
Algorithmica (2019) 81:2557–2591
https://doi.org/10.1007/s00453-018-00544-7

New and Simple Algorithms for Stable Flow Problems

Ágnes Cseh1 · Jannik Matuschke2

Received: 19 July 2017 / Accepted: 31 December 2018 / Published online: 8 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Stable flows generalize the well-known concept of stable matchings to markets in
which transactions may involve several agents, forwarding flow from one to another.
An instance of the problem consists of a capacitated directed network inwhich vertices
express their preferences over their incident edges. A network flow is stable if there is
no group of vertices that all could benefit from rerouting the flow along a walk. Fleiner
(Algorithms 7:1–14, 2014) established that a stable flow always exists by reducing it to
the stable allocation problem.We present an augmenting path algorithm for computing
a stable flow, the first algorithm that achieves polynomial running time for this problem
without using stable allocations as a black-box subroutine. We further consider the
problem of finding a stable flow such that the flow value on every edge is within a given
interval. For this problem, we present an elegant graph transformation and based on
this, we devise a simple and fast algorithm, which also can be used to find a solution
to the stable marriage problem with forced and forbidden edges. Finally, we study
the stable multicommodity flow model introduced by Király and Pap (Algorithms
6:161–168, 2013). The original model is highly involved and allows for commodity-
dependent preference lists at the vertices and commodity-specific edge capacities. We
present several graph-based reductions that show equivalence to a significantly simpler
model. We further show that it is NP-complete to decide whether an integral solution
exists.

Keywords Stable flows · Restricted edges · Multicommodity flows · Polynomial
algorithm · NP-completeness

A preliminary version of this paper appeared at the 43rd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2017). The authors were supported by Cooperation of Excellences
Grant (KEP-6/2018), by the Ministry of Human Resources under its New National Excellence
Programme (UNKP-18-4-BME-331), the Hungarian Academy of Sciences under its Momentum
Programme (LP2016-3/2016), its János Bolyai Research Fellowship, OTKA Grant K128611, COST
Action IC1205 on Computational Social Choice, and by the Alexander von Humboldt Foundation with
funds of the German Federal Ministry of Education and Research (BMBF).

B Ágnes Cseh
cseh.agnes@krtk.mta.hu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-00544-7&domain=pdf
http://orcid.org/0000-0003-4991-2599

2558 Algorithmica (2019) 81:2557–2591

1 Introduction

Stability is a well-known concept used for matching markets without monetary trans-
actions [33]. A stable solution provides certainty that no two agents are willing to
selfishly modify the market situation. Stable matchings were first formally defined in
the seminal paper of Gale and Shapley [19]. They described an instance of the college
admission problem and introduced the terminology based on marriage that since then
became wide-spread. Besides this initial application, variants of the stable matching
problem are widely used in employer allocation markets [34], university admission
decisions [2,4], campus housing assignments [5,32] and bandwidth allocation [18]. A
recent honor proves the currentness and importance of results in the topic: in 2012,
Lloyd S. Shapley andAlvin E. Roth were awarded the Sveriges Riksbank Prize in Eco-
nomic Sciences in Memory of Alfred Nobel for their outstanding results on market
design and matching theory.

In the classic stable marriage problem, we are given a bipartite graph, where the two
classes of vertices represent men and women, respectively. Each vertex has a strictly
ordered preference list over his or her possible partners. A matching is stable if it is
not blocked by any edge, that is, no man-woman pair exists who are mutually inclined
to abandon their partners and marry each other [19].

In practice, the stable matching problem is mostly used in one of its capacitated
variants, which are the stable many-to-one matching, many-to-many matching and
allocation problems. The stable flow problem can be seen as a high-level generalization
of all these settings. As themost complex graph-theoretical generalization of the stable
marriage model, it plays a crucial role in the theoretical understanding of the power
and limitations of the stability concept. From a practical point of view, stable flows can
be used to model markets in which interactions between agents can involve chains of
participants, e.g., supply chain networks involving multiple independent companies.

In the stable flow problem, a directed network with preferences models a market
situation. Vertices are vendors dealing with some goods, while edges connecting them
represent possible deals. Through his preference list, each vendor specifies how desir-
able a trade would be to him. Sources and sinks model suppliers and end-consumers.
A feasible network flow is stable, if there is no set of vendors who mutually agree to
modify the flow in the same manner. A blocking walk represents a set of vendors and
a set of possible deals so that all of these vendors would benefit from rerouting some
flow along the blocking walk.

Literature review The notion of stability was extended to so-called “vertical networks”
by Ostrovsky in 2008 [30]. Even though the author proves the existence of a sta-
ble solution and presents an extension of the Gale–Shapley algorithm, his model is
restricted to unit-capacity acyclic graphs. Stable flows in themore general setting were
defined by Fleiner [13], who reduced the stable flow problem to the stable allocation
problem. Since then, the stable flow problem has been investigated in several papers
[15,16,24,29]. Recently, stable flows have been used to derive conflict-free routings
in multi-layer graphs [35].

Thebest currently knowncomputation time forfinding a stableflow isO(|E | log |V |)
in a network with vertex set V and edge set E . This bound is due to Fleiner’s reduction

123

Algorithmica (2019) 81:2557–2591 2559

to the stable allocation problem and its fastest solution described by Dean andMunshi
[8]. Since the reduction takesO(|V |) time, it does not change the instance size signif-
icantly, and the weighted stable allocation problem can be solved in O(|E |2 log |V |)
time [8], the same holds for the maximum weight stable flow problem. The Gale–
Shapley algorithm can also be extended for stable flows [7], but its straightforward
implementation requires pseudo-polynomial running time, just like in the stable allo-
cation problem.

It is sometimes desirable to compute stable solutions using certain forced edges or
avoiding a set of forbidden edges. This setting has been an actively researched topic
for decades [6,9,14,22,28]. This problem is known to be solvable in polynomial time
in the one-to-one matching case, even in non-bipartite graphs [14]. Though Knuth
presented a combinatorial method that finds a stable matching in a bipartite graph
with a given set of forced edges or reports that none exists [28], all known methods for
finding a stable matching with both forced and forbidden edges exploit a somewhat
involved machinery, such as rotations [22], LP techniques [10,11,23] or reduction to
other advanced problems in stability [9,14].

