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Abstract
For positive and relative prime set of integers A = {a1, . . . , ak}, let Γ (A) denote the
set of integers of the form a1x1 + · · · + akxk with each xi ≥ 0. It is well known that
Γ c(A) = N \ Γ (A) is a finite set, so that g(A), which denotes the largest integer in
Γ c(A), is well defined. Let A = AP(a, d, k) denote the set {a, a+d, . . . , a+(k−1)d}
of integers in arithmetic progression, and let gcd(a, d) = 1. We (i) determine the set
A+ = {b ∈ Γ c(A) : g(A ∪ {b}) = g(A)}; (ii) determine a subset A+ of Γ c(A) of
largest cardinality such that A ∪ A+ is an independent set and g(A ∪ A+) = g(A);
and (iii) determine g(A ∪ {b}) for some class of values of b that includes results of
some recent work.
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1 Introduction

Given a finite set A = {a1, . . . , ak} of positive integerswith gcd A := gcd(a1, . . . , ak)
= 1, let Γ (A) := {a1x1 + · · · + akxk : xi ≥ 0}. We call an integer N
representable by A if N ∈ Γ (A). Sylvester showed that the set Γ c(A) :=
N \ Γ (A) of non-representable positive integers is finite, asked to determine

g (A) := maxΓ c (A) ,

and showed that g (a1, a2) = (a1 − 1)(a2 − 1) − 1. For brevity, we use g (A) to
denote g (a1, . . . , ak). Although the problem was proposed by Sylvester [12], the
function g (A) is called the Frobenius number after Frobenius, who was largely
instrumental in giving this problem the early recognition in his lectures.

There is no closed-form formula for the Frobenius number g (A) for |A| ≥ 3. A lot
of research has centered around improving bounds or providing improved algorithms
for g (A), both in the general case and in special cases. One of the few cases where
the Frobenius number g (A) has been determined is the case where the elements of A
(called the basis elements) are in arithmetic progression.

The Frobenius number g (A) for a basis A = {a1, . . . , ak} is unchanged by the
removal of any element, say ak , that is representable by the other elements of the
basis, that is if ak ∈ Γ (A \ {ak}). Following Selmer [11] and others, we term a
basis in which there is an element which is representable by the other elements a
dependent basis. Any basis for which k > min A is necessarily dependent. For if
min A = a1, say, at least two of the k − 1 (≥ a1) numbers a2, . . . , ak must be in the
same congruence class modulo a1 (in which case the larger number is representable
by the smaller number and a1), or at least one of the numbers is a multiple of a1. Bases
which are not dependent are termed independent, and k ≤ a1 for such bases.

Towards the end of his extensive and significant paper, Selmer [11] considered the
problem of the change in the Frobenius number in extending a basis A = {a1, . . . , ak}
by a single- element ak+1. It is clear that g (A ∪ {ak+1}) ≤ g (A), and that there is
equality if ak+1 ∈ Γ (A). Under the assumption that ak+1 /∈ Γ (A), he considered
the problem of determining all positive integers ak+1 for which the Frobenius number
remains unchanged.Mendelsohn [7] has shown the non-existence of such an extension
when k = 2. Kirfel [4] gave a condition under which such an extension is possible
when k = 3. One of the instances when such an extension is possible for 3 < k < a1
is the case where the basis is independent and consists of terms in an arithmetic
progression satisfying the condition � a1−2

k−1 � = � a1−2
k �; see [11].

There are three sections in our paper aside from this introductory section (Sect. 1).
Throughout this paper, A denotes the set AP(a, d, k) = {a, a + d, a + 2d, . . . , a +
(k − 1)d} with gcd(a, d) = 1 and 2 ≤ k ≤ a, and b ∈ Γ c (A). If k > a, each of
the elements a + (a + 1)d, . . . , a + (k − 1)d is representable by a and one of the
elements from a + d, . . . , a + (a − 1)d. Thus, as remarked earlier, AP(a, d, k) is a
dependent basis when k > a, and g (AP(a, d, k)) = g (AP(a, d, a)) for all k > a.
By A+, we mean the set of all b for which g (A ∪ {b}) = g (A). We determine the set
A+ in Sect. 2 making use of a result of Tripathi [13] that determines the least integer
in Γ (A) in each congruence class modulo a; see Lemma 2. These results are given
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Fig. 1 A geometric depiction of Γ (AP) and Γ (AP ∪ {b}). Every integer n is of the form ax + dy with
0 ≤ y ≤ a − 1, and is represented by the lattice point (x, y) lying within or on the infinite strip in this
figure. Proposition 1 implies that the integers in Γ (AP) are the lattice points in the region labeled Γ (AP),
or on the boundary. Thus any b ∈ Γ c (A) is a lattice point in the region bounded by the lines ax + dy = 0,
y = (k − 1)x and y = a − 1. Lattice points in the region Rb are the integers in Γ (AP ∪ {b}) \ Γ (AP).
All points on the boundary except those on the line y = (k − 1)x are included in the set

in Theorem 1 when k < a and in Lemma 3 when k = a. In Sect. 3, we deal with the
problem of determining a subset A+ of Γ c(A) of largest cardinality such that A∪ A+
is an independent set and g(A ∪ A+) = g(A). In Sect. 4, we determine g (A ∪ {b})
for certain classes of b. This section is independent of Sects. 2 and 3.

We arrived at the results in Sects. 2, 3, and 4 geometrically, by capturing the set of
integers as an infinite strip in the plane and representing Γ (A), some extensions of
A, and their complements. These results are then proved by well-established methods
algebraically, paving the way for using geometric methods to assist in results concern-
ing the Frobenius Problem. It is important to note that the geometric interpretations
we have employed here lead to the solution of these problems in a much more trans-
parent manner than do number theoretic means. Figures1 and 2 capture the regions
that describe Γ (A), Γ (A ∪ {b}) , and Γ c (A ∪ {b}), and can be used to arrive at the
results in Theorems 1 and 2.

The extension problem to determine A+ we discuss in Sect. 2 was solved by Ritter
[8, Theorem 1] by using an algorithm of Rødseth [10] to compute g (A ∪ {b}). We
give a much shorter and more direct proof of the result, leading to a much cleaner
formula to describe the set A+ in Theorem 1 for the case k < a, and in Lemma 3 for
the case k = a. We also show the equivalence of our result with that obtained by Ritter
in [8, Theorem 1] for k < a. For the case k = a, we give a simplified version of the
result obtained by Ritter in [8, Theorem 1] and show this to be incorrect in Remark 3
and Remark 4.

