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Abstract River flow data are usually subject to several sources of disconti-
nuity and inhomogeneity. An example is seasonality, because climatic oscilla-
tions occurring on inter-annual timescale have an obvious impact on the river
flow. Further sources of alteration can be caused by changes in reservoir man-
agement, instrumentation or even unexpected shifts in climatic conditions.
When such changes are ignored the results of a statistical analysis can be
strongly misleading, so flexible procedures are needed for building the appro-
priate models, which may be very complex. This paper develops an automatic
procedure to estimate the number and locations of changepoints in Periodic
AutoRegressive (PAR) models, which have been extensively used to account
for seasonality in hydrology. We aim at filling the literature gap on multiple
changepoint detection by allowing several time segments to be detected, inside
of which a different PAR structure is specified, with the resulting model being
employed to successfully capture the discontinuities of river flow data. The
model estimation is performed by optimization of an objective function based
on an information criterion using genetic algorithms. The proposed methodol-
ogy is evaluated by means of simulation studies and it is then employed in the
analysis of two river flows: the South Saskatchewan, measured at Saskatoon,

D. Cucina
Department of Economics and Statistics, University of Salerno, Via Giovanni Paolo II, 132,
84084 Fisciano, Italy

M. Rizzo (�)
Department of Statistical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5,
00100 Rome, Italy
E-mail: manuel.rizzo@uniroma1.it

E. Ursu
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Canada, and the Colorado, measured at Lees Ferry, Arizona. For these river
flows we build changepoint models, discussing the possible events that caused
discontinuity, and evaluate their forecasting accuracy. Comparisons with the
literature on river flow analysis and on existing methods for changepoint de-
tection confirm the efficiency of our proposal.

Keywords Periodic time series · Changepoint detection · Genetic algorithm ·
River flows

1 Introduction

Discontinuities are often introduced into climatic or hydrologic time series as
a result of anthropogenic impacts or changes in instrumentation and location.
Further plausible reasons are modifications in the reservoir system manage-
ment or new water pricing. As defined by Li and Lund (2012), a changepoint
is ”a time where the structural pattern of a time series first shifts”. In many
cases changepoints are located at known times (dam construction, measuring
instrument change) and it is easy to take their effects into account. When
changepoints are located at unknown times and their features are ignored,
the time series estimation can be misleading (Lu and Lund, 2007; Lund et al,
2007). In fact, an undetected changepoint can lead to misinterpretation of the
model, biased estimates and less accurate forecasting (Hansen, 2001). Iden-
tifying a changepoint is also an important task because rapid environmental
change acts differently on river flows: the magnitude and timing of river flows
change and new patterns of extreme droughts or floods are observed. The
pressure generated by economic factors raises the question of whether there
will be enough water during drought years for irrigation, recreational uses
and hydroelectric power generation. Given all of this, changepoint detection
becomes a demanding job, especially if the identification is required soon af-
ter occurrence (e.g. flood predictions). Therefore, the successful application of
time series models with changepoints could lead to improvements in operating
the reservoir system, which can result in cost savings (an overview of opti-
mization methods used in reservoir operations can be found in Fayaed et al
(2013)).

Over the past four decades several techniques have been employed for
changepoint detection. As far as hydrological applications are concerned, many
authors have considered the problem of detecting a single changepoint (Cobb,
1978; Buishand, 1984; Hipel and McLeod, 1994; Rao and Tirtotjondro, 1996),
but very few have analyzed more realistic multiple changepoint situations. Bai
and Perron (1999) proposed a test to evaluate the hypothesis that changes
have occurred. The problem of modeling a class of nonstationary time se-
ries using parametric models is considered in Davis et al (2006, 2008) and
Yau et al (2015). They combine a model selection approach with an algorithm
devoted to changepoint detection. Nonparametric estimation of both the num-
ber and locations of changepoints was proposed by Kawahara and Sugiyama
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(2012) and Matteson and James (2014), while Shaochuan (2019) considered a
Bayesian approach. A comprehensive review of several changepoint estimation
methods may be found in Aue and Horváth (2013).

A further and common source of inhomogeneity in hydrological data is
the seasonal effect (seasonality), for which the time series of interest tends to
repeat a similar behaviour after regular time periods. This is generally caused
by climatic oscillations occurring on inter-annual time scale, so it is a crucial
issue in statistical river flow analysis. Models accounting for seasonality, like
the seasonal autoregressive integrated moving average (SARIMA) developed
originally by Box and Jenkins (1970), have been broadly used in the literature
of hydrologic models (Mishra and Desai, 2005; Durdu, 2010; Wang et al, 2014).
One problem with such methods is that they cannot be filtered to achieve
second-order stationarity, and this is because the autocorrelation structure
of these time series depends on the season (Vecchia, 1985a,b). Also, Delleur
et al (1976) observed that using seasonal differenced models like SARIMA
can deteriorate river flow forecasting ability, which is a major problem in
water resources planning and operating. Periodic time series models (Vecchia,
1985a,b; McLeod, 1993) have been introduced to be able to also analyze a
seasonal dependent autocorrelation structure, and they have met with success
in many hydrological applications (Hipel and McLeod, 1994; Maçaira et al,
2017; Pereira and Veiga, 2018). General overviews of periodic models and
their applications are presented in Hipel and McLeod (1994), Franses and
Paap (2004) and Mondal and Wasimi (2006).

In this research paper we will consider Periodic AutoRegressive (PAR)
models, for which each seasonal position is related to a possibly different AR
model, and multiple changepoints are allowed. We propose a procedure based
on Genetic Algorithms (GAs) to detect the changepoints, which will specify
several segments, and estimate the resulting PAR models on each segment.
GAs are well suited to complex global optimization, as they have been widely
applied to intractable or challenging identification and estimation problems. In
our case the GA will optimize an identification criterion, introduced to select
the best model to describe the data, a choice which has been already adopted
in the literature. For example, a recent paper by Doerr et al (2017) used GAs
to build a model with multiple mean shifts in the series, whereby each segment
is allowed to have a distinct mean. Other proposals of changepoint detection
for time series by means of GAs can be found in Jeong and Kim (2013); Song
and Singh (2010) and Ursu and Pereau (2015), among others. In order to
handle the complexity of the identification problem, GAs combined with the
Minimum Description Length principle (MDL; Rissanen (1978)) have often
been employed. Such a criterion has been proven useful in several multiple
changepoint detection proposals (Davis et al, 2008; Li and Lund, 2012; Yau
et al, 2015).

In a contribution closely related to our research work, Lu et al (2010) pro-
posed to combine the MDL criterion and a GA to determine the number and
the positions of changepoints in PAR models. They proposed a model with
an unknown number of changepoints and with each segment being allowed
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to have a different mean, but the same autocovariance structure. Such a pro-
posal fills a research gap in the literature of changepoint detection methods by
allowing changes in the mean of PAR models. Our target is to extend the ap-
proach of Lu et al (2010) to a more general framework, in which each segment
is allowed to have a possibly different model structure, that includes the trend
term, the means, the PAR parameters and the residual variances. In fact, the
same research paper states that ’in other applications (...) it may be more re-
alistic to keep mean process levels fixed and allow the time series parameters
to change at each changepoint time’. Our proposal will include this scenario
as a particular case.