In many flow-based applications, various goods are exchanged. Such problems
are usually modeled by multicommodity flows [25]. A maximum multicommodity
flow can be computed in strongly polynomial time [36], but even when capacities
are integer, all optimal solutions might be fractional, and finding a maximum integer
multicommodity flow is NP-hard [21]. Király and Pap [27] introduced the concept of
stable multicommodity flows, in which edges have preferences over which commodi-
ties they like to transport and the preference lists at the vertices may depend on the
commodity. They show that a stable solution always exists, but it is PPAD-hard to find
one.

Our contribution and structure In this paper we discuss new and simplified algo-
rithms and complexity results for three differently complex variants of the stable flow
problem. Section 2 contains preliminaries on stable flows.

• In Sect. 3 we present a polynomial algorithm for stable flows. To derive an effi-
cient solution method operating directly on the flow network, we combine the
well-known pseudo-polynomial Gale–Shapley algorithm and the proposal–refusal
pointer machinery known from stable allocations into an augmenting path algo-
rithm for computing a stable flow. Besides polynomial running time, the method
has the advantage that it is easy to implement and that it provides new insights into
the structure of the stable flow problem, which we exploit in later sections.

• Then, in Sect. 4 stable flows with restricted intervals are discussed. We provide
a simple combinatorial algorithm to find a flow with flow value within a pre-
given interval for each edge. Surprisingly, our algorithm directly translates into a
very simple new algorithm for the problem of stable matchings with forced and
forbidden edges in the classical stable marriage case. Unlike the previously known
methods, our result relies solely on elementary graph transformations.

• Finally, in Sect. 5 we study stable multicommodity flows. First, we answer an
open question posed in [27] by providing tools to simplify stable multicommodity
flow instances to a great extent. In particular, we show that it is without loss of
generality to assume that no commodity-specific preferences at the vertices and

123

2560 Algorithmica (2019) 81:2557–2591

no commodity-specific capacities on the edges exist. Then, we reduce 3- sat to
the integral stable multicommodity flow problem and show that it is NP-complete
to decide whether an integral solution exists even if the network in the input has
integral capacities only.

2 Preliminaries

A network (D, c) consists of a directed graph D = (V , E) and a capacity function
c : E → R≥0 on its edges. The vertex set of D has two distinct elements, also called
terminal vertices: a source s, which has outgoing edges only and a sink t , which has
incoming edges only. Besides differentiating between the source and the sink, we will
assume that D does not contain loops or parallel edges, and every vertex v ∈ V \{s, t}
has both incoming and outgoing edges. These three assumptions are without loss of
generality and only for notational convenience. We denote the set of edges leaving a
vertex v by δ+(v) and the set of edges running to v by δ−(v).

Definition 1 (flow) Function f : E → R≥0 is a flow if it fulfills both of the following
requirements:

1. Capacity constraints: f (uv) ≤ c(uv) for every uv ∈ E ;
2. Flow conservation:

∑
uv∈E f (uv) = ∑

vw∈E f (vw) for all v ∈ V \ {s, t}.
A stable flow instance is a triple I = (D, c, r). It comprises a network (D, c) and

r , a ranking function that induces for each vertex an ordering of their incident edges.
Each non-terminal vertex ranks its incoming and also its outgoing edges strictly and
separately. Formally, r = (rv)v∈V \{s,t}, contains an injective function rv : δ+(v) ∪
δ−(v) → R for each v ∈ V \{s, t}. We say that v prefers edge e to e′ if rv(e) < rv(e′).
Terminals do not rank their edges, because their preferences are irrelevant with respect
to the following definition.

Definition 2 (blocking walk, stable flow) A blocking walk of flow f is a directed walk
W = 〈v1, v2, . . . , vk〉 such that all of the following properties hold:

1. f (vivi+1) < c(vivi+1), for each edge vivi+1, i = 1, . . . , k − 1;
2. v1 = s or there is an edge v1u such that f (v1u) > 0 and rv1(v1v2) < rv1(v1u);
3. vk = t or there is an edgewvk such that f (wvk) > 0 and rvk (vk−1vk) < rvk (wvk).

A flow is stable, if there is no blocking walk with respect to it in the graph.

Intuitively, a blocking walk is an unsaturated walk in the graph so that both its
starting vertex and its end vertex are inclined to reroute some flow along it. Notice that
the preferences of the internal vertices of the walk do not matter in this definition.

Unsaturated walks fulfilling point 2 are said to dominate f at start, while walks
fulfilling point 3 dominate f at the end.We can say that a walk blocks f if it dominates
f at both ends.

Problem 1 sf Input: I = (D, c, r); a directed network (D, c) and r , the preference
ordering of vertices.
Question: Is there a stable flow f ?

123

Algorithmica (2019) 81:2557–2591 2561

Fig. 1 The edge labels indicate the ranking of each edge at a vertex. For example, v3prefers receiving flow
from v2 to receiving flow from s. The maximum flow (marked by dashed colored edges) has value 3 in this
unit-capacity network, while the unique stable flow is of value 1 and is sent along the path 〈s, v1, v2, . . . , t〉.
It is easy to see that this instance can be extended to demonstrate the ratio Ω(|E |) (Color figure online)

Theorem 1 (Fleiner [13]) sf always has a stable solution and it can be found in
polynomial time. Moreover, for a fixed sf instance, each edge incident to s or t has
the same value in every stable flow.

This result is based on a reduction to the stable allocation problem. The second half
of Theorem 1 can be seen as the flow generalization of the so-called Rural Hospitals
Theorem known for stable matching instances [20]. While Theorem 1 implies that all
stable flows have equal value, we remark that this value can be much smaller than that
of a maximum flow in the network. In Example 1 we demonstrate a gap of Ω(|E |).
Example 1 (Small stable flow value) Flows with no unsaturated terminal-terminal
paths are maximal flows. We know that every stable flow is maximal and it is folklore
that the ratio of the size of maximal and maximum flows can be of O(|E |). As the
instance in Fig. 1 demonstrates, this ratio can also be achieved by the size of a stable
flow versus that of a maximum flow.

3 A Polynomial-Time Augmenting Path Algorithm for Stable Flows

Using Fleiner’s construction [13], a stable flow can be found efficiently by computing
a stable allocation in a transformed instance instead. Another approach is adapting the
widely used Gale–Shapley algorithm to sf. As described in [7], this yields a preflow-
push type algorithm, in which vertices forward or reject excessive flow according to
their preference lists. While this algorithm has the advantage of operating directly
on the network without transformation to stable allocation, its running time is only
pseudo-polynomial.