The maximum extension problem to determine A+ that we discuss in Sect. 3 was
also solved by Ritter [8, Theorem 2] by extending the argument given in his proof of
[8, Theorem 1]. Our proof is short and direct, and the equivalence of our result with
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548 S. S. Batra et al.

Fig. 2 A geometric depiction of A+ and A+. The Frobenius number g (AP) is represented by (red-filled
circle). Integers in A+ are those b in the region Γ c (AP) for which the corresponding region Rb does not
contain the (red-filled circle) point. A candidate for the set A+ is the set of (black-filled circle) points (Color
figure online)

that obtained by Ritter in [8, Theorem 2] is much more transparent in this case. We
also use Fig. 2 to geometrically explain the error in the case k = a of [8, Theorem 1].

In Sect. 4 we determine the Frobenius number of extensions of the set A by some
elements b that do not belong to Γ (A). These results are guided by geometric inter-
pretation, and include some results of Dulmage and Mendelsohn [3], Kan et al. [5],
Mathews [6], and Rødseth [10].

Let A be any set of positive integers with gcd(A) = 1, and let a ∈ A. Let mC
denote the least positive integer in Γ (A) which is also in the congruence class C
modulo a. The function g is easily determined from the values of mC via following
the well-known theorem due to Brauer and Shockley.

Lemma 1 (Brauer and Shockley [2]) Let a ∈ A. Then

g(A) = max
C

mC − a,

where the maximum is taken over all non-zero classes C modulo a.

2 Characterization of single-element extensions of APs that do not
change the Frobenius number

For arithmetic progressions, Roberts [9] determinedg(A), later simplified byBateman
[1]. A simple proof for both these results using Lemma 1 can be found in [13].

Henceforth let A = AP(a, d, k) = {a, a + d, a + 2d, . . . , a + (k − 1)d} with
gcd(a, d) = 1 and k ≥ 2. In view of the fact the set of representable integers remains

123



Some problems concerning the Frobenius number... 549

the same for all k ≥ a, we restrict our attention to k ≤ a in what follows. Thus g(A)

denotes the largest N such that

ax0 + (a + d)x1 + (a + 2d)x2 + · · · + (a + kd)xk = a
k∑

i=0

xi + d
k∑

i=1

i xi = N (1)

has no solution in non-negative integers x0, x1, …, xk , and n(A) the number of such
N .

Lemma 2 (Tripathi [13]) Let A = AP(a, d, k). For y ∈ {1, . . . , a − 1}, the least
integer in Γ (A) ∩ (dy) is given by

mdy = a

(
1 +

⌊
y − 1

k − 1

⌋)
+ dy.

From Lemmas 1 and 2, it easily follows that

g (A) = a

⌊
a − 2

k − 1

⌋
+ d(a − 1) (2)

and that

Γ c (A) =
{
ax + dy : 1 ≤ y ≤ a − 1,−dy − 1

a
≤ x ≤

⌊
y − 1

k − 1

⌋}
. (3)

In this section, following the question posed by Selmer [11], we look at the problem
of determining all positive integers b for which g (A ∪ {b}) = g (A). We may assume
that b ∈ Γ c (A) since Γ (A ∪ {b}) = Γ (A) if b ∈ Γ (A).

Proposition 1 Let k,m, n be non-negative integers, k ≥ 1. Then there exist non-
negative integers x0, x1, . . . , xk such that

k∑

i=0

xi = m,

k∑

i=1

i xi = n (4)

if and only if n ≤ km. Moreover, n = km if and only if xk = m and xi = 0 for i 	= k.

Proof Suppose there exist non-negative integers x0, x1, . . . , xk satisfying (4). Then
n = ∑k

i=1 i xi ≤ k
∑k

i=1 xi ≤ km.
Conversely, suppose n ≤ km. If n = km, xk = m, and xi = 0 for i 	= k satisfies

(4). If n < km, write n = qk+r , with q ∈ {0, 1, . . . ,m−1} and r ∈ {0, 1, . . . , k−1}.
Then xk = q, xr = 1, x0 = m − q − 1, and all other xi = 0 satisfies (4).

Observe that n = km is equivalent to
∑k

i=1(k − i)xi = 0. Since (k − i)xi ≥ 0 for
each i , the last equation holds if and only if (k − i)xi = 0 for each i , so that xi = 0
for i < k. Thus xk = m. 
�
Definition 1 For any set of positive integers A with gcd (A) = 1, define

A+ = {
b ∈ Γ c (A) : g (A ∪ {b}) = g (A)

}
.
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Observe that g (A) /∈ A+. The case when |A| = 2 was solved by Mendelsohn [7].
However, we include a short and simple proof to show that A+ = ∅ in this case for
the sake of completeness.

Proposition 2 (Mendelsohn [7]) If |A| = 2, then A+ = ∅.
Proof Let A = {a, b}, with gcd(a, b) = 1, and let c ∈ Γ c (A). Then c = by−ax with
1 ≤ y ≤ a−1 and x ≥ 1. But theng (A) = ab−a−b = a(x−1)+b(a−1− y)+c ∈
Γ (A ∪ {c}). Therefore g(a, b, c) < g(a, b). 
�
Proposition 3 If b = ax + dy ∈ A+, then x ≥ 0.

Proof Suppose b = ax + dy ∈ Γ c (A), with x < 0 and 1 ≤ y ≤ a − 1. Then

k

(⌊
a − 2

k − 1

⌋
− x

)
> (k − 1)

(⌊
a − 2

k − 1

⌋
+ 1

)
≥ a − 1 > a − 1 − y.

Hence there exist non-negative integers x0, x1, . . . , xk such that

k∑

i=0

xi =
⌊
a − 2

k − 1

⌋
− x,

k∑

i=1

i xi = a − 1 − y

has a simultaneous solution by Proposition 1. Therefore g(A) − b = a(� a−2
k−1 � − x) +

d(a − 1− y) is representable by the form given by the LHS of (1), and hence belongs
to Γ (A). Thus b /∈ A+. 
�
Proposition 4 Let A = AP(a, d, k). Then b = au + dv ∈ A+ if and only if the
equation

a

(
k−1∑

i=0

xi + uy

)
+ d

(
k−1∑

i=1

i xi + vy

)
= a

⌊
a − 2

k − 1

⌋
+ d(a − 1) (5)

has no solution in non-negative integers x0, x1, . . . , xk−1, y, and u, v satisfy 0 ≤ u ≤⌊
v−1
k−1

⌋
, 1 ≤ v ≤ a − 1.

