
Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles
Noga Alon
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
nogaa@tau.ac.il

Shiri Chechik
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
shiri.chechik@gmail.com

Sarel Cohen
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
sarelcoh@post.tau.ac.il

Abstract
In this work we derandomize two central results in graph algorithms, replacement paths and distance
sensitivity oracles (DSOs) matching in both cases the running time of the randomized algorithms.

For the replacement paths problem, let G = (V,E) be a directed unweighted graph with n

vertices and m edges and let P be a shortest path from s to t in G. The replacement paths problem
is to find for every edge e ∈ P the shortest path from s to t avoiding e. Roditty and Zwick [ICALP
2005] obtained a randomized algorithm with running time of Õ(m

√
n). Here we provide the first

deterministic algorithm for this problem, with the same Õ(m
√
n) time. Due to matching conditional

lower bounds of Williams et al. [FOCS 2010], our deterministic combinatorial algorithm for the
replacement paths problem is optimal up to polylogarithmic factors (unless the long standing bound
of Õ(mn) for the combinatorial boolean matrix multiplication can be improved). This also implies
a deterministic algorithm for the second simple shortest path problem in Õ(m

√
n) time, and a

deterministic algorithm for the k-simple shortest paths problem in Õ(km
√
n) time (for any integer

constant k > 0).
For the problem of distance sensitivity oracles, let G = (V,E) be a directed graph with real-edge

weights. An f -Sensitivity Distance Oracle (f -DSO) gets as input the graph G = (V,E) and a
parameter f , preprocesses it into a data-structure, such that given a query (s, t, F) with s, t ∈ V
and F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices (failures), the query algorithm
efficiently computes the distance from s to t in the graph G \ F (i.e., the distance from s to t in the
graph G after removing from it the failing edges and vertices F).

For weighted graphs with real edge weights, Weimann and Yuster [FOCS 2010] presented several
randomized f -DSOs. In particular, they presented a combinatorial f -DSO with Õ(mn4−α) prepro-
cessing time and subquadratic Õ(n2−2(1−α)/f) query time, giving a tradeoff between preprocessing
and query time for every value of 0 < α < 1. We derandomize this result and present a combinatorial
deterministic f -DSO with the same asymptotic preprocessing and query time.
2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Dynamic graph algorithms
Keywords and phrases replacement paths, distance sensitivity oracles, derandomization
Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.12
Category Track A: Algorithms, Complexity and Games
Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1905.07483.

Funding Noga Alon: Research supported in part by NSF grant DMS-1855464, ISF grant 281/17
and GIF grant G-1347-304.6/2016.
Shiri Chechik: Research supported in part by the Israel Science Foundation grant No. 1528/15 and
the Blavatnik Fund.
Sarel Cohen: Research supported in part by the Israel Science Foundation grant No. 1528/15 and
the Blavatnik Fund.

EA
T

C
S

© Noga Alon, Shiri Chechik, and Sarel Cohen;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nogaa@tau.ac.il
mailto:shiri.chechik@gmail.com
mailto:sarelcoh@post.tau.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://arxiv.org/abs/1905.07483
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

1 Introduction

In many algorithms used in computing environments such as massive storage devices, large
scale parallel computation, and communication networks, recovering from failures must be
an integral part. Therefore, designing algorithms and data structures whose running time is
efficient even in the presence of failures is an important task. In this paper we study variants
of shortest path queries in setting with failures.

The computation of shortest paths and distances in the presence of failures was extensively
studied. Two central problems researched in this field are the Replacement Paths problem
and Distance Sensitivity Oracles, we define these problems hereinafter.

The Replacement Paths problem. (See, e.g., [26, 28, 16, 14, 21, 27, 6, 30, 22, 23, 24, 25,
29, 15].) Let G = (V,E) be a graph (directed or undirected, weighted or unweighted) with
n vertices and m edges and let PG(s, t) be a shortest path from s to t. For every edge
e ∈ PG(s, t) a replacement path PG(s, t, e) is a shortest path from s to t in the graph G \ {e}
(which is the graph G after removing the edge e). Let dG(s, t, e) be the length of the path
PG(s, t, e). The replacement paths problem is as follows: given a shortest path PG(s, t) from
s to t in G, compute dG(s, t, e) (or an approximation of it) for every e ∈ PG(s, t).

Distance Sensitivity Oracles. (See, e.g., [9, 17, 7, 8, 10, 11, 12, 13, 19].) An f -Sensitivity
Distance Oracle (f -DSO) gets as input a graph G = (V,E) and a parameter f , preprocesses
it into a data-structure, such that given a query (s, t, F) with s, t ∈ V and F ⊆ E∪V, |F | ≤ f
being a set of at most f edges or vertices (failures), the query algorithm efficiently computes
(exactly or approximately) dG(s, t, F) which is the distance from s to t in the graph G \ F
(i.e., in the graph G after removing from it the failing edges and vertices F). Here we would
like to optimize several parameters of the data-structure: minimize the size of the oracle,
support many failures f , have efficient preprocessing and query algorithms, and if the output
is an approximation of the distance then optimize the approximation-ratio.

An important line of research in the theory of computer science is derandomization. In
many algorithms and data-structures there exists a gap between the best known randomized
algorithms and the best known deterministic algorithms. There has been extensive research
on closing the gaps between the best known randomized and deterministic algorithms in
many problems or proving that no deterministic algorithm can perform as good as its
randomized counterpart. There also has been a long line of work on developing derandomiz-
ation techniques, in order to obtain deterministic versions of randomized algorithms (e.g.,
Chapter 16 in [2]).

In this paper we derandomize algorithms and data-structures for computing distances
and shortest paths in the presence of failures. Many randomized algorithms for computing
shortest paths and distances use variants of the following sampling lemma (see Lemma 1 in
Roditty and Zwick [26]).

I Lemma 1 (Lemma 1 in [26]). Let D1, D2, . . . , Dq ⊆ V satisfy |Di| > L for 1 ≤ i ≤ q and
|V | = n. If R ⊆ V is a random subset obtained by selecting each vertex, independently, with
probability (c lnn)/L, for some c > 0, then with probability of at least 1 − q · n−c we have
Di ∩R 6= ∅ for every 1 ≤ i ≤ q.

Our derandomization step of Lemma 1 is very simple, as described in Section 1.3, we use
the folklore greedy approach to prove the following lemma, which is a deterministic version
of Lemma 1.

N. Alon, S. Chechik, and S. Cohen 12:3

I Lemma 2 (See also Section 1.3). Let D1, D2, . . . , Dq ⊆ V satisfy |Di| > L for 1 ≤ i ≤ q and
|V | = n. One can deterministically find in Õ(qL) time a set R ⊂ V such that |R| = Õ(n/L)
and Di ∩R 6= ∅ for every 1 ≤ i ≤ q.

