead, we now look at parameters
that do not utilize the graph structure of the instance. This is equivalent to
the Hitting Set problem.

3.2 Complexity based on Hitting Set

Any Path Cover by Vertices instance can be converted to a Hitting
Set instance by using the set of vertices as the universe and creating a sub-
set for each path containing its vertices. Additionally, the reduction rules
immediately translate into corresponding reduction rules for Hitting Set
instances, since the rules do not take the order of elements in the path into
account. An element e2 dominates an element e1 if S(e1) ⊆ S(e2), where S(e)
denotes the collection of subsets that contain e. In the element reduction the
dominated element is removed from the universe and from all sets containing
it. A set s1 dominates s2 if s1 ⊆ s2. In the set reduction the dominated
set is removed from the family of sets. The core term applies accordingly.
This conversion allows to further investigate the complexity of solving Path
Cover by Vertices. We give an overview of the research on the Hitting
Set problem and describe their relation to our Path Cover by Vertices
problem. The reduction rules were described by Nemhauser and Wolsey [30].
The NP-hardness of Hitting Set was shown by Karp [27]. Additionally, it
was shown by Downey and Fellows that the problem is W[2]-complete in the
solution size [15], meaning the problem is not tractable with respect to the
solution size unless W[2]=FPT. A well-known result is that Hitting Set is
fixed-parameter tractable in the solution size k and a maximal set size d. The
Hitting Set problem for a maximal set size d is called d-Hitting Set.
The 2-Hitting Set problem is equivalent to the Vertex Cover prob-
lem, which is well-researched from an FPT perspective, achieving a runtime of
1.2738knO(1) [10]. Similarly, the 3-Hitting Set problem is well-researched
[31, 1]. However, such a parameterization in the maximal set size d does not
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explain the effectiveness of the reduction rules in real-world instances, since
transit networks often contain lines that cover up to 100 stations, as we show
in Chapter 4 and Chapter 5. Bringmann et al. showed that Hitting Set is
W[1]-hard when the instance has a low VC-dimension [9]. A low VC-dimension
means that the largest subset of the universe which appears in all variations
in the sets has few elements.

The Hitting Set problem is known to be equivalent to the Set Cover
problem [4]. A common approach to finding suitable parameterizations and
attributes of Hitting Set and Set Cover instances is to look at the
binary matrix representing the instance. For a Hitting Set instance, each
row of the matrix represents a set that should be hit, with a 1 in every column
that corresponds to an element of the set. A matrix has the strong consecutive
ones property if, in every row, all ones are consecutive [14]. A matrix has the
consecutive ones property if there is a permutation of the rows such that the
resulting matrix has the strong consecutive ones property. Similarly, a matrix
has the strong circular ones property if, in every row, all ones are consecutive
or all zeros are consecutive. The circular ones property is defined accordingly.
This allows for the ones to “wrap over the edge” of the matrix. Both for the
consecutive ones property and the circular ones property, there are efficient
algorithms known to test whether a given matrix has this property by finding
the correct permutation of the columns [7, 23]. Hitting Set instances that
fulfill the consecutive ones property or the circular ones property can be solved
in polynomial time [35]. There is a close relation to the Path Cover by
Vertices problem: any instance on a path graph or a cycle graph has a
corresponding Hitting Set instance with the consecutive ones property or
the circular ones property respectively, by using the vertex order of the graph as
the column order in the matrix. Ruf and Schöbel investigated these properties
further by introducing the almost consecutive ones property [34]. A matrix has
this property when the number of blocks of ones is very small. The authors
show that this property is very useful for finding bounds and developing a
branching algorithm for the Hitting Set problem.

In the context of the Set Cover problem, Guo and Niedermeier introduce
tree-like set systems [21]. In a tree-like set system of subsets C over a base
set S, there is a tree T such that each set from the set system corresponds
to a vertex in the tree, and for any s ∈ S, the vertices of the subsets that
contain s induce a subtree. In the context of Hitting Set, this is very
similar to our Path Cover by Vertices problem, with the modification
that the underlying graph G is a tree and we do not consider paths in G, but
subtrees.

17



3 Parameterized Complexity

Jansen parameterizes the distance to a tree-like set system via the cyclomatic
number, the feedback vertex number and the treewidth of the underlying graph
G [25]. While an FPT algorithm in the cyclomatic number is found, the author
shows that a parameterization in the feedback vertex number or the treewidth
is not possible unless P=NP.

