
Near Optimal Algorithms For The Single Source Replacement Paths

Problem

Shiri Chechik ∗ Sarel Cohen∗

Abstract
The Single Source Replacement Paths (SSRP) problem is as
follows; Given a graph G = (V,E), a source vertex s and a
shortest paths tree Ts rooted in s, output for every vertex
t ∈ V and for every edge e in Ts the length of the shortest
path from s to t avoiding e.

We present near optimal upper bounds, by providing

Õ(m
√
n + n2) time randomized combinatorial algorithm 1

for unweighted undirected graphs, and matching conditional

lower bounds for the SSRP problem.

1 Introduction

Let G = (V,E) be a graph with n vertices and m edges.
Given two vertices s and t and an edge e, a replacement
path Ps,t,e for the triple (s, t, e) is a shortest path from
s to t that avoids the edge e. In the replacement paths
(RP) problem, we are given a graph G and a shortest
path P between two vertices s and t, and the goal is to
return for every edge e on P , a replacement path Ps,t,e.

The motivation for the replacement paths problem
stems from the fact that in real world networks links
are prone to failures and having backup paths between
important vertices is often desirable. Not only the
replacement paths problem is well motivated by its own
right but it is also used in other important applications.
One application relates to auction theory, where the
replacement paths problem is used to compute the
Vickrey pricing of edges owned by selfish agents [25, 17].
Another application is that of computing the k shortest
simple paths between a pair of vertices. The k shortest
simple paths problem can be computed by k calls to the
replacement paths algorithm (this reduction holds both
in the directed weighted case and also in the undirected
unweighed case) and has many applications by itself
[14].

The replacement paths problem has attracted a lot
of attention and many of the algorithms for different
aspects of this problem admit by-now near optimal

∗Tel Aviv University, Israel. E-mails:
shiri.chechik@gmail.com, sarelcoh@post.tau.ac.il. This
work was partially supported by ISF grant No. 1528/15 and the
Blavatnik Fund.

1As usual, n is the number of vertices, m is the number of
edges and the Õ notation suppresses polylogarithmic factors.

solutions (see e.g. [22, 24, 23, 27, 13, 19, 32, 29]). For
a more extensive literature survey on the replacement
paths problem see the full version.

In this paper we consider a natural and important
generalization of the replacement paths problem, re-
ferred to as the single source replacement paths (SSRP)
problem, which is defined as follows. Given a graph G
and a fixed source vertex s the SSRP(s) problem is to
compute the lengths of the replacement paths Ps,t,e for
every vertex t ∈ V and for every edge e ∈ P (s, t).

For every vertex t ∈ V , the number of edges on
P (s, t) is bounded by O(n) and thus, there are O(n2)
replacement paths Ps,t,e. It follows that the size of the
SSRP(s) output (which is the lengths of these O(n2)
replacement paths Ps,t,e) is O(n2).

Quite surprisingly, the SSRP problem, despite of its
natural flavour, attracted much less attention. The first
reference to the best of our knowledge is a paper by
Hershberger et al. [18] that referred to the problem as
edge-replacement shortest paths trees and showed that
in the path-comparison model of computation of Karger
et al. [18], SSRP on directed graphs with n nodes,
m edges and arbitrary edge weights requires Ω(mn)
comparisons. The reductions by Vassilevska Williams
and Williams [31] imply that, for arbitrary weights, any
O(n3−ε) algorithm for a constant ε > 0 even for the
simpler RP problem would imply a O(n3−δ) algorithm
for some constant δ > 0 for all-pairs shortest paths
(APSP). Therefore, there seems to be little hope to
obtain a subcubic time algorithm for the general case
of SSRP of directed graphs with arbitrary edge weights.

To the best of our knowledge, the only non triv-
ial upper bound for the SSRP problem was obtained
by Grandoni and Vassilevska Williams [15], who were
also the ones who named this problem the single source
replacement paths problem. Grandoni and Vassilevska
Williams [15] showed that by restricting the problem for
small integer edge weights and by using fast matrix mul-
tiplications one can “break” these lower bounds. More
precisely, they showed that for graphs with positive in-
teger edge weights in the range [1,M], SSRP can be

computed in Õ(Mnω) time (here ω < 2.373 is the ma-
trix multiplication exponent [30, 20]). For integer edge

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2090

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

weights in the range [−M,M], they presented an algo-

rithm for SSRP in Õ(M
1

4−ω n2+
1

4−ω) time. For compari-
son the current best known bound for the simpler prob-
lem of the RP for directed graph with weights [−M,M]

is by Vassilevska Williams [29] who gave an Õ(Mnω)
time algorithm. Interestingly, the SSRP problem with
positive weights of [15] matches the best known bound
for the RP problem. However, the best known bound
for the SSRP problem with negative weights [15] is
larger than the bound for the RP problem with negative
weights. This interesting gap between the best SSRP
algorithm and the RP algorithm in the case of nega-
tive weights raises an interesting question of whether
there is an existential gap between these two problems
or whether one can close this gap. Grandoni and Vas-
silevska Williams [15] conjectured that the gap between
these two problems is essential and in fact they conjec-
tured that the SSRP problem with negative weights is
as hard as the directed All Pairs Shortest Paths (APSP)
problem.

The lower bounds for both the RP and the SSRP
problems apply for directed graphs only. In fact, for
the undirected case the RP problem admits a near
linear time algorithm of Õ(m) [22, 24, 23]. A natural
question is whether the undirected version of the SSRP
can also be solved in near linear time. In this paper we
show that under some well believed assumptions this
is impossible. We therefore present a separation gap
between the SSRP problem and the RP problem. To
the best of our knowledge this is the first separation
gap introduced for these problems.

More precisely, for the undirected unweighted case
we present matching upper and conditional lower
bounds of Θ̃(m

√
n + n2) time. Namely, we show that

the SSRP problem for undirected unweighted graphs
can be solved in Õ(m

√
n + n2) time. In addition, we

show that there is no combinatorial algorithm for solv-
ing undirected unweighted SSRP in O(m(

√
n)1−ε + n2)

for some constant ε unless there is a combinatorial al-
gorithm for solving the Boolean Matrix Multiplication
problem (BMM) on two n × n matrices A and B con-
taining a total number of m 1’s in O(mn1−ε) time. The
n2 term in the lower bound is trivial as we need Ω(n2)
time just to output the solution.

The term “combinatorial algorithm” is loosely de-
fined, and it is often referred to as an algorithm that
does not use any matrix multiplication tricks. The in-
terest in combinatorial algorithms stems from the as-
sumption that in practice combinatorial algorithms are
much more efficient since the constants hidden in the
matrix multiplication bounds are considered to be high.

Our main results are summarized in the following
theorems.

Theorem 1.1. There exists an Õ(m
√
n + n2) time

combinatorial algorithm for the SSRP problem on un-
weighted undirected graphs. Our randomized algorithm
is a monte carlo with a one-sided error, as we always
output distances which are at least the exact distances,
and with high probability (of at least 1 − n−q for any
constant q > 0) we output the exact distance.

Our lower bound for undirected unweighted graphs
(given in the next theorem) relies on the following
conjecture.

Conjecture 1.1. (The BMM Conjecture) In the
Word RAM model with words of O(log n) bits, any
combinatorial algorithm requires Ω(mn1−o(1)) time in
expectation to compute the boolean product of two n×n
matrices containing a total number of m 1’s.

Theorem 1.2. Assuming the BMM conjecture any
combinatorial algorithm for solving the SSRP problem
on n-vertices m-edges undirected unweighted graphs re-
quires Ω(mn0.5−ε + n2) time.

The SSRP problem considered in this paper is
closely related to the distance sensitivity oracles prob-
lem. A distance sensitivity oracle is a preprocessed data
structure on a given graph G that can answer distance
queries of the following form. Given two vertices s and
t and a set F of failed edges/vertices return the dis-
tance from s to t in G \ F . The distance sensitivity
oracles problem has been extensively studied and the
literature covers many different aspects of it (see e.g.
[11, 3, 4, 12, 7, 5, 28, 15, 10, 6]).

In the full version, we show that for the undirected
weighted case, no combinatorial SSRP algorithm exists
in O(mn1−ε) time for any constant ε > 0 unless APSP
has a combinatorial algorithm with truly subcubic time.
This matches (up to polylog factors) the upper bound

of Õ(mn) (that can be derived easily from e.g. [4]).
Therefore, the case of combinatorial SSRP for undi-
rected weighted graphs is essentially resolved. Together
with our new result, this completes the picture of SSRP
for undirected graphs.

2 Preliminaries

Let G = (V,E) be a weighted graph with integer edge
weights in the range [−M,M]. Let P be a path in G.
We denote by w(P) the length of the path P which is
defined as the sum of the weights of the edges along P ,
and by |P | the number of edges of P . For unweighted
graphs, |P | = w(P).

Let u, v ∈ V be two vertices, we denote by PG(u, v)
a shortest path from u to v in G, and denote by
dG(u, v) the distance from u to v in the graph G (i.e.,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2091

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

dG(u, v) = w(PG(u, v)). When G is clear from the
context, we abbreviate PG(u, v) by P (u, v) and dG(u, v)
by d(u, v). Let e = (x, y) ∈ E, we define d(s, e) =
min{d(s, x), d(s, y)}.

We denote by D = maxs,t∈V d(s, t) the diameter of
the graph G (which is the largest distance in the graph
G).

Let F ⊂ E be a set of edges, we denote by G\F the
graph (V,E\F), that is the graph obtained by removing
the set of edges F from G.

Let s, t ∈ V be two vertices and e ∈ P (s, t) be an
edge on the shortest path from s to t. The replacement
path associated with the triple (s, t, e), denoted by
Ps,t,e, is the shortest path from the source vertex s to
the target vertex t avoiding the edge e. We denote by
ds,t,e = w(Ps,t,e) the distance from s to t in the graph
G \ {e}. Similarly, let F ⊂ E be a set of edges, we
denote by Ps,t,F the shortest path from s to t in the
graph G\F and by ds,t,F = w(Ps,t,F) the distance from
s to t in the graph G \ F .

For every vertex v ∈ V we define by Tv the shortest
paths tree rooted in v. We denote by T ev the shortest
paths tree in the graph G \ {e} rooted in v.

For a graph H we denote by V (H) the set of its
vertices, and by E(H) the set of its edges. Let P be a
path and u, v be two vertices on this path. We denote
by P [u..v] the subpath of P from u to v. When it is clear
from the context, we sometimes abbreviate e ∈ E(P) as
e ∈ P to denote an edge of the path P , and v ∈ V (P)
as v ∈ P to denote a vertex of the path P .

We now define the path concatenation operator ◦.
Let P1 = (x1, x2, . . . , xr) and P2 = (y1, y2, . . . , yt) be
two paths. Then P = P1 ◦ P2 is defined as the path
P = (x1, x2, . . . , xr, y1, y2, . . . , yt), and it is well defined
if either xr = y1 or (xr, y1) ∈ E.

We will assume, without loss of generality, that ev-
ery replacement path Ps,t,e can be decomposed into a
common prefix CommonPrefs,t,e with the shortest path
P (s, t), a detour Detours,t,e which is disjoint from the
shortest path P (s, t) (except from its first and last ver-
tices), and finally a common suffix CommonSuffs,t,e
which is common with the shortest path P (s, t). There-
fore, for every edge e ∈ P (s, t) it holds that Ps,t,e =
CommonPrefs,t,e ◦ Detours,t,e ◦ CommonSuffs,t,e (the
prefix and/or suffix may be empty). See Figure 1 for
illustration.

We remark that the common prefix
CommonPrefs,t,e, the detour Detours,t,e and the
common suffix CommonSuffs,t,e are all defined given
a specific replacement path Ps,t,e. Other replacement
paths from s to t avoiding e may have a different
common prefix, detour or common suffix. When
the replacement path Ps,t,e will be clear from the

𝒔 t

CommonPre𝐟𝒔,𝒕,𝒆 CommonSu𝐟𝐟𝒔,𝒕,𝒆
𝑷(𝒔, 𝒕)

𝒆

Detour 𝒔,𝒕,𝒆𝑷𝒔,𝒕,𝒆

Figure 1: P (s, t) is the shortest path from s to t,
Ps,t,e is the replacement path from s to t avoiding e,
CommonPrefs,t,e is the common prefix of Ps,t,e and
P (s, t), CommonSuffs,t,e is the common suffix of Ps,t,e
and P (s, t), and Detours,t,e is the detour of Ps,t,e which
is edge-disjoint from P (s, t). By definition, Ps,t,e =
CommonPrefs,t,e ◦Detours,t,e ◦ CommonSuffs,t,e.

context, we will refer to CommonPrefs,t,e, Detours,t,e
and CommonSuffs,t,e as explained above relative to
Ps,t,e. When the replacement path is not clear from
the context, we will mention to which replacement
path we associate CommonPrefs,t,e, Detours,t,e and
CommonSuffs,t,e.

The following sampling Lemma is a folklore, we
prove it in the full version.

Lemma 2.1. [Random Sampling] Consider n balls of
which R are red and n − R are blue and let C,Q > 0
be constants such that R > 2CQ lnn. Let B be a
random set of balls such that each ball is chosen to be in
B independently uniformly at random with probability
(CQ lnn)

R . Then with high probability (with probability at

least 1 − 2C
nQ) at least C of the balls of B are red and

the size of B is Õ(n/R).

We note that previous related algorithms (e.g. [27,
15]) either used matrix multiplication (as in [15], and
thus couldn’t avoid the term nω in their running time)
or handled the seemingly easier problem of replacement
paths and heavily relied on the fact that there is a single
target (as in [27]).

We next highlight several tools and ideas used in
our construction. First, we define the notion of an edge
e being (x, y)-replaceable as follows.

Definition 2.1. Let x, y ∈ V, e ∈ E, we say that e
is (x, y)-replaceable iff dx,y,e = d(x, y) (i.e., e is (x, y)-
replaceable iff there exists a shortest path from x to y
which avoids e). Observe that in undirected graphs, e is
(x, y)-replaceable iff e is (y, x)-replaceable.

In our construction we develop the following useful
tool, which we refer to as replaceability oracle. To build
such replaceability oracles we utilize reachability oracles
([8]) and dominator trees ([21]).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2092

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Theorem 2.1. [proof in Section 4] There exists a data-
structure (single source replaceability oracle) such that
given an undirected graph G = (V,E) with n vertices
and m edges, and a source vertex v ∈ V , preprocesses
the graph in Õ(m) time, stores a data-structure Rv of

size Õ(n). The data-structure Rv answers replaceability
queries (t, e) ∈ V ×E in constant time, that is, given a
query (t, e) the data-structure answers if dv,t,e = d(v, t).

Secondly, we introduce the notion of “double pivot”.
A common approach in the existing literature (see e.g.,
[27, 28, 15]) is to use sampling in order to hit all the long
detours and then to compute distances exactly from the
chosen vertices. The idea is that given a polynomial
number of “long” detours, each containing at least L
edges, then by sampling Õ(n/L) vertices, each detour
contains w.h.p. at least one sampled vertex. Our goal
in sampling two pivots on a detour is different. We aim
to utilize a structural property of shortest paths from
[1]. In [1] (Theorem 1) the authors prove that every
s-to-t shortest path Ps,t,F in an unweighed undirected
graph G \ F (with |F | = f) can be decomposed into a
concatenation of f + 1 shortest path in the graph G.
Specifically, for the case of a single failure (f = 1) it
follows that there exists a vertex q on the path Ps,t,e
such that both its prefix from s to q and its suffix from
q to t are shortest paths in the graph G. It would
be helpful if we could sample the vertex q as a pivot,
however the probability to sample q specifically may be
very low. It turns out that it is sufficient to sample a
vertex x before q (along Ps,t,e) and a vertex y after q
(along Ps,t,e) such that the subpath of Ps,t,e from x to

y contains at most Õ(
√
n) edges. The replacement path

is then obtained by concatenating three shortest paths,
from s to x, from x to y, and from y to t, from the
original graph. In order for this to work, the algorithm
rules out that these shortest paths contain the edge e
that we want to avoid. See more details in the “double
pivot” case in Section 7.