Proof The term on the LHS of (5) represents a typical element of Γ (A ∪ {b}). The
proposition now follows directly from (1), (2), and the definition of A+. Note that the
restriction on u being non-negative is a consequence of Proposition 3. 
�
Proposition 5 Let A = AP(a, d, k). Then A+ = ∅ if a = 1, 2.

Proof If a = 1, then Γ c (A) = ∅. If a = 2, then d is odd and Γ c (A) =
{1, 3, 5, . . . , d}. For b ∈ Γ c (A), g (A ∪ {b}) = b − 2 < d = g (A). 
�
Proposition 6 Let A = AP(a, d, k). Then A+ = ∅ if a ≡ 2 mod k − 1.
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Proof If a ≡ 2 mod k − 1, then g (A) = a a−2
k−1 + d(a − 1) by (2). By Proposition

4, A+ = ∅ precisely when Eq. (5) admits a solution in non-negative integers. Thus it
suffices to show that

k−1∑

i=0

xi + r y = a − 2

k − 1
,

k−1∑

i=1

i xi + sy = a − 1

has a solution in non-negative integers x0, x1, . . . , xk−1, y, given that r , s satisfy 0 ≤
r ≤ ⌊ s−1

k−1

⌋
, 1 ≤ s ≤ a − 1. Set y = 1. Then the equations reduce to

k−1∑

i=0

xi = a − 2

k − 1
− r ,

k−1∑

i=1

i xi = a − 1 − s.

Now a−1− s ≤ (k−1)( a−2
k−1 −r) = a−2− (k−1)r is the same as (k−1)r ≤ s−1,

and this is true by the assumption on r , s. So the equations above have a simultaneous
solution by Proposition 1. This proves A+ = ∅. 
�
Remark 1 Proposition 6 implies Proposition 2 and the case a = 2 in Proposition 5.

Proposition 7 Let A = AP(a, d, k). Then max A+ = g (A) − d if A+ 	= ∅.
Proof Suppose A+ 	= ∅. If b ∈ A+, then b ≤ mdy − a for some y ∈ {1, . . . , a − 1}.
Since b 	= g (A), it follows from Lemma 2 that b ≤ g (A) − d.

We show that b = g (A) − d ∈ A+. If this were not the case, then g (A) ∈
Γ (A ∪ {b}). Since g (A) /∈ Γ (A) and 2b > g (A) (as a > 2 by Proposition 2), we
must haveg (A)−b ∈ Γ (A). Butg (A)−b = d /∈ Γ (A). Thereforeg (A)−d ∈ A+.


�
Theorem 1 Let A = AP(a, d, k). Let 3 ≤ k ≤ a − 1, and let

r =
{

(a − 1) mod (k − 1) if (k − 1) � (a − 1);
k − 1 if (k − 1) | (a − 1).

Then

A+ =
{
au + dv : u ≥ 1, 1 ≤ v ≤ a − 1, 0 <

⌊
a − 1

v

⌋
(v − (k − 1)u) < r

}
.

In particular, if r = 1 then A+ = ∅.
Proof For non-negative integers x0, x1, . . . , xk−1, we write m = ∑k−1

i=0 xi and n =∑k−1
i=0 i xi . Thus by Proposition 4, au + dv /∈ A+ if and only if

a(m + uy) + d(n + vy) = a
a − r − 1

k − 1
+ d(a − 1) (6)

has a solution in non-negative integers x0, x1, . . . , xk−1, y, where u, v satisfy 0 ≤ u ≤⌊
v−1
k−1

⌋
, 1 ≤ v ≤ a − 1.

123



552 S. S. Batra et al.

Observe that au + dv ∈ Γ (A) if v = 0 or if 1 ≤ v ≤ a − 1 and⌊ a−1
v

⌋
(v − (k − 1)u) ≤ 0 by (3). Henceforth we may assume 1 ≤ v ≤ a − 1.

We show that in each of the cases (i) u = 0; (ii)
⌊ a−1

v

⌋
(v − (k − 1)u) ≥ r , (6) has

a solution, and that if cases (i) and (ii) do not simultaneously hold, then (6) has no
solution.

Fix v ∈ {1, . . . , a − 1}. We first show that there is a solution to (6) with u = 0. We
claim that r ≤ a−1

2 . If (k−1) | (a−1), then r = k−1 ≤ a−1
2 since k < a. Otherwise

(k − 1) � (a − 1); write a − 1 = q(k − 1) + r . If q = 1, then 2(k − 1) > a − 1 and
r = a − k, so that r < a−1

2 . If q > 1, then 2r < 2(k − 1) ≤ q(k − 1) < a − 1, so
that r < a−1

2 . Hence the claim.
Therefore, we may choose a non-negative integer y such that vy lies in the interval

[r , a − 1]. Then m = a−r−1
k−1 , n = (a − 1) − vy ≤ a − 1− r provide a solution to (6)

by Proposition 1.
If

⌊ a−1
v

⌋
(v − (k − 1)u) ≥ r , then y = � a−1

v
�, n = a − 1 − v� a−1

v
�, m =

a−r−1
k−1 − u� a−1

v
� gives a solution to (6). Since

(k − 1)m − n = (a − r − 1) − (k − 1)u

⌊
a − 1

v

⌋
− (a − 1) + v

⌊
a − 1

v

⌋

=
⌊
a − 1

v

⌋
(v − (k − 1)u) − r ≥ 0,

m, n simultaneously exist by Proposition 1. Hence the solution satisfies the necessary
constraints.

Suppose neither of the cases (i), (ii) hold. We show that (6) has no solution under
the given constraints. Any solution to (6) must have the form

m + uy = a − r − 1

k − 1
− dt, n + vy = a − 1 + at, (7)

where t ∈ Z. Multiplying the first equation in (7) by k − 1 and subtracting from the
second gives

(n − (k − 1)m) + (v − (k − 1)u) y = (a + (k − 1)d) t + r . (8)

Since n ≥ 0 and v � (a − 1) by Remark 2 (at the end of this proof), from (7) we have

y ≤ a − 1 + at

v
= (a − 1)(t + 1) + t

v
≤

(⌊
a − 1

v

⌋
+ v − 1

v

)
(t + 1) + t

v

<

⌊
a − 1

v

⌋
(t + 1) + t + 1.