There are other papers in which researchers have proposed to allow a dif-
ferent model structures for each detected segment, although no periodic mod-
elling features are concerned. For example, Koutroumanidis et al (2009) an-
alyzed the mean-monthly discharge of Nestos River, which was divided into
five segments characterized by different trends, means and ARMA models;
Piyoosh and Ghosh (2017) studied changes in mean and trend for seasonal
and annual rainfall. Furthermore, in order to extend periodic models, Hipel
and McLeod (1994) defined periodic intervention models. In this context, when
the complexity of periodic models is to be increased (e.g. when the noise term
is affected by an intervention), they suggested allowing all of the parameters
in the periodic model to change as time progresses.

Taking all these factors into account, we believe it may be meaningful to
also allow the PAR, the trend parameters and the residual variances, along
with the means, to change within each segment. Therefore our procedure will
be built to detect this kind of changes. The method will also be able to perform
subset selection, as we allow intermediate AR parameters to be constrained
to zero. This modification can lead to more parsimonious models and could
also contribute to improving the forecasting ability. We will evaluate the per-
formance of the procedure by means of simulation studies.

Our proposal is also motivated by the need to generate different scenarios
of hydrological inflows, for a better understanding of the hydrological processes
and their reaction to climate change and human activity. In this respect we
will employ our method to analyze the average monthly flows of two rivers:
the South Saskatchewan (measured at Saskatoon, Canada) and the Colorado
(measured at Lees Ferry, Arizona). The forecasting ability of the resulting
models will then be evaluated by means of standard performance measures
and the model adequacy checked by a portmanteau test.

The rest of the article is organized as follows: Section 2 describes the pro-
posed model, the computational procedure, the forecasting method and the
model validation technique; in Section 3 simulation studies are reported to
empirically evaluate the performance of the procedure; Section 4 introduces
the study area and the river flow data; the results of the applications and the
related discussions are outlined in Section 5; a summary of the conclusions
closes the paper in Section 6.
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2 Methodology

We consider the problem of modeling a seasonal non-stationary time series by
specifying several time segments, in each of which a possibly different PAR
process is specified. Our way of proceeding is similar to the approach of Davis
et al (2008), whereby a model class is specified to describe the whole series and
the model parameters are subject to change in each time segment. In our case
we refer to the class of PAR models with seasonal means and a deterministic
trend term. The approach of Lu et al (2010), which considers changepoints in
PAR models, is different because only mean shifts are allowed in each segment,
while the rest of the model parameters are kept fixed.

2.1 Model description

The considered time series is observed for N years and the period s is assumed
to be known. We will adopt the same notation as in Lu et al (2010), where the
observation in season k of year n is denoted by X(n−1)s+k, with n = 1, 2, . . . , N
and k = 1, . . . , s.

Before introducing the model we will describe the structure of segments.
There are M different segments, each of which includes an integer number of
years, and τj−1 denotes the first year of segment j (j = 1, 2, . . . ,M). Therefore
the first segment includes years from τ0 = 1 to τ1 − 1, the second segment
contains years from τ1 to τ2 − 1, the third segment contains years from τ2 to
τ3−1, and so on. If m = M −1 is defined as the number of changepoint times,
the segment structure is defined as follows:

1 ≡ τ0 < τ1 < . . . < τm < τM ≡ N + 1. (1)

In order to ensure reasonable estimates, each segment is required to contain
at least a minimum number ω of years, therefore τj ≥ τj−1+ ω for any segment
j. We define Rj = {τj−1, τj−1 + 1, . . . , τj − 1} as the set of years included in
segment j: therefore, if year n belongs to Rj then the time (n− 1)s+ k is in
segment j. For the sake of simplicity we will assume that the total number of
observations T is a multiple of s (T = N × s).

Conditional on the segment structure, we propose to model the observed
time series by a process X(n−1)s+k given by:

X(n−1)s+k = aj + bj [(n− 1)s+ k] +W(n−1)s+k, (2)

where n ∈ Rj , j = 1, . . . ,M, k = 1, . . . , s and W(n−1)s+k refers to the de-
trended observations:

W(n−1)s+k = Y(n−1)s+k + µj
k. (3)

The process {Y(n−1)s+k} is a PAR given by:

Y(n−1)s+k =

pj(k)∑
i=1

φji (k)Y(n−1)s+k−i + ε(n−1)s+k. (4)
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In the model proposed by Lu et al (2010) the only parameter that depends
on the segment is the mean µj

k, which is allowed to shift its value by the same
factor ∆j for all seasons k = 1, . . . , s. We assume that the trend parameters

aj and bj depend only on the segment, whereas means µj
k are also allowed to

change with seasons. The AR order at season k in the j-th segment is given
by pj(k), so that φji (k), i = 1, . . . , p(k), represent the PAR coefficients during
season k of the j-th segment. In our identification procedure we will set the
same maximum AR order p for all segments and seasons, and will let the
coefficients φji (k) be constrained to zero, in order to get more parsimonious
models. This will be accomplished by introducing a binary vector δj of length
s×p (named PAR lags indicator) in each segment j, which specify the presence
or absence of φji (k) parameters. The first p digits represent the subset PAR
model for period 1, subsequent p digits are related to period 2 and so on. For
example, in the case of s = 4 and p = 2, the indicators δ1 = (11010010) and
δ2 = (10000001) imply that parameters φ11(1), φ12(1), φ12(2), φ11(4), φ21(1), φ22(4)
are constrained to zero.

The error process ε = {εt, t ∈ Z} in equation (4) is a periodic white noise,
with E(ε(n−1)s+k) = 0 and var(ε(n−1)s+k) = σ2

j (k) > 0, n ∈ Rj , j = 1, . . . ,M ,

k = 1, . . . , s. It is worth noting that the error variances σ2
j (k) are allowed

to change with the segment, and our method is also able to detect this kind
of change. Unless otherwise stated we assume that the subseries Y(n−1)s+k

belonging to each segment are periodic stationary with period s, in the sense
that:

Cov(Yn+s, Ym+s) = Cov(Yn, Ym), (5)

for all integers n,m, n + s and m + s belonging to the same segment. The
periodic stationarity can be checked using the same arguments as in Lund and
Basawa (1999). More on causality and invertibility conditions for PAR models
has been derived in Lund and Basawa (2000); Bentarzi and Hallin (1993).

2.2 Model estimation

The number of changepoints m, the changepoint locations τ1, τ2, . . . , τm and
the PAR lags indicators δ1, ..., δM are named as structural parameters. They
can take discrete values and the number of possible combinations is very large.
Once such parameters are determined (see subsection 2.2), the trend intercepts
aj , the slopes bj , the seasonal means µj

k, the AR parameters φji (k) and the error
variances σ2

j (k) (for segment j, season k and lag i) are analytically estimated.
Assuming that the structural parameters are known, we propose to estimate
the model parameters according to the following steps:

1. The trend parameters a = (a1, ..., aM ) and b = (b1, ..., bM ) are estimated
by the Ordinary Least Squares (OLS) method:

min
a,b

M∑
j=1

s∑
k=1

∑
n∈Rj

(
X(n−1)s+k − aj − bj [(n− 1)s+ k]

)2
, (6)
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that leads to the detrended data

Ŵ(n−1)s+k = X(n−1)s+k − âj − b̂j [(n− 1)s+ k]. (7)

2. The seasonal means µ̂j
k are computed on the resulting detrended data as

follows:

µ̂j
k =

1

τj − τj−1

∑
n∈Rj

Ŵ(n−1)s+k (8)

and implying: Ŷ(n−1)s+k = Ŵ(n−1)s+k − µ̂j
k.