Another ides is our use of path intervals. The
notion of splitting a path into segments was already
known in the literature (e.g., [27, 28, 4, 6]), however
we define path intervals in a new way. Let P (s, t) =
(v0, . . . , vd(s,t)), and P (s, t, e) be a replacement path,
and let x, y be two vertices on its detour part such that x
appears before y along P (s, t, e). The replacement path
P (s, t, e) avoids a subpath (vi, . . . , vj) of P (s, t). But
this subpath (vi, . . . , vj) may not be maximal, in the
sense that there might exist another replacement path
P ′(s, t, e) such that x appears before y on the detour
part of P ′(s, t, e), and P ′(s, t, e) avoids a larger subpath
(vi′ , . . . , vj′) ⊃ (vi, . . . , vj). Intuitively, we define the
path interval Ix,y,t as the maximum subpath of P (s, t)

which is avoided by at least one replacement path from s
to t avoiding e which passes through x, y. We prove the
existence and uniqueness of path intervals in our context
in Section 7, and use it to efficiently find replacement
paths in the “double pivot” case in Section 8.

3 An Õ(m
√
n + n2) Algorithm for SSRP

in Unweighted Undirected Graphs - An
Overview

In this Section we present an overview of our Õ(m
√
n+

n2) algorithm for the SSRP problem in undirected
unweighted graphs, which is near optimal according to
our conditional lower bound in Section 10.

Let s be the source vertex, we compute Ts the
shortest paths tree (BFS tree) rooted in s, and let E(Ts)
be the edges of the tree Ts. The output of our algorithm
is the O(n2) distances: for every t ∈ V, e ∈ E(Ts) we
output ds,t,e, the length of the shortest path from s to
t avoiding e.

First, we sample every vertex x ∈ V uniformly
independently at random with probability CQ logn√

n
for

large enough constants C,Q > 0. Let B be the set
of all the sampled vertices (also referred to as pivots).
According to Lemma 2.1, it holds with high probability
that |B| = Õ(

√
n). For our analysis it is enough

to assume that |B| = Õ(
√
n). However, it is worth

mentioning that if we sampled too many vertices and it
does not hold that |B| = Õ(

√
n) then we can resample

B (by choosing every vertex x ∈ V at random with

probability CQ logn√
n

) until |B| = Õ(
√
n).

Let e = (u, v) ∈ E(Ts) be a tree-edge such that
u is closer than v to the root s in the tree Ts (i.e.,
d(s, u) = d(s, v) − 1), and let t ∈ V . In our algorithm
and analysis we consider the following cases.

1. The replaceable edge case: Here we consider
the case that e is (s, t)-replaceable, i.e., ds,t,e = d(s, t).
We construct a replaceability oracle Rs as in Theorem
2.1 that outputs in constant time for every t ∈ V and
e ∈ E(Ts) whether or not ds,t,e = d(s, t). We use Rs to
compute and store a table h0 which is defined as follows
for every t ∈ V and e ∈ E(Ts).

h0[t, e] =

{
ds,t,e, if ds,t,e = d(s, t)

∞, otherwise
(3.1)

We describe this case in detail in Section 4.
2. The small fall case: Here we consider the

case that d(s, t) < ds,t,e ≤ d(s, u) + 4
√
n. Recall that

e = (u, v) such that u is closer than v to s. We compute
and store a table h1 such that for every t ∈ V and
e ∈ E(Ts) the following Equation holds:

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2093

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

h1[t, e] =

{
ds,t,e, if d(s, t) < ds,t,e ≤ d(s, u) + 4

√
n

∞, otherwise

(3.2)

We describe this case in detail in Section 5.
3. The single pivot case: In this case the

algorithm computes and stores

h2[t, e] = min
x∈B
{min{h0[x, e], h1[x, e]}+ d(x, t) | e is

(3.3)

among the last 2
√
n edges of the path from s to x in Ts}.

If there is no vertex x ∈ B such that e is among the
last 2

√
n edges of the path from s to x in Ts, then we

define h2[t, e] = ∞. We describe this case in detail in
Section 6.

4. The double pivot case: let t ∈ V, e ∈ E(Ts).
We say that (t, e) is of type “double pivot” if the fol-
lowing conditions hold: (a) There exists a replacement
path Ps,t,e and x, y ∈ B such that x appears before y
on the detour part of Ps,t,e. (b) e is (s, x)-replaceable,
(x, y)-replaceable and (y, t)-replaceable.

Observe that we allow x = y to be the same vertex
of B. In the double pivot case the algorithm computes
and stores a table h3:

h3[t, e] =

{
ds,t,e, if (t, e) is of type ”double pivot”

≥ ds,t,e, otherwise

(3.4)

We describe this case in detail in Sections 7 and 8.
For every pair (t, e) such that t ∈ V, e ∈ E(Ts) we

output d̂s,t,e = min{h0[t, e], h1[t, e], h2[t, e], h3[t, e]}. Ac-
cording to Equations 3.1, 3.2 and 3.4 it is trivial that
h0[t, e], h1[t, e], h3[t, e] ≥ ds,t,e. In Section 6 we prove that
h2[t, e] ≥ ds,t,e. Therefore, it holds that d̂s,t,e ≥ ds,t,e.
In Sections 4, 5, 6, and 7 we describe how to compute
h0, h1, h2, h3 in time Õ(m

√
n + n2). In Section 9 we prove

the correctness of our algorithm by proving the following
Theorem.

Lemma 3.1. [proof in Section 9]. Let t ∈ V, e ∈ E(Ts) and
d̂s,t,e = min{h0[t, e], h1[t, e], h2[t, e], h3[t, e]}.
Then it holds w.h.p. that d̂s,t,e = ds,t,e.

The most technical part of the paper is with handling
the double pivot case in Sections 7 and 8.

4 Replaceable edges and replaceability oracles

In this Section we construct replaceability oracles, which are
important components in our SSRP algorithm. In particular

we can use them to compute in Õ(m + n2) time, for every
t ∈ V and e ∈ E(Ts) whether or not ds,t,e = d(s, t) and
construct the table h0.

Given a source vertex v ∈ V , we show how to construct a
replaceability data-structure Rv in Õ(m) time that supports
replaceable edge queries; Given a query (t, e) with t ∈ V, e ∈
E the data-structure answers if e is a (v, t)-replaceable edge
in constant time.

First we need the following tool, a reachability oracle of
a directed acyclic graph. The following result follows from
dominator trees [21], and it is also described in Section 3 of
[8].

Theorem 4.1. [8] There exists a data-structure (single
source reachability oracle) such that given a directed acyclic
graph G = (V,E) with n vertices and m edges, and a source

vertex v ∈ V , preprocesses the graph in Õ(m) time, stores a

data-structure Qv of size Õ(n). The data-structure Qv an-
swers reachability queries (t, u) ∈ V × V in constant time,
that is, given a query (t, u) the data-structure reports if there
is any path from v to t that avoids the vertex u.

It is easy to generalize Lemma 4.1 to answer queries
(t, e) ∈ V × E. Create a graph G′ obtained from G by
adding for every edge e = (x, y) ∈ E(Tv) a vertex p(e), and
replacing the edge (x, y) with the edges (x, p(e)), (p(e), y).
Then every path from v to t in G must pass through e iff
every path from v to t must pass through the vertex p(e) in
G. In addition we only added O(n) nodes to the graph and
thus the new number of nodes remains O(n). This proves
the following Corollary.

Corollary 4.1. There exists a data-structure (single
source reachability oracle) such that given a directed acyclic
graph G = (V,E) with n vertices and m edges, and a source

vertex v ∈ V , preprocesses the graph in Õ(m) time, stores a

data-structure Qv of size Õ(n). The data-structure Qv an-
swers reachability queries (t, e) ∈ V × E in constant time,
that is, given a query (t, e) the data-structure reports if there
is any path from v to t that avoids the edge e.

Using the reachability oracle we construct a replaceabil-
ity oracle, as per Theorem 2.1.

Proof. [proof of Theorem 2.1] Compute the BFS tree Tv
rooted at v, and the distance d(v, t) for all t ∈ V .
Using the BFS tree Tv we create a DAG ~Gv = (V, ~Ev) whose
vertex set is V . The set of edges ~Ev is obtained by removing
from E all the edges e = (a, b) such that d(v, a) = d(v, b)
(i.e., remove all cross edges which are on the same level of
Tv), and the remaining edges are directed away from the
root v (i.e., the edge e = (a, b) is directed from a to b such
that d(v, a) < d(v, b), which means that a has a lower level
than b in the tree Tv). Given the graph ~Gv we compute the
single source reachability oracle specified in Theorem 4.1,
denote it be Rv.
We claim that t is reachable from v in ~Gv \ {e} iff e is
(v, t)-replaceable.
For the first direction, we assume that t is reachable from

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2094

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

v in ~Gv \ {e} and prove that dv,t,e = d(v, t) (i.e., e is
(v, t)-replaceable). Recall that the graph ~Gv \ {e} contains
only edges (x, y) such that x is closer by 1 to v than y in the
graph G. It follows that any directed path from v to t in
~Gv \ {e} is of length d(v, t). Therefore, if t is reachable from
v in ~Gv \ {e} then there exists a path P ∈ ~Gv \ {e} from v
to t whose length is |P | = d(v, t). The undirected version
of P is a path in G \ {e} and hence |P | ≥ dv,t,e. Since it
always holds that the shortest path after the deletion of
an edge may only be longer than the shortest path in the
original graph, it follows that dv,t,e ≥ d(v, t) and hence
d(v, t) = |P | ≥ dv,t,e =⇒ d(v, t) = dv,t,e.
For the other direction, we assume that dv,t,e = d(v, t) and
prove that t is reachable from v in ~Gv \{e}. Let Pv,t,e be the
shortest path from v to t in the graph G \ {e}. Let ~Pv,t,e be
a directed version of the path Pv,t,e, where the edges along
the path are directed from v towards t. Since dv,t,e = d(v, t)
it follows that |~Pv,t,e| = d(v, t). Therefore, for every edge
(x, y) ∈ ~Pv,t,e we must have d(v, x) = d(v, y)− 1, and hence
(x, y) ∈ ~Gv \ {e}. It follows that ~Pv,t,e ∈ ~Gv \ {e} and hence
t is reachable from v in ~Gv \ {e}.

We describe how to construct h0 in Õ(m + n2) time.

First, we construct Rs in Õ(m) time as in Lemma 2.1. Then,
for every t ∈ V, e ∈ E(Ts) (there are O(n2) such pairs (t, e))
we use Rs to check in constant time whether or not e is (s, t)-
replaceable, i.e., whether or not ds,t,e = d(s, t). Accordingly,
we store the table h0 such that if ds,t,e = d(s, t) then
h0[t, e] = ds,t,e and otherwise h0[t, e] = ∞. We conclude
the following Lemma.

Lemma 4.1. One can compute the table h0 in Õ(m + n2)
time such that Equation 3.1 holds.

4.1 Some Properties Of Replaceable Edges In
this Section we prove that for every edge e on a shortest
path P (x, y) and for every vertex p ∈ V we have that e is
either (x, p)-replaceable or (p, y)-replaceable. This Lemma
will be useful in the following sections.

Lemma 4.2. Let x, y ∈ V , e ∈ P (x, y) be an edge on a
shortest path from x to y and p ∈ V be an arbitrary vertex.
Then either e 6∈ P (x, p) or e 6∈ P (p, y).

Proof. Assume by contradiction that e ∈ P (x, p) and e ∈
P (p, y).
Let e = (u, v) such that u is closer to x than y along P (x, y).
Since u is closer to x than v along P (x, y) it follows that
d(x, u) < d(x, v) and hence u also appears before v on
P (x, p). Similarly, it must be that u appears before v in
P (p, y) (that is, v is closer to y than u).
Let P1 be the subpath of P (x, p) from x to u and let P2

be the subpath of P (x, p) from v to p. Let P3 be the
subpath of P (p, y) from p to u and let P4 be the subpath
of P (p, y) from v to y. Then P (x, p) = P1 ◦ (u, v) ◦ P2 and
P (p, y) = P3 ◦ (u, v) ◦ P4. Let P ′2 be the path P2 in reverse
order (i.e., from p to v) and let P ′3 be the path P3 in reverse
order (i.e., from u to p).

Define P ′ = P1 ◦ P ′3 ◦ P ′2 ◦ P4. Then P ′ is a path from x to
y going through p and avoiding e and hence |P ′| ≥ dx,p,e +
dp,y,e ≥ d(x, p) + d(p, y). On the other hand P ′ contains
the edges of P (x, p)◦P (p, y) excluding the edge e from both
P (x, p) and P (p, y) and thus |P ′| = |P (x, p)\{e}|+ |P (p, y)\
{e}| = |P (x, p)| − 1 + |P (p, y)| − 1 < d(x, p) + d(p, y). On
the one hand |P ′| ≥ d(x, p) + d(p, y) and on the other hand
|P ′| < d(x, p) + d(p, y) so we get a contradiction.

According to Definition 2.1 and Lemma 4.2 we get the
following corollary.

Corollary 4.2. Let x, y ∈ V , e ∈ P (x, y) be an edge on a
shortest path from x to y and p ∈ V be an arbitrary vertex.
Then e is either (x, p)-replaceable or (p, y)-replaceable.

We prove another claim regarding replaceable edges,
which is similar to Lemma 4.2 but with some differences.

Lemma 4.3. Let x, y ∈ V , e ∈ E be an arbitrary edge and
p ∈ Px,y,e be a vertex on the replacement path Px,y,e. Then
e is either not (x, p)-replaceable or not (p, y)-replaceable.

To prove Lemma 4.3 we use the following Theorem from [1].

Theorem 4.2. (Theorem 1 in [1]) After f failures in an
unweighted undirected graph, each new shortest path is the
concatenation of at most f + 1 original shortest paths.

Proof. [Proof of Lemma 4.3] According to Theorem 4.2 it
follows that Px,y,e is a concatenation of two shortest paths
in G. Let q ∈ V (Px,y,e) be a vertex such that both the
subpath of Px,y,e from x to q and the subpath of Px,y,e from
q to y are shortest paths in G. Denote the subpath of Px,y,e
from x to q by P1 and the subpath of Px,y,e from q to y by
P2.
If p ∈ P1 then p appears before q along the path Px,y,e or
p = q. Since the subpath of Px,y,e from x to q is a shortest
path in G, it also follows that the subpath of Px,y,e from x
to p is a shortest path, and thus e is (x, p)-replaceable.
If p ∈ P2 then q appears before p along the path Px,y,e (or
p = q). Since the subpath of Px,y,e from q to y is a shortest
path in G, it also follows that the subpath of Px,y,e from p
to y is a shortest path, and thus e is not (p, y)-replaceable.

5 Handling The Small Fall Case

In this Section we describe how to compute h1 in Õ(m
√
n+

n2) time. Let t ∈ V and let e = (u, v) ∈ E(Ts) be a tree-
edge such that u is closer than v to the root s in the tree
Ts. If d(s, t) < ds,t,e ≤ d(s, u) + 4

√
n then we will have

h1[t, e] = ds,t,e, and otherwise the algorithm symbolically
sets h1[t, e] =∞.

Let Ts,v be the subtree of Ts rooted in v. Let T̄s,v be the
tree Ts,v truncated at depth 4

√
n (i.e., we trim the subtree

of v at depth 4
√
n, and remove from it all the vertices whose

distance from v is more than 4
√
n). In the full version we

prove the following lemma.

