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Abstract

Competing firms tend to select similar locations for their stores. This phenomenon,
called the principle of minimum differentiation, was captured by Hotelling with a
landmark model of spatial competition but is still the object of an ongoing scientific
debate. Although consistently observed in practice, many more realistic variants of
Hotellings model fail to support minimum differentiation or do not have pure equilibria
at all. In particular, it was recently proven for a generalized model which incorporates
negative network externalities and which contains Hotellings model and classical selfish
load balancing as special cases, that the unique equilibria do not adhere to minimum
differentiation. Furthermore, it was shown that for a significant parameter range
pure equilibria do not exist. We derive a sharp contrast to these previous results by
investigating Hotellings model with negative network externalities from an entirely new
angle: approximate pure subgame perfect equilibria. This approach allows us to prove
analytically and via agent-based simulations that approximate equilibria having good
approximation guarantees and that adhere to minimum differentiation exist for the
full parameter range of the model. Moreover, we show that the obtained approximate
equilibria have high social welfare.

1 Introduction

The choice of a profitable facility location is one of the core strategic decisions for firms
competing in a spatial market. Finding the right location is a classical object of research
and has kindled the rich and interdisciplinary research area called Location Analysis [31,
14, 6]. In this paper we investigate one of the landmark models of spatial competition
and strategic product differentiation where facilities offering the same service for the same
price compete in a linear spatial market. Originally introduced by Hotelling [23] and later
extended by Downs [10] to model political competition, the model is usually referred to
as the Hotelling-Downs model. It assumes a market of infinitely many clients which are
distributed evenly on a line and finitely many firms which want to open a facility and

∗Heinz Nixdorf Institute & Departement of Computer Science, Paderborn University, Paderborn, Ger-
many feldi@mail.upb.de
†Algorithm Engineering Group, Hasso Plattner Institute, Potsdam, Germany,

{pascal.lenzner,louise.molitor}@hpi.de
‡Faculty of Electrical Engineering, Mathematic & Computer Science, University of Twente, Enschede,

The Netherlands a.skopalik@utwente.nl

1

ar
X

iv
:1

90
3.

04
26

5v
1 

 [
cs

.G
T

] 
 1

1 
M

ar
 2

01
9



which strategically select a specific facility location in the market to sell their service.
Every client wants to obtain the offered service and selects the nearest facility to get it.
The utility of the firms is proportional to the number of clients visiting their facility. Thus,
the location decision of a firm depends on the facility locations of all its competitors as
well as on the anticipated behavior of the clients. This two-stage setting is challenging to
analyze but at the same time yields a plausible prediction of real-world phenomena.

One such phenomenon is known as the principle of minimum differentiation [5, 13]
and it states that competing firms selling the same service tend to co-locate their facilities
instead of spreading them evenly along the market. This can be readily observed in
practice, e.g., stores of different fast-food chains or consumer goods shops are often located
right next to each other. For the original version where clients simply select the nearest
facility, Eaton and Lipsey [13] proved in a seminal paper that for n 6= 3 competing firms
the Hotelling-Downs model has pure subgame perfect equilibria which respect the principle
of minimum differentiation.

However, the original Hotelling-Downs model is overly simple and lacks crucial proper-
ties found in practice. For example it does not incorporate negative network externalities
for the clients. When choosing which facility to patronize real clients would not only eval-
uate distances but also how congested a facility is. Many other clients visiting the same
facility induce a higher waiting time to get serviced and thus it may be better for a client
to select a different facility which is farther away but has fewer clients. This natural and
more realistic variant, where the cost function of a client is a linear combination of distance
and waiting time, was proposed by Kohlberg [24] and will be the focus of our attention.
Kohlberg’s model is especially interesting, since it can be interpreted as an interpolation of
two extreme models: the Hotelling-Downs model, where clients select the nearest facility
and classical Selfish Load Balancing [38], where clients select the least congested facility.

For Kohlberg’s model it is known that no pure subgame perfect equilibria exist where
the facility locations are pairwise different. Furthermore, in a recent paper Peters et al. [30]
show for up to six facilities that pure equilibria exist if and only if there is an even number
of facilities and the clients’ cost function is tilted heavily towards preferring less congested
facilities. Moreover, in sharp contrast to the principle of minimum differentiation, they
show that in these unique equilibria only two facilities are co-located.

In this paper we re-establish the principle of minimum differentiation for Kohlberg’s
model by considering approximate pure subgame perfect equilibria. We show analytically
and by extensive agent-based simulations that for any client cost function which is a
linear combination of distances and congestion approximate subgame perfect equilibria
exist which respect the principle of minimum differentiation and where each firm can only
increase her utility by a small multiplicative factor by deviating to another facility location.
Moreover, we show that the obtained approximate equilibria are also close to optimal for
the whole society of clients.

We believe that in contrast to studying exact subgame perfect equilibria, investigating
approximate subgame perfect equilibria yields more reliable predictions since the study of
exact equilibria assumes actors who radically change their current strategy even if they
can improve only by a tiny margin. In the real world this is not true, as many actors
only move out of their comfort zone if a significant improvement can be realized. This
threshold behavior can naturally be modeled via a suitably chosen approximation factor.
Furthermore, approximate equilibria are the only hope for a plausible prediction for many
variants of the Hotelling-Downs model where exact equilibria do not exist. To the best
of our knowledge, approximate equilibria have not been studied before in the realm of
Location Analysis.
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1.1 Related Work

The Hotelling-Downs model was also analyzed for non-linear markets, e.g., on graphs [29,
19, 18], fixed locations on a circle [33], finite sets of locations [26, 27], and optimal interval
division [35]. Moreover, many facility location games are variants of the Hotelling-Downs
model and there is a rich body of work analyzing competitive facility location in the non-
cooperative setting, e.g. Vetta [37], Cardinal & Hoefer [7], Saban & Stier-Moses [32], Drees
et al. [11], and in the cooperative setting, e.g. Goemans & Skutella [20]. Additionally,
Fotakis & Tzamos [17] and Feldman et al. [15] investigate facility location mechanisms.
Another closely related family of games is the class of Voronoi games [2, 12, 3]. We phrase
our model in terms of a facility location game, but, in contrast to the above works on
facility location and Voronoi games our clients do not necessarily select the nearest facility
to get serviced.

Kohlberg [24] originally defined the cost for a client at location x to visit a facility at
location y given some client distribution as the sum of the distance between x and y on the
line and γ times the number of clients currently served by the chosen facility. Moreover,
he claims that no subgame perfect equilibrium exists for more than two facilities. This
claim was later refuted by Peters et al. [30] who proved the existence of a unique subgame
perfect equilibrium for n = 4 and n = 6 for large values of the parameter γ. Moreover,
they conjecture that a unique subgame perfect equilibrium exists for any even number of
facilities if γ is sufficiently large and they give the corresponding equilibrium candidate.
In sharp contrast to the principle of minimum differentiation, the equilibrium candidate
exhibits only two facilities which are co-located. Additionally, they investigate an asym-
metric variant of this model, where the waiting time of each facility can be different. One
extreme case of Kohlberg’s model is the setting in which the clients are only interested in
selecting the least congested facility independent of its distance. This setting is captured
by simple load balancing games [38] and it is easy to see that in this case any location
vector of the facilities must be a subgame perfect equilibrium.