In the following, we describe a polynomial time algorithm to produce a stable
flow that operates directly on the network D. Our method is based on the well-known
augmentingpath algorithmofFord andFulkerson [17], also usedbyBaïou andBalinski
[1] and Dean and Munshi [8] for stability problems. The main idea is to introduce
proposal and refusal pointers to keep track of possible Gale–Shapley steps and execute

123

2562 Algorithmica (2019) 81:2557–2591

them in bulk. Each such iteration corresponds to augmenting flow along an s-t-path
or a cycle in a restricted residual network.

3.1 Our Algorithm

In the algorithm, every vertex (except for the sink) is associated with two pointers,
the proposal pointer and the refusal pointer. Throughout the course of the algorithm,
the proposal pointer traverses the outgoing edges of the vertex in order of decreasing
preference while the refusal pointer traverses its incoming edges in order of increasing
preference. For the source s, we assume an arbitrary preference order. Starting with the
0-flow, the algorithm iteratively augments the flow along a path or cycle in the graph
induced by the pointers. This graph consists of the edges pointed at by the proposal
pointers and the reversals of the edges pointed at by the refusal pointer.

After each augmentation step, pointers pointing at saturated or refused edges are
advanced. The algorithm terminates when the proposal pointer of the source has tra-
versed all its outgoing edges. We prove that when this happens, the algorithm has
found a stable flow. As in each iteration, at least one pointer is advanced, the running
time of the algorithm is polynomial in the size of the graph. The complete algorithm
is listed as Algorithm 1. In the following we describe the individual parts in detail.

Initializing and updating pointers For notational convenience, we introduce two artifi-
cial elements,∗ at the top and∅ at the bottomof each preference listwith the convention
rv(∗) = −∞ and rv(∅) = ∞.

Every vertex v ∈ V \ {t} is associated with a proposal pointer π [v] and a refusal
pointer ρ[v], both pointing to elements on the preference list. Initially, π [v] points
to the most preferred outgoing edge on v’s preference list, i.e., the entry right after
∗, whereas ρ[v] is inactive, which is denoted by ρ[v] = ∅. We also set ρ[t] = ∅ for
notational convenience (we will never change ρ[t] during the algorithm). Note that
this implies rv(ρ[t]) = ∞.

The pointers at v are advanced through the procedure AdvancePointers(v); see
Algorithm 1, lines 11–17 for a formal listing. A call of this procedure works as follows:

• If π [v] is active, it is advanced to point to the next less-preferred outgoing edge on
v’s preference list (lines 12–14). If all of v’s outgoing edges have been traversed,
π [v] reaches its inactive state, i.e., π [v] = ∅, and ρ[v] gets advanced from its
inactive state to pointing to the least-preferred incoming edge on v’s preference
list. Note that in this latter case, the state of π [v] changes from active to inactive
between line 12 and line 15, and thus both if-conditions are fulfilled in the same
call of the procedure.

• If π [v] is already inactive, the refusal pointer ρ[v] gets advanced to the next more-
preferred incoming edge on the preference list (lines 15–17). Once ρ[v] traversed
v’s most preferred incoming edge, we set ρ[v] = ∗, denoting all incoming edges
of v have been refused (the procedure will not be called again for this vertex after
this point).

123

Algorithmica (2019) 81:2557–2591 2563

Algorithm 1: Augmenting path algorithm for stable flows
// Initialize proposal pointers to point at most-preferred

outgoing edges, refusal pointers inactive.
1 Set π [v] := argminvw∈E rv(vw) and ρ[v] := ∅ for all v ∈ V .
2 Set f := 0.

// Ensure pointers only point to residual, non-refused edges.
3 while ∃ uv ∈ EHπ,ρ with c f (uv) = 0 or (π [u] = uv and rv(uv) ≥ rv(ρ[v])) do
4 AdvancePointers (u)

// Stop once proposal pointer of source becomes inactive.
5 if π [s] = ∅ then
6 return f

// Augment flow along path/cycle induced by proposal and refusal
pointers.

7 Let W be an s-t-path or cycle in Hπ,ρ .
8 Set Δ := mine∈W c f (e).
9 Augment f by Δ along W .

// Repeat.
10 Goto line 3.

11 procedure AdvancePointers (v)
// If proposal pointer is active, advance it to next

less-preferred outgoing edge.
12 if π [v] �= ∅ then
13 Set P := {vw ∈ E : rv(vw) > rv(π [v])} ∪ {∅}.
14 Set π [v] := argmine∈P rv(e).

// If proposal pointer has passed all edges, advance refusal
pointer to next more-preferred incoming edge.

15 if π [v] = ∅ and ρ[v] �= ∗ then
16 Set R := {uv ∈ E : rv(uv) < rv(ρ[v])} ∪ {∗}.
17 Set ρ[v] := argmaxe∈R rv(e).

The helper graph With any state of the pointers π, ρ, we associate a helper graph
Hπ,ρ . It has the same vertex set as D and the following edge set:

EHπ,ρ := {
π [v] : v ∈ V \ {t}, π [v] �= ∅}

∪ {
rev(ρ[v]) : v ∈ V \ {t}, π [v] = ∅, ρ[v] �= ∗}

,

where rev(uv) := vu denotes the reversal of a given edge. Hence, for every vertex
v ∈ V \ {t}, the graph Hπ,ρ either contains the edge π [v], if the proposal pointer is
still active, or it contains the reversal rev(ρ[v]) of the edge ρ[v], if the refusal pointer
is active, or neither of these, if both pointers are inactive. Each edge e ∈ EHπ,ρ has a
residual capacity c f (e) depending on the current flow f , defined by

c f (e) :=
{
c(e) − f (e) if e ∈ E,

f (e) if e = rev(e′) for some e′ ∈ E .

123

2564 Algorithmica (2019) 81:2557–2591

At the beginning of each iteration of the algorithm, we ensure that no proposal or
refusal pointer points to an edge with residual capacity 0 and that no proposal pointer
points to an edge that has already been refused by its head (lines 3–4).

Augmenting the flow The algorithm iteratively augments the flow f along an s-t-path
or cycleW in Hπ,ρ by the bottleneck capacity mine∈W c f (e) (lines 7–9). Augmenting
a flow f along a path or cycle W by Δ means that for every e ∈ W , we increase f (e)
by Δ if e ∈ E and decrease f (e′) by Δ if e = rev(e′) for some e′ ∈ E . Note that
after the augmentation, c f (e) = 0 for at least one edge e ∈ W , implying that at least
one pointer is advanced before the next augmentation. Lemma 2 below shows that an
augmenting path or cycle in Hπ,ρ exists as long as π [s] is still active. The algorithm
stops when π [s] = ∅ (lines 5–6).