Lemma 5.1. Let t ∈ V and let e = (u, v) ∈ E(Ts) be a tree-
edge such that u is closer than v to the root s in the tree Ts.
Assume d(s, t) < ds,t,e ≤ d(s, u) + 4

√
n then t ∈ T̄s,v.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2095

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

The graph Ge: For every edge e = (u, v) ∈ E(Ts)
(such that u is closer than v to s) we construct a weighted
graph Ge = (V,Ee, we) which is defined as follows. Let
E1
e = {(x, y)|x ∈ V (T̄s,v) OR y ∈ V (T̄s,v)} \ {e} be the

set of all edges incident to vertices in T̄s,v (except the
edge e itself), we set we(x, y) = 1 for every (x, y) ∈ E1

e .
Let E2

e = {(s, x)|x ∈ V \ V (Ts,v)} be additional edges
from s to every vertex x not in the subtree Ts,v, we set
we(s, x) = d(s, x) for every (s, x) ∈ E2

e . Let Ee = E1
e ∪ E2

e .
The algorithm for computing h1 is as follows. For every

edge e = (u, v) ∈ E(Ts) we run Dijkstra(Ge, s) in the graph
Ge from source vertex s. We denote the distances computed
by Dijkstra(Ge, s) by de(s, t), which is the distance from s
to t in the graph Ge. For every e = (u, v) ∈ E(Ts) and
for every t ∈ T̄s,v if d(s, t) < de(s, t) ≤ d(s, u) + 4

√
n then

we set h1[t, e] = de(s, t), otherwise if either d(s, t) = de(s, t)
or de[t] > d(s, u) + 4

√
n we set h1[t, e] = ∞. For every

e = (u, v) ∈ E(Ts) and t 6∈ T̄s,v we set h1[t, e] =∞.
We prove in the full version that computing h1 takes

Õ(m
√
n + n2) time. The main idea of the proof is that

every graph Ge contains at most n edges for E2
e and that the

number of edges in E1
e is the sum of the degrees of vertices

u in T̄s,v. We show that every vertex z belongs to at most√
n trimmed trees T̄s,v for some vertex v ∈ V and thus every

vertex contributes its degree to at most
√
n graphs Ge and

thus to at most
√
n Dijkstra’s computations. We show that

this implies the desired running time.

Lemma 5.2. Let e = (u, v) ∈ E(Ts) be a tree-edge such that
u is closer than v to the root s in the tree Ts. Let t ∈ T̄s,v
and let de(s, t) be the distance from s to t in the weighted
graph Ge. If ds,t,e ≤ d(s, u) + 4

√
n then de(s, t) = ds,t,e.

Else (if ds,t,e > d(s, u) + 4
√
n) then de(s, t) > d(s, u) + 4

√
n.

Proof. We first prove that for every t ∈ V it holds that
de(s, t) ≥ ds,t,e. To show that notice that it is enough
to show that distances in Ge are at least the distances in
G\{e}. More precisely, notice also that it is enough to show
that for every edge ẽ ∈ Ee such that ẽ = (z1, z2), the weight
of the edge ẽ is at least the distance dz1,z2,e. Consider an
ẽ ∈ Ee such that ẽ = (z1, z2). If ẽ ∈ E2

e then recall that all
edges in E2

e represents paths from s to some other vertex in
V \ V (Ts,v) (that is z1 = s and z2 ∈ V \ V (Ts,v)). Note also
that as z2 ∈ V \ V (Ts,v) it follows that the shortest path
from s = z1 to z2 in the tree Ts does not contain the edge
e and hence the path ẽ represents also a path that exists in
G \ {e} and its weight is the distance of this path.

If ẽ ∈ E1
e then notice that this edge also exists in G\{e}

as required.
It follows that de(s, t) ≥ ds,t,e.
We get the following: (a) If ds,t,e > d(s, u) + 4

√
n then

de(s, t) > d(s, u) + 4
√
n. (b) It is sufficient to prove that

if ds,t,e ≤ d(s, u) + 4
√
n then de(s, t) ≤ ds,t,e. In that

case, since de(s, t) ≤ ds,t,e and de(s, t) ≥ ds,t,e we have
de(s, t) = ds,t,e as required.

Therefore, in the remaining of the proof we show that
if ds,t,e ≤ d(s, u) + 4

√
n then de(s, t) ≤ ds,t,e. Assume

ds,t,e ≤ d(s, u)+4
√
n. Let P be a shortest path from s to t in

G \ {e}. Let x be the last vertex along P such that x 6∈ Ts,v

(such a vertex exists since s 6∈ Ts,v) and denote by P1 the
subpath of P from s to x and by P2 the subpath of P from
x to t. Then, w(P) = ds,t,e = ds,x,e + dx,t,e, w(P1) = ds,x,e
and w(P2) = dx,t,e.

Since x is the last vertex along P such that x 6∈ Ts,v
it follows that every edge of P2 touches a vertex of Ts,v
and in addition note that every vertex z in P2 satisfies
ds,z,e ≤ d(s, u) + 4

√
n. This implies that E(P2) ⊆ E2

e and
therefore P2 is contained in Ge. Let P ′ be the path (s, x)◦P2.
Since x 6∈ Ts,v it follows that (s, x) ∈ E1

e , we get that P ′ is
a path from s to t in Ge and hence de(s, t) ≤ w(P ′).

Since x 6∈ Ts,v then the shortest path from s to x in Ts
does not contain the edge e = (u, v). Hence, ds,x,e = d(s, x).
Therefore, w(P ′) = w(s, x) + w(P2) = d(s, x) + dx,t,e =
ds,x,e + dx,t,e = ds,t,e. Since P ′ is a path in Ge, |P ′| ≤ ds,t,e
and we get that de(s, t) ≤ ds,t,e.

We are ready to prove the correctness of the computa-
tion of h1.

Lemma 5.3. Equation 3.2 holds. That is, If d(s, t) <
ds,t,e ≤ d(s, u) + 4

√
n then we have h1[t, e] = ds,t,e, and

otherwise h1[t, e] =∞.

Proof. First, assume d(s, t) < ds,t,e ≤ d(s, u) + 4
√
n.

According to Lemma 5.1 it must be that t ∈ T̄s,v. According
to Lemma 5.2 if ds,t,e ≤ d(s, u) + 4

√
n then de(s, t) = ds,t,e.

Hence, if d(s, t) < ds,t,e ≤ d(s, u) + 4
√
n then we have

d(s, t) < de(s, t) ≤ d(s, u) + 4
√
n and when de(s, t) = d(s, t)

we set h1[t, e] = de(s, t) = ds,t,e.
Now assume it does not hold that d(s, t) < ds,t,e ≤
d(s, u) + 4

√
n. In this case, we either have d(s, t) = ds,t,e ≤

d(s, u) + 4
√
n or ds,t,e > d(s, u) + 4

√
n. If d(s, t) = ds,t,e ≤

d(s, u) + 4
√
n then according to Lemma 5.2, we also have

d(s, t) = de(s, t) ≤ d(s, u) + 4
√
n and we set h1[t, e] = ∞.

Furthermore, if ds,t,e > d(s, u) + 4
√
n then according to

Lemma 5.2 we have de(s, t) > d(s, u) + 4
√
n and then we set

h1[t, e] =∞.

5.1 The Short Cycle Lemma Let x ∈ V and let
e = (u, v) be an edge on the shortest path from s to x
such that u is closer to s than v (i.e., d(s, u) = d(s, v)− 1).
In this Section we prove a sufficient condition for having
min{h0[x, e], h1[x, e]} = ds,x,e. We prove that if e is
contained in a short cycle C of length at most 2

√
n and

d(v, x) ≤ 2
√
n then either h0[x, e] = ds,x,e or h1[x, 0] =

ds,x,e.

Lemma 5.4. Let x ∈ V and let P be a shortest path from s to
x, let e = (u, v) ∈ P be an edge in P such that u is closer to
s than v (i.e., d(s, u) = d(s, v)− 1). Assume d(v, x) ≤ 2

√
n

and that e is contained in a cycle C of length at most 2
√
n.

Then either h0[x, e] = ds,x,e or h1[x, e] = ds,x,e.

Note that in the above lemma it was required to add
also the case where h0[x, e] = ds,x,e, as it might be that
d(s, x) = ds,x,e and then (s, x, e) belongs to Case 1 (the
replaceable edge case) and not to Case 2 (the small fall case),
and therefore h0[x, e] = ds,x,e but h1[x, e] =∞.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2096

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Proof. If ds,x,e = d(s, x) then according to Lemma 4.1
it holds that h0[x, e] = d(s, x). Therefore, we assume
ds,x,e > d(s, x) for the rest of the proof. We prove that
ds,x,e ≤ d(s, u) + 4

√
n and then by Lemma 5.3 it holds that

h1[x, e] = ds,x,e.
Let P1 be the subpath of P from s to u and let P3 be the
subpath of P from v to x, then P = P1 ◦ e ◦ P3 . Since P is
a shortest path then P is a simple path and thus e 6∈ P1, P3.
Let P2 be the path from u to v obtained by removing the
edge e from the cycle C. It follows that P2 is a path from u
to v of length |P2| = |C| − 1 < 2

√
n.

Let P ′ = P1 ◦P2 ◦P3, then P ′ is a path from s to x avoiding
e and |P ′| = |P1|+ |P2|+ |P3| = d(s, u) + (|C| − 1) + d(v, x).
Since |C| ≤ 2

√
n and d(v, x) ≤ 2

√
n it hods that ds,x,e ≤

|P ′| ≤ d(s, u) + 4
√
n, and the lemma follows.

6 Handling The Single Pivot Case

We compute a table h2 of size O(n2) such that for every
t ∈ V, e ∈ E(Ts) Equation 3.3 holds, i.e., we will have
h2[t, e] = minx∈B{min{h0[x, e], h1[x, e]}+d(x, t) | e is among
the 2

√
n last edges of the path from s to x in Ts}.

The procedure for computing h2: First initialize
h2 such that h2[t, e] = ∞ for all t ∈ V, e ∈ E(Ts).
We loop over every t ∈ V, x ∈ B and every edge e
that is among the last 2

√
n edges on the path from s

to x in the tree Ts. At each iteration we set h2[t, e] =
min{h2[t, e],min{h0[x, e], h1[x, e]}+ d(x, t)}.

Lemma 6.1. The above procedure computes h2 in Õ(n2)
time (w.h.p.).

Proof. There are O(n) vertices t ∈ V , and Õ(
√
n) vertices

x ∈ B (w.h.p.). In addition, for every vertex x ∈ B, there are
2
√
n edges e that are among the 2

√
n last edges on the path

from s to x in the tree Ts. Therefore, there are Õ(n2) triple
t, x, e that the procedure above considers, and for each such
triple is processed in constant time, thus the total processing
time for computing h2 is Õ(n2) (w.h.p.).

In the remaining of this Section we prove that for every
t ∈ V, e ∈ E(Ts) we have h2[t, e] ≥ ds,t,e and when several
sufficient conditions hold we have h2[t, e] = ds,t,e. We first
prove that h2[t, e] ≥ ds,t,e.

Lemma 6.2. For every t ∈ V, e ∈ E(Ts) it holds that
h2[t, e] ≥ ds,t,e.

Proof. We prove that min{h0[x, e], h1[x, e]} + d(x, t) ≥
ds,x,e + dx,t,e for every x ∈ B and e among the last 2

√
n

edges of the path from s to x in Ts.
According to Equation 3.1 it follows that h0[x, e] ≥ ds,x,e
and according to Equation 3.2 it follows that h1[x, e] ≥
ds,x,e. Hence, min{h0[x, e], h1[x, e]} ≥ ds,x,e.

Let P (s, t) be the shortest path from s to t in the tree
Ts. Consider the two cases, either e ∈ P (s, t) or e 6∈ P (s, t).

If e ∈ P (s, t) then according to Lemma 4.2 either
e /∈ P (s, x) or e /∈ P (x, t). But we assume that e is
among the last 2

√
n edges of the path from s to x in

Ts, that is, e ∈ P (s, x). It follows that e is not on
the shortest path from x to t, and thus dx,t,e = d(x, t).
Hence, min{h0[x, e], h1[x, e]} + d(x, t) ≥ ds,x,e + d(x, t) =
ds,x,e + dx,t,e ≥ ds,t,e, where the last inequality holds by the
triangle inequality in the graph G \ {e}.

If e 6∈ P (s, t) then ds,t,e = d(s, t) and then
min{h0[x, e], h1[x, e]} + d(x, t) ≥ ds,x,e + d(x, t) ≥ d(s, x) +
d(x, t) ≥ d(s, t) = ds,t,e, where the second inequality holds
since distances after edge failures may only be longer then
the distance before the failure (i.e., ds,x,e ≥ d(s, x)) and the
last inequality holds by the triangle inequality in the graph
G.

In both cases we obtain that min{h0[x, e], h1[x, e]} +
d(x, t) ≥ ds,t,e and thus h2[t, e] ≥ ds,t,e.

6.1 The Short Detour Case In this Section we
prove that when Detours,t,e is short (containing at
most

√
n edges) then with high probability we have

min{h0[t, e], h1[t, e], h2[t, e]} = ds,t,e. This case is one of the
motivations for the single pivot case.

Lemma 6.3. Let e = (u, v) such that u is closer to s than
v and e is on the path from s to t in Ts. Assume there
exists a replacement path Ps,t,e such that Detours,t,e contains
at most

√
n edges. Then w.h.p. either h0[t, e] = ds,t,e or

h1[t, e] = ds,t,e or h2[t, e] = ds,t,e.

Proof. If ds,t,e = d(s, t) then according to Equation 3.1 it
follows that ds,t,e = h0[t, e]. If d(s, t) < ds,t,e ≤ d(s, u)+4

√
n

then according to Equation 3.2 it holds that h1[t, e] = ds,t,e.
We are therefore left with the case where ds,t,e > d(s, t)

and ds,t,e > d(s, u) + 4
√
n. For the rest of proof we assume

that ds,t,e > d(s, t) and ds,t,e > d(s, u) + 4
√
n and prove

that in this case we have h2[t, e] = ds,t,e. I.e., we prove
that in this case there exists a vertex x ∈ B such that
ds,t,e = h1[x, e] + d(x, t) where e is among the last 2

√
n

edges of the path from s to x in Ts.
Let Ps,t,e be a shortest path in G \ {e} whose de-

tour part Detours,t,e contains at most
√
n edges. Since

e = (u, v) 6∈ Ps,t,e where u is closer to s than v, it follows
that |CommonPrefs,t,e| ≤ d(s, u). Hence, ds,t,e = |Ps,t,e| =
|CommonPrefs,t,e| + |Detours,t,e| + |CommonSuffs,t,e| ≤
d(s, u) + |Detours,t,e|+ |CommonSuffs,t,e| ≤ d(s, u) +

√
n+

|CommonSuffs,t,e|. Therefore, if ds,t,e > d(s, u)+4
√
n it fol-

lows that |CommonSuffs,t,e| > 3
√
n. According to Lemma

2.1, w.h.p. at least one of the vertices of CommonSuffs,t,e
was sampled, or even more precisely, w.h.p. at least one of
the first

√
n vertices on the subpath CommonSuffs,t,e was

sampled, and let x ∈ B ∩CommonSuffs,t,e be the first sam-
pled vertex along CommonSuffs,t,e. Let Ps,x,e be the sub-
path of Ps,t,e from s to x, note that Ps,x,e is a valid replace-
ment from s to x that avoids e. As mentioned above, w.h.p,
the subpath of CommonSuffs,t,e from its beginning until
x (this subpath is CommonSuffs,x,e) contains at most

√
n

edges with high probability (i.e., |CommonSuffs,x,e| ≤
√
n

w.h.p.).
Since Ps,t,e and Ps,x,e have the same prefix and

detour, it holds that |CommonPrefs,x,e| ≤ d(s, u)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2097

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

and |Detours,x,e| ≤
√
n. It follows that ds,x,e =

|CommonPrefs,x,e| + |Detours,x,e| + |CommonSuffs,x,e| ≤
d(s, u) + |Detours,x,e| + |CommonSuffs,x,e| ≤ d(s, u) + 2

√
n

w.h.p. According to Equation 3.2 this implies that h1[x, e] =
d(s, x, e) w.h.p.

Since x ∈ Ps,t,e it holds that ds,t,e = ds,x,e + dx,t,e and
since x ∈ CommonSuffs,t,e it holds that x appears after e
along P (s, t). Hence, the subpath of P (s, t) from x to t
does not contain e, and thus dx,t,e = d(x, t). We get that
ds,t,e = ds,x,e + d(x, t) = h1[x, e] + d(x, t), as required.