The following result is based on a proposition given by Weihe [38].
Lemma 3.11. For general graphs, Path Cover by Vertices is W[2]-hard
in the solution size.

Proof. We prove this by reducing an arbitrary Hitting Set instance to a
Path Cover by Vertices instance. This is done by putting all elements
of a set into an arbitrary order and using this order for a path in the graph.
The solution size remains unchanged: each path corresponds to a set, so any
hitting set corresponds to a path cover by vertices of the same size. Since
Hitting Set is W[2]-hard in the solution size [15], so is Path Cover by
Vertices.

A Path Cover by Vertices instance can be converted to a correspond-
ing Hitting Set instance, but a given Hitting Set instance has several
possible Path Cover by Vertices instances since the elements of each set
can be put into a path in an arbitrary order, yielding different graphs. One
task that comes up is the task of finding a suitable representation of a given
Hitting Set instance that allows for easy solving. For example, if there is a
way to represent a given Hitting Set with a Path Cover by Vertices
instance that is a forest or cycle, the Hitting Set instance can be solved in
polynomial time (Lemma 3.1 and Lemma 3.6).

Checking whether a Hitting Set instance has a Path Cover by Ver-
tices instance on a cycle graph can be done with the circular ones property,
as mentioned above. This means all elements can be arranged in a cycle graph
such that all sets in the set family only contain consecutive elements in the
cycle graph. The question arises whether a favorable Path Cover by Ver-
tices representation for a given Hitting Set instance can be calculated
efficiently. The following lemma shows that this is NP-hard when trying to
minimize the number of edges in the graph.
Lemma 3.12. It is NP-hard to find a Path Cover by Vertices instance
of a Hitting Set instance with a minimum number of edges.

Proof. We prove this by reducing an arbitrary Vertex Cover instance to
this problem. We are given the graph G = (V,E). From this, we create
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v1 v2

v3 v4

v1 v2 v′v3 v4

Figure 3.2: An example for the reduction of a Vertex Cover instance to the
problem of finding a Path Cover by Vertices instance with a minimum number of
edges. For each edge, we create one set containing both vertices and one set that additionally
contains v′.

a Hitting Set instance as follows. For our universe, we use the set of
vertices, but add a new vertex v′, so U = V ∪ {v′}. The sets to hit are
{{u, v} | {u, v} ∈ E} ∪ {{u, v, v′} | {u, v} ∈ E}. Evidently, the Hitting
Set instance has the same minimum solution size as the Vertex Cover
instance. Now we ask for a Path Cover by Vertices instance on a
graph G′ of this Hitting Set instance with a minimum number of edges.
Figure 3.2 illustrates this reduction. All edges in G have to be in the graph
G′ of the Path Cover by Vertices instance, and for each edge {u, v}, u
or v needs to be connected to v′. The neighbors of v′ form a vertex cover: for
each edge, at least one adjacent vertex is connected to v′. Furthermore, the
size of the neighborhood has to be minimal, because we ask for a minimum
number of edges. Therefore, we could derive a minimum vertex cover from
the neighborhood of v′. Since Vertex Cover is NP-hard, the proof is
complete.
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From the previous chapter, we derive two findings. We found that the Path
Cover by Vertices problem is a Hitting Set problem in disguise, and
the reduction rules are applicable for both problems. Therefore, we focus on
the analysis of the effect of the reduction rules on Hitting Set instances.
Furthermore, our parameterized complexity analysis did not yield any results
that might explain the effectiveness of the reduction rules. This analysis fo-
cuses on often unrealistic worst cases. As opposed to that, there is also the
technique of the average-case analysis, in which we investigate the effect of
an algorithm (in our case the reduction rules) on typical instances. As noted
by Karp, this approach can yield explanations that would have been hard to
infer from a worst-case analysis [26]. Such an average-case analysis requires
a probability distribution over the possible inputs. Choosing a realistic dis-
tribution is crucial to the meaningfulness the result of the analysis, but the
more complicated the model for the distribution is, the harder it is to analyze.
Therefore, we want to focus on key properties of real-world instances.