3.2 Example Run of the Algorithm

Before we analyze the algorithm, we illustrate it by running it on the example instance
given in Fig. 2. To each augmentation, the set of pointers is drawn in Fig 3.

Augmentation 1 Initially, the proposal pointers are set to π [s] = sv, π [v] = vw,
π [w] = [wt], while all refusal pointers are inactive (pointing to ∅). The graph Hπ,ρ

consists of the edges sv, vw, and wt , which comprise a unique s-t-path W1. The
algorithmaugments f alongW1 by its bottleneck capacity 1, yielding the flow f (sv) =
f (vw) = f (wt) = 1 and f (sw) = f (vt) = 0.

Pointer update Because the residual capacity of wt is 0, AdvancePointers(w) is
called. The procedure advances π [w] to the inactive state ∅ and hence immediately

Fig. 2 Example instance for illustrating a run of Algorithm 1. Numbers next to the vertices indicate pref-
erences of incident edges. Edge capacities are c(sv) = c(vw) = 2 and c(sw) = c(vt) = c(wt) = 1. For
the algorithm, we choose the arbitrary preference order of the source s to prefer edge sv over sw

Fig. 3 The proposal and refusal pointers at the beginning of augmentations 1, 2, and 3, respectively. Proposal
pointers are marked by solid black edges, while refusal pointers are the solid gray edges. The dashed edges
do not belong to the current set of pointers

123

Algorithmica (2019) 81:2557–2591 2565

activatesρ[w]withρ[w] = vw. Because alsoπ [v] = vw, this pointer is also advanced
according to the second criterion of the while loop. It reaches π [v] = vt .

Augmentation 2With π [s] = sv, ρ[w] = vw, and π [v] = vt , the graph Hπ,ρ consists
of the edges sv, rev(vw) = wv, and vt . The unique s-t-pathW2 = 〈s, v, t〉 is chosen,
the bottleneck capacity is c f (sv) = c f (vt) = 1. After augmenting f along W2 by 1
unit, the new flow is f (sv) = 2, f (vw) = f (vt) = f (wt) = 1 and f (sw) = 0.

Pointer update Because c f (sv) = 0, the pointer π [s] is advanced to sw. Because
c f (vt) = 0, also π [v] is advanced to ∅ and ρ[v] gets activated with ρ[v] = sv.

Augmentation 3 With π [s] = sw, ρ[w] = vw, and ρ[v] = sv, the graph Hπ,ρ

consists of the edges sw,wv, and vs. These edges comprise the cycleW3. The residual
capacities are c f (sw) = c f (wv) = 1 and c f (vs) = 2. Augmenting f along W3 by 1
unit yields the flow f (sv) = f (sw) = f (vt) = f (wt) = 1 and f (vw) = 0.

Pointer updateBecause c f (wv) = 0, the pointer ρ[w] is updated to sw, also triggering
an update of π [s] that was pointing at the same edge. After advancing π [s] it reaches
∅ and hence the algorithm terminates.

3.3 Analysis

In the proof of correctness we utilize the following notation. We say the proposal
pointer π [v] has reached edge vw if rv(π [v]) ≥ rv(vw). We say π [v] has passed the
edge vw if rv(π [v]) > rv(vw). We use analogous terms for the refusal pointer ρ[v]
with reversed inequality signs, respectively.

We now make a few observations on the behavior of the pointers. We first observe
that π [v] moves from most-preferred to least-preferred edge and ρ[v] moves from
least-preferred tomost-preferred edge, the ranks of the two pointers are non-decreasing
or non-increasing, respectively, during the course of the algorithm (note that the lowest
rank in P is always higher than the current rank of π [v] in line 13 and the highest rank
in R is always lower than the current rank of ρ[v] in line 16.
Observation 1 Throughout the algorithm, rv(π [v]) never decreases and rv(ρ[v])
never increases for any v ∈ V \ {t}.

Also, for each vertex, at most one of its two pointers is active at any time, as the
refusal pointer is only advanced once the proposal pointer reaches the inactive state.

Observation 2 Throughout the algorithm, for each v ∈ V \ {t} either ρ[v] = ∅ or
π [v] = ∅.

Finally, we observe that proposal/refusal pointers do not skip any outgo-
ing/incoming edge, respectively. This is due to the construction of P in line 13 and R
in line 16, which contain every edge that has a rank strictly higher/lower, respectively,
than the edge currently pointed at by the pointer.

Observation 3 Let uv ∈ E.

• If ru(π [u]) < ru(uv) before a call of AdvancePointers(u), then ru(π [u]) ≤
ru(uv) after that call.

123

2566 Algorithmica (2019) 81:2557–2591

• If rv(ρ[v]) > rv(uv) before a call of AdvancePointers(v), then rv(ρ[v]) ≥
rv(uv) after that call.

We next establish a set of invariants that are useful for analyzing the algorithm.

Lemma 1 The following invariants hold true for each uv ∈ E any time the algorithm
is in lines 5–10:

1. If rv(ρ[v]) ≤ rv(uv) then π [u] �= uv.
2. If rv(ρ[v]) < rv(uv) then f (uv) = 0.
3. If ru(π [u]) < ru(uv) then f (uv) = 0.
4. If ru(π [u]) > rv(uv) then f (uv) = c(uv) or rv(ρ[v]) ≤ rv(uv).

Note that due to the monotonicity of the pointers, once the premise of invariant
1, 2, or 4 is fulfilled for an edge, it will stay this way for the rest of the algorithm.
Intuitively, the invariants state that 1 a proposal pointer does not point to a refused
edge, 2 once a refusal pointer has passed an edge, the edge carries no flow, 3 an edge
can only carry flow after it is reached by its proposal pointer, and 4 after a proposal
pointer has passed an edge, the edge is fully saturated until the refusal pointer of its
end reaches it.

Proof of Lemma 1 Invariant 1: Note that the pointers are only changed in the while
loop in lines 3–4. If π [u] = uv, then uv ∈ EHπ,ρ . Therefore the while loop does not
terminate while π [u] = uv and rv(uv) ≥ rv(ρ[v]).