We are still left to prove that e is among the last
2
√
n edges of the path from s to x in Ts. Since x ∈

CommonSuffs,t,e then by definition of CommonSuffs,t,e, e
must be on the path from s to x in Ts. Since ds,x,e ≤
d(s, u) + 2

√
n and e = (u, v) is on the path from s to x

in Ts, it follows that e is among the last 2
√
n edges of the

path from s to x in Ts.

7 The Algorithm For Handling The Double
Pivot Case

Let t ∈ V, e ∈ E(Ts). We first define when (t, e) is considered
as a “double pivot” type, and then show how to find ds,t,e
for every (t, e) which is of “double pivot” type.

Definition 7.1. Let t ∈ V, e ∈ E(Ts). We say that (t, e) is
of type “double pivot” if the following conditions hold: (1)
There exists a replacement path Ps,t,e and x, y ∈ B such
that both x and y appear on the detour part of Ps,t,e and
in addition x appears before y on the detour part of Ps,t,e
or x = y. (2) e is (s, x)-replaceable, (x, y)-replaceable and
(y, t)-replaceable.

Observe that we allow x = y to be the same vertex of B.
For the sake of abbreviation, in the rest of the text when we
say that x appears before y on the detour part of Ps,t,e we
mean that either x appears strictly before y on the detour or
that x = y.

In this section we describe how to compute in Õ(m
√
n+

n2) time (w.h.p.) a table h3 such that:

h3[t, e] =

{
ds,t,e, if (t, e) is of type ”double pivot”

≥ ds,t,e, otherwise

First, for every vertex x ∈ B we preprocess the re-
placeability data-structure Rx according to Theorem 2.1.
This takes Õ(m

√
n) time (w.h.p.): there are Õ(

√
n) ver-

tices x ∈ B (w.h.p.), and each replaceability oracle Rx is

preprocessed in time Õ(m) as described in Theorem 2.1.
To give some intuition, we first describe a sim-

ple Õ(n3) time (w.h.p). algorithm for comput-
ing h′3[t, e] for every pair (t, e). Here we compute
h′3[t, e] = minx,y∈B{d(s, x) + d(x, y) + d(y, t)|e is (s, x) −
replaceable, (x, y)−replaceable and (y, t)−replaceable}. We
initialize the table h′3 of size O(n2) where every entry t ∈
V, e ∈ E(Ts) is set to infinity h′3[t, e] =∞. Then we loop over
every pair of pivots x, y ∈ B (observe that we allow x = y to

be the same vertex of B, and there are Õ(n) pairs of pivots

B × B w.h.p.) and every vertex t ∈ V (there are n ver-
tices in V) and every edge e ∈ P (s, t) (there are O(n) edges

along P (s, t)). Thus, w.h.p. there are Õ(n3) such quadru-
ples x, y, t, e. For every such quadruple x, y, t, e we check in
constant time (using the data-structures Rx, Ry) if e is (s, x)-
replaceable, (x, y)-replaceable, and (y, t)-replaceable, and if
so we set h′3[t, e]← min{h′3[t, e], d(s, x) + d(x, y) + d(y, t)}.

Lemma 7.1. If (t, e) is of type “double pivot” then h′3[t, e] =
ds,t,e, and otherwise h′3[t, e] ≥ ds,t,e.

Proof. We first prove that h′3[t, e] ≥ ds,t,e. If h′3[t, e] =
∞ then it is trivial that h′3[t, e] ≥ ds,t,e, we assume
h′3[t, e] < ∞ and prove that h′3[t, e] ≥ ds,t,e. Let x, y ∈
B such that e is (s, x)-replaceable, (x, y)-replaceable and
(y, t)-replaceable it follows that d(s, x) + d(x, y) + d(y, t) =
ds,x,e + dx,y,e + dy,t,e. According to the triangle inequal-
ity in the graph G \ {e} it follows that ds,x,e + dx,y,e +
dy,t,e ≥ ds,t,e for every t ∈ V, e ∈ E(Ts). Hence,
h′3[t, e] = minx,y∈B{d(s, x) + d(x, y) + d(y, t)|e is (s, x) −
replaceable, (x, y) − replaceable and (y, t) − replaceable} ≥
ds,t,e.

We now assume that (t, e) is of type “double pivot” and
prove that h′3[t, e] = ds,t,e. Since (t, e) is of type “double
pivot”, then x appears before y on the detour part of some
replacement path Ps,t,e such that e is (s, x)-replaceable,
(x, y)-replaceable and (y, t)-replaceable. Since x appears
before y on the detour part of some replacement path Ps,t,e
it follows that ds,t,e = ds,x,e + dx,y,e + dy,t,e. Since e is
(s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable it
follows that ds,x,e+dx,y,e+dy,t,e = d(s, x)+d(x, y)+d(y, t).
It follows that h′3[t, e] ≤ ds,t,e and also h′3[t, e] ≥ ds,t,e and
we get h′3[t, e] = ds,t,e.

In order to reduce the running time from Õ(n3) to

Õ(m
√
n + n2) we cannot afford spending even a constant

time on every quadruple x, y, t, e. Instead, we show that
using more sophisticated data-structures and new ideas it
is sufficient to spend time only on triples x, y, t such that
x, y ∈ B and t ∈ V . Note that w.h.p. there are Õ(n)
pairs of pivots (x, y) ∈ B × B, and O(n) vertices t ∈ V .

Hence, w.h.p. there are only Õ(n2) such triples x, y, t and

we process all these triples in Õ(n2) total time. Computing
the replaceability oracles Rx for every x ∈ B takes w.h.p.
additional Õ(m

√
n) time. In order to process only triples

x, y, t and not quadruples x, y, t, e we need, somehow, to
handle many edges e ∈ P (s, t) at once. To do so, we define
path intervals Ix,y,t, which are subpaths of P (s, t) such that
we handle all the edges of every path interval at once.

7.1 Path Intervals As in the simple Õ(n3) time algo-
rithm described above, we would like to find all quadruples
x, y, t, e such that e is (s, x)-replaceable, (x, y)-replaceable,
and (y, t)-replaceable. Consider an edge e and a vertex t such
that (t, e) is of type double pivot. Let x and y be the vertices
as defined in Definition 7.1. We say that (e, t) is “(x, y)-
double pivot”. Instead of actually finding all quadruples
x, y, t, e such that e is (s, x)-replaceable, (x, y)-replaceable,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2098

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

and (y, t)-replaceable, for all vertices x, y ∈ B and t ∈ V ,
we show how to find a subpath of P (s, t) such that all edges
e in this subpath are (s, x)-replaceable, (x, y)-replaceable,
and (y, t)-replaceable, and in addition all edges e that are
“(x, y)-double pivot” are contained in this subpath. This
will be enough for our needs.

Loosely speaking, we will show that the the following
subpath satisfies these properties. We are looking for the
maximum subpath Ix,y,t (hereafter referred as path interval)
such that there is a replacement path of length d(s, x) +
d(x, y) + d(y, t) from s to t passing through x and y that
excludes the entire path Ix,y,t . Note that there may be
many replacement paths from s to t that go through x and
y (all which are of length d(s, x)+d(x, y)+d(y, t)). However
some of these replacements paths exclude a smaller subset
of edges of P (s, t) and we want to find the one that excludes
the most number of edges of P (s, t) (we will show that such
a path exists). We next define the indices i1 and i2 such that
the subpath of P (s, t) from vi1 to vi2 is exactly the interval
Ix,y,t.

Let t ∈ V, x, y ∈ B (recall that we allow x = y to be the
same vertex of B). Consider the enumeration of the vertices
of P (s, t) = (v0, . . . , vd(s,t)). Let 0 ≤ i1 ≤ d(s, t) be the
minimum index such that (vi, vi+1) is (s, x)-replaceable for
every i ≥ i1. Let 1 ≤ i2 ≤ d(s, t) be the maximum index
such that (vi−1, vi) is (y, t)-replaceable for every i ≤ i2. We
define the path interval Ix,y,t = {(vi, vi+1)|i1 ≤ i < i2}.
Note that if i2 ≤ i1 then Ix,y,t = ∅. Since all the edges
(vi, vi+1) for every i ≥ i1 are (s, x)-replaceable, all the edges
(vi, vi+1) for every i < i2 are (y, t)-replaceable, it follows that
Ix,y,t is a (possibly empty) subpath of P (s, t) of consecutive
edges, and every edge e ∈ Ix,y,t is both (s, x)-replaceable
and (y, t)-replaceable. We say that Ix,y,t is a valid path
interval if all the edges e ∈ P (s, t) are (x, y)-replaceable.
Since Ix,y,t ⊆ P (s, t) it follows that if Ix,y,t is a valid path
interval, then all of its edges e ∈ Ix,y,t are (x, y)-replaceable
(as every edge in Ix,y,t is also in P (s, t)). We get that if Ix,y,t
is a valid path interval, then all of its edges e ∈ Ix,y,t are
(s, x)-replaceable, (x, y)-replaceable, and (y, t)-replaceable.
See Figure 2 which illustrates a path interval Ix,y,t.

Finding the indices i1 and i2 turned out to be quite
complicated and technical. One may tempt to find the
index i1 using a binary search, by searching for the first
edge e (closest to s) on the path P (s, t) such that e is
(s, x)-replaceable. This would work if magically we would
have an index i such that all edges appearing before vi
on the path P (s, t) are not (s, x)-replaceable and all edges
appearing after are (s, x)-replaceable. Unfortunately, this is
not necessarily the case, as there might be some subpath of
P (s, t) such that all of its edges are (s, x)-replaceable and
then a subpath where all of its edges are not and then again
a subpath of replaceable edges and so on (for instance if
there is a subpath P (u, v) of P (s, t) from some vertex u to
some vertex v where there is a completely disjoint subpath
from u to v of the same length). See Figure 3 as an example.
Section 8 is devoted for efficient computation of i1 and i2.

We next prove some properties about path intervals.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗

𝒙

𝒗𝟎

s t𝒗𝒊𝟏

𝑒5

𝑑(𝑥, 𝑦)

𝒗𝒊𝟐

𝒚

𝐼𝑥,𝑦,𝑡

𝑒1 𝑒2 𝑒3 𝑒4

𝑒

𝑒6 𝑒7 𝑒8 𝑒9

𝑑(𝑠, 𝑥)
𝑑(𝑦, 𝑡)

𝑃(𝑠, 𝑡)

𝑃𝑠,𝑡,𝑒

Figure 2: An illustration of the path interval Ix,y,t where
x, y ∈ B and t ∈ V . It can be observed from the figure
that, intuitively, the path interval Ix,y,t is a maximum
subpath of P (s, t) such that there is a replacement
path (Ps,t,e) of length d(s, x) + d(x, y) + d(y, t) from
s to t passing through x and y that excludes the entire
subpath Ix,y,t

s t

x y

𝒆

𝑷𝒔,𝒕,𝒆

𝑃(𝑠, 𝑡)

𝑣𝑖1

(𝑠, 𝑥)-replaceable edges

(𝑠, 𝑥)-
replaceable
edges

(𝑠, 𝑥)-
replaceable
edges

(𝑠, 𝑥)-
replaceable
edges

Non (𝑠, 𝑥)-replaceable edges

A mixture of (s,x)-replaceable and non (s,x)-replaceable edges

u v

𝑃(𝑢, 𝑣)

Figure 3: An illustration of the path interval Ix,y,t where
x, y ∈ B and t ∈ V . In this figure there are several
shortest paths from s to x, one that leaves P (s, t) on
vertex v3, one that leaves P (s, t) on vertex v2 and one
the leaves P (s, t) on vertex v1. The vertex vi1 is defined
to be the first vertex such that there is a shortest path
from s to x that leaves P (s, t) on the vertex vi1 , in the
figure above vi1 = v1. Similarly, vi2 = v8.

Lemma 7.2. Let e ∈ P (s, t), t ∈ V such that (t, e) is of
double pivot type. Let x, y ∈ B be the two vertices in
B such that 1. there exists a replacement path Ps,t,e and
x appears before y on the detour part of Ps,t,e and 2. e
is (s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable.
(two such vertices exist by the definition of double pivot
type).

Then e ∈ Ix,y,t and Ix,y,t is a valid path interval.

Proof. We first prove that e ∈ Ix,y,t.
Let 0 ≤ i < d(s, t) be the index such that e = (vi, vi+1)
(recall that P (s, t) = (v0, . . . , vd(s,t))). Since e is (s, x)-
replaceable then the subpath P (s, x) of Ps,t,e from s to x is
also a shortest path from s to x in the original graphG. Since
x is on the detour part of Ps,t,e, it follows that P (s, x) does
not contain any of the edges X = {(vj , vj+1)|i ≤ j < d(s, t)},
and hence all the edges ofX are (s, x)-replaceable. Therefore
by definition of i1 we have i1 ≤ i (see Figure 4).

Similarly, since e is (y, t)-replaceable then the subpath
P (y, t) of Ps,t,e from y to t is also a shortest path from y

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2099

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗

𝒙

𝒗𝟎

s t
𝑒5

𝑃𝑠,𝑡,𝑒 𝒚

𝑒1 𝑒2 𝑒3 𝑒4
𝒆

𝑒6 𝑒7 𝑒8 𝑒9

𝑋 = {𝑒5, … , 𝑒9}𝑌 = {𝑒1, … , 𝑒5}

𝑃(𝑠, 𝑥) 𝑃(𝑦, 𝑡)

𝑃(𝑠, 𝑡)

𝑃(𝑥, 𝑦)

Figure 4: An illustration of the proof of Lemma 7.2.
Here, P (s, t) = (v0, . . . , v9), the edge e = (vi, vi+1) =
(v4, v5). All the edges X = {e5, . . . , e9} are not on the
shortest path P (s, x) and thus all the edges of X are
(s, x)-replaceable. All the edges Y = {e1, . . . , e5} are
not on the shortest path P (y, t) and thus all the edges
of Y are (y, t)-replaceable.

to t in the original graph. Since y is on the detour part
of Ps,t,e, it follows that P (y, t) does not contain any of the
edges Y = {(vj , vj+1)|0 ≤ j ≤ i}, and hence all the edges of
Y are (y, t)-replaceable. Therefore, i2 > i.

Since e = (vi, vi+1) with i1 ≤ i < i2, it follows that
e ∈ Ix,y,t = {(vj , vj+1)|i1 ≤ j < i2}.

We now prove that Ix,y,t is a valid path interval. Since
x appears before y on the detour part of Ps,t,e and e is (x, y)-
replaceable then the subpath P (x, y) of Ps,t,e from x to y is a
shortest path from x to y in the original graph G. Therefore,
the entire path P (x, y) is contained in the detour part of
Ps,t,e. Hence all the edges of P (s, t) are edge-disjoint from
P (x, y), i.e., all the edges of P (s, t) are (x, y)-replaceable and
therefore Ix,y,t is a valid path interval.

We assign a weight for every valid path interval
w(Ix,y,t) = d(s, x) + d(x, y) + d(y, t). If Ix,y,t = ∅ or Ix,y,t is
not valid, then we assign its weight w(Ix,y,t) =∞.

Lemma 7.3. Let e ∈ Ix,y,t then w(Ix,y,t) ≥ ds,t,e.

Proof. If Ix,y,t is not a valid path interval then w(Ix,y,t) =
∞ ≥ ds,t,e. So, assume Ix,y,t is a valid path inter-
val. Then, every edge of Ix,y,t is (s, x)-replaceable, (x, y)-
replaceable and (y, t)-replaceable, and in particular, e is
(s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable.
Therefore, ds,x,e = d(s, x), dx,y,e = d(x, y) and dy,t,e =
d(y, t). By substitution we get w(Ix,y,t) = d(s, x)+d(x, y)+
d(y, t) = ds,x,e + dx,y,e + dy,t,e. According to the triangle
inequality in the graph G \ {e} it holds that w(Ix,y,t) =
ds,x,e + dx,y,e + dy,t,e ≥ ds,t,e.