In order to develop a model for typical instances, we first analyze real-world
transit networks. We hypothesize that stations are very heterogeneous, mean-
ing there are few central stations with many lines going through them and
many less important stations with only few lines. In the context of Hitting
Set, for any element e from the universe, we call the number of sets that
contain e the degree of e. Furthermore, we think that real-world transit net-
works are very clustered, meaning that two stations that both share a line with
a third station are more probable to share a line than two randomly chosen
stations. We will give a formal definition of this clustering in Section 4.1. We
conjecture the following claims for the Hitting Set problem.

• Real-world instances are heterogeneous and clustered.

• The reduction rules are more effective the more heterogeneous the ele-
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ment degrees are.

• The reduction rules are more effective the more clustered the instances
are.

The heterogeneity of an instance can be checked by creating histograms of
the element degrees of the instances. To measure the clustering, one first has
to agree on a suitable generalization of the clustering coefficient to Hitting
Set instances (two-mode networks). Therefore, Section 4.1 focuses on several
approaches towards measuring the clustering of a given instance. Section 4.2
describes the measured parameters for real-world data. Section 4.3 then de-
scribes how we generate random instances that have the desired properties
of heterogeneity and clustering with scalable parameters. Finally, Section 4.4
shows the results for the generated instances, which provides some context for
the real-world transit networks.

The focus of the analysis lies on measuring the size of the instance after appli-
cation of the reduction rules. This size can be described with the relative core
size. For a Hitting Set instance with universe U and sets S, the relative
core size describes the ratio∑

S′
i∈S′ |S ′i| − |{S ′i | |S ′i| = 1}|∑

Si∈S |Si|
,

where S ′ is the set collection of the core. Note that the term |{S ′i | |S ′i| = 1}|
is the number of sets of size 1, so we account for partial solutions found by
the reduction. A relative core size of 0 means the instance was completely
solved, while a relative core size of 1 means the instance could not be reduced
at all.

4.1 Clustering Parameters

In order to measure the clustering of a Hitting Set instance, we can exam-
ine the underlying bipartite graph. The field of measuring the clustering of
a network is well-researched, although much of it was focused on the analysis
of general graphs as opposed to bipartite graphs [37, 2]. One prominent pa-
rameter for such one-mode graphs is the clustering coefficient, which can be
found in several variants [36]. We focus on the following variant, often called
the global clustering coefficient. The global clustering coefficient of a graph
models the probability that, given three vertices with at least two edges be-
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tween them, the third edge is present too. This is what one would expect e.g.
in social networks: it should be probable that two of someone’s friends are
friends with each other, too. More formally, the global clustering coefficient
of a graph is the ratio of the number of triangles to the number of unordered
connected triplets of vertices.

This approach does not work in bipartite graphs, since there can be no cycles of
odd length. Instead, we compare several ways of measuring clustering in two-
mode networks. The first definition we examine is that given by Robins and
Alexander [33]. It generalizes the clustering coefficient to cycles of length 4.
It is defined as the ratio between the number of cycles of length 4 and the
number of paths of length 3. We call this parameter C4.

Another approach is to use a projection of the bipartite graph, such as an
intersection graph. Then, we can measure the clustering coefficient of the
projection. Recall that the intersection graph of a family of sets is formed
by creating a vertex for each set and connecting two sets with an edge if and
only if they share an element. Given a Hitting Set instance, we can create
two intersection graphs: One uses the family of sets as described above, the
other is based on the elements and connects two elements if there is a set that
contains both. We call the clustering coefficient of the intersection graph of
the set of elements CE, while the clustering coefficient of the intersection graph
of the family of sets will be called CS.

The projection does not contain the full information; if three sets form a tri-
angle in the projection, we do not know whether this connection is due to
one element which is part of all three sets or whether there are three different
elements that are part of two of the sets each (see Figure 4.1). Therefore,
we introduce another parameter P4. It is defined based on the projection us-
ing the family of sets. The parameter measures the probability for a triangle
in the intersection graph that the three participating sets share an element
(as opposed to being only pairwise connected). More formally, we define P4
as ∣∣∣ {{A,B,C} ∈ (S3) | A ∩B ∩ C 6= ∅} ∣∣∣∣∣∣ {{A,B,C} ∈ (S3) | A ∩B,A ∩ C,B ∩ C 6= ∅} ∣∣∣ .
We expect this parameter to be relatively high for real-world instances and a
good measure for clustering. With respect to the Path Cover by Vertices
problem, a high parameter tells us that three paths sharing an element and
therefore being close to each other is much more probable than three paths
forming a triangle along great distances.
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Figure 4.1: Lost information during projection: both Path Cover by Vertices
instances on the left yield the same intersection graph of sets.