We emphasize that the use of Lemma 2 is very standard and is not our main contribution.
The main technical challenge is how to efficiently and deterministically compute a small
number of sets D1, D2, . . . , Dq ⊆ V so that the invocation of Lemma 2 is fast.

1.1 Derandomizing the Replacment Paths Algorithm of Roditty and
Zwick [26]

We derandomize the algorithm of Roditty and Zwick [26] and obtain a near optimal determ-
inistic algorithm for the replacement paths problem in directed unweighed graphs (a problem
which was open for more than a decade since the randomized algorithm was published) as
stated in the following theorem.

I Theorem 3. There exists a deterministic algorithm for the replacement paths problem
in unweighted directed graphs whose runtime is Õ(m

√
n). This algorithm is near optimal

assuming the conditional lower bound of combinatorial boolean matrix multiplication of [29].

The term “combinatorial algorithms” is not well-defined, and it is often interpreted as
non-Strassen-like algorithms [4], or more intuitively, algorithms that do not use any matrix
multiplication tricks. Arguably, in practice, combinatorial algorithms are to some extent
considered more efficient since the constants hidden in the matrix multiplication bounds are
high. On the other hand, there has been research done to make fast matrix multiplication
practical, e.g., [18, 5].

Vassilevska Williams and Williams [29] proved a subcubic equivalence between
√
n

occurrences of the combinatorial replacement paths problem in unweighted directed graphs
and the combinatorial boolean multiplication (BMM) problem. More precisely, they proved
that there exists some fixed ε > 0 such that the combinatorial replacement paths problem
can be solved in O(mn1/2−ε) time if and only if there exists some fixed δ > 0 such that the
combinatorial boolean matrix multiplication (BMM) can be solved in subcubic O(n3−δ) time.
Giving a subcubic combinatorial algorithm to the BMM problem, or proving that no such
algorithm exists, is a long standing open problem. This implies that either both problems can
be polynomially improved, or neither of them does. Hence, assuming the conditional lower
bound of combinatorial BMM, our combinatorial Õ(m

√
n) algorithm for the replacement

paths problem in unweighted directed graphs is essentially optimal (up to no(1) factors).
The replacement paths problem is related to the k simple shortest paths problem, where

the goal is to find the k simple shortest paths between two vertices. Using known reductions
from the replacement paths problem to the k simple shortest paths problem, we close this
gap as the following Corollary states.

I Corollary 4. There exists a deterministic algorithm for computing k simple shortest paths
in unweighted directed graphs whose runtime is Õ(km

√
n).

The trivial Õ(mn) time algorithm for solving the replacement paths problem in directed
weighted graphs (simply, for every edge e ∈ PG(s, t) run Dijkstra in the graph G \ {e}) is
deterministic and near optimal (according to a conditional lower bound by [29]). To the
best of our knowledge the only deterministic combinatorial algorithms known for directed
unweighted graphs are the algorithms for general directed weighted graphs whose runtime
is Õ(mn) leaving a significant gap between the randomized and deterministic algorithms.
As mentioned above, in this paper we derandomize the Õ(m

√
n) algorithm of Roditty and

Zwick [26] and close this gap. More related work can be found in the full version.

ICALP 2019

12:4 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

1.2 Derandomizing the Combinatorial Distance Sensitivity Oracle of
Weimann and Yuster [27]

Our second result is derandomizing the combinatorial distance sensitivity oracle of Weimann
and Yuster [27] and obtaining the following theorem.

I Theorem 5. Let G = (V,E) be a directed graph with real edge weights, let |V | = n and
|E| = m. There exists a deterministic algorithm that given G and parameters f = O(logn

log logn)
and 0 < α < 1 constructs an f -sensitivity distance oracle in Õ(mn4−α) time. Given a query
(s, t, F) with s, t ∈ V and F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices
(failures), the deterministic query algorithm computes in Õ(n2−2(1−α)/f) time the distance
from s to t in the graph G \ F .

We remark that while our focus in this paper is in computing distances, one may obtain
the actual shortest path in time proportional to the number of edges of the shortest paths,
using the same algorithm for obtaining the shortest paths in the replacement paths problem
[26], and in the distance sensitivity oracles case [27].

1.3 Technical Contribution and Our Derandomization Framework
Let A be a random algorithm that uses Lemma 1 for sampling a subset of vertices R ⊆ V .
We say that P = {D1, . . . , Dq} is a set of critical paths for the randomized algorithm A if A
uses the sampling Lemma 1 and it is sufficient for the correctness of algorithm A that R is
a hitting set for P (i.e., every path in P contains at least one vertex of R). According to
Lemma 2 one can derandomize the random selection of the hitting set R in time that depends
on the number of paths in P. Therefore, in order to obtain an efficient derandomization
procedure, we want to find a small set P of critical paths for the randomized algorithms.

Our main technical contribution is to show how to compute a small set of critical paths
that is sufficient to be used as input for the greedy algorithm stated in Lemma 2.

Our framework for derandomizing algorithms and data-structures that use the sampling
Lemma 1 is given in Figure 1.

1 Step 1: Prove the existence of a small set of critical paths {D1, . . . , Dq} such that
|Di| > L and show that it is sufficient for the correctness of the randomized
algorithm that the set R obtained by Lemma 1 hits all the paths D1, . . . , Dq.

2 Step 2: Find an efficient algorithm to compute the paths D1, . . . , Dq.
3 Step 3: Use a deterministic algorithm to compute a small subset R ⊆ V of vertices

such that Di ∩R 6= ∅ for every 1 ≤ i ≤ q. For example, one can use the greedy
algorithm of Lemma 2 or the blocker set algorithm of [20] to find a subset R ⊂ V of
Õ(n/L) vertices.

Figure 1 Our derandomization framework to derandomize algorithms that use the sampling
Lemma 1.

Our first main technical contribution, denoted as Step 1 in Figure 1, is proving the
existence of small sets of critical paths for the randomized replacement path algorithm of
Roditty and Zwick [26] and for the distance sensitivity oracles of Weimann and Yuster
[27]. Our second main technical contribution, denoted as Step 2 in Figure 1, is developing
algorithms to efficiently compute these small sets of critical paths.

N. Alon, S. Chechik, and S. Cohen 12:5

For the replacement paths problem, Roditty and Zwick [26] proved the existence of a
critical set of O(n2) paths, each path containing at least d

√
ne edges. Simply applying

Lemma 2 on this set of paths requires Õ(n2.5) time which is too much, and it is also not
clear from their algorithm how to efficiently compute this set of critical paths. As for Step 1,
we prove the existence of a small set of O(n) critical paths, each path contains d

√
ne edges,

and for Step 2, we develop an efficient algorithm that computes this set of critical paths in
Õ(m

√
n) time.