Let e ∈ E(Ts). We define I(e, t) = {Ix,y,t|e ∈ Ix,y,t}.
We define h3[t, e] as follows.

(7.5) h3[t, e] = min
Ix,y,t∈I(e,t)

{w(Ix,y,t)}.

According to Lemma 7.3 it follows that h3[t, e] ≥ ds,t,e.
We show that in the double pivot case, it holds that h3[t, e] =
ds,t,e.

Lemma 7.4. Let t ∈ V , e ∈ P (s, t) such that (t, e) is of
double pivot type. Then h3[t, e] = ds,t,e.

Proof. In Lemma 7.3 we have already proved that h3[t, e] ≥
ds,t,e. Since h3[t, e] = minIx,y,t∈I(e,t){w(Ix,y,t)}, we only
need to prove that there exists a path interval Ix,y,t ∈ I(e, t)
such that ds,t,e = w(Ix,y,t).

Since (t, e) is of double pivot type then there exists
a replacement path Ps,t,e and x, y ∈ B such that both x
and y appear on the detour part of Ps,t,e and in addition x
appears before y on the detour part of Ps,t,e or x = y. and e
is (s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable.
by Lemma 7.2 it follows that e ∈ Ix,y,t and Ix,y,t is a valid
path interval. Therefore, Ix,y,t ∈ I(e, t) and w(Ix,y,t) =
d(s, x) + d(x, y) + d(y, t).

By definition 7.1, there exists a replacement path Ps,t,e
such that x appears before y on the detour part of Ps,t,e and e
is (s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable.
Since x appears before y on the detour part of Ps,t,e then
ds,t,e = ds,x,e + dx,y,e + dy,t,e. Since e is (s, x)-replaceable,
(x, y)-replaceable and (y, t)-replaceable it also follows that
ds,x,e + dx,y,e + dy,t,e = d(s, x) + d(x, y) + d(y, t). Therefore,
w(Ix,y,t) = d(s, x)+d(x, y)+d(y, t) = ds,x,e+dx,y,e+dy,t,e =
ds,t,e, and the Lemma follows.

Every path interval Ix,y,t is defined using two indices
0 ≤ i1, i2 ≤ d(s, t) such that Ix,y,t = {(vi, vi+1)|i1 ≤ i < i2}.
Let i1(Ix,y,t) and i2(Ix,y,t) be the two indices 0 ≤ i1, i2 ≤
d(s, t) associated with the path interval Ix,y,t.

In Section 8 we describe how to compute all the path
intervals Ix,y,t for every x, y ∈ B, t ∈ V in Õ(m

√
n + n2)

time (w.h.p.). As this Section is long, we leave it towards
the end, and currently just state the Lemma we prove there.

Lemma 7.5. One can compute all the path intervals Ix,y,t
for every x, y ∈ B, t ∈ V in Õ(m

√
n + n2) time (w.h.p.).

I.e., one can compute all the indices i1(Ix,y,t) and i2(Ix,y,t)

for every x, y ∈ B, t ∈ V in Õ(m
√
n+ n2) time (w.h.p.).

7.2 Efficient Testing Of Path Intervals Validity
In this Section we assume that the algorithm already com-
puted the path intervals Ix,y,t for every x, y ∈ B, t ∈ V and
prove the following Lemma.

Lemma 7.6. We can check for all x, y ∈ B, t ∈ V whether
or not the path interval Ix,y,t is a valid path interval, in total
Õ(m

√
n+ n2) time (w.h.p.).

For every x, y ∈ B we create a tree Tx,y which is a
weighted copy of Ts. The weight of the edge e ∈ Tx,y is
set to 1 if e is not (x, y)-replaceable edge, and otherwise its
weight in Tx,y is set to 0. Finally, for every t ∈ V we set a bit
bx,y(t) = 1 if the path from s to t in Tx,y contains at least
one edge whose weight is 1, otherwise we set bx,y(t) = 0.
The n bits {bx,y(t)|t ∈ V } can be computed by a pre-order
(or DFS) scan of the tree Tx,y in O(n) time: during the scan,
whenever we encounter an edge whose weight is 1, then for
every vertex t in its subtree we set bx,y(t) = 1.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2100

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Lemma 7.7. Let x, y ∈ B, t ∈ V , then bx,y(t) = 0 iff
every edge e ∈ P (s, t) is (x, y)-replaceable. Furthermore,
we can compute all the bits bx,y(t) in all the trees Tx,y in

Õ(m
√
n+ n2) time (w.h.p.).

Proof. If bx,y(t) = 0 then all the edges on the path from s
to t in Tx,y have weight 0, which means that they are (x, y)-
replaceable. If bx,y(t) = 1 then there exists an edge e on the
path from s to t in Tx,y whose weight is 1, which means that
e is not (x, y)-replaceable.

We now describe the runtime of the algorithm. Con-
structing all the replaceability oracles Rx for every x ∈ B
takes Õ(m

√
n) time, as there are Õ(

√
n) vertices x ∈ B,

an constructing one replacebility oracle Rx takes O(m) time
according to Theorem 2.1. Then, for every pair of pivots
x, y ∈ B we generate a tree Tx,y which is a copy of Ts in O(n)
time, and for every edge e ∈ Tx,y we use the reachability or-
acle Rx to check in constant time if e is (x, y)-replaceable.
If so, we set w(e) = 0 in the tree Tx,y, otherwise we set
w(e) = 1. This construction of the tree Tx,y takes O(n)
time. Then, we compute the bits bx,y(t) using a pre-order
scan of the tree Tx,y which again takes O(n) time. Since

there are w.h.p. Õ(n) pairs of pivots x, y ∈ B, and for every
pair of pivots building the tree Tx,y and computing the bits
bx,y(t) takes O(n) time, we get that the total runtime (after

the construction of the replaceability oracles Rx) is Õ(n2)

(w.h.p.). All together, we get Õ(m
√
n+ n2) time.

Lemma 7.7 proves Lemma 7.6, as Ix,y,t is valid iff
bx,y(t) = 1, and the computation of all the bits bx,y(t) takes

Õ(m
√
n+ n2) time (w.h.p.).

7.3 Combining The Components For An Ef-
ficient Algorithm For Computing h3 We are now
ready to describe the algorithm for computing h3 in
Õ(m

√
n+ n2) time.

Recall that according to Equation 7.5 we defined
h3 for every t ∈ V, e ∈ E(Ts) as h3[t, e] =
minIx,y,t∈I(e,t){w(Ix,y,t)}.

First, for every x, y ∈ B and for every t ∈ V we
compute the two indices i1(Ix,y,t), i2(Ix,y,t) as in Lemma

7.5 in total Õ(m
√
n + n2) time (w.h.p.), which gives us all

the path intervals {Ix,y,t|x, y ∈ B, t ∈ V }. Then, for every
x, y ∈ B, t ∈ V we compute the bits bx,y(t) as in Lemma 7.7

in Õ(m
√
n+ n2) time (w.h.p.).

We describe an algorithm, whose input is: (1) The
vertex t ∈ V . (2) For every x, y ∈ B we are given the

path interval Ix,y,t and the bit bx,y(t). There are Õ(n)
pairs x, y ∈ B (w.h.p.), and thus for the given vertex

t ∈ V there are Õ(n) path intervals Ix,y,t and bits bx,y(t).
Recall that the weight of the path interval Ix,y,t is defined
as w(Ix,y,t) = d(s, x) + d(x, y) + d(y, t) if bx,y(t) = 1 and
otherwise w(Ix,y,t) =∞.

Note that computing h3[t, e] for every e ∈ P (s, t)
by iterating over all intervals Ix,y,t such that e ∈ Ix,y,t
is too slow for our needs. We therefore present a more
efficient algorithm such that for the given vertex t ∈ V ,
the algorithm described hereinafter computes the values

h3[t, e] = mine∈Ix,y,t w(Ix,y,t) for all e ∈ P (s, t) in total Õ(n)
time (w.h.p.). Thus, given {Ix,y,t, w(Ix,y,t)|x, y ∈ B, t ∈ V }
the total processing time to compute h3[t, e] for all t ∈ V, e ∈
P (s, t) is Õ(n2) time (w.h.p.).

We use in our algorithm the classic data structure of bi-
nary search tree (BST) that maintains a set of numbers and
supports operations like: insert, delete, search, successor,
predecessor in O(logn) time per operation (see e.g. [9])

Following is the description of the algorithm for a fixed
vertex t ∈ V . Consider again the enumeration of the
vertices of P (s, t) = (v0, . . . , vd(s,t)) and recall that Ix,y,t =
{(vi, vi+1)|i1 ≤ i < i2}. We sort the path intervals Ix,y,t in
ascending order of their weights w(Ix,y,t). Let I1, . . . , Ik be
all the path intervals {Ix,y,t|x, y ∈ B} according to the sorted
order w(I1) ≤ w(I2) ≤ . . . ≤ w(Ik). For a path interval Ij
(1 ≤ j ≤ k) we denote by ij1 = i1(Ij) the index of the first
edge along P (s, t) which belongs to Ij and by ij2 = i2(Ij)
the index of the last edge along P (s, t) which belongs to
Ij (these are the indices i1, i2 of the path interval Ij , i.e.,
Ij = {(vi, vi+1)|i1 ≤ i ≤ i2}). We create a binary search tree
(BST) Bt and insert to it the O(n) edges e1, . . . , ed(s,t) along
the path P (s, t) such that their key equals to their index
(here the index and the key of the edge ei ∈ {e1, . . . , ed(s,t)}
is i).

We process the path intervals I1, . . . , Ik in this order as
follows. When processing the jth path interval Ij we search
in the BST Bt for all the edges whose index is between ij1
to ij2. For every such edge e ∈ Ij we set h3[t, e] = w(Ij) and
remove e from the BST Bt. Observe that searching for the
edge whose key is the minimum key which is at least ij1 is
exactly a successor(ij1) search in the tree Bt, and this can be
done O(logn) time. Thus, we can find every edge e in the
BST Bt whose key is between ij1 to ij2 in O(logn) time per
edge.

When the above loop is finished, it is easy to verify that
every edge e ∈ P (s, t) was assigned the weight w(Ij) of the
minimum index j such that e ∈ Ij , which means that h3[t, e]
is the minimum weight of a path interval containing e, as
required.

Theorem 7.1. One can compute all the values h3[t, e] =

mine∈Ix,y,t w(Ix,y) for all t ∈ V, e ∈ P (s, t) in Õ(m
√
n+n2)

time (w.h.p.). When (t, e) is of “double pivot” type it holds
that h3[t, e] = ds,t,e and otherwise h3[t, e] ≥ ds,t,e.

Proof. Finding all intervals Ix,y,t takes Õ(m
√
n + n2) time

(w.h.p.) as in Lemma 7.5, computing all the bits bx,y(t)

takes Õ(m
√
n + n2) time (w.h.p.) as in Lemma 7.7. Then,

apply the above algorithm for every t ∈ V to find h3[t, e] for

every t, e ∈ P (s, t) using additional Õ(n2) time (w.h.p.).
When (t, e) is of “double pivot” type then according

to Definition 7.1 there exists a replacement path Ps,t,e such
that x appears before y on the detour part of Ps,t,e and e
is (s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable.
Therefore, according to Lemma 7.4 it holds that h3[t, e] =
ds,t,e.

If (t, e) is not of “double pivot” type then according to
Lemma 7.3 it holds that h3[t, e] ≥ ds,t,e.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2101

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

8 An Efficient Algorithm For Computing The
Path Intervals Ix,y,t

In this Section we prove Lemma 7.5, i.e., we describe how to
compute all the path intervals Ix,y,t for every x, y ∈ B, t ∈ V
in Õ(m

√
n+ n2) time (w.h.p.).

We start by computing, for every vertex y ∈ B, a BFS
tree Ty with source vertex y in the graph G. This takes
Õ(m

√
n) time (w.h.p.).

Let t ∈ V , let P (s, t) be the shortest path from s to
t in Ts, and let x, y ∈ B such that x, y 6∈ P (s, t). As
before, consider the enumeration of the vertices of P (s, t) =
(v0, . . . , vd(s,t)). Recall that: (a) 0 ≤ i1 ≤ d(s, t) is the
minimum index such that (vi, vi+1) is (s, x)-replaceable for
every i ≥ i1. (b) 1 ≤ i2 ≤ d(s, t) is the maximum index
such that (vi−1, vi) is (y, t)-replaceable for every i ≤ i2. (c)
Ix,y,t = {(vi, vi+1)|i1 ≤ i < i2}.

Thus, in order to compute the path intervals Ix,y,t we
need to find the indices i1, i2.

We describe how to find the index i2. Finding the index
i1 can be done similarly. We first define an index 0 ≤ i′2 ≤ i2,
we find i′2 using a binary search on the vertices of P (s, t) in
O(logn) time. Then, using the index i′2 and a dominator
tree rooted at y we find the index i2.

We start by defining the index i′2 and prove that we can
find i′2 in O(logn) time using a binary search on the vertices
of P (s, t). We obtain this using a monotonicity property
of the vertices of P (s, t) (see Figure 5), as described in the
following Lemma.

Lemma 8.1. Let y ∈ B. There exists an index 0 ≤ i′2 ≤
d(s, t) such that for every 0 ≤ i < i′2 it holds that d(y, t) <
d(y, vi) + d(vi, t) and for every i′2 ≤ i ≤ d(s, t) it holds that
d(y, t) = d(y, vi) + d(vi, t). Furthermore, we can find the
index i′2 in O(logn) time. See Figure 5.

s t

𝑑 𝑦, 𝑣𝑖 + 𝑑 𝑣𝑖 , 𝑡 > 𝑑 𝑦, 𝑡
∀0 ≤ 𝑖 < 𝑖2

′
𝑑 𝑦, 𝑣𝑖 + 𝑑 𝑣𝑖 , 𝑡 = 𝑑 𝑦, 𝑡

∀ 𝑖2
′ ≤ 𝑖 ≤ 𝑑(𝑠, 𝑡)

𝑣0 𝑣1 𝑣2 𝑣𝑖2′−1 𝑣𝑖2′
𝑣𝑖2′+1 𝑣𝑑(𝑠,𝑡)

Figure 5: The monotonicity property that for every
0 ≤ i < i′2 it holds that d(y, t) < d(y, vi) + d(vi, t)
and for every i′2 ≤ i ≤ d(s, t) it holds that d(y, t) =
d(y, vi) + d(vi, t). Using a binary search on the index
i ∈ [0, d(s, t)] we find the minimum index i′2 such that
d(y, t) = d(y, vi′2) + d(vi′2 , t).

Proof. Let 0 ≤ i′2 ≤ d(s, t) be the minimum index such
that d(y, t) = d(y, vi′2) + d(vi′2 , t). Such an index i′2 exists
as the equation d(y, t) = d(y, vi′2) + d(vi′2 , t)) trivially holds

when i′2 = d(s, t), since then t = vi′2 . By the minimality

of i′2, it follows that for every 0 ≤ i < i′2 it holds that
d(y, t) 6= d(y, vi) + d(vi, t). According to the triangle

inequality d(y, t) ≤ d(y, vi) + d(vi, t), and hence for every
0 ≤ i < i′2 it holds that d(y, t) < d(y, vi) + d(vi, t).

We are left to prove that for every i′2 ≤ i ≤ d(s, t) it
holds that d(y, t) = d(y, vi) + d(vi, t). Consider an index i
such that i′2 ≤ i ≤ d(s, t).

We claim that d(y, vi) = d(y, vi′2) + d(vi′2 , vi). To
see this assume, toward contradiction, that d(y, vi) <
d(y, vi′2)+d(vi′2 , vi). We get the following d(y, t) = d(y, vi′2)+
d(vi′2 , t) = d(y, vi′2)+d(vi′2 , vi)+d(vi, t) > d(y, vi)+d(vi, t) ≥
d(y, t), contradiction.