4.2 Analysis of Real-World Data

In a first step, we replicate the results of Weihe [38] on the effectiveness of the
reduction rules by using publicly available transit data from several countries.
We arrive at very similar results and test our hypothesis on the heterogeneity
of the instances. The results on the heterogeneity form the foundation of our
instance generation.

The data was extracted from source files in the GTFS format. In this data
format, there are several paths for a similar route — one for each time a vehicle
actually drives the route. For each route, only the first path was taken, and
paths that cover the same set of stations were ignored.

The first dataset comes from the Netherlands and contains transit data from
buses, metro, trains, trams and some ferries across all of the Netherlands1.
The second dataset comes from VBB (Verkehrsbund Berlin-Brandenburg) and
contains transit data around Germany’s capital, including buses, trams and
trains2. The third dataset comes from France and contains the transit data of
all the regional TER trains of the SNCF (Société nationale des chemins de fer
français)3. The fourth dataset comes from DB (Deutsche Bahn) and contains
the transit data of long-distance trains Germany4. The names of these four

1 Available at https://old.datahub.io/dataset/gtfs-nl
2 Available at http://daten.berlin.de/kategorie/verkehr
3 Available at https://ressources.data.sncf.com/explore/dataset/sncf-ter-gtfs/

information/
4 Available at http://data.deutschebahn.com/dataset/api-fahrplan
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Dataset Vertex count Path count Relative core size
NL 31250 2804 0.019
VBB 13424 1241 0.016
SNCF 3789 974 0.005
DB 514 586 0.000

Table 4.1: Overview of the datasets, their sizes and their relative core size. All four
datasets yield a very small core.

datasets will be shortened to NL, VBB, SNCF and DB, respectively.

Table 4.1 gives an overview of the different data sources and their size. The re-
sults are in line with the original paper’s findings, leaving only a small fraction
of the original instance size as the core.

4.2.1 Element degree distribution

Figure 4.2 shows the histogram of the element degrees for the real-world in-
stances, with each element corresponding to a station. This shows already
very clearly that the element degrees are heterogeneous. To further manifest
this observation, Figure 4.3 shows the complementary cumulative distribution
function (CCDF) in a log-log plot. For a value x, the CCDF of a variable
describes the probability that the variable will have a value less than or equal
to x. In our case, this variable is the degree of a certain element.

The linearity in the log-log plot indicates that this is close to a power-law distri-
bution. In the context of the Hitting Set problem, a power-law distribution
of the element degrees means that the number of elements which are part of at
most x sets is proportional to x−β for some constant β. Estimating the power-
law exponent β with the python package powerlaw [3] yields β ≈ 4.0 for NL,
β ≈ 4.1 for VBB, β ≈ 3.0 for SNCF, and β ≈ 2.0 for DB. The corresponding
estimated distribution for each dataset can be seen in Figure 4.3. It should
be noted that the DB dataset somewhat represents an outlier. For one, the
instance is much smaller than the other datasets. Second, it contains elements
with a degree of nearly 200, which is why the element degree distribution does
not seem to be power-law distributed.

For the other instances, the power-law distribution can be explained as follows.
The element degree is correlated to the importance of the station (a central
station has the most connections going through it), and the sizes of cities are
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Figure 4.2: Histograms of element degrees for real-world data.

known to be distributed according to a power-law distribution [19]. This rein-
forces the suggestion that real-world instances exhibit heterogeneous element
degrees.

4.2.2 Set size distribution

Figure 4.4 shows the histograms of the set sizes for the real-world data. The set
sizes in our datasets are not particularly heterogeneous. Again, this seems to
match expectations since transit lines are designed rather than evolved: lines
that cover longer distances do not stop at more stations, they often even tend
to stop less frequent. Different types of public transport all cover about the
same number of stations.

25



4 Average-Case

100 101

10−4

10−3

10−2

10−1

100

Element degree

R
at
io

of
el
em

en
ts

(a) NL

100 101

10−4

10−3

10−2

10−1

100

Element degree

R
at
io

of
el
em

en
ts

(b) VBB

100 101

10−3

10−2

10−1

100

Element degree

R
at
io

of
el
em

en
ts

(c) SNCF

100 101 102
10−3

10−2

10−1

100

Element degree

R
at
io

of
el
em

en
ts

(d) DB

Figure 4.3: The CCDF of element degrees for real-world data. The blue line shows the
respective dataset, while the red line shows the estimated power-law distribution.