Invariant 2: Observe the invariant is true after intialization since f (uv) = 0. Note
that f (uv) can only increase in line 9whenπ [u] = uv. In that case, Invariant 1 ensures
that rv(ρ[v]) > rv(uv). So the invariant can only become invalid by advancing the
pointer ρ[v] past uv. Consider the first time this happens in the algorithm. By Obser-
vation 3, this can only happen with a call of AdvancePointers(v) when ρ[v] = uv.
But then π [v] = ∅ by Observation 2 and therefore the call of AdvancePointers(v)
can only be triggered by the condition c f (vu) = 0 of the while loop. But this implies
f (uv) = 0, so the invariant did not become invalid.
Invariant 3: Initially, f (uv) = 0. The flow can only increase when uv is part of

an augmenting path or cycle in line 9. This can only happen while π [u] = uv by
construction of EHπ,ρ . Because ru(π [u]) is non-decreasing, ru(π [u]) ≥ ru(uv) is true
at any time after the first increase of f (uv).

Invariant 4: This invariant is true initially because ρ[v] = ∅. It can only lose
its validity by advancing π [u] or decreasing f (uv). By Observation 3, π [u] can
only pass uv when AdvancePointers(u) is called in line 4 while π [u] = uv. This
call can be triggered because rv(ρ[v]) ≤ rv(uv) or because c f (uv) = 0 (implying
f (uv) = c(uv)). In either case, the invariant is not violated. The flow on f (uv) can
only decrease when rev(uv) ∈ W ⊆ EHπ,ρ . By definition, this can only happen if
ρ[v] = uv, which is already enough to fulfill the invariant. ��

With the following lemma, we show that, at the beginning of each iteration, the
algorithm can actually find an s-t-path or cycle.

Lemma 2 Each time the algorithm reaches line 7, the graph Hπ,ρ contains an s-t-path
or a cycle.

123

Algorithmica (2019) 81:2557–2591 2567

Proof Consider any v ∈ V \ {s, t} at any time the algorithm reaches line 7. We show
that if v has an incoming edge in Hπ,ρ , then it also has an outgoing edge in Hπ,ρ .
Note that by definition of EHπ,ρ , the only situation in which v has no outgoing edge
is when ρ[v] = ∗.

Let uv ∈ EHπ,ρ be an incoming edge of v. This implies that either uv ∈ E and
π [u] = uv or vu ∈ E and ρ[u] = vu by definition of Hπ,ρ .

If π [u] = uv, Invariant 1 of Lemma 1 ensures that rv(ρ[v]) > rv(uv) and hence
ρ[v] �= ∗. Therefore v has an outgoing edge in Hπ,ρ .

If vu ∈ E and ρ[u] = vu, the termination criterion of the while loop (lines 3-4)
guarantees f (vu) = c f (rev(uv)) > 0. Hence, by flow conservation, v must also have
an incoming edge u′v ∈ E with f (u′v) > 0. By Invariant 2 of Lemma 1, this implies
ρ[v] �= ∗.

Thus every non-terminal vertex with an incoming edge also has an outgoing edge.
Now observe that π [s] �= ∅ ensures that s also has an outgoing edge in Hπ,ρ . Thus,
we can start a walk at s and extend it until we visit a vertex as second time, closing
a cycle, or until we reach t having found an s-t-path. This concludes the proof of the
lemma. ��
Theorem 2 Algorithm 1 computes a stable flow in polynomial time.

Proof We first show that the algorithm indeed computes a stable flow. Assume by
contradiction there is a walkW = 〈v1, v2, . . . , vk〉 blocking f . We use the previously
established invariants to prove the following claim.

Claim For every i ∈ {1, . . . , k − 1}, the pointer π [vi] has passed vivi+1, i.e.,
rvi (π [vi]) > rvi (vivi+1).

Proof We show the claim by induction on i . First consider the case i = 1. Due to
point 2 in Definition 2, either v1 = s or rv1(v1v2) < rv1(v1w) for some v1w ∈ E with
f (v1w) > 0. In the former case, π [s] has passed v1v2 as the termination criterion of
the algorithm implies π [s] = ∅. In the latter case, f (v1w) > 0 implies that π [v1] has
at least reached v1w by Invariant 3 of Lemma 1 and thus it has passed v1v2.

Now consider any i ∈ {2, . . . , k − 1}. Note that by induction hypothesis π [vi−1]
has passed vi−1vi . Furthermore f (vi−1vi) < c(vi−1vi) because no edge of W is
saturated. Hence, Invariant 4 of Lemma 1 implies that ρ[vi]must have reached vi−1vi .
In particular, ρ[vi] �= ∅ and hence π [vi] = ∅ by Observation 2, implying π [vi] has
passed all edges. This completes the induction and proves the claim. ��

Now consider vk , the last vertex of W . Note that, due to the claim above, π [vk−1]
has passed vk−1vk . Furthermore, f (vk−1vk) < c(vk−1vk) as the blocking walk W
is unsaturated. Hence, by Invariant 4 of Lemma 1, ρ[vk] has reached vk−1vk , i.e.,
rvk (ρ[vk]) ≤ rvk (vk−1vk).

Observe that this implies rvk (ρ[vk]) < ∞ = rt (ρ[t]) and therefore vk �= t (remem-
ber that ρ[t] = ∅ never changes). Now consider any uvk ∈ E with rvk (vk−1vk) <

rvk (uvk). Then rvk (ρ[vk]) ≤ rvk (vk−1vk) < rvk (uvk) implies f (uvk) = 0 by Invariant
2 of Lemma 1. Therefore W does not dominate f at the end, i.e., it does not fulfill
point 3 of Definition 2. Thus W is not a blocking walk and the returned flow f is
stable.

123

2568 Algorithmica (2019) 81:2557–2591

We now turn to the running time. Note that in every iteration of the while loop
(lines 3–4), a pointer of a vertex is advanced. Thus the total number of iterations of
the while loop throughout the whole algorithm is bounded by 2|E | by monotonicity
of the pointers and the fact that each edge appears in at most two preference lists.
Since every vertex has at most one incoming and one outgoing edge in Hπ,ρ by
construction, finding edges violating the termination criterion of the loop can be done
in time O(|V |). The same is true for finding an augmenting path or cycle in line 7.
As after each augmentation, the residual capacity of at least one edge drops to 0, at
least one pointer is advanced in line 4 between any two augmentations, limiting the
number of augmentations by 2|E |. Hence the total running time of the algorithm is
bounded byO(|E ||V |).We remark that amore sophisticated implementation using the
dynamic-tree data structure can reduce this running time toO(|E | log |V |). However,
since our primary aim in this article is to provide new and simple approaches, we omit
further investigation of this complication. ��

4 Stable Flows with Restricted Intervals

Various stable matching problems have been tackled under the assumption that
restricted edges are present in the graph [9,14]. A restricted edge can be forced or
forbidden, and the aim is to find a stable matching that contains all forced edges,
while it avoids all forbidden edges. Such edges correspond to transactions that are
particularly desirable or undesirable from a social welfare perspective, but it is unde-
sirable or impossible to push the participating agents directly to use or avoid the edges.
We thus look for a stable solution in which the edge restrictions are met voluntarily.