We therefore get, d(y, t) = d(y, vi′2) + d(vi′2 , t) =
d(y, vi′2)+d(vi′2 , vi)+d(vi, t) = d(y, vi)+d(vi, t), as required.

To find the index i′2 we can use a binary search on
the range 0 ≤ i ≤ d(s, t) in O(logn) time. Observe
that the distances d(y, t), d(y, vi), d(vi, t) can be obtained
in O(1) time: the distances d(y, t), d(y, vi) were computed
and stored during the BFS computation from the source
vertex y ∈ B (during the computation of Ty). Since
vi ∈ P (s, t), the distance d(vi, t) can be computed as
d(vi, t) = d(s, t) − d(s, vi) and the distances d(s, t), d(s, vi)
were computed and stored during the BFS computation from
the source vertex s (during the computation of Ts). During
the binary search, if d(y, t) < d(y, vi) + d(vi, t) then i < i′2
and if d(y, t) = d(y, vi) + d(vi, t) then i′2 ≤ i.

In the following Lemma we prove that 0 ≤ i′2 ≤ i2 ≤ d(s, t).

Lemma 8.2. It holds that 0 ≤ i′2 ≤ i2 ≤ d(s, t).

Proof. Recall the definition of i′2, i2: (a) 0 ≤ i′2 ≤ d(s, t) is
the minimum index such that d(y, t) = d(y, vi′2) + d(vi′2 , t).
(b) 1 ≤ i2 ≤ d(s, t) is the maximum index such that (vi−1, vi)
is (y, t)-replaceable for every i ≤ i2.

By definition, 0 ≤ i′2 and i2 ≤ d(s, t), so we only need
to prove that i′2 ≤ i2.

Let P (y, vi′2) be an arbitrary shortest path from y to
vi′2 . Let P (vi′2 , t) = (vi′2+1, . . . , vd(s,t)) be the subpath of
the shortest path P (s, t) from vi′2 to t. Since P (vi′2 , t) is a
subpath of a shortest path then P (vi′2 , t) is also a shortest
path from vi′2 to t. Since d(y, t) = d(y, vi′2) + d(vi′2 , t)

it follows that the path P ′ = P (y, vi′2) ◦ P (vi′2 , t) is a

shortest path from y to t (as |P ′| = |P (y, vi′2) ◦ P (vi′2 , t)| =
|P (y, vi′2)|+ |P (vi′2 , t)| = d(y, vi′2) + d(vi′2 , t) = d(y, t)).

Furthermore, it cannot be that P (y, vi′2) contains a

vertex vi for any i < i′2, as otherwise d(y, t) = d(y, vi) +
d(vi, t) for i < i′2, which is a contradiction to the definition
of i′2 as the minimum index such that d(y, t) = d(y, vi′2) +

d(vi′2 , t). Hence, P ′ is a shortest path from y to t which does

not contain any of the vertices v0, . . . , vi′2−1. Therefore, P ′

is a shortest path from y to t which does not contain any of
the edges (vi, vi+1) for every 0 ≤ i < i′2. It follows that all
the edges (vi, vi+1) for every 0 ≤ i < i′2 are (y, t)-replaceable.

The index 1 ≤ i2 ≤ d(s, t) is the maximum index such
that (vi−1, vi) is (y, t)-replaceable for every i ≤ i2. Since the
edges (vi, vi+1) are (y, t)-replaceable for every 0 ≤ i < i′2, it
follows that i2 ≥ i′2.

8.1 Computing The Index i2 Given i′2 We first
give an overview of how to compute the index i2 given i′2

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2102

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(see Figure 6). Given i′2 let z be the vertex on the path from
y to t in Ty which is on the same level as the vertex u = vi′2
in the tree Ty. Note that in case vi′2 is an ancestor of t in Ty
then z = vi′2 . Even though, vi′2 is on a shortest path from
y to t, it might be that vi′2 is not an ancestor of t in Ty as
there might be different shortest paths from y to t (some of
which do not contain vi′2) and in this case we have z 6= vi′2 .

y

s

z

𝑷(𝒔, 𝒕)
𝑃𝑧

t

𝑣𝑖2

𝑻𝒚

𝒅 𝒚, 𝒖 = 𝒅 𝒚, 𝒛𝑢 = 𝑣𝑖2′

Figure 6: An illustration of how to find the index i2
given the index i′2. Given the index i′2 we can find the
vertex u = vi′2 ∈ P (s, t). Let z be the vertex on the path
from y to t in Ty such that d(y, z) = d(y, u). Using the
data-structure from Lemma 8.6 we find the first edge
(vi2 , vi2+1) on the path from z to t which is not (y, t)-
replaceable, and this edge is associated with the index
i2. In this Figure, red edges represent edges that are not
(y, t)-replaceable. In the figure we draw for simplicity
that from the first vertex that P (s, t) enters the path
Pz both paths share a common suffix. We remark that
generally this may not be the case, only the red edges
must be common to both P (s, t) and P (z) but the rest
of the edges may be disjoint.

Next, given z and using a data-structure based on
dominator trees described in Lemma 8.6 we find the first
edge on the path from z to t in Ty which is not (y, t)-
replaceable. In Lemma 8.3 we prove that this edge is
(vi2 , vi2+1) and thus we can find the index i2 (we use a
perfect hash table that maps the edges (vi, vi+1) ∈ P (s, t)
to the index i for every 0 ≤ i < d(s, t)).

In the rest of this Section we describe in detail how to
find the index i2 given the index i′2. Let u = vi′2 ∈ P (s, t),
where P (s, t) is the shortest path from s to t in Ts. According
to Lemma 8.1, d(y, t) = d(y, u)+d(u, t). Let z be the vertex
on the path from y to t in Ty such that d(y, z) = d(y, u).
Then we also have d(y, t) = d(y, z) + d(z, t) and thus
d(u, t) = d(z, t).

Let Pz = (u0, u1, . . . , uk) be the path from z to t in Ty
(with u0 = z, uk = t). We claim that either all the edges of
Pz are (y, t)-replaceable, or the edge (vi2 , vi2+1) ∈ Pz is the
first edge along Pz which is not (y, t)-replaceable.

Lemma 8.3. It holds that either all the edges of Pz are (y, t)-
replaceable, or the edge (vi2 , vi2+1) ∈ Pz is the first edge

along Pz which is not (y, t)-replaceable (see Figure 7).

y

s

z

𝑄1

𝑃(𝑢, 𝑡)

𝑷(𝒔, 𝒕)

𝑄2

𝑃2

𝑃𝑧

t

u

𝑣𝑖2

𝑣𝑖2+1

𝑻𝒚

Figure 7: Notations for the proof of Lemma 8.3. In this
Figure we see the tree Ty. Here P2 is the path from y to t
in Ty, and P (s, t) = (v0, . . . , vd(s,t)) is the shortest path
from s to t in Ts. The vertex u = vi′2 ∈ P (s, t) is defined
as in Lemma 8.1 where d(y, t) = d(y, u) + d(u, t) and
thus the P1 = Q1 ◦ P (u, t) (which is the concatenation
of a shortest path from y to u and a shortest path from
u to t) is a shortest path from y to t. Here, Q1 is
an arbitrary shortest path from y to u and P (u, t) is
the subpath of P (s, t) from u to t (since P (s, t) is a
shortest path then its subpath P (u, t) is also a shortest
path). The path Pz is a shortest path from z to t in Ty.
We prove in Lemma 8.3 that the first edge of P (u, t)
which is not (y, t)-replaceable (which is (vi2 , vi2+1) by
definition of i2) is also the first edge of Pz which is not
(y, t)-replaceable. Hence, in order to find the index i2
we can search for the first edge of Pz which is not (y, t)-
replaceable.

Proof. Let Q1 be any shortest path from y to u, and let
P (u, t) ⊂ P (s, t) be the shortest path from u to t in P (s, t).
Let P1 = Q1 ◦ P (u, t). Since d(y, t) = d(y, u) + d(u, t) and
|P1| = |Q1| + |P (u, t)| = d(y, u) + d(u, t) = d(y, t), then P1

is a shortest path from y to t which goes through u. Let P2

be the shortest path from y to t in Ty then z ∈ P2. Let Q2

be the subpath of P2 from y to z, then P2 = Q2 ◦ Pz.
Let e1 = (a, b) be the first edge of Pz which is not (y, t)-

replaceable such that d(y, a) < d(y, b). Then e1 appears on
all the shortest paths from y to t. In particular e1 appears
on the shortest path P1 from y to t. Since e1 = (a, b) ∈ Pz
it follows that d(y, z) ≤ d(y, a). Since d(y, u) = d(y, z) it
follows that d(y, u) ≤ d(y, a) and hence e1 ∈ P1 appears on
P1 = Q1 · P (u, t) after the vertex u, i.e., e1 ∈ P (u, t).

Let e2 = (c, d) be the first edge of P (u, t) which is not
(y, t)-replaceable such that d(y, c) < d(y, d) A symmetric
claim shows that e2 ∈ Pz; the edge e2 appears on all the
shortest paths from y to t. In particular e2 appears on the
shortest path P2 from y to t. Since e1 = (c, d) ∈ P (u, t)
it follows that d(y, u) ≤ d(y, c). Since d(y, u) = d(y, z) it

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2103

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

follows that d(y, z) ≤ d(y, c) and hence e2 ∈ P2 appears on
P2 = Q2 · Pz after the vertex z, i.e., e2 ∈ Pz.

Since e2 ∈ P (u, t) ⊆ P (s, t) = (v0, . . . , vd(s,t)) then
there exists an index 0 ≤ i < d(s, t) such that e2 = (vi, vi+1).
Since e1 is the first edge of Pz which is not (y, t)-replaceable
and e1 ∈ P (u, t), and e2 is the first edge of P (u, t) which is
not (y, t)-replaceable and e2 ∈ Pz, it follows that e1 = e2 =
(vi, vi+1).

Finally, we claim that i = i2. Indeed, according to
Lemma 8.1 for every 0 ≤ i′ < i′2 it holds that d(y, t) <
d(y, vi′) + d(vi′ , t) and thus no shortest path from y to
t may pass through vi′ . Hence, (vi′ , vi′+1) is not (y, t)-
replaceable for every 0 ≤ i′ < i′2. In particular, P2 is a
shortest path from y to t which does not contain any of
the edges {(vi′ , vi′+1)|0 ≤ i′ < i′2}, and thus all the edges
{(vi′ , vi′+1)|0 ≤ i′ < i′2} are (y, t)-replaceable. Furthermore,
since (vi, vi+1) is the first edge of P (u, t) which is not (y, t)-
replaceable and recall u = vi′2 , it follows that (vi, vi+1) is the
first edge of P (s, t) which is not (y, t)-replaceable. According
to the definition of the index i2, it follows that i = i2.

It follows from Lemma 8.3 that we can find i2 by
searching for the first edge e′ = (vi2 , vi2+1) along the path
from z to t in Ty such that e′ is (y, t)-replaceable. Following
we describe a data-structure based on dominator trees to
find the edge e′ in O(logn) time.

8.2 The Graph Gy And Dominator Tree Dy

We describe dominator trees as defined by [21]. Given a
directed graph G and a source vertex s, we assume all the
vertices of G are reachable from s. We say that a vertex
v dominates a vertex w if every path from s to w in G
passes through v. Note that every vertex v has at least
one dominating vertex, as s dominates all the vertices. We
define the immediate dominator v = idom(w) of vertex w
as the vertex v 6= w which dominates w such that every
vertex u 6= w that dominates w also dominates v. It
was proven in [21] that every vertex w ∈ G \ {s} has a
unique immediate dominator idom(w), and the dominator
tree DomTreeG(s) which contains all the edges (idom(w), w)
for every w ∈ V \ {s} forms a valid tree where s is the
root of the tree. They also prove that one can compute
DomTreeG(s) in Õ(m + n) time. Note that, for a vertex
w ∈ V the set of nodes that are on any shortest path from s
to w are exactly the set of ancestors of w in DomTreeG(s).
The Graph Gy:

Let y ∈ B. We construct a DAG Gy by keeping only
edges of E which are from some level i of the tree Ty to level
i+ 1 in Ty, and we direct these edges away from the root y.
Furthermore, we add the following auxiliary vertices p(e) to
Gy. For every edge e = (u, v) ∈ E(Ty) we add an auxiliary
vertex p(e) in Gy and replace the edge (u, v) with the edges
(u, p(e)), (p(e), v).

Lemma 8.4. Let e ∈ Pz be an edge on the path from z to t in
Ty, then p(e) dominates t in Gy iff e is not (y, t)-replaceable.

Proof. As in Theorem 2.1, every shortest path from y to t
in G appears in Gy (when directed the edges from y to t),

and vice versa, every path from y to t in Gy is a shortest
path from y to t in G (when removing the direction of the
edges). It is not hard to verify now that p(e) is a dominating
vertex in Gy iff p(e) appears on all the paths from y to t in
the graph Gy, iff e appears on all the shortest paths from y
to t in G, iff e is not (y, t)-replaceable.

The Dominator Tree Dy:
We build a dominator tree Dy = DomTreeGy (y) rooted

at y for the DAG Gy such that given a vertex t ∈ V the
dominator tree Dy can list all the vertices on the path from
y to t that dominate t. We augment the vertices v ∈ Dy
with a pointer first(v) as follows. We run a pre-order scan
on the tree Dy and for every vertex v ∈ Dy we store first(v),
a pointer to the lowest ancestor of v which is an auxiliary
vertex of the form p(e) that represents an edge e of G, if no
such ancestor of v exists then we set first(v) = null.

Lemma 8.5. Let y ∈ B, t ∈ V, 0 ≤ i ≤ d(y, t). Using Dy,
one can find the first auxiliary vertex p(e) on the path from y
to t in Dy (here by “first” we mean closest to y) whose level
in Gy is at least i in O(logn) time. If there is no auxiliary
vertex p(e) on the path from y to t in Dy whose level in Gy
is at least i, we report that this is the case.

Proof. Let L ← y,R ← idom(t). We run a binary search
on the path from L to R in Dy. Let v be a vertex on the
middle of the path from L to R in Dy. Let [L,R] represent
the path from L to R in Dy including both L and R, and let
(L,R] represent the path from L to R in Dy including R and
excluding L. If level(first(v)) < i then we continue the search
on the subpath (v,R] and otherwise we continue the search
in [L, v]. Assume the binary search finished with the vertex
v. Then, if level(first(v)) ≥ i we return p(e) = first(v), and
otherwise we report that there is no auxilary vertex p(e) on
the path from y to t in Dy whose level in Gy is at least i.
The run time of this procedure is O(logn) as we do a binary
search on the path from y to t in Dy which is of length at
most n.

Lemma 8.6. Let y ∈ B. One can construct a data-structure
Dy which supports the following operations.

(1) Dy ← Construct(Ty) : given a BFS tree rooted

at y denoted by Ty, construct the data-structure Dy in Õ(m)

time and store it using Õ(n) space. (2) Query(t, i) : the
query procedure is given t ∈ V and an integer 0 ≤ i ≤ d(y, t).
Let z be the ith vertex along the path from y to t in Ty. Let
Pz be the shortest path from z to t in Ty. The answer to the
query (t, i) is the first edge e′ on the path Pz which is not
(y, t)-replaceable, or reporting that all the edges of Pz are
(y, t)-replaceable.

Proof. During Construct(Ty) we build the dominator tree
Dy as described above, including the pointers first(v) for
every v ∈ Dy.

Upon Query(t, i) we run a binary search as in Lemma
8.5 to find the first auxiliary vertex p(e) on the path from
y to t in Dy whose level in Gy is at least i. According to
Lemma 8.4, e′ is the first edge on the path Pz which is not

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2104

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(y, t)-replaceable. If there is no auxilary vertex p(e′) on the
path from y to t in Dy whose level in Gy is at least i, we
report that all the edges of Pz are (y, t)-replaceable, which
is also correct according to Lemma 8.4.

Corollary 8.1. Let y ∈ B, t ∈ V . Using Dy and i′2, we
can find the index i2 in O(logn) time.