4.3 Instance Generation

Based on the findings in real-world instances described above, we want to
generate random instances that are both heterogeneous and clustered. The
random instances of Hitting Set are generated with the following approach
for generating bipartite graphs, which is based on the model of geometric
inhomogeneous random graphs (GIRGs) by Bringmann et al. [8]. As input, the
model receives the number of desired elements and sets. All elements and sets
are given a weight according to some weight function ws and we. The expected
degree of an element will be proportional to the element’s weight. Due to the
results on heterogeneity in Subsection 4.2.2 and Subsection 4.2.1, the sets
receive weights according to a uniform distribution, while the element weights
are distributed according to a power law with exponent β. The variables Ws

andWe are the total sum of the set weights and element weights. Each element
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Figure 4.4: Histograms of set sizes for real-world data.

e and each set s is represented as a random point on a circle, distributed
uniformly. The distance dist(s, e) of a set s and an element e is defined as the
distance of the points on the circle. We use this distance to have control over
the clustering of our resulting instance.

Membership of some element e in a set s is represented by the edge (s, e). Each
such edge is sampled with probability

P (s, e) = min
1, c ·

(
ws(s)we(e)

WsWedist(s, e)

)1/T
 .

The temperature T , which is between 0 and 1, controls the influence of the
distance function and the weights. A low temperature corresponds to high
heterogeneity, and as T →∞, the graph is more homogeneous. Constant c is
used to scale the number of edges in the created bipartite graph. The power-
law distribution of the element weights can be controlled with the parameter
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Figure 4.5: The CCDF of the element degrees and the set size distribution for a generated
instance with β = 2.5 and T = 0.9.

β. The lower β is, the more heterogeneous the instances are. Note that, as
β → ∞, a uniform element weight distribution is approached. Figure 4.5
shows the distribution of element degrees in CCDF in a log-log plot and the
distribution of set sizes for a generated instance with β = 2.5 and T = 0.9.
Just as desired, the element degrees are power-law distributed, while the set
sizes show a more homogeneous distribution similar to those of the real-world
datasets.

4.4 Results

The reduction rules and the graph generation were implemented in C++. Note
that the exact specifications of the machine are irrelevant since we do not
measure any run times.

First, we investigate the relative core size in dependence of the two parameters
of clustering (the temperature T ) and the heterogeneity (the power-law expo-
nent β) in combination. For this experiment, graphs with 1000 elements, 1000
sets, 10000 edges, a varying temperature T between 0 and 1 (in steps of 0.05)
and a varying power-law exponent between 2 and 5 (in steps of 0.25) were
generated. For each data point, we take 10 samples and calculate the mean
of the relative core size. Figure 4.6 shows the results of the measurements.
Small power-law exponents as well as temperatures have a positive impact on
the effectiveness of the reduction rules for small values, although the cluster-
ing seems to be more vital. As the temperature goes to 1, the impact of the
power-law exponent is greatly reduced. On the other hand, a small tempera-
ture leads to a small relative core size, even as the element weight distribution
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Figure 4.6: The relative core size for varying values of β and T . A low temperature
strongly correlates with a small relative core size.

goes towards a uniform distribution.

To better understand this behavior and the relation to the measured parame-
ters, we present further experiments that focus on the effect of the temperature
on the relative core size for fixed values of β. For these experiments, graphs
with 1000 elements, 1000 sets, 10000 edges, a varying temperature T between
0 and 1 (in steps of 0.02) and several values of β were generated. For each data
point, we take 10 samples and calculate the mean of the measured attributes
(relative core size and parameters). Figure 4.7 shows the relation between the
temperature T and the relative core size for a power-law exponent for different
values of β. Note that β =∞ is equivalent to a uniform element weight distri-
bution. This manifests the previous observation that a strong clustering leads
to a small relative core size, even if the instances are homogeneous.

Figure 4.8 shows the relation between the temperature T and the clustering
parameters for different levels of heterogeneity. For each parameter, a low value
corresponds to a high temperature and therefore low clustering, while a high
value corresponds to a low temperature and therefore high clustering. Thus,
all parameters are appropriate measures for the clustering of the instances.
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Figure 4.7: Relation between the temperature T and the relative core size for various
degrees of heterogeneity.