3. The AR parameters are estimated separately for each segment and season.
Each specific series zjk is selected from Ŷ and is incorporated in a design
matrix Z of dimensions (τj − τj−1)× p, that includes lagged observations.
The subset selection constraints are specified by a (p − q) × p matrix H,
where q is the number of free parameters. These constraints are designated
on the basis of PAR lags indicator δj as follows:
– For each lag i, the element [p(k − 1) + i] of δj vector is evaluated
– If the value is equal to 1 then a row equal to the i-th row of the identity

matrix Ip is added to H.

The final estimate φ̂j(k) = (φ̂j1(k), . . . , φ̂jp(k)) of φj(k) is obtained by con-

strained optimization, with linear constraint given by Hφj(k) = 0. Explic-
itly (in matrix form):

φ̂j(k) = φj,LS(k)− (Z ′Z)−1H ′[H(Z ′Z)−1H ′]−1Hφj,LS(k), (9)

where φj,LS(k) = (Z ′Z)−1Z ′zjk is obtained by OLS estimation.

4. Lastly, the estimation of error variances σ̂2
j (k) (named residual variances)

is performed for each segment and season on the final residuals:

σ̂2
j (k) =

1

τj − τj−1

∑
n∈Rj

ε̂2(n−1)s+k, (10)

where ε̂2(n−1)s+k = Ŷ(n−1)s+k −
∑pj(k)

i=1 φ̂ji (k)Y(n−1)s+k−i.

The selection of optimal structural parameters, on the other side, is a
complex problem for which no closed form solution is available. In that it
involves the evaluation of a very large number of possible combinations, GAs
are naturally suitable for this issue.

2.3 Identification of structural parameters

The GA is a nature-inspired optimization method, introduced by Holland
(1975), often employed when it is required to find an optimal solution from a
prohibitively large discrete set. For a maximization problem it serves to ap-
proximate the optimal solution, which maximizes an objective function (named
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fitness in the GA terminology), through a simple procedure. In the generic it-
eration (named generation), a population of binary encoded solutions (called
chromosomes) is subdued to the so-called genetic operators: the selection ran-
domly chooses chromosomes for the subsequent steps, usually proportionally
to their fitness value; by crossover two solutions are allowed to combine to-
gether, with a fixed rate pC, exchanging part of their values and creating two
new solutions; lastly, the mutation step allows each binary value to flip its
value from 0 to 1 (or vice versa) with a fixed probability pM , providing a
further exploration of the search space (bit-flip mutation). The resulting pop-
ulation replaces the previous one, and the flow of generations stops if a certain
condition is met, for example a fixed number of generations. It is also possible,
adopting the elitist strategy, to maintain the best chromosome found up to
the current generation, irrespective of the effect of operators.

On the basis of pilot experiments, we decided to employ hybrid GA strate-
gies for the structural parameter identification problem. According to a first
possible strategy, we propose to encode the number of changepoints m and
changepoint locations τ1, ..., τm in a binary chromosome, while the PAR lags
indicators are obtained by enumerating all possible subset models at each
fitness evaluation step and returning only the fittest one. This task is compu-
tationally feasible when the maximum AR order p is small, in that 2p models
must be evaluated for each segment and season. An alternative would be to
make the search of changepoints conditional on complete PAR models, and
perform the subset selection only for the best model found. This strategy may
prevent possible interactions between changepoint detection and subset se-
lection, but could also make the algorithm converge to a suboptimal solution.
According to these ways of proceeding, the optimal values of structural param-
eters are obtained by combining an exact method (exhaustive enumeration)
with an approximation procedure (GA).

In both strategies the binary chromosomes encode a candidate segmenta-
tion [m, τ1, ..., τm] as follows: the first three bits give the number of change-
points m (limited to a maximum of 7 in our study, so that a number of seg-
ments up to 8 is allowed); subsequent bit intervals, whose length is custom
fixed, produce changepoint times τ1, ..., τm. This part of encoding must ensure
the following constraints:

ω + 1 ≤ τ1, ω + τ1 ≤ τ2, ..., ω + τm−2 ≤ τm−1,
ω + τm−1 ≤ τm ≤ N − ω − 1,

due to the fact that a minimum number ω of years must be contained in each
segment. In order to accommodate such constraints, the bit intervals directly
encode m real numbers thi ∈ (0, 1), i = 1, ...,m, constructed to determine
the percentage of remaining values to be attributed to the corresponding i-
th segment. In fact, when placing a new changepoint there are some illegal
positions, due to the constraints specified above: this implies that ω years must
be left out from both the beginning and the end of the considered segment. This
strategy depends on the candidate number of segments, and the changepoints
are uniquely identified in the following ways:
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– If m = 0 (one segment) then τ1 = N + 1.
– If m = 1 (two segments) then τ1 = ω + 1 + (N − 2ω)× th1
– If m = 2 (three segments) then:

– τ1 = ω + 1 + (N − 3ω)× th1
– τ2 = ω + τ1 + (N − 2ω − τ1 + 1)× th2

– If m = 3 (four segments) then:
– τ1 = ω + 1 + (N − 4ω)× th1
– τ2 = ω + τ1 + (N − 3ω − τ1 + 1)× th2
– τ3 = ω + τ2 + (N − 2ω − τ2 + 1)× th3

– For a general m, we obtain the generic changepoint τj as:
– τj = ω + τj−1 + [N − (m+ 2− j)ω − τj−1 + 1]× thj .

Such an encoding procedure, introduced in Battaglia and Protopapas (2012b),
always provides legal solutions and helps to save computational time.

As the fitness function measures the goodness of solutions, in our model
identification problem it will include a term linked to the goodness of fit and a
part related to a penalization on the number of parameters. Many options are
available: we will consider a criterion inspired by the Normalized Akaike’s In-
formation Criterion (NAIC), introduced by Tong (1990) for threshold models,
given by:

g(IC) = [

M∑
j=1

s∑
k=1

njk log(σ̂2
j (k)) + IC

M∑
j=1

s∑
k=1

Pjk]/T, (11)

where σ̂2
j (k) is the model residual variance of series in segment j and season k,

njk and Pjk are, respectively, the sample size and the number of parameters of
segment j and season k, IC is the penalization term. The choice of IC specifies
the magnitude of penalization on the number of parameters: for example a
value equal to 2 resembles the structure of an Akaike’s Information Criterion
(AIC), while IC = ln(N) leading to the analogous to Bayesian Information
Criterion (BIC).

As an alternative, one can refer to the MDL criterion, which is based on
the penalization given by the minimum length in bits necessary for describing
the data. For a model M, the MDL is given by:

MDL = C(M) + C(ε|M), (12)

where C(M) is the sum of the length to code the model and C(ε|M) is the
length to code the model errors. Rissanen (1978) showed that C(ε|M) =
− 1

2 log2(L̂), where L̂ is the maximum likelihood, therefore in our case:

C(ε|M) =
1

2

∑
j

∑
k

njklog2(σ̂2
j (k)), (13)

while C(M) is the sum of the binary code length necessary to code the pa-
rameters of the models, according to the following rules:

– for an integer parameter p, code length is log2(p);
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– for an integer with an upper bound U , code length is log2(U),
– for a real parameter estimated by maximum likelihood on n observations,

code length is 1
2 log2(n).