Since u ≥ 0, v ≤ a − 1, and r ≤ k − 1, we have

(v − (k − 1)u) y ≤ (v − (k − 1)u)

⌊
a − 1

v

⌋
(t + 1) + (v − (k − 1)u) t

< r(t + 1) + at

< (a + (k − 1)d) t + r .
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But this contradicts (8) since n − (k − 1)m ≤ 0 by Proposition 1.
In particular, for r = 1 we get A+ = ∅. Indeed, we can simultaneously solve

m + u = a−2
k−1 and n + v = a − 1 by Proposition 1 since

(k − 1)m = a − 2 − (k − 1)u ≥ (a − 2) − (v − 1) = n.

Hence (6) has a solution with y = 1. 
�
Remark 2 Suppose 0 ≤ u ≤ ⌊

v−1
k−1

⌋
and v | (a − 1). From u ≤ ⌊

v−1
k−1

⌋
, we have

v > (k − 1)u. Hence a−1
k−1 > a−1

v
u, so that a−r−1

k−1 = ⌊ a−1
k−1

⌋ ≥ a−1
v

u since a−1
v

is an
integer. Thus v(a− r − 1) ≥ (a− 1)(k − 1)u, or (a− 1) (v − (k − 1)u) ≥ vr . Hence
the constraint on u, v to describe the elements in A+ in Theorem 1 implies v � (a−1).

Equivalence of the results in Theorem 1 and [8, Theorem 1] for k < a.

Weuse the notations in [8, Theorem 1]. Since x
λ
+ ρ+1−sλ

(k−1)λ = a−sλ
(k−1)λ , the first inequality

in Eq. (6) is equivalent to λ ≥ a
(k−1)r+s . Using s ≤ �ρ−1

λ−1 � ≤ ρ−1
λ−1 in the second

inequality in Eq. (6), we get r ≤ � a−1−ρ
(λ−1)(k−1)� ≤ a−1−ρ

(λ−1)(k−1) ≤ a−s(λ−1)−2
(λ−1)(k−1) . This is

equivalent to λ ≤ a−2
(k−1)r+s + 1. Thus λ = � a

(k−1)r+s � and λ − 1 = � a−1
(k−1)r+s �.

Suppose k < a. If x = 1, then 2(k − 1) ≥ a − 1, so that ρ = a − k ≤ a−1
2 . If

x ≥ 2, then 2(k − 1) < a − 1, so that ρ ≤ k − 1 < a−1
2 . Therefore ρ ≤ a−1

2 in

any case. Hence s ≤ ρ−1
λ−1 < a−1

2(λ−1) < a
λ
, since the last inequality is equivalent to

2a < λ(a + 1) and λ ≥ 2. Therefore a − sλ > 0.
Set r = u and (k − 1)r + s = v. Then u ≥ 1 (since a − sλ > 0) and 1 ≤

v ≤ a − 1 (the upper bound follows from � a−1
(k−1)r+s � = λ − 1 ≥ 1). Moreover,

1 ≤ s ≤ (λ − 1)s ≤ ρ − 1 translates to 0 < � a−1
v

� (v − (k − 1)u) < r since ρ = r
in the notation of Theorem 1.

Lemma 3 If A = AP(a, d, a), then A+ = {
dv : 1 ≤ v ≤ a − 1, v � (a − 1)

}
.

Proof For A = AP(a, d, a), we have mdy = a + dy for 1 ≤ y ≤ a − 1 by Lemma 2,
g (A) = d(a − 1) by (2), and A+ ⊆ {dv : 1 ≤ v ≤ a − 1} by (3) and Proposition 3.


�
Fix v ∈ {1, . . . , a − 1}. If v | (a − 1), then dv | g (A), and so dv /∈ A+.

Suppose v � (a − 1), and suppose by way of contradiction that dv /∈ A+. Then
g (A) ∈ Γ (A ∪ {dv}), so that g (A) − dvy = d(a − 1 − vy) ∈ Γ (A) for some
y ≥ 0. But this is impossible since mdx = a + dx for each x ∈ {1, . . . , a − 1}. Hence
dv ∈ A+ when v � (a − 1).

Remark 3 The case k = a in [8, Theorem 1] may be simplified. Following the notation
in [8, Theorem 1], x = 0 and ρ = k − 1 = a − 1. Since 1 ≤ s ≤ � a−2

λ−1� and
2 ≤ λ ≤ a−1, smay assume any value between 1 and a−2.Hence a+λ(a−1−s) > 0
for each s, so that −1 < a−sλ

λ(a−1) ≤ r ≤ 0. Thus r = 0, and Eq. 6 in [8, Theorem 1]
reduces to � = {(0, s) : 1 ≤ s ≤ a − 2}. Equation 7 in [8, Theorem 1] now reduces
to A+ = {

dv : 1 ≤ v ≤ a − 2
}
, contrary to the result of Lemma 3.
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Remark 4 Let k ≤ a. Figure2 may be used to explain the fact that no point b ≡ (u, v)

lying in the region Γ c (A) can belong to A+ if v | (a − 1). If k < a, the point
αb ≡ (αu, a − 1) for α = a−1

v
lies to the left of the red point corresponding to g (A).

This is because (k − 1)u < v (since (u, v) lies in the region Γ c (A)) is equivalent to
αu < a−1

k−1 , so thatαu ≤ � a−2
k−1 �. Hence the red point lieswithin the regionΓ (A ∪ {b}),

so that b /∈ A+. This gives a geometric interpretation of Remark 2. If k = a, the same
argument applies since u = 0, furthering our claim that the result of [8, Theorem 1]
for the case k = a is incorrect.

3 Maximum extensions of APs that do not change the Frobenius
number

In this section, we deal with the problem of determining a subset B ofΓ c(A) of largest
cardinality such that A ∪ B is an independent set and g (A ∪ B) = g (A). Recall that
S is an independent set if, for each m ∈ S, m /∈ Γ (S \ {m}).
Definition 2 Let A = AP(a, d, k), 3 ≤ k ≤ a. Then A+ is any subset of Γ c(A)

satisfying the following three conditions:

(i) g
(
A ∪ A+

)
= g(A);

(ii) A ∪ A+ is an independent set;
(iii) if S is an independent set of integers containing A and if g(S) = g(A), then

|S \ A| ≤ |A+|.
Note that, in fact, A+ is a subset of A+.

Theorem 2 Let A = AP(a, d, k). Let 3 ≤ k ≤ a − 1, and let

r =
{

(a − 1) mod (k − 1) if (k − 1) � (a − 1);
k − 1 if (k − 1) | (a − 1).