A natural way to generalize the notion of a restricted edge to the stable flow setting
is to require the flow value on any given edge to be within a certain interval. To this
end, we introduce a lower and an upper bound function.

Problem 1 sf restricted Input: I = (D, c, r , l, u); an sf instance (D, c, r), a lower
bound function l : E → R≥0 and an upper bound function u : E → R≥0.
Question: Is there a stable flow f so that l(uv) ≤ f (uv) ≤ u(uv) for all uv ∈ E?

Note that in the above definition, the upper bound u does not affect blocking walks,
i.e., a blocking walk can use edge uv, even if f (uv) = u(uv) < c(uv) holds. In
particular, it is not without loss of generality to assume c(uv) = u(uv) for all edges
uv, as decreasing c(uv) may enlarge the set of stable flows.

In the following, we describe a polynomial algorithm that finds a stable flow with
restricted intervals or proves its nonexistence. We start with an instance modification
step in Sect. 4.1. Then we prove that restricted intervals can be handled by small
network modifications that reduce the problem to the unrestricted version of sf. We
show this separately for the case where only forced edges occur, which we call sf
forced, in Sect. 4.2 and for the case where only forbidden edges occur, called sf
forbidden, in Sect. 4.3. It is straightforward to see that these two results can be
combined to solve the general version of sf restricted.

We mention that it is also possible to solve sf restricted by transforming the
instance first into a weighted sf instance, and then into a weighted stable allocation

123

Algorithmica (2019) 81:2557–2591 2569

instance, both solvable inO(|E |2 log |V |) time [8]. The advantages of our method are
that it can be applied directly to the sf restricted instance and it also gives us insights
to solving the stable roommate problem with restricted edges directly, as pointed out
at the end of Sects. 4.2 and 4.3. Moreover, our running time is onlyO(|P||E | log |V |),
where P is the set of edges with u(uv) < c(uv).

4.1 Problem Simplification

sf restricted generalizes the natural notion of requiring flow to use an edge to its
full capacity (by setting l(uv) = c(uv)) and of requiring flow not to use an edge at
all (by setting u(uv) = 0), which corresponds to the traditional cases of forced and
forbidden edges. In fact, it turns out that any given instance of sf restricted can
be transformed into an equivalent instance in which l(uv), u(uv) ∈ {0, c(uv)} for
all uv ∈ E .

First observe that if l(uv) > u(uv) for some uv ∈ E , then sf restricted trivially
has no solution. Therefore, we henceforth assume l(uv) ≤ u(uv) for all uv ∈ E . We
further execute the following technical change to the instance in order to obtain an
equivalent instance with the desired properties. As shown in Fig. 4, we substitute each
edge uv ∈ E with three parallel paths (to avoid parallel edges): 〈u, x, v〉, 〈u, y, v〉
and 〈u, z, v〉. While uy and yv take over the rank of uv, ux and xv are ranked just
above, uz and zv are ranked just below uy and yv. The capacities and bounds of the
introduced edges are as follows.

l(ux) = l(xv) = u(ux) = u(xv) = c(ux) = c(xv) = l(uv)

l(uy) = l(yv) = 0

u(uy) = u(yv) = c(uy) = c(yv) = u(uv) − l(uv)

l(uz) = l(zv) = u(uz) = u(zv) = 0

c(uz) = c(zv) = c(uv) − u(uv)

In words, we split each edge uv with lower and upper bounds into three paths:
the first path 〈u, x, v〉 requires an amount of flow exactly equal to its capacity l(uv),
the middle path 〈u, y, v〉 has capacity u(uv) − l(uv) and is unrestricted, the last path
〈u, z, v〉 with capacity c(uv) − u(uv) must not carry any flow.

Fig. 4 Splitting an edge with lower and upper bounds. Due to the preferences, capacities and bounds defined
on the modified instance, the first l(uv) units of flow will saturate 〈u, x, v〉, then, the coming u(uv) − l(uv)

units of flow will saturate 〈u, y, v〉, and the remaining c(uv) − u(uv) units of flow will use 〈u, z, v〉

123

2570 Algorithmica (2019) 81:2557–2591

Note that we canmap any flow f in original graph to a flow f ′ in themodified graph
by splitting the flow on each edge uv into three parts, setting f ′(ux) = f ′(xv) =
min{ f (uv), l(uv)}, f ′(uy) = f ′(yv) = min{max{ f (uv) − l(uv), 0}, u(uv)}, and
f ′(uz) = f ′(zv) = max{ f (uv)−u(uv), 0}. Conversely, every flow f ′ in themodified
instance induces aflow f in the original instance, simply by aggregating theflowvalues
on the three paths, i.e., setting f (uv) = f (ux) + f (uy) + f (uz).

Note that different flows in the modified instance can map to the same flow f in the
original network, but it is easy to check that if f is stable, only a unique stable flow in
the modified instance maps to f . Thus there is a one-to-one correspondence between
stable flows in the original instance and in the modified instance. Furthermore, it is
straightforward to check that f respects the bounds l and u in the original instance if
and only if f ′ does the same in the modified instance. The modified instance is thus
equivalent to the original instance.

Remark 1 Note that the encoding size of the modified instance is within a constant
factor of the instance size of the original instance. More precisely, the number of edges
in the new instance is 6|E | and the number of nodes in the new instance is |V |+3|E |,
where V and E are the sets of vertices and edges of the original instance, respectively.
Also the set P of edges with u(e) < c(e) only grows by a factor of 2. Note that because
we assumed the original graph to be simple and connected, |V |−1 ≤ |E | ≤ |V |2 and
therefore log(|V | + 3|E |) = O(log |V |). Therefore the asymptotic running time of
O(|P||E | log |V |) which we will establish for our algorithm on the modified instance
is the same for the original instance.

Henceforth, we will assume that our instances are of this form and use the notation
Q := {uv ∈ E : l(uv) = c(uv)} and P := {uv ∈ E : u(uv) = 0} for the sets of
forced and forbidden edges, respectively.