In our case we will write:

C(M) = log2(max{1,m}) +m log2(N) + log2(s) + log2(p)+

+
1

2
M(s+ 1) log2(N) +

1

2

M∑
j=1

s∑
k=1

(p− |δjk|) log2(njk),
(14)

where the terms on the right refer to the encoding of, respectively, the number
of changepoints m, the changepoint locations τ1, . . . , τm, the number of seasons
s, the AR order p, the trend parameters and seasonal means, the subset PAR
parameters (where (p−|δjk| denotes the number of AR parameters in the subset
model for segment j and season k).

If we adopt g(IC) or MDL as identification criterion, the fitness will be
based on a scaled transformation of the criterion. This is a common and widely
discussed procedure in GAs (Goldberg, 1989; Kreinovich et al, 1993; Baragona
et al, 2011, p.53), because it always provides positive values of the fitness to
control the shape of the function and the pressure of the selection operator
without changing the solutions ranking. It is generally recognized that the
best scaling choice depends on the nature of the problem. We adopt a scaled
exponential transformation, for maximization purposes: f = exp(−g(IC)/β)
or f = exp(−MDL/β), where β is a problem dependent constant.

2.4 Choices of algorithm configurations for model identification

The nature of the GA allows us to introduce a large variety of algorithms,
depending on the choices of configurations, operators and their related prob-
abilities. As far as the selection operator is concerned, for example, one can
adopt the roulette wheel strategy, whereby solutions are randomly selected
with repetition proportionally to their fitness; according to the tournament se-
lection, a single solution is compared with a group of solutions, or with another
single one: if it wins, i.e., it has a better fitness than competitors, it is selected
with a fixed probability, and rejected with complementary probability. Also
many types of crossover operations are available: the single point crossover,
which uses a common randomly chosen cutting point in the so-called parent
chromosomes, and two new solutions built by taking the left part from the
first parent and the right part from the other, and vice versa; an alternative is
the uniform, which allows each gene of parent chromosomes to be individually
swapped, with probability 0.5 (also a generic rate could be adopted, leading to
the parametrized uniform crossover). There is no general dominant choice, so
pilot studies are needed in order to understand the nature of the problem at
hand (Goldberg, 1989; Eiben and Smith, 2003). On this basis, our GA showed
no decisive dependence on the choice of operators if the number of generations
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is chosen to be sufficiently large: therefore we will adopt the usual strategies
like the ones described above.

Concerning our specific problem, the choice of the external parameters ω
(minimum segment length) and M (maximum number of segments) can be
crucial. In fact, our model allows us to split the time series into segments,
each of which refers to a possibly different set of parameters related to the
trend, the means, the autocorrelation structure and the error variances. In
each segment these parameters are estimated on the basis of the subseries
related to each season k, therefore ω refers to the minimum number of years
used to estimate such parameters. As far as the AR parameters estimation
is concerned, it is generally known that a very small number of observations
could lead to unreliable estimates (Box and Jenkins, 1970). It is also clear
that if the time series consists of N years, the constraint M · ω ≤ N must
be satisfied. Therefore, depending on the sample size of the considered series,
we must set M in such a way that the minimum segment length ω is able to
provide reliable estimates.

In order to avoid having too few observations in any segment, Davis et al
(2006) and Lu et al (2010) and Yau et al (2015) imposed a minimum span.
This could be between 10 and 14 for a reasonable p (Davis et al, 2006), 12 (Lu
et al, 2010), 40 (Yau et al, 2015) or a minimum span function depending on
the order of the model for each segment (Song and Bondon, 2013). In our
case we will estimate each AR parameter and seasonal mean on the subseries
related to the segment j and season k. As the minimum segment length refers
to the number of years, we suggest a minimum span ω = 12 for PAR models
with p = 1 and ω = 15 for p = 3.

2.5 Forecasting and performance assessment

The forecasting method employed is the standard one-step-ahead procedure.
We will remove the last year from the dataset (corresponding to 12 observa-
tions) in order to estimate the model, and use those data points for evaluat-
ing the forecasting performance. The logarithm of data is adopted as a Box-
Cox transformation and performed before fitting the model. It is the most
widely used transformation in monthly river flow analysis and it ensures that
the model residuals are approximately normally distributed and homoscedas-
tic (Eshete and Vandewiele, 1992; McLeod and Gweon, 2013).

The forecasting accuracy of the resulting models is evaluated with respect
to the following measures:

RMSE =

√∑12
i=1(yi − ŷi)2

12
, (15)

MAE =

∑12
i=1 |yi − ŷi|

12
, (16)
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MAPE =

∑12
i=1

|yi−ŷi|
yi

12
× 100, (17)

where y1, ..., y12 and ŷ1, ..., ŷ12 are, respectively, true and predicted values of
last 12 observations, on logarithmic scale. Such measures are explicitly defined
in Hyndman and Koehler (2006). These criteria must be interpreted only as an
indication of model performance comparison, but no statement can be made
from this comparison. All the measures are computed using the hydroGOF or
the forecast packages of R software. Other measures of forecast accuracy can
be found in Hyndman and Koehler (2006) and Krause et al (2005).

2.6 Model validation

An analysis of the residuals of the estimated model is needed to test its rele-
vance. The stationarity of the residuals allows us to apply the standard 95%
confidence limits, that is 1.96

√
Ns. In order to test the joint statistical signif-

icance of the residual autocorrelations, McLeod (1994) proposed a Ljung-Box
portmanteau test for PAR models:

QL(k) = N

L∑
l=1

N

N − b(l − k + s)/sc
rl(k)2, (18)

where k is the period, rl(k) is the autocorrelation coefficient at lag l, L is
the maximum time lag considered and bxc represents the integer part of the
real number x. The test statistic QL(k) follows approximately a Chi-squared
distribution χ2

L−p(k) with L − p(k) degrees of freedom. We will perform this
kind of diagnostic checking for each segment of an estimated model.

3 Simulation study

We will now present some simulation studies in order to illustrate the efficiency
of the proposed procedure. Model identification will be performed by using the
GA dealing with complete PAR models on a set of simulated datasets. We will
simulate 500 time series consisting in a century (N = 100) of monthly data
(s = 12). As far as the fitness function is concerned, we will study the sensi-
tivity of the penalization IC in the criterion (11) by considering the following
options: values of IC equal to 2 and ln(N), which resemble the generalization
of AIC and BIC criteria (hereinafter referred to simply as AIC and BIC), and
also IC = 3, successfully adopted in Battaglia and Protopapas (2012a,b) for
the identification of nonstationary nonlinear models by GAs. Moreover, we
will consider the MDL criterion, therefore the possible fitness functions will
be: f = exp(−g(IC)/β) and f = exp(−MDL/β), with IC = 2, 3, ln(N) and
scaling constant β = 10.
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Initially we will discuss the ability of our method to detect changes in the
seasonal mean, and compare the performance with the procedure proposed
by Lu et al (2010) (LLL in the following), which is designed to detect mean
shifts in PAR models. The GA adopted by LLL uses the MDL as a fitness
function and has different configurations from our procedure: the encoding is
integer, therefore the model structure is directly coded in the chromosome; the
crossover and the mutation act on a single pair of solutions, chosen by rank
selection, to generate one new solution; a subpopulations-based strategy with
periodic migrations is also employed. Our GA uses binary encoding and it is
generational.