However, while the clustering parameters are supposed to be correlated with
the clustering of the instance, they also show a dependence on the heterogeneity.
Note that both C4 and CE show very different values for different levels of
heterogeneity. We offer an explanation for this behavior. Recall that C4 models
the probability that, for a path of length 3 in the bipartite graph, the edge
between the first and last element/set in this path is present as well. A common
structure found in real-world transit networks is that of a central station that
has several lines going through it that share no other stations (e.g., because
these lines spread to different directions). This is shown in Figure 4.9.

The bipartite graph of this structure contains many paths of length 3. These
paths start in an arbitrary set, run through the element representing the central
station, through a different set to another element. This first set and the last
element are not connected, since the element is not part of the set. This leads
to a small C4 value. Similarly, each pair of elements from different sets forms
an uncompleted triangle that lowers the CE parameter. This kind of structure
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is common in real-world networks, and it is more present in the generated
instances the more heterogeneous the element weights are. This explains why
both of these parameters are much smaller for higher values of β. Similarly, we
can explain the behavior for the parameter P4. Any element with high degree
increases the number of triplets of sets that share an element. Therefore, more
heterogeneity increases the parameter P4.

Figure 4.10 shows the relation between the examined parameters and the rel-
ative core size. We can see that a large parameter corresponds to a small
relative core size, while a small parameter corresponds to a large relative core
size, meaning almost no reduction rules were applied. This confirms what
should follow from the previous findings. The clustering parameters are good
measures for the clustering, and high clustering yields a small relative core
size. Therefore, a high parameter should indicate a small relative core size.
With respect to their correlation to the relative core size, both the P4 and
the CS parameter are more resilient to the influence of the heterogeneity of
the instances. The parameters C4 and CE on the other hand correspond to a
very varying relative core size for different levels of heterogeneity. Again, this
can be explained by the same observation that high heterogeneity has a large
influence on both of these parameters.

We also compare the results of our model with the measurements for the real-
world instances, which are marked in red. This comparison however should be
taken with a grain of salt due to the small sample size of only four datasets.
Nonetheless, the measured clustering parameters of these real-world instances
are very high, and their relative core size is within the range of what our model
predicts. Note that for the parameters P4 and CE, the values for DB instance
are outliers. We believe this is because the DB instance itself is an outlier with
respect to the instance size and the heterogeneity, as discussed above.

In this chapter, we have analyzed real-world transit network instances of the
Hitting Set problem and shown that they are clustered and heterogeneous.
We have used these findings to introduce a model that generates instances
with these key properties. In an average-case analysis, we have shown that
both high clustering and heterogeneity of generated instances correlate with
the effectiveness of the reduction rules.
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Figure 4.8: Plots for relation between the temperature T and the clustering parame-
ters. All parameters are correlated to the temperature, but also show a dependence on the
heterogeneity.

(a) A central station has
many lines going through
it.

(b) The bipartite representation of this
structure contains paths of length 3, but
no cycles.

Figure 4.9: A common structure found in real-world transit networks.
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Figure 4.10: Plots for the relation between the relative core size and the clustering
parameters. There is a strong correlation, and the measured clustering of the real-world
instances roughly matches the effectiveness predicted by our model.
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5 Relation to Independent Set

In a graph G = (V,E), an independent set is a subset of the vertices S ⊆ V
such that no two vertices in S are neighbors in G. Given a graph, the Maxi-
mum Independent Set problem asks for an independent set of maximum
cardinality. Recall that a possible projection of a Hitting Set instance to a
graph is the intersection graph of sets, that is, a graph with a vertex for each
set and an edge between two set-vertices if and only if the two sets share an
element. For a Hitting Set instance, we call a subsystem of sets that forms
an independent set in the intersection graph an independent set of sets.

We describe a strong relation between the reduction rules for Hitting Set
and the Maximum Independent Set problem on the intersection graph of
sets. In particular, we show that the Hitting Set reduction rules are valid
reduction rules for Maximum Independent Set on the intersection graph,
too. Furthermore, we prove that for a Hitting Set instance that can be
solved by reduction, the size of the maximum independent set of sets and the
size of the minimum hitting set are equal. For our real-world instances, the
gap between the two solution sizes is very small. This is shown in Table 5.1.
We calculated the solution sizes by first applying the reduction rules and then
using simple branching rules, namely, branching at the vertex/set that has the
most neighbors.