For the problem of distance sensitivity oracles, Weimann and Yuster [27] proved the
existence of a critical set of O(n2f+3) paths, each path containing n(1−α)/f edges (where
0 < α < 1). Simply applying Lemma 2 on this set of paths requires Õ(n2f+3+(1−α)/f) time
which is too much, and here too, it is also not clear from their algorithm how to efficiently
and deterministically compute this set of critical paths. As for Step 1, we prove the existence
of a small set of O(n2+ε) critical paths, each path contains n(1−α)/f edges, and for Step 2,
we develop an efficient deterministic algorithm that computes this set of critical paths in
Õ(mn1+ε) time.

For Step 3, we use the folklore greedy deterministic algorithm denoted here by
GreedyPivotsSelection({D1, . . . , Dq}). Given as input the paths D1, . . . , Dq, each path
contains at least L vertices, the algorithm chooses a set of pivots R ⊆ V such that for every
1 ≤ i ≤ q it holds that Di ∩R 6= ∅. In addition, it holds that |R| = Õ(nL) and the runtime of
the algorithm is Õ(qL).

The GreedyPivotsSelection algorithm works as follows. Let P = {D1, . . . , Dq}. Starting
with R← ∅, find a vertex v ∈ V which is contained in the maximum number of sets of P,
add it to R and remove all the sets that contain v from P. Repeat this process until P = ∅.

The following greedy selection lemma is folklore and we prove it in the full version.

I Lemma 6. Let 1 ≤ L ≤ n and 1 ≤ q < poly(n) be two integers. Let D1, . . . , Dq ⊆ V be
paths satisfying |Di| ≥ L for every 1 ≤ i ≤ q. The algorithm GreedyPivotsSelection({D1, . . . ,

Dq}) finds in Õ(qL) time a set R ⊂ V such that for every 1 ≤ i ≤ q it holds that R∩Di 6= ∅
and |R| = O(n log q

L) = Õ(n/L).

Related Work - the Blocker Set Algorithm of King. We remark that the GreedyPivotsSe-
lection algorithm is similar to the blocker set algorithm described in [20] for finding a hitting
set for a set of paths. The blocker set algorithm was used in [20] to develop sequential
dynamic algorithms for the APSP problem. Additional related work is that of Agarwal
et al. [1]. They presented a deterministic distributed algorithm to compute APSP in an
edge-weighted directed or undirected graph in Õ(n3/2) rounds in the Congest model by
incorporating a deterministic distributed version of the blocker set algorithm.

While our derandomization framework uses the greedy algorithm (or the blocker set
algorithm) to find a hitting set of vertices for a critical set of paths D1, . . . , Dq, we stress
that our main contribution are the techniques to reduce the number of sets q the greedy
algorithm must hit (Step 1), and the algorithms to efficiently compute the sets D1, . . . , Dq

(Step 2). These techniques are our main contribution, which enable us to use the greedy
algorithm (or the blocker set algorithm) for a wider range of problems. Specifically, these
techniques allow us to derandomize the best known random algorithms for the replacement
paths problem and distance sensitivity oracles. We believe that our techniques can also be
leveraged for additional related problems which use a sampling lemma similar to Lemma 1.

ICALP 2019

12:6 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

Outline. The structure of the paper is as follows. In Section 1.4 we describe some prelimin-
aries and notations. In Section 2 we apply our framework to the replacement paths algorithm
of Roditty and Zwick [26]. In Section 3 we apply our framework to the DSO of Weimann
and Yuster for graphs with real-edge weights [27].

1.4 Preliminaries
Let G = (V,E) be a directed weighted graph with n vertices and m edges with real edge
weights ω(·). Given a path P in G we define its weight ω(P) = Σe∈E(P)ω(e).

Given s, t ∈ V , let PG(s, t) be a shortest path from s to t in G and let dG(s, t) = ω(PG(s, t))
be its length, which is the sum of its edge weights. Let |PG(s, t)| denote the number of
edges along PG(s, t). Note that for unweighted graphs we have |PG(s, t)| = dG(s, t). When
G is known from the context we sometimes abbreviate PG(s, t), dG(s, t) with P (s, t), d(s, t)
respectively.

We define the path concatenation operator ◦ as follows. Let P1 = (x1, x2, . . . , xr)
and P2 = (y1, y2, . . . , yt) be two paths. Then P = P1 ◦ P2 is defined as the path P =
(x1, x2, . . . , xr, y1, y2, . . . , yt), and it is well defined if either xr = y1 or (xr, y1) ∈ E.

For a graph H we denote by V (H) the set of its vertices, and by E(H) the set of its
edges. When it is clear from the context, we abbreviate e ∈ E(H) by e ∈ H and v ∈ V (H)
by v ∈ H.

Let P be a path which contains the vertices u, v ∈ V (P) such that u appears before v
along P . We denote by P [u..v] the subpath of P from u to v.

For every edge e ∈ PG(s, t) a replacement path PG(s, t, e) for the triple (s, t, e) is a
shortest path from s to t avoiding e. Let dG(s, t, e) = ω(PG(s, t, e)) be the length of the
replacement path PG(s, t, e).

We will assume, without loss of generality, that every replacement path PG(s, t, e) can
be decomposed into a common prefix CommonPrefs,t,e with the shortest path PG(s, t), a
detour Detours,t,e which is disjoint from the shortest path PG(s, t) (except for its first vertex
and last vertex), and finally a common suffix CommonSuffs,t,e which is common with the
shortest path PG(s, t). Therefore, for every edge e ∈ PG(s, t) it holds that PG(s, t, e) =
CommonPrefs,t,e ◦Detours,t,e ◦ CommonSuffs,t,e (the prefix and/or suffix may be empty).

Let F ⊆ V ∪E be a set of vertices and edges. We define the graph G \F = (V \F,E \F)
as the graph obtained from G by removing the vertices and edges F . We define a replacement
path PG(s, t, F) as a shortest path from s to t in the graph G \ F , and let dG(s, t, F) =
w(PG(s, t, e)) be its length.

2 Deterministic Replacement Paths in Õ(m
√

n) Time

In this section we apply our framework from Section 1.3 to the replacement paths algorithm
of Roditty and Zwick [26].

The randomized algorithm by Roddity and Zwick as described in [26] takes Õ(m
√
n)

expected time. They handle separately the case that a replacement path has a short detour
containing at most d

√
ne edges, and the case that a replacement path has a long detour

containing more than d
√
ne edges. The first case is solved deterministically. The second case

is solved by first sampling a subset of vertices R according to Lemma 1, where each vertex
is sampled uniformly independently at random with probability c lnn/

√
n for large enough

constant c > 0. Using this uniform sampling, it holds with high probability (of at least
1− n−c+2) that for every long triple (s, t, e) (as defined hereinafter), the detour Detours,t,e
of the replacement path PG(s, t, e) contains at least one vertex of R.