In the first simulation experiment (Simulation A) we perform a comparison
between the LLL method and our procedure, considering a generating model
with six level shifts at times: τ1 = 15, τ2 = 30, τ3 = 45, τ4 = 60, τ5 = 75, τ6 =
87, each having the same shift magnitude of about 3 (corresponding to K = 2
in the LLL set-up). We also consider two other model scenarios: one change
in the AR structure (Simulation B) at time τ1 = 61, and two changes in the
error variance (Simulation C), occurring at times τ1 = 31 and τ2 = 61. For
these two scenarios we also evaluate the forecasting accuracy of the resulting
models: therefore we remove the last year in the model identification step, and
we use it to evaluate the forecasting (see subsection 2.5). A summary of the
parameters used to generate the models is reported in Table 1. In all scenar-
ios we maintained a common vector of seasonal means specified by µj

k and
used the error variances σ2

j (k) employed in Lu et al (2010), unless otherwise
specified. In Simulation B the first segment has a PAR structure specified by
the parameters indexed by j1, while in the second we use the remaining set
of parameters (j2). In Simulation C we used the j2 PAR structure, and the
error variances multiplied by 0.25 in the second segment and by 4 in the third.
Examples of time series generated according to these models are reported in
Figure 1.

Concerning the choices of GA configurations, we will use a population of 50
solutions and employ the operators of tournament selection, bit-flip mutation
(rate 0.1) and parametrized uniform crossover (rate 0.7). The elitist strategy
will also be employed. We will allow a maximum AR order of p = 1 for
Simulation A and p = 3 for Simulations B and C, while ω is 12 for Simulation
A and 15 for the other two scenarios. Results are summarized in Tables 2, 3
and 4: they report the percentage of detection of the exact real change times,
the same indicator allowing for an absolute error of one year, the percentage of
detection of the number of changes and an average over the 500 replications of
the RMSE and MAE indexes for Simulations B and C. As LLL method allows
for mean shifts at any month, we will report only the percentages of detection
of the real changes with the error of one year as a matter of comparison.

The results of Simulation A show that using either AIC or IC = 3, our
method performs extremely well, with 100% and 94.8% correct numbers of
estimated changepoints. The BIC criterion detects the true number of change-
points only in 6.2% of replications, while for 176 series 2 changepoints are
found. As with our method combined with the MDL criterion, the results
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µjk σ2
j (k) φj11 (k) φj12 (k) φj13 (k) φj21 (k) φj22 (k) φj23 (k)

1 1 2.713 0.3 0.5 0 0.1 0.3 -0.4
2 1 2.748 0.42 0 0 0.1 0.3 -0.4
3 1 1.871 -0.8 0.4 0.35 0.1 0.3 -0.4
4 2 1.717 -0.3 0 0 0.22 -0.1 -0.5
5 2 2.474 0.7 -0.35 0.4 0.22 -0.1 -0.5
6 2 2.403 0.4 -0.5 0 0.22 -0.1 -0.5
7 3 2.569 0.7 0 0 -0.4 0.23 0.25
8 3 1.910 -0.6 0 0 -0.4 0.23 0.25
9 3 2.826 0.4 0.3 0.4 -0.4 0.23 0.25
10 4 2.488 0.9 0 0 -0.5 0.4 0.1
11 4 2.394 -0.6 0.4 0 -0.5 0.4 0.1
12 4 2.256 0.72 0 0 -0.5 0.4 0.1

Table 1: Summary of the parameters used in simulations: seasonal means µj
k,

error variances σ2
j (k) and PAR parameters

are better than those obtained using BIC, with 37.6% correct numbers of esti-
mated changepoints. Therefore our method combined with BIC or MDL seems
to underestimate the number of changepoints. When the number of change-
points is correctly identified, the best results in terms of changepoint time
detection are achieved using AIC and IC = 3. The LLL procedure detects
the real number of changepoints in 42% of replications, and the changepoint
locations are correctly identified between 60% and 70% of cases.

% 15 % 15 ± 1 % 30 % 30 ± 1 % 45 % 45 ± 1
AIC 67.4 91.2 74.4 90.6 70.8 90.2
IC=3 64.4 87.8 68.4 88.2 73.4 92.4
BIC 37.2 41.6 22.0 25.8 31.2 34.4
MDL 47.0 60.8 39.0 48.8 42.4 53.4.0
LLL / 60.4 / 65.0 / 60.4

% 60 % 60 ± 1 % 75 % 75 ± 1 % 87 % 87 ± 1
AIC 69.4 89.8 78.6 94.4 75.0 100.0
IC=3 72.0 90.8 82.2 95.6 75.0 100.0
BIC 38.0 42.4 39.4 42.4 52.2 55.8
MDL 53.6 62.8 65.6 71.4 71.0 81.2
LLL / 62.2 / 70.0 / 62.4

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m > 6
AIC 0 0 0 0 0 0 100 0
IC=3 0 0 0 0 2.6 2.6 94.8 0
BIC 6.0 17.2 35.2 18.4 12.6 4.4 6.2 0
MDL 3.4 6.0 18.4 13.0 18.8 3.6 37.6 0
LLL 2.2 10.0 17.4 13.8 5.6 4 42.4 4.6

Table 2: Simulation A: percentages of exact detection of the real changepoint
years τ1 = 15,τ2 = 30, τ3 = 45, τ4 = 60, τ5 = 75 and τ6 = 87 over 500
replications, allowing an absolute error of one year, the percentages of detection
of m changepoints
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Fig. 1: Examples of time series related to Simulations A, B and C

When we apply our method to the realizations in Simulation B we observe
that BIC, IC = 3 and MDL always detect the correct number of changepoints.
AIC has a correct identification rate of 72.6% and sometimes overestimates the
number of changepoints, as in 26.0% of the replications 2 changes are found.
The LLL method fails to detect the changepoint, because we choose different
autocovariance structures for each segment. We can see that our procedure
performs very well in locating the changepoint for all the criteria. As far as
the forecasting accuracy is concerned, we also observe that IC = 3 and MDL
criteria provide slightly better results with respect to AIC and BIC. Such
differences are due to the subset model selection, whose results depend on the
penalization introduced in the fitness.
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% 61 % 61 ± 1
AIC 95.4 100
IC=3 96.4 100
BIC 96.4 100
MDL 96.4 100

m = 1 m = 2 m = 3 m = 4 m > 4 RMSE MAE
AIC 72.6 26.0 1.00 0.40 0 1.6603 1.3538
IC=3 100 0 0 0 0 1.6502 1.3485
BIC 100 0 0 0 0 1.6665 1.3610
MDL 100 0 0 0 0 1.6558 1.3530

Table 3: Simulation B: percentages of exact detection of the real changepoint
year τ1 = 61 over 500 replications, allowing an absolute error of one year, the
percentages of detection of m changepoints, averages over 500 replications of
RMSE and MAE indices

Table 4 lists the results for Simulation C. Our method combined with
the IC = 3 criterion gives the correct number of changepoints for 99.2% of
the 500 realizations. We can see that BIC and MDL seem to underestimate
the number of changepoints, while AIC leads to good results (correct rate
78.6%). The changepoint at year τ2 = 61 is easier to detect, because the error
variance of the third segment is 16 times larger than that in the second. This
is confirmed by the results in Table 4, which show that such changepoint is
correctly identified in at least 96% of the replications. The changepoint τ1 = 31
has a lower correct detection rate, with the IC = 3 criterion providing the best
results. Concerning the forecasting accuracy, the best results are observed with
AIC and IC = 3, possibly because they have a higher rate of detection of the
correct number of changepoints.