In our model facilities offer their service for the same price. Models where facilities
can also strategically set the price have been considered [9, 25, 21, 8, 28]. Setting different
prices under network externalities was investigated by Heikkinen [22]. Moreover, Ahlin &
Ahlin [1] show in a version with pricing that negative network externalities lead to less
differentiation between the facilities.

Other recent work investigates different client attraction functions instead of simply
using the distance to the facilities. Ben-Porat & Tennenholtz [4] use a connection to
the Shapley value to show the existence of pure equilibria through a potential function
argument. Whereas Feldman et al. [16] consider the case where facilities have a limited
attraction interval and the uniformly distributed clients decide randomly which facility
to choose if attracted by more than one facility. Interestingly they prove that pure Nash
equilibria exist and that the Price of Anarchy is low. Later Shen & Wang [34] generalized
the model to arbitrary client distributions.

Using agent-based simulations for variants of the Hotelling-Downs model seems to be
a quite novel approach. We could find only the recent work of van Leeuwen & Lijesen [36]
in which the authors claim to present the first such approach. They study a multi-stage
variant with pricing which is different from our setting.

1.2 Our Contribution

We study approximate pure subgame perfect equilibria in Kohlberg’s model of spatial
competition with negative network externalities in which n facility players strategically
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select a location in a linear market. Our slightly reformulated model has a parameter
0 ≤ α ≤ 1, where α = 0 yields the original Hotelling-Downs model, i.e., clients select the
nearest facility, and where α = 1 yields classical selfish load balancing, i.e., clients select
the least congested facility.

First, we study the case n = 3, which for α = 0 is the famous unique case of the
Hotelling-Downs model where exact equilibria do not exist. We show that for all α an
approximate subgame perfect equilibrium exists with approximation factor ρ ≤ 1.2808.
Moreover, for α = 0 we show that this bound is tight.

Next, we consider the facility placement which is socially optimal for the clients and
analyze its approximation factor, i.e., we answer the question how tolerant the facility
players have to be to accept the social optimum placement for the clients. For this place-
ment, in which the facilities are uniformly distributed along the linear market, we derive
exact analytical results for 4 ≤ n ≤ 10. Building on this and on a conjecture specifying
the facility which has the best improving deviation, we generalize our results to n ≥ 4.
We find that the obtained approximation factor ρ approaches 1.5 for low α which implies
that in these cases facility players must be very tolerant to support these client optimal
placements.

We contrast this by our main contribution, which is a study of a facility placement
proposed by Eaton & Lipsey [13] from an approximation perspective. This placement
supports the principle of minimum differentiation since all but at most one facility are
co-located with another facility and at the same time it is an exact equilibrium for both
extreme cases of the model, i.e., for α = 0 and α = 1. We provide analytical proofs that for
these placements ρ ≤ 1.0866 holds for 4 ≤ n ≤ 10. Moreover, based on another conjecture,
we show that for arbitrary even n ≥ 10 we get ρ ≈ 1.08.

Our conjectures used for proving the general results are based on the analytical results
for n ≤ 10 and on extensive agent-based simulations of a discretized variant of the model.
It turns out that these simulations yield reliable predictions for the original model and we
also use them for providing promising results for the general case with odd n. In particular,
we demonstrate that empirically we have ρ ≈ 1.08 for arbitrary n ≥ 10.

Last but not least, we show that the facility placements proposed by Eaton & Lipsey [13]
are also socially good for the clients. We compare their social cost with the cost of the
social optimum placement and prove a low ratio for all α.

Overall, we prove that for Kohlberg’s model facility placements exist which

(1) adhere to the principle of minimum differentiation,

(2) are close to stability in the sense that facilities can only improve their utility by at
most 8% by deviating and

(3) these placements are also socially beneficial for all clients.

2 Model and Preliminaries

We model the scenario as a two-stage game with two types of players, a set of facilities N
each offering the same service for the same price and a set of clients Z each choosing one
facility to get serviced from. There are n facility players N = {1, . . . , n}, which choose
a location in the interval S = [0, 1]. We denote a strategy vector for the facility players
as s = (s1, . . . , sn), where si ∈ S denotes the chosen location of facility player i. For
notational purposes, (s−i, s

′
i) denotes the vector that results when player i changes her

strategy in s from si to s′i. For the clients, we consider a continuum of infinitely many
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clients represented by the interval Z = [0, 1]. Every point z ∈ Z corresponds to a client
that chooses a facility i ∈ N to get serviced. Hence, the strategy space Sz of a client z ∈ Z
is the set of facilities, i.e., Sz = N = {1, . . . , n}, with tz ∈ N being the current strategy
selection. We define f : S×Z → N as the mapping induced by the clients’ facility choices.
Given a facility location vector s, a client z ∈ Z selects the facility f(s, z). To express
strategy changes of single agents, we define by (f−z, f

′
z) the choice function which results,

if only the mapping of the agent at z changes from the value f(z) to the value f ′(z). The
set of all possible client agent strategy profiles is given by F = N S×Z . A strategy profile
(of the facilities and clients) is a pair (s, f) ∈ S×F, where s is the vector of strategies of the
facility players and f is the choice function determining the strategies of the client agents.

To measure how many clients select a specific strategy, we consider only client choice
functions f, where the interval Z is partitioned into n finite sets of intervals J1(s, f),J2(s, f),
. . . ,J|N |(s, f), where Ji(s, f) = {I1i (s, f), . . . , Ikii (s, f)}, for some ki, with disjoint intervals

Iji ⊆ [0, 1] and such that for all clients z ∈ Iji (s, f) ∀j ∈ {1, . . . , ki} we have f(s, z) = i. We
call such client mappings measurable mappings.

Given a measurable client mapping f and the corresponding induced partition into n
finite sets of intervals J1(s, f), . . . ,Jn(s, f) where |Iji (s, f)| is the length of interval Iji (s, f).
We define the load of facility i as

`i(s, f) =
∑

Iji (s,f)∈Ji(s,f)

|Iji (s, f)|.

Given a facility location vector s and a measurable client mapping f, the cost Cz of a
single client at some point z ∈ Z is proportional to her distance from her chosen facility
f(s, z) and the current load `f(s,z)(s, f) of that facility. The relative influence of these two
objectives is adjusted via the parameter α ∈ [0, 1]. Thus, the cost of a client at point
z ∈ Z is

Cz(s, f) = (1− α) · |sf(s,z) − z|+ α · `f(s,z)(s, f).

For α = 0, where clients simply ignore the facility loads, this corresponds to the client
cost function from Hotelling’s original model [23], where clients simply select the nearest
facility. For α = 1, where clients are oblivious to distances, this corresponds to the client
cost function in simple load balancing games on identical machines [38], where clients
select the least loaded facility.

The utility ui(s, f) of a facility i for facility location vector s and some client mapping
f equals its induced load, that is

ui(s, f) = `i(s, f).

Similar to (approximate) pure Nash equilibria we define (approximate) pure equilibria
in the two-stage game using the concept of subgame perfect equilibria. We consider an
approximate variant in which the players of the first stage (our facilities) are satisfied with
approximate states while the client agents in the second stage still play optimal strategies.