N. Alon, S. Chechik, and S. Cohen 12:7

I Definition 7. Let s, t ∈ V, e ∈ PG(s, t). The triple (s, t, e) is a long triple if every
replacement path from s to t avoiding e has its detour part containing more than d

√
ne edges.

Note that in Definition 7 we defined (s, t, e) to be a long triple if every replacement
path from s to t avoiding e has a long detour (containing more than d

√
ne edges). We could

have defined (s, t, e) to be a long triple even if at least one replacement path from s to t
avoiding e has a long detour (perhaps more similar to the definitions in [26]), however we
find Definition 7 more convenient for the following reason. If (s, t, e) has a replacement path
whose detour part contains at most d

√
ne edges, then the algorithm of [26] for handling

short detours finds deterministically a replacement path for (s, t, e). Hence, we only need to
find the replacement paths for triples (s, t, e) for which every replacement path from s to t
avoiding e has a long detour, and this is the case for which we define (s, t, e) as a long triple.

It is sufficient for the correctness of the replacement paths algorithm that the following
condition holds; For every long triple (s, t, e) the detour Detours,t,e of the replacement path
PG(s, t, e) contains at least one vertex of R. As the authors of [26] write, the choice of the
random set R is the only randomization used in their algorithm. To obtain a deterministic
algorithm for the replacement paths problem and to prove Theorem 3, we prove the following
deterministic alternative of Lemma 2.

I Lemma 8 (Our derandomized version of Lemma 2 for the replacement paths algorithm).
There exists an Õ(m

√
n) time deterministic algorithm that computes a set R ⊆ V of Õ(

√
n)

vertices, such that for every long triple (s, t, e) there exists a replacement path PG(s, t, e)
whose detour part contains at least one of the vertices of R.

Following the above description, in order to prove Theorem 3, that there exists an Õ(m
√
n)

deterministic replacement paths algorithm, it is sufficient to prove the derandomization
Lemma 8, we do so in the following sections.

2.1 Step 1: the Method of Reusing Common Subpaths - Defining the
Set Dn

In this section we prove the following lemma.

I Lemma 9. There exists a set Dn of at most n paths, each path of length exactly d
√
ne

with the following property; for every long triple (s, t, e) there exists a path D ∈ Dn and a
replacement path PG(s, t, e) such that D is contained in the detour part of PG(s, t, e).

In order to define the set of paths Dn and prove Lemma 9 we need the following definitions.
Let G′ = G \E(PG(s, t)) be the graph obtained by removing the edges of the path PG(s, t)
from G. For two vertices u and v, let dG′(u, v) be the distance from u to v in G′.

We use the following definitions of the index ρ(x), the set of vertices V√n and the set of
paths Dn.

I Definition 10 (The index ρ(x)). Let PG(s, t) =< v0, . . . , vk > and let X = {x ∈
V | ∃0≤i≤k dG′(vi, x) = d

√
ne} be the subset of all the vertices x ∈ V such that there

exists at least one index 0 ≤ i ≤ k with dG′(vi, x) = d
√
ne.

For every vertex x ∈ X we define the index 0 ≤ ρ(x) ≤ k to be the minimum index such
that dG′(vρ(x), x) = d

√
ne.

I Definition 11 (The set of vertices V√n). We define the set of vertices V√n = {x ∈
X|∀i<ρ(x)dG′(vi, x) > d

√
ne}. In other words, V√n is the set of all vertices x ∈ X such that

for all the vertices vi before vρ(x) along PG(s, t) it holds that dG′(vi, x) > d
√
ne.

ICALP 2019

12:8 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

I Definition 12 (A set of paths Dn). For every vertex x ∈ V√n, let D(x) be an arbitrary
shortest path from vρ(x) to x in G′ (whose length is d

√
ne as dG′(vρ(x), x) = d

√
ne). We

define Dn = {D(x)|x ∈ V√n}.

Note that while V√n is uniquely defined (as it is defined according to distances between
vertices) the set of paths Dn is not unique, as there may be many shortest paths from vρ(x)
to x in G′, and we take D(x) = PG′(vρ(x), x) to be an arbitrary such shortest path.

The basic intuition for the method of reusing common subpaths is as follows. Let
PG(s, t, e1), . . . , PG(s, t, er) be arbitrary replacement paths such that x is the (d

√
ne+ 1)th

vertex along the detours of all the replacement path PG(s, t, e1), . . . , PG(s, t, er). Then one can
construct replacement paths P ′G(s, t, e1), . . . , P ′G(s, t, er) such that the subpath D(x) ∈ Dn is
contained in all these replacement paths. Therefore, the subpath D(x) is reused as a common
subpath in many replacement paths. We utilize this observation in the following proof of
Lemma 9.

Proof of Lemma 9. Obviously, the set Dn described in Definition 12 contains at most n
paths, each path is of length exactly d

√
ne.

We prove that for every long triple (s, t, e) there exists a path D ∈ Dn and a replacement
path P ′(s, t, e) s.t. D is contained in the detour part of P ′(s, t, e).

Let PG(s, t, e) be a replacement path for (s, t, e). Since (s, t, e) is a long triple then the
detour part Detours,t,e of PG(s, t, e) contains more than d

√
ne edges. Let x ∈ Detours,t,e be

the (d
√
ne+ 1)th vertex along Detours,t,e, and let vj be the first vertex of Detours,t,e. Let P1

be the subpath of Detours,t,e from vj to x and let P2 be the subpath of PG(s, t, e) from x to
t. In other words, PG(s, t, e) =< v0, . . . , vj > ◦P1 ◦ P2. Since Detours,t,e contains more than
d
√
ne edges and is disjoint from PG(s, t) except for the first and last vertices of Detours,t,e

and P1 ⊂ Detours,t,e it follows that P1 is disjoint from PG(s, t) (except for the vertex vj). In
particular, since P1 is a shortest path in G \ {e} that is edge-disjoint from PG(s, t), then P1
is also a shortest path in G′ = G \ E(PG(s, t)). We get that dG′(vj , x) = |P1| = d

√
ne.

We prove that j = ρ(x) and x ∈ V√n. As we have already proved that dG′(vj , x) = d
√
ne,

we need to prove that for every 0 ≤ i < j it holds that dG′(vi, x) > d
√
ne. Assume by

contradiction that there exists an index 0 ≤ i < j such that dG′(vi, x) ≤ d
√
ne. Then the

path P̂ =< v0, . . . , vi > ◦PG′(vi, x) ◦ P2 is a path from s to t that avoids e and its length is:

|P̂ | = | < v0, . . . , vi > ◦PG′(vi, x) ◦ P2|
≤ i+ d

√
ne+ |P2|

< j + d
√
ne+ |P2|

= |PG(s, vj) ◦ P1 ◦ P2|
= |PG(s, t, e)|

This means that the path P̂ is a path from s to t in G \ {e} and its length is shorter than
the length of the shortest path PG(s, t, e) from s to t in G \ {e}, which is a contradiction.
We get that dG′(vj , x) = d

√
ne and for every 0 ≤ i < j it holds that dG′(vi, x) > d

√
ne.