Proof. As above, let u = vi′2 ∈ P (s, t), since we have already

computed the index i′2 in Lemma 8.1 in O(logn) time, we
can retrieve u = vi′2 from the path P (s, t) = (v0, . . . , vd(s,t))
in constant time. So we can assume the algorithm knows u.

Let z be the vertex on the path from y to t in Ty such
that d(y, z) = d(y, u), and let i = d(y, u). Thus, we can
query the data-structure Dy from Lemma 8.6 with the query
(t, i) in O(logn) time.

If Dy reports that all the edges of Pz are (y, t)-
replaceable then it follows that i2 = d(s, t) and vi2 = t.
Otherwise, Dy answers the query (t, i) by returning the first
edge e′ in Pz which is not (y, t)-replaceable. According to
Lemma 8.3 it follows that the edge e′ = (vi2 , vi2+1) ∈ Pz is
the first edge along Pz which is not (y, t)-replaceable. Dur-
ing preprocessing, we associate using a perfect hash table
every edge (vi, vi+1) of P (s, t), for every 0 ≤ i < d(s, t),
with the index i. Then, given the edge e′ = (vi2 , vi2+1) we
can retrieve from the hash table the index i2, and return it.
Query time is dominated by the time it takes to query Dy
with (t, i), which is O(logn) time.

We outline how to compute i′1 and i1 in a similar
way of computing i′2 and i2. We leave out the details,
as the computation of i′1, i1 and proofs are similar to the
computation of i′2, i2.

Lemma 8.7. Given x ∈ B one can compute the index i1 in
O(logn) time.

Proof. As in Lemma 8.1, let 0 ≤ i′1 ≤ d(s, t) be the
maximum index such that d(s, x) = d(s, vi′1) + d(vi′1 , x).

According to the definition of i′1, it follows that for every
i′1 < i ≤ d(s, t) it holds that d(s, vi) + d(vi, x) > d(s, x), and
by a similar proof as in Lemma 8.1 it follows that for every
0 ≤ i ≤ i′1 it holds that d(s, x) = d(s, vi)+d(vi, x). Thus, we
can find the index i′1 using a binary search on the vertices
of P (s, t) in O(logn) time.

Let u = vi′1 ∈ P (s, t) and recall that P (s, t) is the
shortest path from s to t in Ts. According to the claim
above, d(s, x) = d(s, u) + d(u, x). Let z be the vertex on
the path from x to s in Tx such that d(x, z) = d(x, u). Let
i = d(x, z) = d(x, u) be the depth of the vertex z in Tx. The
distance d(x, u) was computed during the BFS with source
vertex x (when computing the tree Tx), and thus it is stored
and known to the algorithm, and hence we can compute i
the depth of z in Tx in constant time.

Denote by Pz = (u0, u1, . . . , uk) the path from z to s in
Tx (with u0 = z, uk = s). Similar to the proof of 8.3, we
claim that either all the edges of Pz are (s, x)-replaceable,
or the edge (vi1 , vi1+1) ∈ Pz is the first edge along Pz which
is not (s, x)-replaceable.

LetDx be the data-structure as in Lemma 8.6. It follows
that (vi1 , vi1+1) can be found by Query(s, i) to the data-
structure Dx, as in Lemmas 8.1 and 8.6 and thus we can
obtain i1 in O(logn) time.

We are now ready to prove Lemma 7.5.

Proof. [Proof of Lemma 7.5] For every y ∈ B we compute
the tree Ty using BFS in time O(m + n), and we build the

data-structure Dy as in Lemma 8.6 in Õ(m) time. Since the

of vertices in B is Õ(
√
n) (w.h.p.) we get that the time to

compute Ty, Dy for all y ∈ B is Õ((m+ n)
√
n) (w.h.p.).

Then, for every x, y ∈ B and t ∈ V we find the indices
i′1, i
′
2 in O(logn) time using a binary search on the vertices

of the path P (s, t) as in Lemmas 8.1 and 8.7. Then we
find the indices i1, i2 using Dx and Dy as in Lemmas 8.1
and 8.7 in O(logn) time. Since there are Õ(n2) triples
x, y ∈ B, t ∈ V (w.h.p.), given Tx, Dx, Ty, Dy the total time

to find all indices i1, i2 for all the triples x, y, t is Õ(n2). So,

total processing time is Õ(m
√
n+ n2) (w.h.p.).

Finding all the indices i1, i2 for every x, y ∈ B, t ∈ V
gives us all the intervals Ix,y,t as Ix,y,t = {(vi, vi+1)|i1 ≤ i <
i2}.

9 Case Analysis: Proof Of Correctness

In this Section we prove Theorem 3.1, which proves the
correctness of our algorithm. Intuitively, we prove that
one of the cases must hold: the replaceable edge case
(ds,t,e = h0[t, e]), the small fall case (ds,t,e = h1[t, e]), the
single pivot case (ds,t,e = h2[t, e]), or the double pivot case
(ds,t,e = h3[t, e]). Our goal is to prove Theorem 3.1, that for
every t ∈ V, e ∈ P (s, t) it holds that d̂s,t,e = ds,t,e.

Recall that d̂s,t,e =
min{h0[t, e], h1[t, e], h2[t, e], h3[t, e]}. We first prove
that d̂s,t,e ≥ ds,t,e.

Lemma 9.1. For every t ∈ V, e ∈ P (s, t) it holds that
d̂s,t,e ≥ ds,t,e.

Proof. It follows from Lemma 4.1 that h0[t, e] ≥ ds,t,e.
It follows from Lemma 5.3 that h1[t, e] ≥ ds,t,e. It fol-
lows from Lemma 6.2 that h2[t, e] ≥ ds,t,e. It follows
from Lemma 7.1 that h3[t, e] ≥ ds,t,e. Since d̂s,t,e =
min{h0[t, e], h1[t, e], h2[t, e], h3[t, e]} it follows that d̂s,t,e ≥
ds,t,e.

According to Lemma 9.1, in order to prove d̂s,t,e = ds,t,e
we only have to prove that either one of the cases hold:
h0[t, e] = ds,t,e or h1[t, e] = ds,t,e or h2[t, e] = ds,t,e or
h3[t, e] = ds,t,e.

To prove Theorem 3.1, it is sufficient to assume that
h0[t, e], h1[t, e], h2[t, e] > ds,t,e and prove that h3[t, e] = ds,t,e
in this case.

Definition 9.1. Let t ∈ V, e ∈ E(Ts). We say that (t, e)
is of type “strict double pivot” iff h0[t, e], h1[t, e], h2[t, e] >
ds,t,e.

In this Section we prove Theorem 3.1 by proving the
following equivalent Lemma.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2105

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Lemma 9.2. Let t ∈ V, e ∈ E(Ts) such that (t, e) is of type
“strict double pivot”. Then h3[t, e] = ds,t,e.

Let Ps,t,e be a replacement path. Let x1, . . . , xk ∈ B be
all the sampled vertices on the path Ps,t,e ordered according
to their appearance along the path Ps,t,e from s to t, and let
x0 = s, xk+1 = t.

Lemma 9.3. If (t, e) is “strict double pivot” then with high
probability Detours,t,e contains at least 2 vertices of B.

Proof. Since we assume h0[t, e], h1[t, e], h2[t, e] > ds,t,e it
follows from Lemma 6.3 that Detours,t,e contains at least√
n edges. Therefore, according to Lemma 2.1, with high

probability, Detours,t,e contains at least 2 sampled vertices
of B.

Lemma 9.4. Let 0 ≤ i ≤ k be an index and e = (u, v) such
that u is closer to s than v (i.e., d(s, u) < d(s, v)). Then
with high probability either:
1. e is (xi, xi+1)-replaceable or
2. d(v, xi+1) <

√
n and either h1[xi+1, e] = ds,xi+1,e or

h0[xi+1, e] = ds,xi+1,e.

Proof. If e is (xi, xi+1)-replaceable then we are done. So we
assume that e is not (xi, xi+1)-replaceable, i.e., dxi,xi+1,e >
d(xi, xi+1). We prove that either h1[xi+1, e] = ds,xi+1,e or
h0[xi+1, e] = ds,xi+1,e. Let P = P (xi, xi+1) be a shortest
path from xi to xi+1 and let P ′ = Pxi,xi+1,e be a shortest
path from xi to xi+1 avoiding e, therefore |P | < |P ′|. Note
that e ∈ P since e is not (xi, xi+1)-replaceable (and therefore
e appears on all shortest paths from xi to xi+1 and in
particular on P). Since P, P ′ are both paths from xi to
xi+1 such that e ∈ P and e 6∈ P ′ it follows that P ∪ P ′
contains a cycle C such that e ∈ C, and |C| ≤ |P |+ |P ′|.

Since xi and xi+1 are two consecutive sampled vertices
of B along Ps,t,e it follows from Lemma 2.1 that |P ′| (which
is the length of the subpath of Ps,t,e from xi to xi+1) is less
than

√
n with high probability. Hence, |P | < |P ′| <

√
n

with high probability, and |C| ≤ |P |+ |P ′| < 2
√
n with high

probability.
Since e ∈ P then v ∈ P and hence d(v, xi+1) ≤ |P | =

d(xi, xi+1). As d(xi, xi+1) <
√
n w.h.p, we also get that

d(v, xi+1) <
√
n w.h.p.

We get that the conditions of Lemma 5.4 hold (when
substituting x = xi+1 in Lemma 5.4):

(a) e is contained in a cycle C of length at most 2
√
n.

(b) d(v, xi+1) <
√
n < 2

√
n.

Hence, by Lemma 5.4, either h1[xi+1, e] = ds,xi+1,e or
h0[xi+1, e] = ds,xi+1,e with high probability.

Lemma 9.5. Assume (t, e) is of “strict double pivot” type
and let 0 ≤ i ≤ k be an index. Then with high probability
either e is (xi, xi+1)-replaceable or h3[t, e] = ds,t,e.

Proof. If e is (xi, xi+1)-replaceable then we are done. So we
assume that e is not (xi, xi+1)-replaceable and prove that
h3[t, e] = ds,t,e w.h.p.

If xi+1 = t then by Lemma 9.4, with high probability
either h0[t, e] = ds,t,e or h1[t, e] = ds,t,e which is a contradic-
tion to the assumption that (t, e) is of “strict double pivot”
type. Therefore, for the rest of the proof assume xi+1 6= t.
Since either xi+1 ∈ B or xi+1 = t, it follows that xi+1 ∈ B.

Since e is not (xi, xi+1)-replaceable we claim that it
must hold that e is (xi+1, t)-replaceable. Let P ′ be the
subpath of Ps,t,e from xi to t. Then P ′ is a shortest from
xi to t avoiding e and therefore P ′ is also a replacement
path for (xi, t, e). Furthermore, the vertex xi+1 appears
after xi along Ps,t,e and therefore xi+1 ∈ P ′ is a vertex on
the replacement path of (xi, t, e). By Lemma 4.3 (substitute
x = xi, y = t, p = xi+1 in Lemma 4.3) we either have e is
(xi, xi+1)-replaceable or e is (xi+1, t)-replaceable. But since
we assume that e is not (xi, xi+1)-replaceable then we get
that e is (xi+1, t)-replaceable.

Let P = P (s, xi+1) be the shortest path from s to
xi+1 in Ts and consider two cases e ∈ P and e 6∈ P . If
e 6∈ P then e is both (s, xi+1)-replaceable and (xi+1, t)-
replaceable. In that case, according to Definition 7.1 we get
that (t, e) is of type “double pivot” (substitute x = y = xi+1

in the definition). According to Lemma 7.1 it holds that
h3[t, e] = ds,t,e and we are done.
We assume by contradiction that e ∈ P . Recall the definition
of h2 is as follows. h2[t, e] = minx∈B{min{h0[x, e], h1[x, e]}+
d(x, t) where e is among the 2

√
n last edges of the path from

s to x in Ts}. We prove that if e ∈ P then h2[t, e] = ds,t,e
which is a contradiction to the Lemma’s assumptions. Let
x = xi+1. We prove that: (1) e is among the 2

√
n last

edges of the path from s to x in Ts, and (2) ds,t,e =
min{h0[x, e], h1[x, e]}+ d(x, t).

(1) Let e = (u, v) such that u is closer to s than v (i.e.,
d(s, u) < d(s, v)). Since we assumed e is not (xi, xi+1)-
replaceable and x = xi+1 then we have already proved
in Lemma 9.4 that d(v, x) = d(v, xi+1) <

√
n with high

probability.
Since e = (u, v) ∈ P and d(v, x) <

√
n then e is among

the
√
n last edges of the path from s to x in Ts.

(2) We have already proved in Lemma 9.4 that
h0[x, t] = ds,x,e or h1[x, t] = ds,x,e. Since h0[x, e] ≥
ds,x,e and h1[x, e] ≥ ds,x,e it follows that ds,x,e =
min{h0[x, e], h1[x, e]}. Since e is (x, t)-replaceable it fol-
lows that dx,t,e = d(x, t). Since x ∈ Ps,t,e then ds,t,e =
ds,x,e + dx,t,e = min{h0[x, e], h1[x, t]}+ d(x, t).

We get that h2[t, e] = ds,t,e which is a contradiction to
our assumptions.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1:
We assume h0[t, e], h1[t, e], h2[t, e] > ds,t,e and prove

that h3[t, e] = ds,t,e with high probability.
If there exists an index 1 ≤ i ≤ k such that e is not

(xi, xi+1)-replaceable then according to Lemma 9.4 it holds
with high probability that h3[t, e] = ds,t,e. Assume for the
rest of the proof that for every 1 ≤ i ≤ k it holds that e is
(xi, xi+1)-replaceable.

Let 1 ≤ ` ≤ k be the minimum index such that
x` ∈ Detours,t,e and let r be the maximum index such that

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2106

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

` < r ≤ k and xr ∈ Detours,t,e. According to Lemma
9.3, with high probability Detours,t,e contains at least two
vertices of B and therefore with high probability the indices
` < r exist.

Since e is (x`−1, x`)-replaceable, there exists a shortest
path P1 from x`−1 to x` which avoids e (i.e., |P1| =
d(x`−1, x`)). Since 1 ≤ ` is the minimum index such that
x` ∈ Detours,t,e it follows that x`−1 is on CommonPrefs,t,e
(recall that x0 = s, so x`−1 is well defined). Therefore
P (s, x`−1), the subpath of P (s, t) from s to x`−1, is a shortest
path from s to x`−1. We get that P ′1 = P (s, x`−1) ◦ P1 is a
path from s to x` in G and it also avoids e.

We claim that e is (s, x`)-replaceable. If e is not (s, x`)-
replaceable then e appears on every shortest path from s to
x`. Since x`−1 ∈ CommonPrefs,t,e appears before e on the
shortest path P (s, t) then we may alter every shortest path
from s to x` to contain x`−1 be replacing its prefix from s
to e with the prefix of P (s, t) from s to e. Therefore, since
there exists a shortest path from s to x` that contains x`−1 it
follows that d(s, x`) = d(s, x`−1)+d(x`−1, x`). We claim that
P ′1 = P (s, x`−1)◦P1 is a shortest path from s to x` in G (and
we have already proved that P ′1 does not contain e). It holds
that d(s, x`) = d(s, x`−1)+d(x`−1, x`) = |P (s, x`−1)|+|P1| =
|P (s, x`−1) ◦ P1|, and hence P (s, x`−1) ◦ P1 is a shortest
path from s to x` in G that avoids e. Hence, e is (s, x`)-
replaceable.

Similarly, since e is (xr, xr+1)-replaceable, there exists a
shortest path P2 from xr to xr+1 which avoids e (i.e., |P2| =
d(xr, xr+1)). Since r ≤ k is the maximum index such that
xr ∈ Detours,t,e it follows that xr+1 is on CommonSuffs,t,e
(recall that xk+1 = t, so xr+1 is well defined). Therefore
P (xr+1,t) is a shortest path from xr+1 to t. We get that
P ′2 = P2 ◦ P (xr+1, t) is a path from xr to t in G which also
avoids e.