Approximate Pure Subgame Perfect Equilibrium A strategy profile (s, f) is a ρ-
approximate pure subgame perfect equilibrium (ρ-SPE) if and only if the following two
conditions are satisfied:

1. for all i ∈ N , ui(s, f) ≥ ρ · ui((s−i, s′i), f) for all s′i ∈ Si

2. for all s ∈ S and for all z ∈ Z, Cz(s, f) ≤ Cz(s, (f−z, f
′
z)) for any alternative choice

function f′ ∈ F.
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Let ρ−SPE ⊆ S×F be the set of all ρ-approximate subgame perfect equilibria in the game.
For ρ = 1, we call the state a pure subgame perfect equilibrium.

Client Behavior in the Subgame Given a facility strategy profile s, there always
exists a client equilibrium which fulfills the second condition of the equilibrium definition.
This was shown in [30], but can also easily be verified by the following potential function:

Φ(s, f) = (1− α)

∫ 1

0
δ(x, f(s, x))dx+ α

n∑
i=1

(`i(s, f))
2

2
,

where δ(x, f(s, x)) denotes the distance from x to her chosen facility f(s, x) at location
sf(s,x), i.e., δ(x, f(s, x)) = |sf(s,x) − x|.

A client equilibrium f is a measurable client mapping, i.e., for any facility i there
exist finitely many intervals of clients that select facility i. We extend this definition to a
much stronger notion of mappings in which all the clients that select some facility i form
a single interval of [0, 1], formally |Ji(s, f)| = 1 for every facility i. Thus, for any fixed
facility location vector s we consider only client mappings f, where the interval [0, 1] is
partitioned into n closed intervals I1(s, f), . . . , In(s, f) such that for all clients z ∈ Ii(s, f)
we have f(s, z) = i. We call such client mappings proper client mappings. Moreover, by
re-naming facilities we can always ensure that s1 ≤ s2 ≤ · · · ≤ sn which implies that
the intervals I1(s, f), . . . , In(s, f) are consecutive in [0, 1] such that Ii(s, f) = [βi−1, βi] with
β0 = 0 and βn = 1. A proper client mapping that is a client equilibrium is called proper
client equilibrium. Any measurable client equilibrium can be transformed into a proper
client equilibrium without changing the utilities for the facilities. Peters et al. [30] show
that such a transformation is always possible and that it results in a unique proper client
equilibrium.

Therefore, we assume in the following the clients to be in the unique proper client equi-
librium for any facility location vector. This is possible since from a facility’s perspective
all client equilibria induce identical loads. For a facility location vector s we call the corre-
sponding unique proper client equilibrium fs the s-induced client equilibrium. Therefore,
the client strategy mapping fs is implicitly given and we omit it in the following definitions:
For each facility i let Ii(s) = Ii(s, fs) = [βi−1, βi] be the interval of clients using facility
i in this equilibrium with β0 = 0 and βn = 1. The load of facility i ∈ N is given by
`i(s) = `i(s, fs) = |Ii(s)|, the utility of facility i ∈ N by ui(s) = ui(s, fs) = `i(s). The costs
of a client at position z are defined by Cz(s) = Cz(s, fs).

3 Analytical Results

We first prove that the potential function Φ(s, f) suggested in Section 2 works.

Lemma 1. For any facility location vector s, a measurable client mapping is a client
equilibrium if and only if it locally minimizes

Φ(s, f) = (1− α)

∫ 1

0
δ(x, f(s, x))dx+ α

n∑
i=1

(`i(s, f))
2

2
.

Proof. Let s be any fixed facility location vector. We will omit the reference to s throughout
the proof. Let f∗ be any measurable client mapping for s, which locally minimizes Φ. We
first show that if f∗ is not a client equilibrium, then there is an ε-deviation fε of f∗ for
which Φ(fε) < Φ(f∗). An ε-deviation fε of f differs from f only in some interval Z, with
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|Z| = ε > 0, such that there exists some i 6= j so that for all clients z ∈ Z we have
f(s, z) = i and fε(s, z) = j. Suppose that f∗ is not a client equilibrium. Thus, there exists
an ε-deviation fε of f∗. Moreover, for each client z ∈ Z we have Cz(s, fε) < Cz(s, f

∗), which
yields

Cz(s, f
∗)− Cz(s, fε) = (1− α)(δ(z, i)− δ(z, j)) + α(`i(f

∗)− `j(fε)) > 0.

Thus, the total cost change for all clients in Z is

∫
Z
Cz(f

∗)dz −
∫
Z
Cz(fε)dz = (1− α)

∫
Z

(δ(z, fi)− δ(z, j))dz + αε(`i(f
∗)− `j(fε)) > 0.

The corresponding change in potential function value Φ(f∗)− Φ(fε) equals

(1− α)

(∫ 1

0
δ(x, f∗(x))dx−

∫ 1

0
δ(x, fε(x))dx

)
+ α

(
n∑
i=1

(`i(f
∗))2

2
−

n∑
i=1

(`i(fε))
2

2

)

=(1− α)

∫
Z

(δ(z, i)− δ(z, j))dz + α

(
`i(f
∗)2

2
+
`j(f
∗)2

2
− `i(fε)

2

2
− `j(fε)

2

2

)
=(1− α)

∫
Z

(δ(z, i)− δ(p, j))dz + α

(
`i(f
∗)2

2
+

(`j(fε)− ε)2

2
− (`i(f

∗)− ε)2

2
− `j(fε)

2

2

)
=(1− α)

∫
Z

(δ(z, i)− δ(p, j))dz + α

(
`i(f
∗)2 − (`i(f

∗)− ε)2

2
+

(`j(Fε)− ε)2 − `j(fε)2

2

)
=(1− α)

∫
Z

(δ(z, i)− δ(p, j))dz + α

(
2ε`i(f

∗)− 1

2
+
−2ε`j(fε) + 1

2

)
=(1− α)

∫
Z

(δ(z, i)− δ(p, j))dz + αε (`i(f
∗)− `j(fε))

=

∫
Z
Cz(f

∗)dz −
∫
Z
Cz(fε)dz > 0,

where the first equation is due to the fact that only distances for clients in Z and only
the loads of facilities i and j change. Thus, Φ(fε) < Φ(f∗). Hence, we have proven that
every measurable client mapping which locally minimizes Φ is a client equilibrium. For the
other direction note that the above comparison of the change in client cost and potential
function value actually proves that Φ is an exact potential function. Thus, for any client
equilibrium f∗ and for any ε-deviation fε of f∗ it follows that Φ(f∗) ≤ Φ(fε). This yields
that f∗ is a local minimum of Φ.

With Lemma 1 we can easily establish that for every facility location vector s there exists
a client equilibrium.

We analyze ρ-SPE for several settings. Our main goal is to show that the equilibria
found by Eaton & Lipsey [13] for α = 0 are also good approximate equilibria for α ∈ [0, 1]
as well, i.e., ρ is small.

As shown in [30], it holds for a (ρ-)SPE that for any two neighboring intervals Ii(s) =
[βi−1, βi], Ii+1(s) = [βi, βi+1] the clients at βi are indifferent between choosing facility i or
i+ 1 as costs are equal for both strategies:

(1− α) · |si − βi|+ α · `i(s) = (1− α) · |si+1 − βi|+ α · `i+1(s).

Taking these equations for all n−1 interval borders results in a system of equations, which
allows us to compute the interval borders. In our analytical computations we make also
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use of the result of [30] that the best response of the both external facilities 1 and n is to
locate at β1 and βn−1, respectively. Furthermore it holds that the best response sbesti of a
facility i is inside her corresponding interval, i.e., sbesti ∈ Ii(s, f). If a facility i can improve
by changing her strategy from si to another strategy s′i, we denote her improvement factor
as ρ′si and the new interval border as β′i. Both ρ′si and β′i depend on (s−i, s

′
i) but we will

omit the reference to (s−i, s
′
i) since it will be clear from the context.