Dataset Independent set size Hitting set size Difference
NL 964 977 13
VBB 486 493 7
SNCF 275 279 4
DB 20 20 0

Table 5.1: Overview of the datasets and the solution sizes of the Maximum Inde-
pendent Set and Hitting Set problem
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5 Relation to Independent Set

This relation shows that, in order to better understand Path Cover by
Vertices, the influence of the reduction rules on Maximum Independent
Set should be considered. We only sketch the connection here and leave a
thorough treatment for future work.
Lemma 5.1. In a set system, the size of every independent set of sets is less
than or equal to the size of every hitting set.

Proof. For each set represented in the independent set of sets, at least one
element has to be in the hitting set. None of the sets share elements, thus any
hitting set must contain at least one element for each set in the independent
set of sets.

Thus, the size of any independent set is a lower bound on the minimum hitting
set size, and the size of any hitting set is an upper bound on the maximum
independent set of sets. Not only is there a connection between the solution
sizes of both problems, but also a connection between the reduction rules of
Hitting Set and their effect on independent sets of sets, as the following
Lemma shows.
Lemma 5.2. Let H be a family of sets and H ′ the family of sets after applying
the Hitting Set reduction rules on H. Then, any independent set of sets in
H ′ is also an independent set of sets in H.

Proof. We prove this by contradiction. Assume the two sets s1 and s2 have
no common element in H ′, but had elements in common in H. Then, all of
these common elements must have been removed during the reduction. Let e1
be the last element removed. Necessarily, e1 was removed through an element
reduction, so there was an element e2 with S(e1) ⊆ S(e2). Thus, s1 and s2 also
had the element e2 in common, which is a contradiction to our assumption
that e1 is the last common element that is deleted.

If a Hitting Set instance can be solved by reduction, only sets with one
element each remain. These form an independent set of sets in the core. By
Lemma 5.2, they were an independent set of sets in the initial instance too.
The corresponding elements form a minimum hitting set. By Lemma 5.1, the
size of this hitting set is an upper bound on the maximum independent set of
sets. This leads us to the following corollary.
Corollary 5.3. For a Hitting Set instance can be solved by reduction, the
size of the minimum hitting set and the size of the maximum independent set
of sets is equal.
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5 Relation to Independent Set

Interestingly, this also means that if a Hitting Set instance can be solved by
reduction, it also returns a certificate that this is the best possible solution in
the form of an independent set of sets of the same size. Another consequence
is the finding that in order for the Hitting Set instance to be solvable by
reduction, the corresponding Maximum Independent Set instance on the
intersection graph of sets has to be easy to solve too, in particular by the same
reduction rules. To better understand this relation, we examine the conditions
and effects of the reduction rules on the intersection graph of sets.

First, we look at element reduction. Recall that an element e2 dominates e1 if
S(e1) ⊆ S(e2). In the intersection graph of the sets, each element e creates the
clique S(e). Thus, the vertices S(e2) form a clique, so removing the element e1
from all sets in the Hitting Set instance does not change the intersection
graph.

Now we examine set reduction. Recall that a set s1 dominates s2 if s1 ⊆ s2.
Since s1 6= ∅, the two sets share at least one element and thus are neighbors
in the intersection graph. The neighbors of s1 are the sets {s | s1 ∩ s 6= ∅}.
Since s1 ⊆ s2, this means that s2 shares all of these neighbors. Removing
the dominated set s2 is a valid reduction rule with respect to the Maximum
Independent Set problem. Since s1 and s2 are neighbors, at most one of
them can be part of the independent set of sets. For every independent set S
that contains s2, the set (S \{s2})∪{s1} is a valid independent set of sets too:
s1 now only blocks sets that were blocked by s2 before. Therefore, we do not
change the size of the maximum independent set of sets by removing s2.