Then

A+ =
{
a
a − r − 1

k − 1
+ dv : a − r ≤ v ≤ a − 2

}
.

In particular, if r = 1 then A+ = ∅.
Proof Let B = {a a−r−1

k−1 + dv : a − r ≤ v ≤ a − 2}. We first show that g (A ∪ B) =
g(A). Write the elements of B as bi = a a−r−1

k−1 + d(a − r + i), 0 ≤ i ≤ r − 2. Thus
we need to show that

a
k−1∑

i=0

xi + d
k−1∑

i=1

i xi + a
a − r − 1

k − 1

r−2∑

i=0

yi + d
r−2∑

i=0

(a − r + i)yi

= a
a − r − 1

k − 1
+ d(a − 1) = g (A) (9)
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has no solution in non-negative integers xi , yi .
Since gcd(a, d) = 1, reducing modulo a and modulo d gives

k−1∑

i=1

i xi +
r−2∑

i=0

(a − r + i)yi ≡ a − 1 mod a;

k−1∑

i=0

xi + a − r − 1

k − 1

r−2∑

i=0

yi ≡ a − r − 1

k − 1
mod d.

For convenience, we write
∑k−1

i=0 xi = m,
∑k−1

i=1 i xi = n,
∑r−2

i=0 yi = m′, and∑r−2
i=1 iyi = n′. Thus

m = −a − r − 1

k − 1
(m′ − 1) + dt, n + (a − r)m′ + n′ = (a − 1) − at

for some t ∈ Z. Since (9) has no solution if each yi = 0, m′ − 1 ≥ 0. Hence t ≥ 0
from the first equation and t ≤ 0 from the second equation. But then t = 0, and this
is possible only if m = 0 and m′ = 1 from the first equation. Hence each xi = 0, so
that n = 0, and the second equation reduces to a − r + n′ = a − 1, or to n′ = r − 1.
However m′ = 1 implies n′ ≤ r − 2, thereby proving that (9) has no solution in
non-negative integers xi , yi .

We next show that A ∪ B is an independent set, in the sense that n /∈
Γ ((A ∪ B) \ {n}), for each n ∈ A ∪ B. Thus, we need to show that for j ∈
{0, . . . , k − 1},

a
∑

0≤i≤k−1
i 	= j

xi +d
∑

0≤i≤k−1
i 	= j

i xi +a
a − r − 1

k − 1

r−2∑

i=0

yi +d
r−2∑

i=0

(a−r+i)yi = a+ jd (10)

has no solution in non-negative integers xi , yi , and for j ∈ {0, . . . , r − 2},

a
k−1∑

i=0

xi + d
k−1∑

i=0

i xi + a
a − r − 1

k − 1

∑

0≤i≤r−2
i 	= j

yi

+ d
∑

0≤i≤r−2
i 	= j

(a − r + i)yi = a
a − r − 1

k − 1
+ d(a − r − j) (11)

has no solution in non-negative integers xi , yi .
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Since gcd(a, d) = 1, reducing modulo a and modulo d gives

∑

i 	= j

i xi + (a − r)m′ + n′ ≡ j mod a;
∑

i 	= j

xi + a − r − 1

k − 1
m′ ≡ 1 mod d;

and

n + (a − r)
∑

i 	= j

yi +
∑

i 	= j

iyi ≡ a − r − j mod a;

m + a − r − 1

k − 1

∑

i 	= j

yi ≡ a − r − 1

k − 1
mod d.

The first pair of congruences gives

∑

i 	= j

i xi + (a − r)m′ + n′ = j − at,
∑

i 	= j

xi + a − r − 1

k − 1
m′ = 1 + dt,

for some t ∈ Z. The first of these is only possible when t ≤ 0 and the second only
when t ≥ 0, forcing t = 0. But then exactly one of x0, . . . , xk−1, y0, . . . , yr−2 equals
1 and all other xi and all other yi are 0, and this is clearly impossible.

The second pair of congruences gives

n + (a − r)
∑

i 	= j

yi +
∑

i 	= j

iyi = a − r − j − at,

m + a − r − 1

k − 1

∑

i 	= j

yi = a − r − 1

k − 1
+ dt,

for some t ∈ Z. The first of these is only possible when t ≤ 0 and the second only
when t ≥ 0 provided

∑
i 	= j yi 	= 0, forcing t = 0 in this case. But then exactly one

of x0, . . . , xk−1, y0, . . . , yr−2 equals 1 and all other xi and all other yi are 0, and this
is clearly impossible. On the other hand, if

∑
i 	= j yi = 0, then each yi = 0. But then

a a−r−1
k−1 + d(a − r − j) ∈ Γ (A), contradicting a a−r−1

k−1 + d(a − r − j) ∈ A+.
Wefinally show that if S is an independent set containing A satisfyingg (S) = g(A),

then |S \ A| ≤ |B|. Since g (S) = g(A), we must have S \ A ⊆ A+. Suppose, by
way of contradiction, that |S \ A| > |B| = r − 1. By Theorem 1, part (c), integers
in A+ (hence in S \ A) are of the form au + dv, with 0 < v − (k − 1)u < r for
u ≥ 1. By Pigeonhole Principle, there exist distinct pairs (u1, v1) and (u2, v2) such
that v1 − (k − 1)u1 = v2 − (k − 1)u2. Hence v1 − v2 = (k − 1)(u1 − u2). Assuming
u1 > u2 without loss of generality, we nowhave au1+dv1 = au2+dv2+a(u1−u2)+
d(v1 − v2) = au2 + dv2 + (a + (k − 1)d) (u1 − u2), contradicting the independence
of S.
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This completes the proof. 
�
Remark 5 We note that in Theorem 2

A+ =
{
(a + (k − 1)d)

a − r − 1

k − 1
+ dy : 1 ≤ y ≤ r − 1

}

since a a−r−1
k−1 + dv = (a + (k − 1)d) a−r−1

k−1 + d (v − (a − r − 1)). This is the case
k < a in [8, Theorem 2].

Lemma 4 If A = AP(a, d, a), then A+ = ∅.
Proof The elements of A form a complete residue system modulo a. Adding any
element to this set will make the resultant set a dependent set, resulting in A+ = ∅. 
�
Remark 6 The result of Lemma 4 also appears in [8, Theorem 2].