3.1 Three Facilities

We start with three facilities and show that one facility at 1
2 and the the other two equidis-

tant to the left and right, respectively, with a suitably chosen gap yields a good ρ-SPE.

Theorem 1. For n = 3 the game has a ρ-SPE with ρ =
1−α2+

√
17+α(16+2α+α2)

4−2(α−2)α .

Proof. Consider s = (s1,
1
2 , 1− s1). he clients’ interval splits at β1 and β2 with

(1− α)(β1 − s1) + αβ1 = (1− α)(
1

2
− β1) + α(β2 − β1), (1)

β2 = 1− β1. (2)

Therefore,

β1 =
1 + α+ 2s1 − 2αs1

4 + 2α
, (3)

β2 =
3 + α− 2s1 + 2αs1

4 + 2α
. (4)

Since player F1 and F3 are equivalent we only consider player F1. The best response of F1

is to locate at β′1. So it follows from

αβ′1 = (1− α)(
1

2
− β′1) + α(β′2 − β′1), (5)

(1− α)(β′2 −
1

2
) + α(β′2 − β′1) = (1− α)|(1− s1)− β′2|+ α(1− β′2), (6)

that

β′1 =
2 + α− 2αs1 + α2(−1 + 2s1)

4 + 4α− 2α2
, (7)

β′2 =
3 + 3α+ 2α2(−1 + s1)− 2s1

4 + 4α− 2α2
. (8)

Thus, facility F1 can improve by a factor of ρ1 = 2(2+α)(2+α−2αs1+α2(−1+2s1))
(4+4α−2α2)(1+α+2s1−2αs1) (as well as

F3, respectively). By our choice of s1, we will ensure that s′1 <
1
2 is not a best response.

We now consider facility F2. As s is symmetric, we can assume, without loss of gener-
ality, that the best response of facility 2 is a position s′2 <

1
2 . For her best response s′2, we

consider two cases:

• s′2 ≤ s1: In this case, the utility of facility F2 is equal to the length of the first interval
ending at point β1. So, as discussed for player F1, the best response is s′2 = β′1.

Hence, s′2 = α+2s1−2αs1
2+2α−α2 and facility F2 can improve by ρ2 = (2+α)(α+2s1−2αs1)

(2+2α−α2)(1+2(−1+α)s1) .
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• s′2 > s1: Note that s′2 <
1
2 is symmetric to 1− s′2. So we have

(1− α)|β′1 − s1|+ αβ′1 = (1− α)(
1

2
− ε− β′1) + α(β′2 − β′1), (9)

(1− α)(β′2 − (
1

2
− ε)) + α(β′2 − β′1) = (1− α)((1− s1)− β′2) + α(1− β′2). (10)

The utility u2 = β′2 − β′1 = 1−2ε+α2(1−2ε−2s1)−2s1+α(−3+4ε+4s1)
(−4+α)α becomes larger the

greater ε > 0 gets. In particular it is better for player F2 to be at the same location
as player F1 than to be between player F1 and F3.

Choosing s1 =
−3+(α−4)α+

√
17+α(16+2α+α3)

4(a−1)2 minimizes the maximum of ρ1 and ρ2 and both

evaluate, for 0 < α < 1, to

ρ =
1− α2 +

√
17 + α(16 + 2α+ α3)

4− 2(−2 + a)a
.

Theorem 1 yields directly the following statement.

Corollary 1. For α = 0 and n = 3 the game has a ρ-SPE with ρ = 1
4(1 +

√
17).

We now show that Corollary 1 is tight as it yields the ρ-SPE with minimal ρ for Hotelling’s
original model.

Theorem 2. For α = 0 and n = 3 the game does not have ρ-SPE with ρ < 1
4(1 +

√
17).

Proof. We need to consider three cases: all facilities in the same location, two choosing
the same location, and all three choosing different locations.

Case 1: Consider all facilities choosing the same location, hence, s = (s1, s1, s1) and `i(s) = 1
3 .

Each player is equivalent, so we only consider facility F1. Without loss of generality
we can assume s1 ≤ 1

2 . The best response for a facility i is to move to s′i = s1 + ε
for some ε > 0, which results in an approximation factor

ρ′i = lim
ε→0

(1− s′i)− ε
2

`i(s)
≥ 3

2
.

Case 2: Consider two facilities choosing the same location, hence, s = (s1, s2, s2). It holds
that s1 <

1
2 ≤ s2, as otherwise there would be a facility i with ρsi ≥ 2. The best

response for facility 1 is s′1 = s2 − ε some ε > 0, which leads to

ρ′s1 = lim
ε→0

s2 − ε
2

s1+s2
2

=
2s2

s1 + s2
.

Since ρ1 <
1
4(1 +

√
17) it follows

7s2 −
√

17s2

1 +
√

17
≤ s1 ≤

1

2
≤ s2 ≤

−1−
√

17

−14 + 2
√

17
. (11)

Facility 2 and 3 are equivalent. A possible strategy change for facility 2 is either
s′2 = s1 − ε which results in

ρ′s2 = lim
ε→0

s1 − ε
2

2−s1−s2
4

=
4s1

2− s1 − s2

9



and therefore

7s2 −
√

17s2

1 +
√

17
≤ s1 ≤

2 +
√

17− s2 −
√

17s2

17 +
√

17
, (12)

1

2
≤ s2 ≤

−1−
√

17

−30 + 2
√

17
(13)

or s′′2 = s2 + ε which results in

ρ′′s2 = lim
ε→0

1− (s2 + ε
2)

2−s1−s2
4

=
4(1− s2)

2− s1 − s2
.

However, ρ′′s2 <
1
4(1 +

√
17) contradicts (12) and (13).So there is no valid choice of

s1 and s2 such that ρ′s1 , ρ′s2 and ρ′′s2 are smaller than 1
4(1 +

√
17).

Case 3: Consider all facilities choosing different locations, hence, s = (s1, s2, s3). It holds
that s1 <

1
2 ≤ s2 < s3, since otherwise ρsi ≥ 2. Like in the previous case the best

response for facility 1 is s′1 = s2 − ε which leads to ρ′s1 = 2s2
s1+s2

. A possible strategy
change for facility 2 is s′2 = s1 − ε with

ρ′s2 = lim
ε→0

s1 − ε
2

s3−s1
2

=
2s1

s3 − s1
and therefore

s1 ≤
s3 +

√
17s3

9 +
√

17
. (14)

or s′′2 = s3 + ε which leads to

ρ′′s2 = lim
ε→0

=
1− (s3 − ε

2)
s3−s1

2

=
2s1 + s3
s3 − s1

.