% 31 % 31 ± 1 % 61 % 61 ± 1
AIC 46 79 96.4 99.4
IC=3 47 83 98.4 100
BIC 10.8 20 97.6 99.4
MDL 14.2 25.4 97.4 99.6

m = 1 m = 2 m = 3 m = 4 m > 4 RMSE MAE
AIC 0 78.6 19 2.4 0 2.8468 2.3162
IC=3 0.8 99.2 0 0 0 2.8367 2.3147
BIC 76.8 23.2 0 0 0 2.8645 2.3405
MDL 68.6 31.4 0 0 0 2.8514 2.3296

Table 4: Simulation C: percentages of exact detection of the real changepoint
years τ1 = 31 and τ2 = 61 over 500 replications, allowing an absolute error of
one year, the percentages of detection of m changepoints, averages over 500
replications of RMSE and MAE indices

A generic indication of these simulation studies is that the results are
strongly dependent on the penalization in the fitness. This is a subjective
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Fig. 2: Saskatchewan river basin.
Source: South East Alberta Watershed Alliance.

element, because in real applications the researcher decides on the compromise
between accuracy and parsimony, given by the criterion. Moreover, the success
in using one or the other penalization criteria seems to depend in turn on the
true (and unknown in real applications) number of changepoints. Therefore
we suggest that more than one identification criterion should be employed in
real applications.

4 Study area and research data

We will now evaluate the effectiveness of the proposed methodology in river
flow analysis. Data related to two rivers displaying a similar behaviour during
winter and summer (Fig. 6), of the same length, with different means of annual
flows, located in different regions, will be examined. They consist of:

– flows of South Saskatchewan river, measured at Saskatoon, Canada;
– flows of Colorado river, measured at Lees Ferry, Arizona.

The South Saskatchewan river originates in the Rocky Mountains and
drains an area of about 139,600 km2 (Fig. 2). It passes through the Canadian
prairies, a major agricultural region with high hydrological variability (Gober
and Wheater, 2014). The South Saskatchewan river is one of the largest and
most important rivers in Saskatchewan, as almost 50% of the province’s pop-
ulation depends on the river for daily needs. The main uses of water from
the river are: agricultural irrigation, industry (power production, petroleum
related operations) and municipal uses.
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Fig. 3: Monthly flows (up) and logarithmic monthly flows (down) for the South
Saskatchewan river.

Lake Diefenbaker is a reservoir lake formed by the construction of Gar-
diner Dam and Qu’Appelle River Dam across the South Saskatchewan and
Qu’Appelle rivers, respectively. Lake Diefenbaker’s Gardiner Dam has heavily
modified a series of extreme events (floods occurred in summer when rainfall
coincided with snow melt). From Lake Diefenbaker the river flows towards the
City of Saskatoon and continues north to become Saskatchewan river at the
confluence with the North Saskatchewan river. After the confluence, the river
passes through Saskatchewan Delta, into Lake Winnipeg.

Although a large fraction of global water resources is available in Canada,
the South Saskatchewan river exemplifies the multiple threats to water se-
curity: extreme events, rapid population growth and economic development,
increasing pollution (Gober and Wheater, 2014). In an intervention analysis
study, Hipel and McLeod (1994) used South Saskatchewan river data to deter-
mine the alteration of the average monthly flows following the Gardiner Dam
operations.

In this paper we analyze the time series of mean monthly flows of the
South Saskatchewan river measured at Saskatoon, Canada. The collection pe-
riod ranges from January 1912 to December 1976 (780 observations, 65 years),
and coincides with the available data.1 The monthly series and the logarithmic
monthly flows are reported in Figure 3. Before the creation of Lake Diefen-

1 Source: http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/readme-mhsets.html
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baker, the South Saskatchewan river had higher flows from April to August,
with declining flows during the fall and low flows in winter (Fig. 6).

The Colorado river (Fig. 4), which flows through seven U.S. states and
two Mexican states, is one of the principal rivers of southwestern U.S. and
northern Mexico, as it provides water to 40 million people. The Colorado
river begins at La Poudre Pass in the Southern Rocky Mountains of Colorado,
flows southwest across the Colorado Plateau and through the Grand Canyon,
reaches Lake Mead and forms a large estuary before emptying into the Gulf of
California, Mexico after a trip of 2330 km. The Upper Colorado river, where
upper refers to the course upstream of the Green River (Van Steeter and
Pitlick, 1998), passes through the Grand Valley, a major farming and ranching
region. After providing water to numerous towns (like Bullhead City, Needles
and Lake Havasu), the Lower Colorado river irrigates California’s Imperial
Valley, the most productive winter agricultural region in the United States.
The remaining flow is diverted to irrigate the Mexicali Valley, which is among
the most fertile agricultural lands in Mexico. The Colorado river faces many
of the same challenges as the Saskatchewan river: persistent drought, climate
change, population growth. Water demand impacts the regional economies,
challenges food production, degrades the environment, and limits recreational
opportunities. Therefore, the Colorado river is stretched to its limit.

In this paper we consider monthly data for a 65-years period (1906-1970)
measured at the Lees Ferry station.2 The data and the log transformed data
are displayed in Figure 5. The reason for selecting such observations is due
the fact that data starting from 1971 are obtained by Natural Flow And Salt
Calculation models (Prairie and Callejo, 2005), which are always subject to
changes in successive updates.

5 Results and discussion

The South Saskatchewan river flows series is discussed in Noakes et al (1985).
The authors used nine different seasonal models to generate thirty-six one-step-
ahead forecasts for the logarithmic flows in the South Saskatchewan river, and
found that PAR models gave the best results with respect to the criterion of
RMSE. The Colorado river is discussed in Srivastav et al (2016), McKee et al
(2000) and Van Steeter and Pitlick (1998), among others.

Estimation and forecasting will be performed as discussed in Section 2. We
will employ the hybrid GA strategy that enumerates all possible subset mod-
els at each fitness evaluation step. As far as the choice of genetic operators is
concerned, we propose tournament selection, bit-flip mutation and a modified
single-point crossover: instead of allowing all of the bits in the chromosome to
be selected as possible cutting points, we will consider only the bits that sub-
divide the segmentation [m, τ1, ..., τm]. In such a way the parameter structures
can be naturally inherited by the solutions’ offspring, avoiding destroying so-

2 Source: https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html



20 D. Cucina et al.

Fig. 4: Colorado river basin.
Source: U.S. Department of the interior.

lutions. The elitist strategy is also adopted. In these analyses we will employ
also the changepoint detection method of LLL for comparison purposes.