Therefore, according to Definitions 10 and 11 it holds that j = ρ(x) and x ∈ V√n.
Let D(x) ∈ Dn, then according to Definition 12, D(x) is a shortest path from vρ(x) to x

in G′. We define the path P ′(s, t, e) =< v0, . . . , vρ(x) > ◦D(x) ◦ P2. It follows that P ′(s, t, e)
is a path from s to t that avoids e and |P ′(s, t, e)| = | < v0, . . . , vρ(x) > ◦D(x) ◦ P2| =
ρ(x) + d

√
ne+ |P2| = |PG(s, t, e)| = dG(s, t, e). Hence, P ′(s, t, e) is a replacement path for

(s, t, e) such that D(x) ⊂ P ′(s, t, e) so the lemma follows. J

N. Alon, S. Chechik, and S. Cohen 12:9

2.2 Step 2: the Method of Decremental Distances from a Path -
Computing the Set Dn

In this section we describe a decremental algorithm that enables us to compute the set of
paths Dn in Õ(m

√
n) time, proving the following lemma.

I Lemma 13. There exists a deterministic algorithm for computing the set of paths Dn in
Õ(m

√
n) time.

Our algorithm for computing the set of path Dn is a variant of the decremental SSSP
(single source shortest paths) algorithm of King [20]. Our variant of the algorithm is used
to find distances of vertices from a path rather than from a single source vertex as we
define below.

Overview of the Deterministic Algorithm for Computing Dn in Õ(m
√

n) Time. In the
following description let P = PG(s, t). Consider the following assignment of weights ω
to edges of G. We assign weight ε for every edge e on the path P , and weight 1 for all
the other edges where ε is a small number such that 0 < ε < 1/n. We define a graph
Gw = (G,w) as the weighted graph G with edge weights ω. We define for every 0 ≤ i ≤ k
the graph Gi = G \ {vi+1, . . . , vk} and the path Pi = P \ {vi+1, . . . , vk}. We define the graph
Gwi = (Gi, w) as the weighted graph Gi with edge weights ω.

The algorithm computes the graph Gw by simply taking G and setting all edge weights of
PG(s, t) to be ε (for some small ε such that ε < 1/n) and all other edge weights to be 1. The
algorithm then removes the vertices of PG(s, t) from Gw one after the other (starting from
the vertex that is closest to t). Loosely speaking after each vertex is removed, the algorithm
computes the distances from s in the current graph. In each such iteration, the algorithm
adds to V w√

n
all vertices such that their distance from s in the current graph is between d

√
ne

and d
√
ne + 1. We will later show that at the end of the algorithm we have V w√

n
= V√n.

Unfortunately, we cannot afford running Dijkstra after the removal of every vertex of PG(s, t)
as there might be n vertices on PG(s, t). To overcome this issue, the algorithm only maintains
nodes at distance at most d

√
ne+ 1 from s. In addition, we observe that to compute the

SSSP from s in the graph after the removal of a vertex vi we only need to spend time on
nodes such that their shortest path from s uses the removed vertex. Roughly speaking, for
these nodes we show that their distance from s rounded down to the closest integer must
increase by at least 1 as a result of the removal of the vertex. Hence, for every node we spend
time on it in at most d

√
ne+ 1 iterations until its distance from s is bigger than d

√
ne+ 1.

As we will show later this will yield our desired running time.
In the full version we analyse the algorithm and prove Lemma 13.

Proof of Theorem 3. We summarize the Õ(m
√
n) deterministic replacement paths al-

gorithm and outline the proof of Theorem 3. First, compute in Õ(m
√
n) time the set

of paths Dn as in Lemma 13. Given Dn, the deterministic greedy selection algorithm
GreedyPivotsSelection(Dn) (as described in Lemma 2) computes a set R ⊂ V of Õ(

√
n)

vertices in Õ(n
√
n) time with the following property; every path D ∈ Dn contains at least

one of the vertices of R. Theorem 3 follows from Lemmas 8, 9 and 13.

3 Deterministic Distance Sensitivity Oracles

Let 0 < ε < 1 and 1 ≤ f = O(logn
log logn) be two parameters. In [27], Weimann and Yuster

considered the following notion of intervals (note that in [27] they use a parameter 0 < α < 1
and we use a parameter 0 < ε < 1 such that ε = 1− α). They define an interval of a long

ICALP 2019

12:10 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

simple path P as a subpath of P consisting of nε/f consecutive vertices, so every simple
path induces less than n (overlapping) intervals. For every subset F ⊂ E of at most f edges,
and for every pair of vertices u, v ∈ V , let PG(u, v, F) be a shortest path from u to v in
G \ F . The path PG(u, v, F) induces less than n (overlapping) intervals. The total number
of possible intervals is less than O(n2f+3) as each one of the (at most) O(n2f+2) possible
queries (u, v, F) corresponds to a shortest path PG(u, v, F) that induces less than n intervals.

I Definition 14. Let Df be defined as all the intervals (subpaths containing nε/f edges) of
all the replacement paths PG(s, t, F) for every s, t ∈ V, F ⊆ E ∪ V with |F | ≤ f .

Weimann and Yuster apply Lemma 1 to find a set R ⊆ V of Õ(n1−ε/f) vertices that
hit w.h.p. all the intervals Df . According to these bounds (that Df contains O(n2f+3)
paths, each containing exactly nε/f edges) applying the greedy algorithm to obtain the set R
deterministically according to Lemma 2 takes Õ(n2f+3+ε/f) time, which is very inefficient.

In this section we assume that all weights are non-negative (so we can run Dijkstra’s
algorithm) and that shortest paths are unique, we justify these assumptions in the full version.

3.1 Step 1: the Method of Using Fault-Tolerant Trees to Significantly
Reduce the Number of Intervals

In Lemma 15 we prove that the set of intervals Df actually contains at most O(n2+ε) unique
intervals, rather than the O(n2f+3) naive upper bound mentioned above. From Lemmas 15
and 2 it follows that the GreedyPivotsSelection(Df) finds in Õ(n2+ε+ε/f) time the subset
R ⊆ V of Õ(n1−ε/f) vertices that hit all the intervals Df . In the full version we further
reduce the time it takes for the greedy algorithm to compute the set of pivots R to Õ(n2+ε).

I Lemma 15. |Df | = O(n2+ε).

In order to prove Lemma 15 we describe the fault-tolerant trees data-structure, which is
a variant of the trees which appear in Appendix A of [9].