Hence, it has to hold

s1 ≤ −8+9s3+
√
17s3

1+
√
17

and
8

9 +
√

17
< s3 ≤

9 +
√

17

10 + 2
√

17
, (15)

or s1 ≤ s3+
√
17s3

9+
√
17

and
9 +
√

17

10 + 2
√

17
< s3. (16)

Facility 3 has the possibility to move to s′3 = s2 + ε with

ρ′s3 = lim
ε→0

1− (s2 + ε
2)

2−s2−s3
2

=
2(1− s2)

2− s2 − s3
,

so

s3 ≤ −5+3
√
17

2+2
√
17
, (17)

or s2 ≥ −6+2
√
17−s3−

√
17s3

−7+
√
17

and s3 >
−5+3

√
17

2+2
√
17
. (18)

or s′′3 = s1 − ε with

ρ′′s3 = lim
ε→0

s1 − ε
2

2−s2−s3
2

=
2s1

2− s2 − s3
.

However, ρ′′s3 <
1
4(1 +

√
17) contradicts (17) and (18). So there is no valid solution

with ρ′s1 , ρ′s2 , ρ
′′
s2 , ρ′s3 and ρ′′s3 smaller than 1

4(1 +
√

17).

10



3.2 Uniformly Distributed Facilities

As a warm-up, we consider the uniform distribution sopt of all facilities on the line, which
is defined as sopt = (s1, . . . , sn) with si = 2i−1

2n for i ∈ {1, . . . , n}. See Figure 1 for an
illustration. Note, that this facility placement minimizes the average client cost.

0 1
2 1

1
5

n = 4 :
1
10

2
5

n = 5 :
3
10

7
10

9
10

n = 6 :
3
5

4
5

n = 7 : n = 8 : n = 9 : n = 10 :

Figure 1: Facility positions in sopt for 4 ≤ n ≤ 10.

For a small number of players, i.e., 4 ≤ n ≤ 10, we determine ρ explicitly as a function
of α.

Theorem 3. The locations sopt yields a ρn-SPE in the game with n facilities with the
following values of ρn.

ρ4 = 1
2 + 2(α2−2)

(α−1)α(4+α)−4 ,

ρ5 = 12+α(4+α(α(α−2)−10))
8+α(2+α)(4+(α−6)α) ,

ρ6 = 1
2 + 16−16α2+3α4

16+α(16+α(α(α(5+α)−12)−20)) ,

ρ7 = α(α(64+α(16+α(α(α−3)−21)))−16)−48
α(α(48+α(32+α((α−6)α−18))))−32)−32 ,

ρ8 = 1
2 + 4(α2−2)(8−8α2+α4)

a((α−2)α(2+α)(α(α(7+α)−20)−28)−64)−64 ,

ρ9 = 192+α(64+α(α(4+α)(α(56+α((α−8)α−4))−24)−352))
128+(α−2)α(α(2+α)(48+α(48+α((α−8)α−28)))−64) ,

ρ10 = 1
2 + 256−512α2+336α4−80α6+5α8

256+α(256+α(α(α(432+α(240+α(α(9α+α2−40)−120))))−448)−576)) .

Proof. We compute the interval borders β1, . . . , βn−1 for the proper client equilibrium by
solving the system with n− 1 equations

(1− α)|si − βi|+ α`i(s) = (1− α)|si+1 − βi|+ α`i+1(s) (19)

for i ∈ {1, . . . , n − 1}. A facility Fi obtains a load of `i(sopt) = 1
n in the strategy vec-

tor sopt. Therefore the strategy changes s′i < s1 and s′i > sn is not an improvement for
an arbitrary facility i since β1 > s1 and βn−1 < sn. So the best response for a facil-
ity i is to locate inside the interval [s1, sn]. To compute the best response of a facility
i we have to check all possible strategy changes. So i can be located in each of the
subintervals[s1, s2], [s2, s3], . . . , [sn−1, sn]. Solving

(1− α)(β′1 − s′1)|+ αβ′1 = (1− α)|s2 − β′1|+ α(β′2 − β′1),
(1− α)(β′2 − s2)|+ α(β′2 − β′1) = (1− α)|s3 − β′2|+ α(β′3 − β′2),

. . .

(1− α)(β′n−1 − sn−1)|+ α(β′n−1 − β′n−2) = (1− α)|sn − β′n−1|+ α(1− β′n−1),

yields the new interval borders β′i for 1 ≤ i ≤ n − 1 when facility 1 changes her strategy
to s′1 ∈ [s1, s2]. Together with the result that the best response of facility 1 is to locate at
her interval border β′1, we can easily calculate the approximation factor ρ for this case.

To check how good the other strategy changes are, we have to construct a modified
system of equations, where we respect that the considered facility i is not anymore in the
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consecutive order s1 ≤ s2 ≤ . . . ≤ sn in [0, 1]. By setting up a suitable system of equations
for each case s′i ∈ [sk, sk+1] for k ∈ {1, . . . , n− 1} we address the problem.

So we can verify for all facilities i for i ∈ {1, . . . , n} all possible strategy changes with
the help of the system of equations. It turns out that for all n ≤ 10 the facilities 1 and n
have the highest possible improvement by moving to the new interval border β′1 and β′n−1,
respectively.

Based on the results of the previous section and our agent-based simulations (cf. Sec-
tion 4.2) we derive the following conjecture for an arbitrary number of facilities.

Conjecture 1. Given a game with n > 3 facilities and the state sopt = (s1, . . . , sn) with
si = 2i−1

2n for all i ∈ {1, . . . , n}. Then one of the outmost facilities, 1 or n, has the
highest possible improvement factor by changing her strategy towards the middle to the
new interval border s′1 = β′1 or s′n = β′n−1.

Using generalized continued fractions, define

K̃m :=
m

K
j=1

−α2/4

1
=

− α2/4

1 +
− α2/4

1 +
. . .
− α2/4

1

and

ψopt
n,α =

n

1 + 2
1+αK̃

n−2

(
1− α
1 + α

3

2n
+
n−1∑
k=2

1− α
1 + α

2k

n

n−2∏
j=n−k

(
− 2

α
K̃j

)
+

α

1 + α

n−2∏
j=1

(
− 2

α
K̃j

))
.

Using Conjecture 1 and the definition of ψopt
n,α we can state the following approximation

guarantee for arbitrary n.

Theorem 4. Assume Conjecture 1 holds for n > 3 facilities. Then the game has a ρ-SPE
with ρ = ψopt

n,α.

Proof. Consider the state sopt = (s1, . . . , sn) with si = 2i−1
2n for i ∈ {1, . . . , n}. The clients’

intervals split at βi = i
n for i ∈ {1, . . . , n− 1}, so each facility i has a utility of ui(s) = 1

n .
Using Conjecture 1, we only need to consider facility 1 with a move to her new interval
border β′1, formally s′ = (s−1, β

′
1) and we formalize the new state with a system of linear

equations.

(1− α) (β′1 − s′1) + α(β′1 − β′0) = (1− α) (s2 − β′1) + α(β′2 − β′1),
(1− α) (β′i − si) + α(β′i − β′i−1) = (1− α) (si+1 − β′i) + α(β′i+1 − β′i)

∀i ∈ {2, . . . , n− 1}.

We solve this system for β′1 using Gaussian elimination and generalized continued fractions.
Since we consider the first facility, we have u1(s

′) = β′1. The derivation is similar to the

proof of Theorem 6. Together with u1(s) = 1
n and Conjecture 1 we get ρ = u1(s′)

u1(s)
= nβ′1

which equals ψopt
n,α by definition.

The influence of the number of facilities n is negligible in ψopt
n,α, so Figure 2 shows the

approximation factor as a function of α. For large values of α the factor is close to 1,
which is to be expected as the actual location of the facilities are less important. However
for the remaining range of α, facilities can improve significantly.