In the fitness function we will use IC = 3, BIC or the MDL criterion.
Several experiments will be conducted considering various combinations of
parameters p and ω, in order to provide a variety of explanatory models. The
forecasting accuracy of these models will be then evaluated, and the portman-
teau test-based diagnostic checking discussed in subsection 2.6 will also be
conducted. Computations will be performed using Matlab and R softwares.
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Fig. 5: Monthly flows (up) and logarithmic monthly flows (down) for the Col-
orado river.
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Fig. 6: Monthly means of the South Saskatchewan river (up) and Colorado
river (down)
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Fig. 7: Changepoint detected on year 1968 for Saskatchewan river

5.1 South Saskatchewan river

Noakes et al (1985) fitted the log transformed data with nine models and they
recommended the PAR model. Using a PAR without changepoints (denoted
by Model 1 ), we obtain a similar model to that in Noakes et al (1985); the
slight differences arise from the fact that our model allows for intermediate
constraints and we use more data. In addition, our method was applied to
estimate a PAR model with at least one changepoint, using BIC with p = 1
and ω = 7 (Model 2 ) and IC = 3 with p = 3 and ω = 7 (Model 3 ). As far as
very short time segments could be identified, we will interpret the results with
caution and with the descriptive purpose of understanding the hydrological
processes of the river flow. Results are reported in Table 6.

Using our model combined with BIC we detect year 1968 as the only
changepoint (Figure 7). We also note that our method combined with MDL
and the LLL method locate the same year of change. January 1969 corresponds
to a modification in the reservoir system management: the Gardiner Dam came
into full operation. It is the third largest embankment dam in Canada and one
of the largest in the world. The reservoir provided valuable benefits to the
community: power generation, recreational benefits and also a decrease in the
magnitude of floods, with minimum flows downstream guaranteed through-
out the year. Before the creation of the dam, snowmelt in conjunction with
summer rains led to heavy flooding. To model the effect of the operation of
the Gardiner Dam on the average monthly flows of the South Saskatchewan
river, Hipel et al (1977) developed an intervention model. Using flows mea-
sured at Saskatoon from 1942 to 1974, they found that the operation of the
Gardiner Dam significantly affected the average monthly flows. They increase
from November to March and decrease from April to September.

To ascertain the type of changes in the time series data due to detected
changepoints, we calculate the 12 estimated seasonal means for all the years up
to changepoint 1968, and from 1968 onwards. We plot the seasonal means for
each segment in Figure 8. This kind of graphic representation has been used
by Gober and Wheater (2014) to show that the construction of Gardiner Dam
has heavily modified conditions downstream. We observe that the seasonal
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Fig. 8: Monthly means of the logarithmic flows of South Saskatchewan river
before and after changepoints detection

Month percentage change
Jan. 36.46
Feb. 34.65
Mar. 20.68
Apr. -9.94
May -11.21
June -11.87
July -9.88
Aug. -6.48
Sep. -2.62
Oct. 5.92
Nov. 16.14
Dec. 29.18

Table 5: Percentage change in mean before and after 1968 for the logarithmic
flows of South Saskatchewan river

means decreased from April to September after the detection of the change-
point, compared with the previous period. Table 5 lists the percentage change
in mean monthly flows between different segments (a negative sign indicates
decrease in flows). We can explain the detection of the changepoint using the
LLL method by observing the magnitude of such changes in mean.

Using our method combined with IC = 3 we detect three changepoints,
corresponding to 1937, 1961 and 1968 (Figure 9). Looking into the history, the
changepoint corresponding to 1937 could be linked to the drought conditions
on the Saskatchewan prairies during the Dust Bowl years of the 1930s. The
drought came in three waves: 1934, 1936, and 1939-1940, but some regions
experienced drought conditions for as many as eight years. The changepoint
corresponding to 1961 could arise as an effect of the beginning of dam con-
struction in 1964. We note that several corrections have been made to the
monthly flows from January 1964 to December 1968. For this reason 1961
could be viewed as an artificial changepoint introduced as a direct effect of the
means correction.

The performance of the models was considered in terms of fitness, good-
ness of estimation, and RMSE, MAE and MAPE for evaluating the accuracy
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Fig. 9: Changepoint detected on years 1937, 1961 and 1968 for Saskatchewan
river
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Fig. 10: Twelve-month forecast (dashed line) based on 64 years of
Saskatchewan river data. The actual data (solid line) were not used in the
forecast.

Years of changepoint RMSE MAE MAPE Fitness
Model 1 / 0.66428 0.5126 10.2718 1.2253
Model 2 1968 0.4360 0.3167 6.3646 1.2553
Model 3 1937, 1961, 1968 0.4275 0.2933 5.8488 1.2661

Table 6: Results of the evaluation criteria of the logarithmic forecast errors for
Saskatchewan

of forecasts. The fitness values are not comparable, as different penalizations
have been used. Concerning forecasting, the South Saskatchewan flow series
was split into two sets and several PAR models were fitted for the first set of the
data. Then the fitted models were used to generate one-step-ahead logarithmic
forecasts for the second set of the data (the last year or 12 observations). In
practical applications, the one-step-ahead forecasts are very important when
accurate forecasts for the inflows are crucial (flood prediction, hydro-electric
power generation). The PAR model with 4 segments (Model 3 ) seems to per-
form better in terms of forecasting than the other models (Table 6). Figure 10
shows forecasts for Model 3 and the observed data for the last year of the data
set (1976).
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Fig. 11: Autocorrelation function (ACF) of the residuals of the fitted PAR
models with year 1968 detected as the changepoint to the South Saskatchewan
flow.

1912-1968 1969-1975
January 0.9285 0.2376
February 0.0381 0.3727

March 0.7502 0.3601
April 0.4695 0.3692
May 0.4121 0.3199
June 0.3694 0.1132
July 0.6612 0.7599

August 0.2049 0.2018
September 0.3204 0.2626
October 0.2399 0.4064

November 0.2295 0.3871
December 0.1816 0.0218

Table 7: P-values of the portmanteau test defined in eq. (18) with L = 15.

In order to check for the whiteness of the residuals, their autocorrelations
up to lag 36 were computed for Model 2. The two full lines indicate lower
and upper bounds of the ACF assuming that the residuals are white noise.
No significant autocorrelations were found (Figure 11). This graphic checking
provides some evidence on the adequacy of the proposed PAR model. Table 7
shows the P-values of the portmanteau test (18): they suggest that the pro-
posed model is not rejected at the 5% significance level, except for February
1912-1968 and December 1969-1975, for which the P-values are larger than 2%,
which does not strongly suggest model inadequacy. In this situation, the PAR
model without changepoints seems inappropriate at the 5% nominal level.

5.2 Colorado river

We transformed the original data from ft3 to m3/s, and considered a standard
PAR model without changepoints (denoted by Model 1 as a basis in Table 9).
Considering a BIC penalization, when we impose p = 1 as upper bound for the
order of PAR models (Model 2 ), we found 1918 as changepoint (Figure 12),
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Fig. 12: Changepoint detected on year 1918 for Colorado river
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Fig. 13: Changepoints detected on years 1918 and 1930 for Colorado river

whereas with p = 3 (Model 3 ) we detected year 1931. On the other hand, our
method combined with IC = 3 (Model 4 ) and p = 1 detected 1918 and 1930
as change times (Figure 13). Using the LLL method no changepoints were
detected.

As for the Saskatchewan river, we calculate the 12 seasonal means for all
years up until the first changepoint, and for each period until a new change-
point is detected. Table 8 lists the percentage changes in mean and variance
of the logarithmic monthly flows between different segments for Model 2. We
observe that there are no significant changes in mean after the detection of the
changepoint, compared with the previous period. This may explain why the
method of LLL was unable to detect this changepoint. On the other hand, the
changes in variance are noteworthy and this explains why the changepoints
were detected with our method. We note that a similar behaviour is observed
for the other models.