4 The Frobenius number for some extensions of APs

Let A = AP(a, d, k) with gcd(a, d) = 1 and k ≥ 2. If b is any integer, there is
a unique v ∈ {0, 1, . . . , a − 1} such that b ≡ dv mod a. Hence b is of the form
au + dv, where 0 ≤ v ≤ a − 1. In this section, we determine g (A ∪ {b}) where
b = au + dv /∈ Γ (A), u ≥ 0, 0 ≤ v ≤ a − 1, and u, v satisfy certain conditions. We
close this section with several applications of our result.

Theorem 3 Let A = AP(a, d, k). Let b = au + dv /∈ Γ (A), with u ≥ 0, 0 ≤ v ≤
a − 1. For 1 ≤ y ≤ a − 1, let

f (y) = a

(⌈
y mod v

k − 1

⌉
+ u

⌊ y

v

⌋)
+ dy.

(i) If

u
(⌊a

v

⌋
+ 1

)
+ d ≥

⌊
v − (a mod v) − 1

k − 1

⌋
+ 1 or v | a, (12)

the least integer in Γ (A) that is congruent to dy modulo a is given by

mdy = f (y)

for 1 ≤ y ≤ a − 1.
(ii) If

u
(⌊a

v

⌋
+ 1

)
+ d ≥

⌊
v − (a mod v) − 1

k − 1

⌋
+ 1,

then

g (A ∪ {b}) = max

{
f (a − 1), f

(
v

⌊
a − 1

v

⌋
− 1

)}
− a.
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(iii) If v | a, then

g (A ∪ {b}) = f (a − 1) − a.

Proof For y ∈ {1, . . . , a−1}, letmdy denote the least integer inΓ (A) that is congruent
to dy modulo a. Under the conditions stated in (12), we claim that

mdy = a

(⌈
y mod v

k − 1

⌉
+ u

⌊ y

v

⌋)
+ dy.

Recall that mdy is the least positive integer of the form dy + at , with t ≥ 0, such that

a

(
k−1∑

i=0

xi + ux

)
+ d

(
k−1∑

i=1

i xi + vx

)
= dy + at (13)

has a solution in non-negative integers xi , x, and t . Hence we must minimize

X =
k−1∑

i=0

xi + ux

subject to the constraint

Y =
k−1∑

i=1

i xi + vx ≡ y mod a.

We must choose x0 = 0 for minimum value. If the minimum is attained at x = x�,
we must simultaneously have

X − ux� =
k−1∑

i=1

xi , Y − vx� =
k−1∑

i=1

i xi .

ByProposition 1, this impliesY−vx� ≤ (k−1)(X−ux�), so that X ≥ ⌈Y−vx�

k−1

⌉+ux�.

Given
∑k−1

i=1 i xi , in order to minimize
∑k−1

i=1 xi , we must choose xk−1 = �Y−vx�

k−1 �; at
most one other xi can be non-zero. If (k − 1) | (Y − vx�), all other xi = 0; otherwise
xr = 1 where r ≡ Y − vx� mod k − 1. In either case, the minimum value of X is
�Y−vx�

k−1 � + ux�.

Since b ∈ Γ c(A), u ≤ ⌊
v−1
k−1

⌋
by Lemma 2. With f1(x�) = ⌈Y−vx�

k−1

⌉ + ux�, we
have

f1(x
�) − f1(x

� + 1) =
(⌈

Y − vx�

k − 1

⌉
−

⌈
Y − v(x� + 1)

k − 1

⌉)
− u

≥
⌈

v

k − 1

⌉
− u − 1 ≥ 0.
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Since Y = ∑k−1
i=1 i xi + vx� and xi ≥ 0 for each i , we must choose x� = �Y

v
� in order

to minimize X . Thus we are left to minimize

aX + dY = a

(⌈
Y mod v

k − 1

⌉
+ u

⌊
Y

v

⌋)
+ dY

subject to Y ≡ y mod a. With f2(t) = a(
⌈ (y+at) mod v

k−1

⌉ + u
⌊ y+at

v

⌋
) + d(y + at),

we have

f2(t + 1) − f2(t) = a

(⌈
(y + a(t + 1)) mod v

k − 1

⌉
+ u

⌊
y + a(t + 1)

v

⌋

−
⌈

(y + at) mod v

k − 1

⌉
− u

⌊
y + at

v

⌋)
+ ad.

We show that f2(t + 1) ≥ f2(t) for t ≥ 0 when the condition (12) is satisfied.
Fix y and t , and write y + at ≡ R mod v and a ≡ r mod v. Thus the above

difference reduces to

f2(t + 1) − f2(t) = a

(⌈
(a + R) mod v

k − 1

⌉
−

⌈
R

k − 1

⌉
+ u

⌊
a + R

v

⌋
+ d

)
. (14)

Since
⌊ a+R

v

⌋ = ⌊
(a−r)+(r+R)

v

⌋ = a−r
v

+ ⌊ r+R
v

⌋ = ⌊ a
v

⌋ + ⌊ r+R
v

⌋
, the condition⌊ a+R

v

⌋ = ⌊ a
v

⌋
is equivalent to r + R ≤ v − 1. Hence (a + R) mod v = r + R ≥ R,

and so f2(t + 1) > f2(t) if
⌊ a+R

v

⌋ = ⌊ a
v

⌋
.

Otherwise
⌊ a+R

v

⌋ = ⌊ a
v

⌋ + 1, and v ≤ r + R ≤ 2(v − 1). Hence

⌈
(a + R) mod v

k − 1

⌉
−

⌈
R

k − 1

⌉
=

⌈
r + R − v

k − 1

⌉
−

⌈
R

k − 1

⌉
≥

⌈
r − v

k − 1

⌉
− 1

= −
⌊

v − r

k − 1

⌋
− 1 = −

⌊
v − r − 1

k − 1

⌋
− 1,

the last equality not holding only when (k − 1) | (v − r). On the other hand, in this
exceptional case

⌈
(a + R) mod v

k − 1

⌉
−

⌈
R

k − 1

⌉
=

⌈
R − (v − r)

k − 1

⌉
−

⌈
R

k − 1

⌉

= −v − r

k − 1
= −

⌊
v − r − 1

k − 1

⌋
− 1.

Thus if the first part of condition (12) is satisfied in this case, then f2(t + 1) ≥ f2(t).
On the other hand, if v | a, it is easy to see that f2(t + 1) − f2(t) ≥ ad > 0. Thus the

minimum value of aX + dY is given by f2(0) = a
(⌈ y mod v

k−1

⌉ + u
⌊ y

v

⌋)
+ dy. This

completes the proof of part (i).
Since � y

v

⌋
is increasing in y, mdy attains its maximum either at y = a − 1 or at

the largest y for which y mod v = v − 1. Since the largest value of y for which
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y mod v = v − 1 is v� a−1
v

� − 1, the result in part (ii) follows from the formula
g (A ∪ {b}) = max1≤y≤a−1 mdy − a.