12
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Figure 2: Approximation factor ρ for sopt as a function of α.

3.3 Co-locating Facilities

We study a facility placement spair which was proposed by Eaton & Lipsey [13] and re-
spects the principle of minimum differentiation since it consists of co-located pairs of
facilities. We show for n ≤ 10 that the placements spair yield ρ-SPE for all α with
surprisingly small values of ρ. For an even number of players n = 2k the placement
is spair = (s1, . . . , sn) and for an odd number of players n = 2k − 1 the placement is
spair = (s1, . . . , sk−1, sk, sk+2, . . . , sn+1) with s2i−1 = s2i = 2i−1

2k for i ∈ {1, . . . , k} for some
k ∈ N (see Figure 3). Eaton & Lipsey [13] proved that spair is a SPE for α = 0. Moreover,
it trivially is also a SPE for α = 1 since any facility placement is a SPE for α = 1.

0 1
2 1

1
5

n = 4 :
1
10

2
5

n = 5 :
3
10

7
10

9
10

n = 6 :
3
5

4
5

n = 7 : n = 8 : n = 9 : n = 10 :

Figure 3: Facility placements spair for 4 ≤ n ≤ 10. Co-located facilities are colored red,
single facilities are colored blue.

Theorem 5. The locations spair yields a ρn-SPE in the game with n facilities with the
following values of ρn.
ρ4 = 4+α−α2

4 ,

ρ5 = (4+α)(α(α(3+α)−3)−4)
(2+α)(α(5α−2)−8) ,

ρ6 = α(4−α(α−7))−16
2(α(4+α)−8) ,

ρ7 = (64−64α+7α3)(16+α(2+α)(α(α−3)−2))
2(32+α(α(α−10)−16))(16+α(α−16+α2))

,

ρ8 = 64−α(48+α(24+(α−17)α))
4(16+α(α−16+α2))

,

ρ9 = (32+(α−4)α(2+α)(1+2α))(α(4+3α)−16)
(α−2)(4+α)(64+α(α(α−24)−32)) ,

ρ10 = α(320−α(α(120(α−31)α)−16))−256
2(α(α−4)(α(4+3α)−48)−128) .

Proof. We compute the interval borders β1, . . . , βn−1 for the proper client equilibrium by
solving the system with n− 1 equations

(1− α)|si − βi|+ α`i(s) = (1− α)|si+1 − βi|+ α`i+1(s) for i ∈ {1, . . . , n− 1}.

The strategy change s′i < s1 and s′i > sn is not an improvement since β1 ≥ s1 and
βn−1 ≤ sn for an arbitrary facility i. As already mentioned, the best response for the
leftmost and rightmost facility is to locate at β1 and βn−1, respectively. Together with
`i(s), it can be checked that this is not an improvement for facility i. So the best response
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for facility i is to locate inside the interval [s1, sn]. To compute the best response of
facility i we have to check all possible strategy changes. So i can be located in each of the
subintervals [s1, s2], [s2, s3], . . ., [sn−1, sn]. Since facility 1 and 2 are equivalent, we just
have to consider facility 2 and her strategy changes. Solving

(1− α)|β′1 − s1|+ αβ′1 = (1− α)(s′2 − β′1) + α(β′2 − β′1),
(1− α)(β′2 − s′2) + α(β′2 − β′1) = (1− α)|s3 − β′2|+ α(β′3 − β′2),

. . .

(1− α)|β′n−1 − sn−1|+ α(β′n−1 − β′n−2) = (1− α)|sn − β′n−1|+ α(1− β′n−1),

yields the new interval borders β′i for 1 ≤ i ≤ n− 1 when facility 2 changes her strategy to
s′2 ∈ [s2, s3]. Together with the result that the best response sbesti of a facility i is inside
her corresponding interval, i.e., sbesti ∈ Ii(s, f), so s′2 ∈ [β′1, β

′
2] and it can be checked that

s′2 = β′2 is the best response for s′2 ∈ [s2, s3].
To check how good the other strategy changes are, we have to construct a modified

system of equations, which respects that the considered facility i is not anymore in the
consecutive order s1 ≤ s2 ≤ · · · ≤ sn in [0, 1]. This is done by setting up a suitable system
of equations for each case s′i ∈ [sk, sk+1] for 1 ≤ k ≤ n−1. So we can verify for all facilities
i for 1 ≤ i ≤ n all possible strategy changes with the help of the system of equations. It
turns out that for all n ≤ 10 the facilities 1 and 2, respectively have the highest possible
improvement by moving to the new interval border β′2.

Our analytical results and agent-based simulations (see Section 4.2) suggest that the out-
most facilities 1 and 2, respectively, yield the highest possible improvement by moving to
the new interval border β′2. Therefore we state the following conjecture.

Conjecture 2. Given a game with n > 3 facilities and the state s = (s1, . . . , sn) for
n = 2k and s = (s1, . . . , sk−1, sk, sk+2, . . . , sn+1) for n = 2k − 1 for some k ∈ N with
s2i−1 = s2i = 2i−1

2k for i ∈ {1, . . . , k}. Then one of the leftmost facilities, 1 or 2, has the
highest possible improvement factor by changing her strategy towards the middle to the
new interval border β′2.

With the help of generalized continued fractions, define

K̂m :=
m

K
j=1

−α/4
1

=
− α/4

1 +
− α/4

1 +
. . .
− α/4

1

,

β′1 =
1

1− α
2(α+1+2K̂n−3)

(
1− α

2n
+

1− α
2(α+ 1)

1

1 + 2
α+1K̂

n−3
3

n
− 2

α+ 1

1

1 + 2
α+1K̂

n−3(
n/2−1∑
k=2

(
(−2)2k−3

ak−1
2(1− α)k

n

n−3∏
j=n−2k

K̂j

)
+

(−2)n−4

2a(n−4)/2

n−3∏
j=1

K̂j

))
,

β′2 =
1

1 + 2
1+αK̂

n−3

(
α

1 + α
β′1 +

1− α
1 + α

3

n
+

n/2−1∑
k=2

(
−4

1 + α

(−2)2k−3

ak−1
2(1− α)k

n

n−3∏
j=n−2k

K̂j

)
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− 2

1 + α

(−2)n−4

a(n−4)/2

n−3∏
j=1

K̂j

)
and ψpair

n,α = n
(
β′2 − β′1

)
.

Using Conjecture 2 and ψpair
n,α we can state the approximation factor for an arbitrary even

number of facilities and an arbitrary α.

Theorem 6. Assuming Conjecture 2 holds, for n > 3 facilities with n = 2k and k ∈ N,
the game has a ρ-approximate pure subgame perfect equilibrium with ρ = ψpair

n,α .

Proof. Consider the state s = (s1, . . . , sn) with s2i−1 = s2i = 2i−1
2k for i ∈ {1, . . . , k}.