We claim that e is (xr, t)-replaceable. If e is not (xr, t)-
replaceable then e appears on every shortest path from xr
to t. Since xr+1 ∈ CommonSuffs,t,e appears after e on the
shortest path P (s, t) then we may alter every shortest path
from xr to t to contain xr+1 be replacing its suffix from e
to t with the suffix of P (s, t) from e to t. Therefore, since
there exists a shortest path from xr to t that contains xr+1

it follows that d(xr, t) = d(xr, xr+1) +d(xr+1, xt). We claim
that P ′2 = P2 ◦ P (xr+1, t) is a shortest path from xr to t
in G (and we have already proved that P ′2 does not contain
e). It holds that d(xr, t) = d(xr, xr+1) + d(xr+1, t) = |P2|+
|P (xr+1, t)| = |P2 ◦ P (xr+1, t)|, and hence P (xr, xr+1) ◦ P2

is a shortest path from xr to t in G that avoids e. Hence, e
is (xr, t)-replaceable.

Let i be the minimum index such that ` < i ≤ r and
e is (xi, t)-replaceable. It follows that either i = ` + 1
or e is not (xi−1, t)-replaceable. We prove that in either
case e is (s, xi−1)-replaceable. If i = ` + 1, then we have
already proved that e is (s, x`)-replaceable. If i > ` + 1
then by definition of ` < i ≤ r as the minimum index such
that e is (xi, t)-replaceable, it follows that e is not (xi−1, t)-
replaceable. According to Corollary 4.2 it must hold that e
is (s, xi−1)-replaceable.

Let x = xi−1, y = xi. It follows that with high

probability Ps,t,e is a replacement path such that x, y ∈ B
and x appears before y on the detour part of Ps,t,e, and e
is (s, x)-replaceable, (x, y)-replaceable and (y, t)-replaceable.
Therefore, by Definition 7.1 it follows that (t, e) is of type
“double pivot”, and according to Lemma 7.1 it holds that
h3[t, e] = ds,t,e with high probability.

10 Conditional Lower Bounds

In this section we prove a combinatorial conditional lower
bound of Ω(m

√
n) for the SSRP problem in undirected

unweighted graphs by showing a combinatorial reduction
from Boolean Matrix Multiplication (BMM) to SSRP. We
prove that BMM with n × n matrices containing a total
number of m 1’s can be solved using

√
n independent calls

to SSRP.
A combinatorial algorithm is often referred to as an al-

gorithm that does use any matrix multiplication tricks. The
interest in combinatorial algorithms stems from the assump-
tion that in practice combinatorial algorithms are more ef-
ficient as the constants hide in the matrix multiplication
bounds are considered high.

Denote by BMM(n,m) the combinatorial BMM prob-
lem for multiplying n × n matrices with a total number of
m 1’s where only combinatorial algorithm are allowed. Our
conditional lower bound relies on the following Conjecture
for combinatorial BMM, that there is no truly subcubic al-
gorithm for combinatorial BMM. The combinatorial BMM
conjecture was used to prove conditional lower bounds for
the replacement paths problems, for example in [16], [31],
and [26].

Conjecture 10.1. In the Word RAM model with words of
O(logn) bits, any combinatorial algorithm for multiplying
two Boolean n × n matrices with a total number of m
1’s (i.e., any combinatorial algorithm for the BMM(n,m)
problem) requires (mn)1−o(1) time in expectation to compute
the Boolean product of the two n× n matrices.

We denote by ASSRP (n,m) an algorithm which solves
SSRP in undirected unweighted graphs with n vertices and
m edges. In this Section We prove the following reduction.

Theorem 10.1. Given a combinatorial algorithm
ASSRP (n,m) whose runtime is T (n,m), there is a
combinatorial algorithm for the BMM(n,m) problem whose
runtime is O(

√
n · T (O(n), O(m)).

Proof. For simplicity, assume m ≥ n. Let X,Y be two n×n
boolean matrices with total m non-zero entries and denote
by Z = X · Y the result of the boolean multiplication of X
and Y . We show how to compute Z in O(

√
n·T (O(n), O(m))

time.
First of all we create a graph G0 containing 3 layers

of n vertices: A = {a1, . . . , an}, B = {b1, . . . , bn}, and
C = {c1, . . . , cn}. Each of the sets A,B,C is an independent
set of n vertices. For every 1 ≤ i, j, k ≤ n, there is an
edge between ai and bk iff X[i, k] = 1, and there is an edge
between bk and cj iff Y [k, j] = 1.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2107

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

We construct
√
n graphs G1, . . . , G√n, each graph with

O(n) vertices and O(m) edges. The kth graph Gk (for
1 ≤ k ≤

√
n) will discover the values of Z[(k− 1) ∗

√
n+ i, j]

for all 1 ≤ i ≤
√
n, 1 ≤ j ≤ n. The idea is to construct

a path Pk = (vk,1, . . . , vk,√n of length
√
n − 1 of auxiliary

vertices, and let ek,i = (vk,i, vk,i+1) for every 1 ≤ i <
√
n

be the edges of the path Pk. Let sk = vk,√n be the source
vertex of the graph Gk.

We connect vk,i with the vertex a(k−1)∗
√
n+i by a path

Pk,i of 2(
√
n − i) + 1 auxiliary vertices. Observe that vk,1

is connected to a(k−1)
√
n + 1 via a path of length 1, vk,2

is connected to a(k−1)
√
n+2 via a path of length 3, . . ., and

vk,√n = sk is connected to ak√n via a path of length 2
√
n−1.

It follows that the following procedure will reveal the
entries of Z[(k−1)∗

√
n+ i, j] for all 1 ≤ i ≤

√
n, 1 ≤ j ≤ n.

In the graph Gk run SSRP from sk. If the shortest path from
sk to cj when non of the edges fail is of length

√
n+ 3 then

Z[(k−1)
√
n+ 1, j] = 1 (if there is a path a1 → b` → cj then

the shortest path from sk to cj is vk,√n → vk,√n−1 → . . .→
vk,1 → a1 → b` → cj whose length is

√
n + 3), otherwise

Z[(k − 1)
√
n + 1, j] = 0. If the shortest path from sk to cj

when e1 fails is of length
√
n+5 then Z[(k−1)

√
n+2, j] = 1

(if there is a path a2 → b` → cj then the shortest path from
sk to cj in Gk \ {e1} is vk,√n → vk,√n−1 → . . . → vk,2 →
Pk,2 → a2 → b` → cj whose length is

√
n + 5), otherwise

Z[(k − 1)
√
n + 2, j] = 0. In general, for every 1 ≤ i ≤

√
n,

if the shortest path from sk to cj when ei fails is of length√
n+ 1 + 2i then Z[(k − 1)

√
n+ i, j] = 1 (if there is a path

ai → b` → cj then the shortest path from sk to cj in Gk\{ei}
is vk,√n → vk,√n−1 → . . . → vk,i → Pk,i → ai → b` → cj
whose length is

√
n+1+2i), otherwise Z[(k−1)

√
n+i, j] = 0.

A recent line of research regarding conditional lower
bounds is to reprove and strengthen many conditional lower
bounds using a unified approach by reductions to a problem
called Online Boolean Matrix-Vector multiplication (OMv)
[16]. One of the goals of this approach is to provide
stronger lower bounds, showing that many conditional lower
bounds apply not only in the combinatorial settings, but
also apply for algebraic algorithms. The OMv problem, in
some manner, restricts the algorithm from using Strassen-
like algorithms. Therefore, a conditional lower bound given
by a reduction from the OMv problem implies that the given
lower bound cannot be improved by an algebraic approach,
e.g., by using matrix multiplication.

We note that the conditional lower bound of Ω̃(m
√
n)

cannot be achieved by a reduction from OMv. To see
that, recall that [15] proved that for positive integer edge
weights in the range [1,M], SSRP can be computed by

an algebraic algorithm in Õ(Mnω) time. In our case of
an undirected unweighted graph in holds that M = 1,
and thus according to [15] SSRP can be computed by an

algebraic algorithm in Õ(nω) time, which is better than

the combinatorial conditional lower bound of Ω̃(m
√
n) for

dense graphs (e.g., when m = Θ(n2)). Thus, our algorithm
which is near optimal for combinatorial algorithms (with

Õ(m
√
n) upper bound and conditional lower bound of

Ω̃(m
√
n) by a reduction from BMM) is not optimal for

algebraic algorithms, as the algebraic SSRP algorithm of [15]

runs in Õ(nω). In fact, the claim above suggests that one
cannot prove a conditional lower bound for SSRP by giving
a reduction from any non-combinatorial conjecture to SSRP
that implies that SSRP can be solved in time better than
Õ(nω).

10.1 Conditional Lower Bound For Weighted
Graphs In this Section we explain why it is hard to alter
our Õ(m

√
n+n2) SSRP algorithm to handle weighted graphs

in the same asymptotic runtime. More generally, we refer to
a reduction (which can be concluded from prior work) that
a combinatorial algorithm for SSRP in weighted undirected
graphs yields an algorithm of the same asymptotic runtime
for APSP in weighted undirected graphs. Assuming the
APSP conjecture that no combinatorial algorithm for APSP
runs in subcubic O(n3−ε) time (for constant 0 < ε) this
implies that a combinatorial algorithm for SSRP in weighted
directed graphs cannot be solved in subcubic time.

The reduction in this section works both for directed
and undirected graphs.

The following theorem is obtained by combining [31]
and the observation in [2] showing that the reduction from
APSP to Replacement Paths can preserve sparsity. In the
full version of the paper we give a self-contained proof to
Theorem 10.2.

Theorem 10.2. Let A(m;n;W) be an algorithm for the
weighted directed (undirected) SSRP problem with n vertices,
m edges whose weights are integers in the range [−W,W].
Then, there is an algorithm for the static APSP problem for
weighted graphs that runs in O(A(m+ 2n− 1; 2n; 2n2W) +
m+ n2) time.

In particular, any comparison-based, or any combina-
torial algorithm whose runtime is independent of W takes
Ω(APSP (n,m)) time, where APSP (n,m) is the time re-
quired to compute the all pairs shortest paths in a graph
with n vertices and m edges.

References

[1] Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith
Cohen, and Michael Merritt. Restoration by path
concatenation: fast recovery of mpls paths. Distributed
Computing, 15(4):273–283, Dec 2002.

[2] Udit Agarwal and Vijaya Ramachandran. Fine-grained
complexity and conditional hardness for sparse graphs.
CoRR, abs/1611.07008, 2016.

[3] Aaron Bernstein and David Karger. Improved distance
sensitivity oracles via random sampling. In Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 34–43, 2008.

[4] Aaron Bernstein and David Karger. A nearly optimal
oracle for avoiding failed vertices and edges. In Pro-
ceedings of the Forty-first Annual ACM Symposium on
Theory of Computing (STOC), pages 101–110, 2009.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2108

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

[5] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido
Proietti. Compact and fast sensitivity oracles for
single-source distances. In ESA, volume 57 of LIPIcs,
pages 13:1–13:14, 2016.

[6] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Ka-
plan. (1 + ε) approximatee f -sensitive distance oracles.
In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’17,
pages 1479–1496, 2017.

[7] Shiri Chechik, Michael Langberg, David Peleg, and
Liam Roditty. f-sensitivity distance oracles and routing
schemes. Algorithmica, 63(4):861–882, 2012.

[8] Keerti Choudhary. An Optimal Dual Fault Tolerant
Reachability Oracle. In 43rd International Colloquium
on Automata, Languages, and Programming (ICALP
2016), volume 55 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 130:1–130:13, 2016.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[10] Camil Demetrescu and Giuseppe F. Italiano. Experi-
mental analysis of dynamic all pairs shortest path al-
gorithms. ACM Trans. Algorithms, 2(4):578–601, Oc-
tober 2006.

[11] Camil Demetrescu, Mikkel Thorup, Rezaul Alam
Chowdhury, and Vijaya Ramachandran. Oracles for
distances avoiding a failed node or link. SIAM J. Com-
put., 37(5):1299–1318, January 2008.

[12] Ran Duan and Seth Pettie. Dual-failure distance and
connectivity oracles. In Proceedings of the Twenti-
eth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 506–515, 2009.

[13] Yuval Emek, David Peleg, and Liam Roditty. A near-
linear time algorithm for computing replacement paths
in planar directed graphs. In Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’08, pages 428–435, 2008.

[14] David Eppstein. Finding the k shortest paths. SIAM
Journal on Computing, 28(2):652–673, 1998.

[15] Fabrizio Grandoni and Virginia Vassilevska Williams.
Improved distance sensitivity oracles via fast single-
source replacement paths. In 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS
2012, 20-23, 2012, pages 748–757, 2012.

[16] Monika Henzinger, Sebastian Krinninger, Danupon
Nanongkai, and Thatchaphol Saranurak. Unifying and
strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Pro-
ceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing (STOC), pages 21–30,
2015.

[17] J. Hershberger and S. Suri. Vickrey prices and shortest
paths: what is an edge worth? In Proceedings 2001
IEEE International Conference on Cluster Computing,
pages 252–259, Oct 2001.

[18] David R. Karger, Daphne Koller, and Steven J.
Phillips. Finding the hidden path: Time bounds for
all-pairs shortest paths. SIAM Journal on Computing,

22(6):1199–1217, 1993.
[19] Philip N. Klein, Shay Mozes, and Oren Weimann.

Shortest paths in directed planar graphs with nega-
tive lengths: A linear-space o(n log2 n)-time algorithm.
ACM Trans. Algorithms, 6(2):30:1–30:18, April 2010.

[20] François Le Gall. Powers of tensors and fast matrix
multiplication. In Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation,
ISSAC ’14, pages 296–303, New York, NY, USA, 2014.
ACM.

[21] Thomas Lengauer and Robert Endre Tarjan. A fast
algorithm for finding dominators in a flowgraph. ACM
Trans. Program. Lang. Syst., 1(1):121–141, January
1979.

[22] K. Malik, A. K. Mittal, and S. K. Gupta. The k most
vital arcs in the shortest path problem. Oper. Res.
Lett., 8(4):223–227, August 1989.

[23] Enrico Nardelli, Guido Proietti, and Peter Widmayer.
A faster computation of the most vital edge of a
shortest path. Inf. Process. Lett., 79(2):81–85, June
2001.

[24] Enrico Nardelli, Guido Proietti, and Peter Widmayer.
Finding the most vital node of a shortest path. Theor.
Comput. Sci., 296(1):167–177, March 2003.

[25] Noam Nisan and Amir Ronen. Algorithmic mechanism
design (extended abstract). In Proceedings of the
Thirty-first Annual ACM Symposium on Theory of
Computing, STOC ’99, pages 129–140, New York, NY,
USA, 1999. ACM.

[26] Liam Roditty and Uri Zwick. On dynamic shortest
paths problems. Algorithmica, 61(2):389–401, October
2011.

[27] Liam Roditty and Uri Zwick. Replacement paths
and k simple shortest paths in unweighted directed
graphs. ACM Trans. Algorithms, 8(4):33:1–33:11, Oc-
tober 2012.

[28] Oren Weimann and Raphael Yuster. Replacement
paths and distance sensitivity oracles via fast matrix
multiplication. ACM Trans. Algorithms, 9(2):14, 2013.

[29] Virginia Vassilevska Williams. Faster replacement
paths. In Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, 23-25, 2011, pages 1337–1346, 2011.

[30] Virginia Vassilevska Williams. Multiplying matrices
faster than coppersmith-winograd. In Proceedings of
the Forty-fourth Annual ACM Symposium on Theory
of Computing, STOC ’12, pages 887–898, New York,
NY, USA, 2012. ACM.

[31] Virginia Vassilevska Williams and Ryan Williams. Sub-
cubic equivalences between path, matrix and triangle
problems. In 51th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2010, October 23-
26, 2010, pages 645–654, 2010.

[32] Christian Wulff-Nilsen. Solving the replacement paths
problem for planar directed graphs in o(n logn) time.
In Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’10, pages
756–765, 2010.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2109

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 9

4.
22

3.
12

5.
90

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 19
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryList_V1
 qi2base