4.2 Forced Edges

In this section we consider an instance of sf restrictedwhere P = ∅. As mentioned
earlier, we call this problem sf forced. In Sect. 4.2.1 we show how to deal with the
case |Q| = 1 by reducing the corresponding sf forced instance with a single forced
edge to an instance of sf without forced edges. Then, in Sect. 4.2.2, we argue that
the same technique can be applied to multiple forced edges simultaneously. At last,
in Sect. 4.2.3 we elaborate on the application of our technique for stable matching
instances.

4.2.1 A Single Forced Edge

Let us first consider a single forced edge uv. We modify graph D to derive a graph D′.
The modification consists of deleting the forced edge uv and introducing two new
edges sv and ut to substitute it. Both new edges have capacity c(uv) and take over
uv’s rank on u’s and on v’s preference lists, respectively, as shown in Fig. 5. The rest
of D remains unchanged in D′.

123

Algorithmica (2019) 81:2557–2591 2571

Fig. 5 Substituting forced edge uv by edges sv and ut in D′

In Lemma 3we show that flows saturating uv in D are equivalent to flows saturating
both sv and ut in D′. Then we refer to the extension of the Rural Hospitals Theorem
(Theorem 1) to solve the latter problem.

Lemma 3 Let f be a flow in D with f (uv) = c(uv). Let f ′ be the flow in D′ derived
by setting f ′(sv) = f ′(ut) = f (uv) and f ′(e) = f (e) for all e ∈ E \ {uv}. Then f
is stable if and only if f ′ is stable.

Proof We prove this lemma by showing that walks blocking f also block f ′ and vice
versa. We first observe that the set of edges not saturated by f in D is the same as
the set of edges not saturated by f ′ in D′. This is because uv is saturated by f , and
therefore ut, sv are saturated by f ′, and all other edges are present in both graphs
with identical capacities and flow values, respectively. Note that this implies the set
of walks in D not saturated by f and the set of walks in D′ not saturated by f ′ is the
same.

Now consider any node u′ ∈ V and any number r > 0. Observe that there is an
edge u′v′ in D with ru′(u′v′) = r and f (u′v′) > 0 if and only if there is u′v′′ in
D′ with ru′(u′v′′) = r and f ′(u′v′′) > 0 (either u′v′ itself is in D′ or u′v′ = uv, in
which case u′v′′ = ut fulfills the requirement). Therefore an unsaturated walk W in
D dominates f at the start if and only if it dominates f ′ at the start. A symmetric
argument holds for dominance at the end of an unsaturated walk. This implies that
any blocking walk for f in D is a blocking walk for f ′ in D′ and vice versa. ��

Checking the existence of a flow in D′ that saturates both sv and ut can be done
by finding any stable flow in D′. This is because Theorem 1 guarantees that all stable
flows have the same value on any edge incident to s or t .

4.2.2 Multiple Forced Edges

We observe that we can replace all edges in Q one after the other, applying Lemma 3
inductively on the resulting graph. This yields the following theorem.

Theorem 3 Let DQ be the graph obtained from D when replacing each edge in uv ∈ Q
by edges ut and sv with same rank and capacity. Let Q̄ be the set of newly added edges
in DQ. Let f be a flow in D saturating all edges in Q. Then f is stable if and only if
the corresponding flow f ′ in DQ obtained by setting f ′(sv) = f ′(ut) = f (uv) for
all uv ∈ Q and f (e) = f ′(e) for all e ∈ E \ Q is stable.

In fact, the Rural Hospitals Theorem (Theorem 1) guarantees that either all stable
flows in DQ saturate all edges in Q̄ or none does. Thus we can solve sf forced by a
single stable flow computation in DQ .

123

2572 Algorithmica (2019) 81:2557–2591

Theorem 4 sf forced can be solved in time O(|E | log |V |).
Proof As DQ contains at most twice as many edges as D, we can compute a stable
flow f ′ in DQ in time O(|E | log |V |), as discussed at the end of Sect. 3. If f ′(sv) =
f ′(ut) = c(uv) for all uv ∈ Q, the corresponding flow in D with f (uv) = f ′(sv)

is a stable flow in D saturating all edges in Q. Now assume f ′(sv) < c(uv) or
f ′(ut) < c(uv) for some uv ∈ Q. Then by Theorem 1, any stable flow in DQ has this
property. Hence, no stable flow in D saturates all edges in Q. ��

4.2.3 Stable Matchings with Forced Edges

Weshortly discuss the case of forced edges in stablematching instances.Notice that our
observations are valid in the so-called stable roommates setting, where the underlying
graph is not bipartite. The definition of a blocking edge is exactly the same as in the
classical bipartite case. An edge uv /∈ M blocks M if both u and v prefer each other
to their respective partners in M .

Problem 2 sr forced Input: I = (G, r , Q); a graph G (not necessarily bipartite),
the preference ordering r of vertices, and a set of forced edges Q.
Question: Is there a stable matching covering all edges in Q?

The technique described above provides a fairly simple method for solving sr
forced, because theRural Hospitals Theoremholds for the stable roommates problem
as well [22, Theorem 4.5.2]. After deleting each forced edge uw ∈ Q from the
graph, we add uws and utw edges to each of the pairs, where ws and ut are newly
introduced vertices. These edges take over the rank of uw. Unlike in sf, here we
need to introduce two separate dummy vertices to each forced edge, simply due to the
matching constraints. There is a stable matching containing all forced edges if and
only if an arbitrary stable matching covers all of these new vertices ws and ut . The
proof for this is analogous to that of Lemma 3.

The running time of this algorithm is O(|E |), since it is sufficient to construct a
single stable solution in an instance with at most 2|V | vertices. More vertices cannot
occur, because in a matching problem more than one forced edge incident to a vertex
immediately implies infeasibility. Notice that solving sr forced has the same time
complexity O(|E |) as solving the stable roommates problem without any restriction
on the edges.

4.3 Forbidden Edges

In order to handle sf forbidden, we present here an argumentation of the same
structure as in the previous section. In Sect. 4.3.1, we show how to solve the problem
of stable flows with a single forbidden edge by solving two instances on two different
extended networks. Then, in Sect. 4.3.2 we show how these constructions can be used
to obtain an algorithm for the case of multiple forbidden edges. Finally, in Sect. 4.3.3
we discuss the implication of our results to stable matching instances.

Now we introduce some notation used in this section. We remind the reader that
P is the set forbidden edges, where l(e) = c(e). For e = uv ∈ P , we define edges

123

Algorithmica (2019) 81:2557–2591 2573

e+ = sv and e− = ut . We set c(e+) = ε > 0 and set rv(e+) = rv(e) − ε, i.e.,
e+ occurs on v’s preference list exactly before e. Likewise, we set c(e−) = ε and
ru(e−) = ru(e)− ε, i.e., e− occurs on u’s preference list exactly before e. For F ⊆ P
we define E+(F) := {e+ : e ∈ F} and E−(F) := {e− : e ∈ F}.