I Definition 16. Let PLG(s, t, F) be the shortest among the s-to-t paths in G \ F that
contain at most L edges and let dLG(s, t, F) = ω(PLG(s, t, F)). In other words, dLG(s, t, F) =
min{ω(P) | P is an s− to− t path on at most L edges}. If there is no path from s to t in
G \ F containing at most L edges then we define PLG(s, t, F) = ∅ and dLG(s, t, F) =∞. For
F = ∅ we abbreviate PLG(s, t, ∅) = PLG(s, t) as the shortest path from s to t that contains at
most L edges, and dLG(s, t) = dLG(s, t, ∅) as its length.

Let s, t ∈ V be vertices and let L, f ≥ 1 be fixed integer parameters, we define the trees
FTL,f (s, t) as follows.

In the root of FTL,f (s, t) we store the path PLG(s, t) (and its length dLG(s, t)), and also
store the vertices and edges of PLG (s, t) in a binary search tree BSTL(s, t); If PLG (s, t) = ∅
then we terminate the construction of FTL,f (s, t).
For every edge or vertex a1 of PLG(s, t) we recursively build a subtree FTL,f (s, t, a1) as
follows. Let PLG (s, t, {a1}) be the shortest path from s to t that contains at most L edges
in the graph G\{a1}. Then in the subtree FTL,f (s, t, a1) we store the path PLG (s, t, {a1})
(and its length dLG(s, t, {a1})) and we also store the vertices and edges of PLG (s, t, {a1}) in
a binary search tree BSTL(s, t, a1); If PLG (s, t, {a1}) = ∅ we terminate the construction of
FTL,f (s, t, a1). If f > 1 then for every vertex or edge a2 in PLG(s, t, {a1}) we recursively
build the subtree FTL,f (s, t, a1, a2) as follows.

N. Alon, S. Chechik, and S. Cohen 12:11

For the recursive step, assume we want to construct the subtree FTL,f (s, t, a1, . . . , ai). In
the root of FTL,f (s, t, a1, . . . , ai) we store the path PLG(s, t, {a1, . . . , ai}) (and its length
dLG(s, t, {a1, . . . , ai})) and we also store the vertices and edges of PLG (s, t, {a1, . . . , ai}) in a
binary search tree BSTL(s, t, a1, . . . , ai). If PLG(s, t, {a1, . . . , ai}) = ∅ then we terminate
the construction of FTL,f (s, t, a1, . . . , ai). If i < f then for every vertex or edge ai+1 in
PLG(s, t, {a1, . . . , ai})) we recursively build the subtree FTL,f (s, t, a1, . . . , ai, ai+1).

Observe that there are two conditions in which we terminate the recursive construction
of FTL,f (s, t, a1, . . . , ai):

Either i = f in which case FTL,f (s, t, a1, . . . , af) is a leaf node of FTL,f (s, t) and we
store in the leaf node FTL,f (s, t, a1, . . . , af) the path PLG(s, t, {a1, . . . , af}).
Or there is no path from s to t in G \ {a1, . . . , ai} that contains at most L edges and then
FTL,f (s, t, a1, . . . , ai) is a leaf vertex of FTL,f (s, v) and we store in it PLG(s, t, {a1, . . . ,

ai}) = ∅.

Querying the tree F T L,f (s, t). Given a query (s, t, F) such that F ⊂ V ∪E with |F | = f

we would like to compute dLG(s, t, F) using the tree FTL,f (s, t).
The query procedure is as follows. Let PLG(s, t) be the path stored in the root of

FTL,f (s, t) (if the root of FTL,f (s, t) contains ∅ then we output that dLG(s, t, F) = ∞).
First we check if PLG(s, t) ∩ F = ∅ by checking if any of the elements a1 ∈ F appear in
BSTL(s, t) (which takes O(logL) time for each element a1 ∈ F). If PLG(s, t) ∩ F = ∅ we
output dLG(s, t, F) = dLG(s, t) (as PLG (s, t) does not contain any of the vertices or edges in F).
Otherwise, let a1 ∈ PLG(s, t) ∩ F .

We continue the search similarly in the subtree FTL,f (s, t, a1) as follows. Let PLG (s, t, {a1})
be the path stored in the root of FTL,f (s, t, a1) (if the root of FTL,f (s, t, a1) contains ∅ then
we output that dLG(s, t, F) =∞). First we check if PLG(s, t, {a1}) ∩ F = ∅ by checking if any
of the elements a2 ∈ F appear in BSTL(s, t, a1) (which takes O(logL) time for each element
a2 ∈ F). If PLG(s, t, {a1}) ∩ F = ∅ we output dLG(s, t, F) = dLG(s, t, {a1}) (as PLG(s, t, {a1})
does not contain any of the vertices or edges in F). Otherwise, let a2 ∈ PLG (s, t, {a1})∩F . We
continue the search similarly in the subtrees FTL,f (s, t, a1, a2), FTL,f (s, t, a1, a2, . . . , ai) until
we either reach a leaf node which contains ∅ (and in this case we output that dLG(s, t, F) =∞)
or we find a path PLG(s, t, {a1, . . . , ai}) such that PLG(s, t, {a1, . . . , ai}) ∩ F = ∅ and then we
output dLG(s, t, F) = dLG(s, t, {a1, . . . , ai}).

In the full version we prove the following lemma.

I Lemma 17. Given the tree FTL,f (s, t) and a set of failures F ⊂ V ∪ E with |F | ≤ f , the
query procedure computes the distance dLG(s, t, F) in O(f2 logL) time.

We are now ready to prove lemma 15 asserting that |Df | = O(n2+ε).

Proof of Lemma 15. Let L = nε/f and let D be the set of all the unique shortest paths
PLG(s, t, {a1, . . . , ai}) stored in all the nodes of all the trees {FTL,f (s, t)}s,t∈V . Since the
number of nodes in every tree FTL,f (s, t) is at most Lf = (nε/f)f = nε, and there are O(n2)
trees (one tree for every pair of vertices s, t ∈ V) we get that the number of nodes in all the
trees {FTL,f (s, t)}s,t∈V is O(n2+ε) and hence |D| = O(n2+ε).