The clients’ intervals split at βi = i
2k ∀i ∈ {1, . . . , 2k − 1}, so each facility i has a utility

of ui(s) = 1
n . Using Conjecture 2, we only consider facility 2 with a move to her new

interval border β′2. The following system of linear equations characterizes the new state
s′ = (s−2, β

′
2):

(1− α) (β′1 − s1) + α(β′1 − β′0) = (1− α) (s′2 − β′1) + α(β′2 − β′1)
(1− α) (β′2 − s′2) + α(β′2 − β′1) = (1− α) (s3 − β′2) + α(β′3 − β′2)

(1− α) (β′2i−1 − s2i−1) + α(β′2i−1 − β′2i−2) = (1− α) (β′2i−1 − s2i) + α(β′2i − β′2i−1)
∀i ∈ {2, . . . , k − 1}

(1− α) (β′2i − s2i) + α(β′2i − β′2i−1) = (1− α) (s2i+1 − β′2i) + α(β′2i+1 − β′2i)
∀i ∈ {2, . . . , k − 1}

(1− α) (β′n−1 − sn−1) + α(β′n−1 − β′n−2) = (1− α) (β′n−1 − sn) + α(β′n − β′n−1).

Solving these equations for βi with β0 = 0, βn = 1, s′2 = β2 results in:

β1 =
1

2
β2 +

1− α
2

s1,

β2 =
α

1 + α
β1 +

α

1 + α
β3 +

1− α
1 + α

s3,

β2i−1 =
1

2
β2i−2 +

1

2
β2i +

1− α
2α

s2i−1 +
α− 1

2α
s2i, ∀i ∈ {2, . . . , k − 1},

β2i =
α

2
β2i−1 +

α

2
β2i+1 +

1− α
2

s2i +
1− α

2
s2i+1, ∀i ∈ {2, . . . , k − 1},

βn−1 =
1

2
βn−2 +

1

2
βn +

1− α
2α

sn−1 +
α− 1

2α
sn.

This system can be solved for β′1 and β′2 with the help of the Gaussian elimination and
generalized continued fractions. We apply the Gaussian elimination:



1 −1
2

1−α
2 s1

− α
1+α 1 − α

1+α
1−α
1+αs3

−1
2 1 −1

2
1−α
2α s2i−1 + α−1

2α s2i
−α

2 1 −α
2

1−α
2 s2i + 1−α

2 s2i+1

. . .
−1

2 1 −1
2

1−α
2α s2i−1 + α−1

2α s2i
−α

2 1 −α
2

1−α
2 s2i + 1−α

2 s2i+1

−1
2 1 1−α

2α sn−1 + α−1
2α sn + 1

2


.

By adding to the second to last row α
2 times the last row, our two last rows look as follows:
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(
−α

2 1− α
4 0 1−α

2 s2i + 1−α
2 s2i+1 + α

4
−1

2 1 1−α
2α sn−1 + α−1

2α sn + 1
2

)
.

Next, by multiplying the second last row with 1
2(1−α4 )

and adding it to the last but two,

the left side of the three last rows look as follows: −1
2 1− α

4(1−α
4
) 0 0

−α
2 1− α

4 0
−1

2 1

 .

We continue this scheme and end up with a left side of the matrix which looks as follows:
1− α

2(1+α)(1− α
2(1+α)(1+K̂n−4)

)

− α
1+α

1− α
2(1+α)(1+K̂n−4)

. . .

− 1
2

1− a
4(1− a

4(1− a
4(1− a

4
)
)
)

0 0 0 0

−α
2

1− α
4(1− α

4(1−α
4

)
)

0 0 0

. . .

 .

For the right side notice, that for i ∈ {2, . . . , k − 1} 1−α
2α s2i−1 + α−1

2α s2i is equal to 0, since
both facilities are located at the same position, i.e. s2i−1 = s2i.

Since we consider facility 2, we have u2(s
′) = β′2 − β′1. Together with u2(s) = 1

n and

Conjecture 2 we get ρ = u2(s′)
u2(s)

= ψpair
n,α = n (β′2 − β′1) .

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

α

ρ

n = 4 n = 5 n ≥ 6 (even)
n = 7 n = 9

Figure 4: Approximation factor ρ for spair as a function of α.

Figure 4 summarizes the analytically obtained ρ-values. The influence of n is negligible
for even n with n ≥ 6. Note, that in contrast to sopt, the obtained approximation factor
is much lower for the facility placement spair with co-located facilities.

3.4 Quality of the ρ-SPE

The social costs SC(s, f) of a strategy profile (s, f) is defined as the sum over the costs
of all client agents, i.e., SC(s, f) =

∫
Z Cz(s, f)dz. Similarly to the Price of Anarchy, we

define the quality Q of an equilibrium as in [19]. We are interested in the costs of the
client players, while the strategies of the facility players define the stable states. We define
the social optimum of the game as opt = min(s,f)∈S×F SC(s, f). Then, the quality of an

(approximate) pure subgame perfect equilibrium (s, f) is defined as Q(s, f) = SC(s,f)
opt .

Lemma 2. The social optimum sopt = (s1, . . . , sn) with si = 2i−1
2n for i ∈ {1, . . . , n} of the

game has SC(sopt, f) = 1+3α
4n .
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Proof. Consider sopt = (s1, . . . , sn). The interval borders βi = i
n fulfill for any two neigh-

boring intervals Ii(s) = [βi−1, βi], Ij(s) = [βi, βi+1] the equation (1 − α)|sf(s,bi) − βi| +
α`f(s,bi)(s, f) = (1−α)|sf(s,aj)−βi|+α`f(s,aj)(s, f). So each facility i has the load `i(s, f) = 1

n
and is located in the middle of her corresponding interval. Hence, it follows that

SC(s, f) = n

(∫ 1
n

0
(1− α)

∣∣∣∣ 1

2n
− x
∣∣∣∣+

α

n
dx

)
=

1 + 3α

4n
.

Theorem 7. Given a game with n = 2k players for some k ∈ N and the state spair =
(s1, . . . , sn) with s2i−1 = s2i = 2i−1

2k for i ∈ {1, . . . , k}, then Q(spair, f) = 2α+2
3α+1 .

Proof. Consider s = (s1, . . . , sn). The interval borders βi = i
n fulfill for any two neigh-

boring intervals Ii(s) = [βi−1, βi], Ij(s) = [βi, βi+1] the equation (1 − α)|sf(s,bi) − βi| +
α`f(s,bi)(s, f) = (1−α)|sf(s,aj)−βi|+α`f(s,aj)(s, f). So each facility i has the load `i(s, f) = 1

n
and is located at her interval border. Hence, for the clients’ cost it follows

SC(s, f) = n

(∫ 1
n

0
(1− α)

(
1

n
− x
)

+
α

n
dx

)
=

1 + α

2n
.

With Lemma 2 the statement follows.

Theorem 8. Given a game with n = 2k − 1 players for some k ∈ N and the state
spair = (s1, . . . , sk−1, sk, sk+2, . . . , sn+1) with s2i−1 = s2i = 2i−1

2k for i ∈ {1, . . . , k}, then

Q(spair, f) ≤ 8(1+α)n2

(1+3α)(1+n)2
.

Proof. Consider s = (s1, . . . , sn). First we show that `i(s, f) ≥ 1
n+1 for every facility i. We

consider the facility i with the smallest load `i(s, f), so `i(s, f) ≤ `j(s, f) for j 6= i. Assume
there is a facility i with `i(s, f) <

1
n+1 . For the clients z ∈ [si − 1

n+1 , si + 1
n+1 ] it holds

that |si − z| < |sj − z| for all facilities j with si 6= sj . Since there is at most one other
facility j with sj = si, it follows that there exists a client z ∈ [si − 1

n+1 , si + 1
n+1 ] with

Cz(s, f) = (1−α) · |sf(s,z)−z|+α · `f(s,z)(s, f) > (1−α) · |si−z|+α · `i(s, f). This contradicts
the definition of ρ-SPE, since z can decrease her cost by changing her strategy towards
facility i.