If v | a, the term ⌈ y mod v
k−1

⌉
returns the same value for y = a−1 and y = v� a−1

v
�−1.

Hence f
(
v� a−1

v
� − 1

) ≤ f (a − 1), thereby proving part (iii). 
�
Remark 7 Let A = AP(a, d, k), and let b = a+ Kd with K ≥ k. Observe that k ≥ a
implies b = (a + rd) + a(qd) ∈ Γ (A), where K = qa + r , 0 ≤ r ≤ a − 1. Thus
g (A ∪ {b}) = g (A) in this case. Therefore b = a + Kd /∈ Γ (A) implies k ≤ a − 1.

Remark 8 Let A = AP(a, d, k), and let b = a + kd with k ≤ a − 1. Using notation
of Theorem 3, u = 1 and v = k. Thus (12) is satisfied since

u
(⌊a

v

⌋
+ 1

)
+ d =

⌊a
k

⌋
+ 1 + d ≥ d + 2 >

⌊
k − (a mod k) − 1

k − 1

⌋
+ 1.

Hence Theorem 3 gives

g (A ∪ {b}) = max

{
f (a − 1), f

(
k

⌊
a − 1

k

⌋
− 1

)}
− a

= max

{
a

(⌈
(a − 1) mod k

k − 1

⌉
+

⌊
a − 1

k

⌋
− 1

)

+ d (a − 1), a

(⌊
a − 1

k

⌋
− 1

)
+ d

(
k

⌊
a − 1

k

⌋
− 1

)}

= a

(⌈
(a − 1) mod k

k − 1

⌉
+

⌊
a − 1

k

⌋
− 1

)
+ d(a − 1)

= a

⌊
a − 2

k

⌋
+ d(a − 1)

= g (AP(a, d, k + 1)) .

Corollary 1 Let a,m be relatively prime positive integers, and let m = qa + r , 0 ≤
r ≤ a − 1.

(i) a + m ∈ Γ ({a, a + 1}) if and only if q ≥ r − 1.
(ii) If q ≤ r − 2 and (q + 1)

(⌊ a
r

⌋ + 1
) ≥ r − (a mod r) − 1, then

g (a, a + 1, a + m)

= max

{
a

(
(a − 1) mod r + (q + 1)

⌊
a − 1

r

⌋)
− 1,

a

(
r − 2 + (q + 1)

(⌊
a − 1

r

⌋
− 1

))
+ r

⌊
a − 1

r

⌋
− 1

}
.

(iii) If q ≤ r − 2 and r | a, then

g (a, a + 1, a + m) = a
(
r − 1 + (q + 1)

(a
r

− 1
))

− 1.
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Proof Since a + m ≡ r mod a and the least non-negative integer congruent to r
modulo a in Γ ({a, a + 1}) is r(a+1), a+m ∈ Γ ({a, a + 1}) if and only if a+m ≥
(a + 1)r , which is the same as q + 1 ≥ r . This proves part (i).

The elements of {a, a+1, a+m} pertain to the case d = 1, k = 2, u = q+1, v = r
in Theorem 3. In order to apply Theorem 3, we need to assume a+m /∈ Γ ({a, a + 1}).
Parts (ii) and (iii) are direct consequences of Theorem 3. 
�

Remark 9 Kan et al. [5] gave an exact formula for g (a, a + 1, a + m)when 2 ≤ m ≤
5 and a > m(m − 4) + 1, and also an upper bound for general m, although no proofs
were given.

Corollary 2 (Dulmage and Mendelsohn [3]) For a ≥ 1,

(i) g (a, a + 1, a + 2, a + 4) = (a + 1)
⌊ a
4

⌋ + ⌊ a+1
4

⌋ + 2
⌊ a+2

4

⌋ − 1;
(ii) g (a, a + 1, a + 2, a + 5) = ⌊ a

5

⌋ + (a + 1)
⌊ a+1

5

⌋ + ⌊ a+2
5

⌋ + 2
⌊ a+3

5

⌋ − 1;
(iii) g (a, a + 1, a + 2, a + 6) = (a + 2)

⌊ a
6

⌋ + 2
⌊ a+1

6

⌋ + 5
⌊ a+2

6

⌋ + ⌊ a+3
6

⌋ +
⌊ a+4

6

⌋ +
⌊
a+5
6

⌋
− 1.

Proof We show that a more general result follows from Theorem 3, like in Corollary
1. We explore the Frobenius number g(a, a + 1, a + 2, a + m) with m ≥ 4. With
m = qa + r , 0 ≤ r ≤ a − 1, a + m ≡ r mod a, and the least non-negative integer
congruent to r modulo a in Γ ({a, a + 1, a + 2}) is a� r+1

2 � + r , by Lemma 2. Thus
a + m ∈ Γ ({a, a + 1, a + 2}) if and only if q ≥ � r−1

2 �.
To apply Theorem 3, we must therefore assume q < � r−1

2 �. The elements of
{a, a+1, a+2, a+m} pertain to the case d = 1, k = 3, u = q+1, v = r in Theorem
3. Thus if

(q + 1)
(⌊a

r

⌋
+ 1

)
≥

⌊
r − (a mod r) − 1

2

⌋
,

then

g(a, a + 1, a + 2, a + m) = max

{
f (a − 1), f

(
r

⌊
a − 1

r

⌋
− 1

)}
− a,

and if r | a, then

g(a, a + 1, a + 2, a + m) = f (a − 1) − a,

where f (y) = a
(⌈ y mod r

2

⌉ + (q + 1)
⌊ y
r

⌋)
+ dy.

When a > m, q = 0, and r = m, and the condition in Theorem 3 reduces to

⌊ a

m

⌋
+ 1 ≥

⌊
m − (a mod m) − 1

2

⌋
. (15)
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For such a,

g(a, a + 1, a + 2, a + m)

= max

{
a

(⌈
(a − 1) mod m

2

⌉
+

⌊
a − 1

m

⌋)
− 1,

a

(⌈
m − 1

2

⌉
+

⌊
a − 1

m

⌋
− 2

)
+ m

⌊
a − 1

m

⌋
− 1

}
. (16)

Now

a

(⌈
(a − 1) mod m

2

⌉
+

⌊
a − 1

m

⌋)
− 1

≥ a

(⌈
m − 1

2

⌉
+

⌊
a − 1

m

⌋
− 2

)
+ m

⌊
a − 1

m

⌋
− 1

if and only

⌈
(a − 1) mod m

2

⌉
>

⌈
m − 1

2

⌉
− 2 =

⌈
m − 5

2

⌉
.