There are several arguments supporting our findings. Looking into the
history, the changepoint corresponding to 1930 could be linked to the most
widespread and longest lasting drought (1930-1940) and to the longest wet
period (1905-1929) in Colorado history (McKee et al, 2000). Woodhouse et al
(2016) examined the influence of precipitation, temperature, and antecedent
oil moisture on the flows of the Colorado river at Lees Ferry, from year 1906
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Month percentage change percentage change
in mean in variance

Jan. -0.18 43.72
Feb. -0.20 72.98
Mar. -2.92 -39.44
Apr. -2.06 225.46
May -0.95 115.84
June -2.25 42.12
July -3.44 -2.01
Aug. -2.62 25.29
Sep. -3.38 54.62
Oct. -4.09 82.35
Nov. -0.96 482.86
Dec. 0.39 290.71

Table 8: Percentage changes in mean and variance before and after 1918 for
the logarithmic flows of the Colorado river

to 2012. They divided what they called ”anomalous flow years” into four cate-
gories: two categories for which the flow was greater than expected (above and
below the median) and two categories where the flow was less than expected
(above and below the median), given that year’s cool-season precipitation.
They found that most of the years falling in the first two categories are be-
tween 1918 and 1930. In general, there is a clustering of anomalous years of
flow in the early part (1910s and 1920s), followed by an interval with fewer
flow anomalies (1930s to 1970s).

Novak et al (2012) found that the runoff efficiency (which is the ratio of
flow volume to precipitation volume) is strongly correlated with temperature
in a study of the Upper Colorado river basin for the years 1906-2006. They
estimated a 14% reduction in the annual Colorado streamflow with each 1◦ C
of warming. Other climatic factors, such as late spring and summer precipi-
tation could influence the runoff efficiency and so the streamflow (Woodhouse
and Pederson, 2018). We represent the difference between the average of each
year and the average over all the years of the temperature in Coconino County,
Arizona (Figure 14), which also includes the gauging station at Lees Ferry. We
observe that the temperature increases after 1930, confirming the slight de-
creasing trend in the Colorado river flow found in Model 4. This result is also
confirmed by the examination of temperature, precipitation and streamflow
time series for the period 1906-2012, which indicates three periods: 1906-1933
(cooler than average temperature and streamflow higher than precipitation),
1934-1987 (near average temperature period) and 1988-2012 (warmer-than-
average temperature) (McCabe et al, 2017). Among other factors that could
also influence the flow, we report the SPI (standardized precipitation index)
and the accumulated precipitation deficit (McKee et al, 2000). In general, a
changepoint in river flows associated with precipitation reduction in combina-
tion with increased temperatures will likely result in severe droughts. Water
managers tasked with providing sufficient water for the regional economy, food
production, power generation, and household needs, have worries about the
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Fig. 15: Twelve-month forecast (dashed line) based on 64 years of Colorado
river data. The actual data (solid line) were not used in the forecast.

large uncertainty in climate change projections. Therefore, careful detection of
changepoints warranted when placing uncommon events, such as concurrent
droughts across the Colorado basin, could be very useful for water resources
managers.

In order to evaluate the accuracy of forecasts, the RMSE, MAE and MAPE
were computed, as the last year (12 observations) is omitted from the dataset.
Several PAR models are fitted to the logarithms of the truncated time series
and one-step-ahead logarithmic forecasts are computed. Model 2 seems to
perform better in terms of forecasting than the other models (Table 9). The
results suggest that a PAR model with changepoints provides more accurate
forecasts than a standard PAR model. Figure 15 shows the forecasts for the
logarithmic transformed data, compared with the observed data, for the last
year of the data set (1970).

The autocorrelations of residuals up to lag 36 were computed for Model
4 for the sake of diagnostic checking (see Figure 16). In terms of P-values of
the portmanteau test (Table 10), Model 4 seems to perform very well, as such
values suggest that the proposed model is not rejected at a 5% significance
level, except for a few cases where the P-values are smaller than 5%.
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Years of changepoint RMSE MAE MAPE Fitness
Model 1 / 0.3372 0.2276 2.2219 1.3092
Model 2 1918 0.3341 0.2214 2.1499 1.3107
Model 3 1931 0.3716 0.2530 2.4766 1.3159
Model 4 1918,1930 0.3460 0.2266 2.1990 1.3198

Table 9: Results of the evaluation criteria of the logarithmic forecast errors for
the Colorado river
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Fig. 16: Autocorrelation function (ACF) of the residuals of the fitted PAR
Model 3.

1906-1918 1919-1930 1931-1970
January 0.1721 0.1507 0.1441
February 0.4599 0.8637 0.2720

March 0.0639 0.9160 0.3094
April 0.8100 0.2124 0.0356
May 0.4777 0.1437 0.7697
June 0.5451 0.4226 0.6387
July 0.5714 0.2637 0.5772

August 0.0269 0.3994 0.5772
September 0.8335 0.0158 0.9879
October 0.0828 0.1353 0.5596

November 0.0295 0.1449 0.1789
December 0.6963 0.2722 0.1921

Table 10: P-values of the portmanteau test defined in eq. (18) with L = 10.

6 Conclusions

The objective of our research was to develop a computational procedure to
estimate the number of changepoints and their locations in time series with a
periodic structure. We will now summarize the contributions and the findings
of the paper:

1. The proposed model accounts for both seasonality and changes in the PAR
model structure, allowing a description of several sources of discontinuity
and inhomogeneity.
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2. The computational method served to build the model by the use of GAs
according to several strategies. Simulation studies showed the efficiency
of the method in detecting changes in mean, autocorrelation and error
variance.

3. Our procedure estimated changepoints for real time series related to the
river flows of South Saskatchewan (Canada) and Colorado (U.S.). This
allowed us to discuss the hydrological process of such river flows in relation
to both human activities and climatic oscillations. The comparison of our
findings with other methods and studies in the literature confirmed the
efficiency of our procedure.

In our study we examined monthly data with changepoints allowed only at
the end of the year (that is, a multiple of the number of seasons). Modifications
to the method proposed in the present paper are under study: techniques for
monthly, weekly or daily time series with a periodic structure allowing change-
points at any season are worth pursuing. For example, detecting a changepoint
in the middle of a year will prevent the dispersal of its effect over adjacent
seasons. Moreover, as PAR models are based on a large number of parameters,
one could question whether it is necessary to consider a separate AR model
for each season: we allowed subset PAR models to be built in order to con-
veniently decrease the number of parameters, but a further and considerable
gain in parsimony would be achieved by reducing the number of seasons in
PAR model (Franses and Paap (2004) and Hipel and McLeod (1994) proposed
several statistical hypothesis tests). Lastly, it is known that a stationary AR
process has a short memory (Brockwell and Davis (1991); Robinson (2003)).
Time series which exhibit long-range dependence are characterized by autocor-
relations which decay very slowly, while a stationary AR process has rapidly
decaying autocorrelations. Many kinds of time series, including hydrological
ones, exhibit structural changes and long-range dependence (Song and Bon-
don, 2013). Therefore, a long memory process with a periodic structure and
changepoints could be appropriate for hydrological data, and could also be
extended to other fields (e.g. internet traffic data).
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