It follows for all facilities that `i(s, f) ≤ 2
n+1 and therefore |si − βi| < 2

n+1 and |si − βi+1|
< 2

n+1 , respectively. Hence, it follows for the clients’ cost

SC(s, f) = n

(∫ 1
n+1

0
(1− α)

(
2

n+ 1
− x
)

+
2α

n+ 1
dx

)
=

2n(α+ 1)

(n+ 1)2
.

With Lemma 2 the statement follows.

4 Agent-based Simulation

Kohlberg’s model [24] assumes that the clients are continuously distributed along the
linear market, i.e. the interval [0, 1] is considered and every point in [0, 1] corresponds to
a client. This continuous setting is an abstraction from reality and essentially models the
case where there are significantly more clients than facilities. Moreover the continuous
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Figure 5: Quality of the ρ-SPE for spair as a function of α.

setting is crucial for our analysis in Section 3 since it enables us to derive analytical results
by solving a suitably chosen system of equations. However, as indicated in Section 3,
this approach is tedious to work with and generalizing the results to obtain a closed form
solution which depends on n and α seems to be hopeless. In particular, the case for odd n
does not yield a symmetric system of equations. Moreover, our proofs cannot be adapted
to the discrete version, where we have only a finite number of clients which are spread
evenly in the interval [0, 1].

For addressing both problems, the lack of analytical tractability and the transfer of
our results to the discrete version, we resort to an agent-based approach. This allows us
to derive more general results and to support our conjectures in Section 3.

4.1 Simulation Set-up

We discretize our model by fixing the total number of clients to some arbitrary value
P , which we will also call the precision. In any discrete instance with exactly P clients
we assume that the P clients sit at equally spaced positioned locations in the interval
[0, 1]. More precisely, we assume that the interval [0, 1] is subdivided into P consecutive
intervals I1, . . . , IP of size 1

P and that the position of the i-th client is the center point zi
of subinterval Ii, i.e. zi = i

p −
1
2P .

We assume that every client has a weight of 1
P and that the total weight assigned to

facility j under some client distribution is the sum of the weights of all clients which are
assigned to the respective facility and that facilities want to maximize their assigned total
weight. Moreover, we assume that facility agents can only select a location from the set
{z1, . . . , zP }, i.e. facilities can only be placed on client locations. Note, that if P → ∞
then our discrete model resembles the continuous model. Thus, with increasing precision
we can more closely approximate the analytical solution. Our experiments revealed that
a precision of 500n is sufficient to get very accurate results for n facilities (see Figure 6).
Moreover, even for fewer numbers of clients, i.e. a lower precision, the obtained results are
still very close to the analytical prediction from the continuous model. This emphasizes
the value of the continuous model in predicting the behavior of the discrete model.

Client Simulation Clients are modeled as selfish autonomous agents which strategically
select a facility to minimize their cost. For a given strategy profile (s, f) the cost of client
i at position zi is

Czi(s, f) = (1− α) · |sf(s,zi) − zi|+ α · `f(s,zi)(s, f),

where `f(s,zi)(s, f) =
∑

j:f(s,zj)=f(s,zi)
1
P .

For given fixed facility locations s = (s1, . . . , sn), with sj ∈ {z1, . . . , zP } for 1 ≤ j ≤ n,
we invoke round-robin best response dynamics to obtain the empirical client equilibrium
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Figure 6: Empirically observed highest approximation factor for the ρ-SPE for n = 10 and
α ∈ {0.1, 0.5, 0.9} compared with its analytical value plotted for increasing precision.

distribution D(s). There, starting from a fixed initial assignment of clients to facilities,
clients are activated in a fixed order and update their strategy with their current best
response strategy. By using the discrete analogue of the potential function Φ(s, f) from
the continuous setting, it is straightforward to show that this process converges. More-
over, since the client equilibrium in the continuous setting is unique and since we fix the
client activation order and use consistent tie-breaking, the empirical client equilibrium
distribution D(s) is unique for any fixed facility placement s.

Facility Simulation Given a facility placement s and the induced empirical client equi-
librium distribution D(s) we compute the best response strategy of a facility j by simply
trying all possible locations z ∈ {z1, . . . , zP } and computing the induced utility, which
equals the load of facility j, of each location with the induced empirical client equilibrium
distribution D(z, s−j). Let z∗ denote facility j’s best response, then we compute facil-

ity j’s highest possible improvement factor as
uj((z

∗,s−j),D(z∗,s−j))
uj(s,D(s)) , i.e. the ratio between

facility j’s best achievable utility and her current utility.

Computing the Approximation Factor ρ For a given facility placement s and it’s
corresponding empirical client equilibrium distribution D(s) we obtain the approximation
factor ρ of placement s by simply taking the maximum over all facilities of their highest
possible improvement factors.

4.2 Empirical Support for Our Conjectures

Our analysis of the continuous model in Section 3, especially the proofs of Theorems 4 and 6
crucially relies on Conjectures 1 and 2, respectively. While being very challenging to prove
analytically, the conjectures can be easily verified with our agent-based approach. For
this we compute for a given facility location vector s ∈ {sopt, spair} the highest possible
improvement factor for each facility (see Figure 7 for results with spair). We observe
that independently from α and n we find that the four outermost facilities which sit at
locations s1 = s2 and sn−1 = sn have the highest improvement factor among all facilities.
Moreover our simulations also confirm that the best possible new facility location is the
inner border of their assigned client interval, i.e. the location of the client which is assigned
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Figure 7: Empirical support for Conjecture 2. Observed improvement factors for each
facility for n ∈ {99, 100, 101} with P = 100000 and α ∈ {0.1, 0.5, 0.9} for locations spair.

to the facility and at the same time has a location as close to 0.5 as possible. Figure 7
depicts our obtained results for supporting Conjecture 2. We have similar results regarding
Conjecture 1 but we have to omit them due to space constraints.

4.3 Worst Approximation Ratio over all α

Finally, we address how the aproximation factor ρ behaves for growing n. For this we
empirically computed ρ for n = 3 to n = 100, where for each 3 ≤ n ≤ 100 we evaluated
every α from 0 to 1 in steps of 0.01. Figure 8 shows the maximum approximation factor ρ
over all evaluated α for each number of facilities n. To avoid numerical issues we scaled P
with n as P = 1000n. Our simulation shows that the observed ρ converges to ρ = 1.079 as n
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Figure 8: Observed worst approximation ratio for 3 ≤ n ≤ 100 over all 0 ≤ α ≤ 1 with
precision P = 1000n. The maximum ρ approaches ρ = 1.079 as n increases.

increases and that the highest approximation factor is obtained for α = 0.55. This implies
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that the investigated approximate subgame perfect equilibria are close to exact equilibria,
since the facility agents can only improve their utility by at most 8% by deviating.

5 Conclusion

We demonstrated the existence of approximate equilibria with low approximation factors
and which adhere to the principle of minimum differentiation for Kohlberg’s model. This
remarkble contrast to the results of Peters et al. [30] indicates that studying approximate
equilibria may yield more realistic results than solely focusing on exact equilibria. More-
over, investigating approximate equilibria may also lead to new insights for other models
in the realm of Location Analysis.
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