The above inequality holds precisely when (a − 1) mod m ∈ {m − 1,m − 2,m − 3}
when m is even and (a − 1) mod m ∈ {m − 1,m − 2,m − 3,m − 4} when m is odd.
So if a > m and (15) holds, then

g(a, a + 1, a + 2, a + m)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a
(⌈

(a−1) mod m
2

⌉ + ⌊ a−1
m

⌋)
− 1 if a ≡ 0,−1,−2 mod m,m even,

or a ≡ 0,−1,−2,−3 mod m,m odd;
a
(⌈m−1

2

⌉ + � a−1
m � − 2

)
+ m� a−1

m � − 1 if a 	≡ 0,−1,−2 mod m,m even,

or a 	≡ 0,−1,−2,−3 mod m,m odd.

We note that a > m implies (15) form ∈ {4, 5, 6}. The result of Corollary 2 may be
verified to be equivalent to the above formula in these cases, thus verifying the result
for a > m. 
�
Corollary 3 (Matthews [6]) Let a, d be relative prime positive integers such that a >

Fi , whereFi denotes the i th Fibonacci number. Thenwith S = {a, a+d, aFi−1+dFi }
such that the elements in S are pairwise relatively prime, we have

g (S) = max

{(
a + d − Fi−2

⌊
a

Fi

⌋
− 2

)
a − d, (Fi−2 − 2)a

+
⌊
a

Fi

⌋
(aFi−1 + dFi ) − d

}
.
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Proof The elements in S pertain to the case k = 2, u = Fi−1, v = Fi in Theorem
3. Observe that Fi � a since gcd(a, aFi−1 + dFi ) = 1. Hence

⌊ a−1
Fi

⌋ = ⌊ a
Fi

⌋
and

(a− 1) mod Fi = (a mod Fi )− 1. Since a > Fi , the elements in S satisfy condition
(12) as

Fi−1

(
1 +

⌊
a

Fi

⌋)
+ d ≥ 2Fi−1 + 1 > Fi > Fi − (a mod Fi ).

With notations used in Theorem 3,

f (a − 1) = a

(
(a − 1) mod Fi + Fi−1

⌊
a − 1

Fi

⌋
− 1

)
+ d(a − 1)

= a

(
a mod Fi + (Fi − Fi−2)

⌊
a

Fi

⌋
+ d − 2

)
− d

= a

(
a + d − Fi−2

⌊
a

Fi

⌋
− 2

)
− d,

and

f

(
v

⌊
a − 1

v

⌋
− 1

)
= a

(
Fi − 1 + Fi−1

(⌊
a − 1

Fi

⌋
− 1

)
− 1

)
+ d

(
Fi

⌊ a−1
Fi

⌋ − 1
)

= a

(
Fi − 1 + Fi−1

(⌊
a

Fi

⌋
− 1

)
− 1

)
+ dFi

⌊
a

Fi

⌋
− d

= a(Fi−2 − 2) +
⌊
a

Fi

⌋
(aFi−1 + dFi ) − d.

The result now follows from Theorem 3. 
�

Corollary 4 (Rødseth [10]) Let A = AP(a, d, k). For K ≥ k, let a = αK + β,
0 ≤ β ≤ K − 1. If β = 0 or α + d ≥ ⌊ K−β−1

k−1

⌋
, then

g (A ∪ {a + Kd}) = (a + Kd)α − d + max

{
a

⌊
β − 2

k − 1

⌋
+ dβ, a

⌊
K − 2

k − 1

⌋
− a

}
.

Proof If k ≥ a, then a + Kd ∈ Γ (A) by Remark 7, so that g (A ∪ {a + Kd}) =
g(A) = a� a−2

k−1 � + d(a − 1). Rødseth’s formula gives this result for d ≥ � K−a−1
k−1 � if

k > a but gives a� K−2
a−1 � + d(a − 1) for d ≥ � K−1

a−1 � − 1 if k = a.
Suppose k ≤ a − 1. If K ≤ a − 1, b = a + Kd gives u = 1 and v = K in the

notation of Theorem 3, and it is easily verified that the condition (12) is identical to
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the condition in Corollary 4. Thus

f (a − 1) = a

(⌈
(a − 1) mod K

k − 1

⌉
+

⌊
a − 1

K

⌋
− 1

)
+ d(a − 1)

= a

(⌈
β − 1

k − 1

⌉
+ α − 1

)
+ d(a − 1) if β 	= 0

= a

(⌊
β − 2

k − 1

⌋
+ α

)
+ d(αK + β − 1) if β 	= 0

= (a + Kd)α + d(β − 1) + a

⌊
β − 2

k − 1

⌋
if β 	= 0,

and

f (a − 1) = a

(⌈
(a − 1) mod K

k − 1

⌉
+

⌊
a − 1

K

⌋
− 1

)
+ d(a − 1)

= a

(⌈
K − 1

k − 1

⌉
+ α − 2

)
+ d(a − 1) if β = 0

= a

(⌊
K − 2

k − 1

⌋
+ α − 1

)
+ d(αK + β − 1) if β = 0

= (a + Kd)α + a

⌊
K − 2

k − 1

⌋
− a − d if β = 0.

Moreover

f

(
K

⌊
a − 1

K

⌋
− 1

)
= a

(⌈
K − 1

k − 1

⌉
+

⌊
a − 1

K

⌋
− 2

)
+ d

(
K

⌊
a − 1

K

⌋
− 1

)

= a

(⌊
K − 2

k − 1

⌋
+ α − 1

)
+ d (αK − 1) if β 	= 0

= (a + Kd)α + d(β − 1) + a

⌊
β − 2

k − 1

⌋
if β 	= 0,

and

f

(
k

⌊
a − 1

k

⌋
− 1

)
= a

(⌈
(a − 1) mod K

k − 1

⌉
+

⌊
a − 1

K

⌋
− 1

)
+ d(a − 1)

= a

(⌈
K − 1

k − 1

⌉
+ α − 2

)
+ d(a − 1) if β = 0

= a

(⌊
K − 2

k − 1

⌋
+ α − 1

)
+ d(αK + β − 1) if β = 0

= (a + Kd)α + a

⌊
K − 2

k − 1

⌋
− a − d if β = 0.


�
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