We prove that Df ⊆ D. By definition, Df contains all the intervals (subpaths containing
nε/f edges) of all the replacement paths PG(s, t, F) for every s, t ∈ V, F ⊆ E ∪ V with
|F | ≤ f . Let P ∈ Df be the unique shortest path, then P is a subpath containing nε/f
edges of the replacement paths PG(s, t, F). Let u be the first vertex of P , and let v be the
last vertex of P . Then P is a shortest path from u to v in G \ F , and since we assume

ICALP 2019

12:12 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

that the shortest paths our algorithms compute are unique then P = PG(u, v, F) is the
unique shortest path from u to v in G \ F . Since P is assumed to be a path on exactly
L = nε/f edges, then P = PG(u, v, F) = PLG(u, v, F). According to the query procedure in
the tree FTL,f (u, v) and Lemma 17, if we query the tree FTL,f (u, v) with (u, v, F) then
we reach a node FTL,f (u, v, a1, . . . , ai) which contains the path PLG(u, v, {a1, . . . , ai}) with
{a1, . . . , ai} ⊆ F such that PLG(u, v, {a1, . . . , ai}) = PLG(u, v, F) = P is the shortest u-to-v
path in G \ F . Hence, P ∈ D and thus Df ⊆ D and |Df | ≤ |D| = O(n2+ε) J

3.2 Step 2: Efficient Construction of the Fault-Tolerant Trees –
Computing the Paths Df

Recall that we defined the trees FTL,f (u, v) with respect the parameters f (the maximum
number of failures) and L (where we search for shortest paths among paths of at most L
edges). The idea is to build the trees FTL,f (u, v) using dynamic programming having the
trees FTL−1,f (u, v) with parameters f, L− 1 as subproblems.

Assume we have already built the trees FT i,f (u, v), where u, v ∈ V, 1 ≤ i < L, we describe
how to build the trees FT i+1,f (u, v). Let (u, v, F) be a query for which we want to compute
the distance di+1(u, v, F) (as part of the construction of the tree FT i+1,f (u, v)). Scan all the
edges (u, z) ∈ E and query the tree FT i,f (z, v) with the set F to find the distance di(z, v, F).
Querying the tree FT i,f (z, v) takes O(f2 log i) = O(f2 logL) time as described in Lemma
17 (note that f2 logL = Õ(1) for f ≤ logn as L ≤ n), and we run O(out-degree(u)) such
queries and take the minimum of the following equation.

di+1(u, v, F) = min
z
{ω(u, z) + di(z, v, F) | (u, z) ∈ E AND u, z, (u, z) 6∈ F} (1)

parenti+1(u, v, F) = arg min
z
{ω(u, z) + di(z, v, F) | (u, z) ∈ E AND u, z, (u, z) 6∈ F} (2)

Note that in Equation 1 we assume that for every vertex u ∈ V it holds that G contains
the self loops (u, u) ∈ E such that ω(u, u) = 0.

So the time to compute di+1(u, v, F) is Õ(out-degree(u)). Next, we describe how to
reconstruct the path P i+1(u, v, F) in O(L) additional time. We reconstruct the shortest
path P i+1(u, v, F) by simply following the (at most L) parent pointers. In more details, let
z = parenti+1(u, v, F) be the vertex defined according to Equation 2. We reconstruct the
shortest path P i+1(u, v, F) by concatenating (u, z) with the shortest path P i(z, v, F) (which
we reconstruct in the same way), thus we can reconstruct P i+1(u, v, F) edge by edge in
constant time per edge, and hence it takes O(L) time to reconstruct the path P i+1(u, v, F)
that contains at most L edges.

The tree FT i,f (u, v) contains if ≤ Lf nodes, and thus all the trees {FT i,f (u, v)} for all
i ≤ L, u, v ∈ V contain O(n2Lf+1) nodes together.

In each such node we compute the distance di(u, v, {a1, . . . , aj}) in Õ(out-degree(u)) time
and reconstruct the path P i(u, v, {a1, . . . , aj}) in additional O(L) time. Theretofore, com-
puting all the distances di(u, v, {a1, . . . , aj}) and all the paths P i(u, v, {a1, . . . , aj}) in all the
nodes of all the trees {FT i,f (u, v)}u,v∈V,1≤i≤L takes Õ(

∑
i≤L,u,v∈V L

f (out-degree(u) + L)) =
Õ(mnLf+1 + n2Lf+2) time. substituting L = Õ(nε/f) we get an algorithm to compute the
trees {FTL,f (u, v)}u,v∈V in Õ(mn1+ε+ε/f + n2+ε+2ε/f) time.

This proves the following Lemma.

I Lemma 18. One can deterministically construct the trees FTL,f (s, t) for every s, t ∈ V
in Õ(mn1+ε+ε/f + n2+ε+2ε/f) time.

N. Alon, S. Chechik, and S. Cohen 12:13

In the full version we further reduce the runtime to Õ(mn1+ε) by using dynamic pro-
gramming only for computing the first f − 1 levels of the trees FTL,f (s, t) and then applying
Dijkstra in a sophisticated manner to compute the last layer of the trees FTL,f (s, t). In addi-
tion, we also boost-up the runtime of the greedy pivots selection algorithm from Õ(n2+ε+ε/f)
to Õ(n2+ε) time.

References
1 Udit Agarwal, Vijaya Ramachandran, Valerie King, and Matteo Pontecorvi. A Deterministic

Distributed Algorithm for Exact Weighted All-Pairs Shortest Paths in Õ(n 3/2) Rounds. In
Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
2018, Egham, United Kingdom, July 23-27, 2018, pages 199–205, 2018.

2 N. Alon and J.H. Spencer. The Probabilistic Method. Fourth Edition. Wiley, 2016.
3 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic combinatorial replacement paths

and distance sensitivity oracles. CoRR, abs/1905.07483, 2019. arXiv:1905.07483.
4 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph Expansion and

Communication Costs of Fast Matrix Multiplication. J. ACM, 59(6):32:1–32:23, January 2013.
doi:10.1145/2395116.2395121.

5 Austin R. Benson and Grey Ballard. A Framework for Practical Parallel Fast Matrix Multi-
plication. SIGPLAN Not., 50(8):42–53, January 2015. doi:10.1145/2858788.2688513.

6 Aaron Bernstein. A Nearly Optimal Algorithm for Approximating Replacement Paths and
K Shortest Simple Paths in General Graphs. In Proceedings of the Twenty-first Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 742–755, 2010. URL:
http://dl.acm.org/citation.cfm?id=1873601.1873662.

7 Aaron Bernstein and David Karger. Improved Distance Sensitivity Oracles via Random
Sampling. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 34–43, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347087.

8 Aaron Bernstein and David Karger. A Nearly Optimal Oracle for Avoiding Failed Vertices and
Edges. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing
(STOC), pages 101–110, 2009. doi:10.1145/1536414.1536431.

9 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ε) approximate f -sensitive
Distance Oracles. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’17, pages 1479–1496, 2017. URL: http://dl.acm.org/citation.
cfm?id=3039686.3039782.

10 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-Sensitivity Distance Oracles
and Routing Schemes. Algorithmica, 63(4):861–882, 2012. doi:10.1007/s00453-011-9543-0.

11 Camil Demetrescu and Mikkel Thorup. Oracles for Distances Avoiding a Link-failure. In
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 838–843, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545490.