We have established that for a Hitting Set instance that can be solved
by reduction, the size of the maximum independent set of sets and the size
of the minimum hitting set are identical. We have also shown that in order
to better understand the Path Cover by Vertices and Hitting Set
problem, we should understand the Maximum Independent Set problem
and the reduction rules. In addition, we note that for the real-world instances
examined, the two sizes are in fact surprisingly close. Since the difference is
very small for real-world instances, a parameterized algorithm for Hitting
Set in this difference would seem helpful. Sadly, such an FPT algorithm is
rather improbable by the following argument. The difference is always less
than or equal to the size of the minimum hitting set. But since there is
no FPT algorithm for Hitting Set in the solution size unless W[2]=FPT,
the same condition holds for an FPT algorithm for Hitting Set in this
difference. Nonetheless, this finding indicates that a better understanding of
the Maximum Independent Set problem and its reduction rules might
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5 Relation to Independent Set

give a better understanding of the Hitting Set problem and eventually
lead to algorithms that utilize these insights.
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6 Conclusion

In this work we researched the problem Path Cover by Vertices, which,
given a set of paths in a graph, asks for a minimum number of vertices such
that each path is covered. This was motivated by the findings of Weihe [38],
who showed that this problem can be solved almost completely for real-world
transit data by applying simple reduction rules. We showed that instances
on forests and cycle graphs can be solved in polynomial time. While this
suggested a parameterization by tree-likeness, we showed that there is no FPT
algorithm for Path Cover by Vertices in the treewidth or feedback vertex
number unless P=NP. We showed that Path Cover by Vertices is easy
to solve for graphs of treewidth 1 and feedback vertex number 0 (forests), while
instances on graphs of treewidth 3 or feedback vertex number 2 are NP-hard. It
remains an open problem what the runtime for Path Cover by Vertices
on graphs of treewidth 2 and graphs of feedback vertex number 1 is. Based
on these results, we changed our focus to the Hitting Set problem, which
is derived by treating each path as a set of elements. Again, we showed that
this view of the problem is NP-hard even for very restricted instance classes.
Additionally, we have shown that finding a graph representation for a Hitting
Set instance that uses a minimum number of edges is NP-hard.

This indicates that a parameterized complexity analysis in the typical worst-
case fashion fails both for Path Cover by Vertices and Hitting Set.
In an empirical average-case analysis, we proposed and showed that real-world
instances of transit data show strong clustering and heterogeneous element
degrees. We introduced a model for generating Hitting Set instances that
exhibit both of these structural properties in a configurable way. In our model,
we assign each element and set a weight as well as a position on a circle. An
element is part of a set based on a probability that uses the weights and the
distance of the positions of the element and set. By assigning the element
weights according to a power-law distribution and by utilizing a temperature
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in the probability function, we can control the heterogeneity and the clustering
of the generated graph.

We introduced the relative core size metric and used it to examine the influence
of both clustering and heterogeneity on the effectiveness of the reduction rules.
The analysis indicated that both the heterogeneity and the clustering are main
causes of the effectiveness of the rules. While the effect of the heterogeneity
decreases for instances with small clustering, the positive effect of clustering
on the core size still holds even for homogeneous instances. We compared
several clustering metrics and their behavior in different parameter settings and
showed that the effectiveness observed on the real-world data is very close to
what we would expect based on the experiments with generated instances. The
empirical findings give us a better understanding of the sources of effectiveness
of the reduction rules on real-world instances and lay the foundations for future
work. It might be insightful to examine a more realistic model that utilizes
two-dimensional geometry as a basis. Another possibility is to use a different
measure of the core size, e.g., by measuring the size of the largest remaining
component. We hypothesize that similar findings on the clustering of Hitting
Set instances in other fields, such as computational biology and Boolean
logic, are probable. Additionally, a theoretical average-case analysis on the
effect of the clustering for our specific model could yield valuable insights.
A theoretical finding in terms of a parameterization by clustering is unlikely,
since the clustering coefficients can be changed almost arbitrarily by adding
structures that have a very high or low clustering based on the used metric.
However, an analysis of a simpler model seems more feasible.

Lastly, we presented an interesting relation between the reduction rules and
the Maximum Independent Set problem. The reduction rules are valid
reduction rules for the Maximum Independent Set problem on the in-
tersection graph of the sets, and each independent set of sets forms a lower
bound on the Hitting Set solution size. We showed that the two values
are very close for real-world instances. One consequence of this is that a
better understanding of the Maximum Independent Set problem and
its reduction rules could also lead to a better understanding of the Hit-
ting Set problem. Similar to our approach to the Hitting Set prob-
lem, this could be approached by considering which instances of Maximum
Independent Set are easy to solve and whether these findings can be
generalized to a parameterized algorithm. Furthermore, a similar model for
realistic Maximum Independent Set instances could be introduced in
order to study the effect of clustering on the effectiveness of the reduction
rules.
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