12 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for Distances Avoiding a Failed Node or Link. SIAM J. Comput., 37(5):1299–1318,
January 2008. doi:10.1137/S0097539705429847.

13 Ran Duan and Seth Pettie. Dual-failure Distance and Connectivity Oracles. In Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 506–515,
2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496826.

14 Yuval Emek, David Peleg, and Liam Roditty. A Near-linear-time Algorithm for Computing
Replacement Paths in Planar Directed Graphs. ACM Trans. Algorithms, 6(4):64:1–64:13,
September 2010. Appeared also in the Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’08). doi:10.1145/1824777.1824784.

15 David Eppstein. Finding the k Shortest Paths. SIAM J. Comput., 28(2):652–673, 1998.
doi:10.1137/S0097539795290477.

ICALP 2019

http://arxiv.org/abs/1905.07483
http://dx.doi.org/10.1145/2395116.2395121
http://dx.doi.org/10.1145/2858788.2688513
http://dl.acm.org/citation.cfm?id=1873601.1873662
http://dl.acm.org/citation.cfm?id=1347082.1347087
http://dl.acm.org/citation.cfm?id=1347082.1347087
http://dx.doi.org/10.1145/1536414.1536431
http://dl.acm.org/citation.cfm?id=3039686.3039782
http://dl.acm.org/citation.cfm?id=3039686.3039782
http://dx.doi.org/10.1007/s00453-011-9543-0
http://dl.acm.org/citation.cfm?id=545381.545490
http://dx.doi.org/10.1137/S0097539705429847
http://dl.acm.org/citation.cfm?id=1496770.1496826
http://dx.doi.org/10.1145/1824777.1824784
http://dx.doi.org/10.1137/S0097539795290477

12:14 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

16 Zvi Gotthilf and Moshe Lewenstein. Improved Algorithms for the K Simple Shortest Paths
and the Replacement Paths Problems. Inf. Process. Lett., 109(7):352–355, March 2009.
doi:10.1016/j.ipl.2008.12.015.

17 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved Distance Sensitivity Oracles
via Fast Single-Source Replacement Paths. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, 20-23, 2012, pages 748–757, 2012. doi:10.1109/FOCS.
2012.17.

18 J. Huang, L. Rice, D. A. Matthews, and R. A. v. d. Geijn. Generating Families of Practical
Fast Matrix Multiplication Algorithms. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 656–667, May 2017. doi:10.1109/IPDPS.2017.56.

19 Neelesh Khanna and Surender Baswana. Approximate Shortest Paths Avoiding a Failed Vertex:
Optimal Size Data Structures for Unweighted Graphs. In 27th International Symposium on
Theoretical Aspects of Computer Science, STACS, pages 513–524, 2010. doi:10.4230/LIPIcs.
STACS.2010.2481.

20 Valerie King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 81–91, 1999. doi:
10.1109/SFFCS.1999.814580.

21 Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest Paths in Directed Planar Graphs
with Negative Lengths: A Linear-space O(n log2 n)-time Algorithm. ACM Trans. Algorithms,
6(2):30:1–30:18, April 2010. doi:10.1145/1721837.1721846.

22 Eugene L. Lawler. A Procedure for Computing the K Best Solutions to Discrete Optimization
Problems and Its Application to the Shortest Path Problem. Management Science, 18(7):401–
405, 1972. doi:10.1287/mnsc.18.7.401.

23 Cheng-Wei Lee and Hsueh-I Lu. Replacement Paths via Row Minima of Concise Matrices.
SIAM J. Discrete Math., 28(1):206–225, 2014. doi:10.1137/120897146.

24 K. Malik, A. K. Mittal, and S. K. Gupta. The K Most Vital Arcs in the Shortest Path Problem.
Oper. Res. Lett., 8(4):223–227, August 1989. doi:10.1016/0167-6377(89)90065-5.

25 Enrico Nardelli, Guido Proietti, and Peter Widmayer. A Faster Computation of the Most
Vital Edge of a Shortest Path. Inf. Process. Lett., 79(2):81–85, June 2001. doi:10.1016/
S0020-0190(00)00175-7.

26 Liam Roditty and Uri Zwick. Replacement Paths and k Simple Shortest Paths in Unweighted
Directed Graphs. In Automata, Languages and Programming, 32nd International Colloquium,
ICALP, 2005, pages 249–260. See also ACM Trans. Algorithms, 8(4):33:1–11, 2012, 2005.
doi:10.1007/11523468_21.

27 Oren Weimann and Raphael Yuster. Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. In Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, FOCS ’10, pages 655–662, Washington, DC, USA, 2010.
IEEE Computer Society. doi:10.1109/FOCS.2010.68.

28 Virginia Vassilevska Williams. Faster Replacement Paths. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, 23-25, 2011, pages
1337–1346, 2011. doi:10.1137/1.9781611973082.102.

29 Virginia Vassilevska Williams and Ryan Williams. Subcubic Equivalences between Path,
Matrix and Triangle Problems. In 51st Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, pages 645–654, 2010. doi:10.1109/FOCS.2010.67.

30 Jin Y. Yen. Finding the K Shortest Loopless Paths in a Network. Management Science,
17(11):712–716, 1971. doi:10.1287/mnsc.17.11.712.

http://dx.doi.org/10.1016/j.ipl.2008.12.015
http://dx.doi.org/10.1109/FOCS.2012.17
http://dx.doi.org/10.1109/FOCS.2012.17
http://dx.doi.org/10.1109/IPDPS.2017.56
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2481
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2481
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1145/1721837.1721846
http://dx.doi.org/10.1287/mnsc.18.7.401
http://dx.doi.org/10.1137/120897146
http://dx.doi.org/10.1016/0167-6377(89)90065-5
http://dx.doi.org/10.1016/S0020-0190(00)00175-7
http://dx.doi.org/10.1016/S0020-0190(00)00175-7
http://dx.doi.org/10.1007/11523468_21
http://dx.doi.org/10.1109/FOCS.2010.68
http://dx.doi.org/10.1137/1.9781611973082.102
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1287/mnsc.17.11.712

	Introduction
	Derandomizing the Replacment Paths Algorithm of Roditty and Zwick citeRoditty2005
	Derandomizing the Combinatorial Distance Sensitivity Oracle of Weimann and Yuster citeWY13
	Technical Contribution and Our Derandomization Framework
	Preliminaries

	Deterministic Replacement Paths in Otilde(m sqrt{n}) Time
	Step 1: the Method of Reusing Common Subpaths - Defining the Set D_n
	Step 2: the Method of Decremental Distances from a Path - Computing the Set D_n

	Deterministic Distance Sensitivity Oracles
	Step 1: the Method of Using Fault-Tolerant Trees to Significantly Reduce the Number of Intervals
	Step 2: Efficient Construction of the Fault-Tolerant Trees – Computing the Paths D_f