4.3.1 A Single Forbidden Edge

Assume that P = {e0} for a single edge e0. First we present two modified instances
that will come handy when solving sf forbidden. The first is the graph D+, which
we obtain from D by adding the edge e+

0 to E . Similarly, we obtain the graph D− by
adding e−

0 to E . Both graphs are illustrated in Fig. 6.
In the following, we characterize sf forbidden instances with the help of D+

and D−. Our claim is that sf forbidden in D has a solution if and only if there
is a stable flow f + in D+ with f +(e+) = 0 or there is a stable flow f − in D−
with f −(e−) = 0. These existence problems can be solved easily in polynomial time,
since all stable flows have the same value on edges incident to terminal vertices by
Theorem 1.

We start with a straightforward observation, which follows from the fact that the
deletion of an edge that does not carry any flow in a stable flow neither affects flow
conservation nor can create blocking walks.

Observation 4 If f (e) = 0 for an edge e ∈ E and stable flow f in D, then f remains
stable in D − e as well.

Now we are ready to prove the correctness of our transformation.

Lemma 4 Let f be a flow in D = (V , E) with f (e0) = 0. Then f is a stable flow in
D if and only if at least one of the following properties hold:

Property 1: The flow f + with f +(e) = f (e) for all e ∈ E and f +(e+
0) = 0 is stable

in (V , D+).
Property 2: The flow f − with f −(e) = f (e) for all e ∈ E and f −(e−

0) = 0 is stable
in (V , D−).

Proof Sufficiency of any of the twoproperties follows immediately fromObservation 4
by deletion of e+

0 or e−
0 , respectively, since there edges carry zero flow.

To see necessity, assume that f is a stable flow in D. By contradiction assume that
neither f + nor f − is stable. Then there is a blocking walkW+ for f + and a blocking
walkW− for f −. SinceW+ is not a blocking walk for f in D, it must contain e+

0 . This
is only possible ifW+ starts with e+

0 , because e
+
0 starts at a terminal vertex. Similarly,

Fig. 6 Adding edges e+0 = sv in D+ and e−0 = ut in D− to forbidden edge E = uv

123

2574 Algorithmica (2019) 81:2557–2591

sinceW− is not a blockingwalk for f in D, it must endwith e−
0 . LetW

′+ := W+\{e+
0 }

and W ′− := W− \ {e−
0 }. Consider the concatenation W := W ′− ◦ e0 ◦ W ′+. Note

that W is an unsaturated walk in D. If W ′− �= ∅, then W starts with the same edge
as W− and thus dominates f at the start. If W ′− = ∅, then W starts with e0, which
dominates any flow-carrying edge dominated by e−

0 , and hence it dominates f at the
start also in this case. By analogous arguments it follows that W also dominates f at
the end. Hence W is a blocking walk, contradicting the stability of f . We conclude
that at least one of Properties 1 or 2 must be true if f is stable. ��

This method can be used to solve sf forbidden if |P| = 1, by simply computing
stable flows f + in D+ and f − in D−. Note that by the extension of the Rural Hospitals
Theorem (Theorem 1), the flow values f +(e+

0) and f −(e−
0) do not depend on the

choice of f + and f −, since they are the same for all stable flows in an instance. If
f +(e+

0) = 0 or f −(e−
0) = 0, then we have found a stable flow in f avoiding the

forbidden edge e0. On the other hand, if the flow value is positive in both cases, there
is no stable flow avoiding e0.

4.3.2 Multiple Forbidden Edges

For |P| > 1, Lemma 4 guarantees that we can add either e+ or e− for each forbidden
edge e ∈ P without destroying any stable flow avoiding the forbidden edges. However,
it is not straightforward to decide for which forbidden edges to add e+ and for which
to add e−. Simply checking the two properties in Lemma 4 and creating either a D− or
D+ graph for each forbidden edge in an arbitrary order does not lead to correct results,
since the modification steps can impact each other. It is possible that the forbidden
edge checked first allows for both D− and D+, and it turns out at a later forbidden
edge that only one of these two choices can be combined with network modifications
induced when tackling other forbidden edges, as the following example reveals. The
same example demonstrates that adding both e+ and e− to all forbidden edges at the
same timemight lead to an instance that admits no stable flow avoiding all added edges,
even though a stable flow avoiding all forbidden edges exists in the original instance.
After the example we describe how to resolve this issue and obtain a polynomial time
algorithm for sf forbidden.

Example 2 (Stable flows with forbidden edges) In the unit-capacity network of Fig. 7,
the dashed edges u1v1 and u2v2 form P , while the thin gray edges sv2 and u1t are not
part of the original graph but are added by the application of Lemma 4. The instance
admits two stable flows. Both of them saturate all edges leaving s and all edges
entering t . In the rest of the graph, stable flow f1 is denoted by purple, and it sends
one unit of flow along the edges in {u1v2, u2v1, u3v3}, while stable flow f2 is denoted
by green, and it sends one unit of flow along the edges in f2 = {u1v1, u2v3, u3v2}.
Since u1v1 ∈ P is used by f2, only f1 avoids P . If tested separately, edge u2v2 fulfills
both Properties 1 and 2 of Lemma 4, while u1v1 only fulfills Property 2. Yet requiring
Property 1 for u2v2 and Property 2 for u1v1 by adding sv1 and u2t to the graph (as
the gray edges indicate) results in a graph where every stable flow uses both sv2 and
u1t . This is because the only stable flow in the modified network with the edges sv2
and u1t saturates edges su1, su2, su3, sv2, u2v1, u3v3, v1t, v2t, v3t and u1t .

123

Algorithmica (2019) 81:2557–2591 2575

Fig. 7 The greedy algorithm fails to report the existence of a stable solution in this instance

We now sketch our algorithm that can deal with the presence of multiple forbidden
edges. For any A, B ⊆ E , let us denote by D[A|B] the network with vertices V and
edges E ∪ E+(A) ∪ E−(B). We remind the reader that E+(A) := {e+ : e ∈ A} and
E−(B) := {e− : e ∈ B}. Our algorithm maintains a partition of the forbidden edges
in two groups P+ and P−. Initially P+ = P and P− = ∅. In every iteration, we
compute a stable flow f in D[P+|P−]. If f (e+) > 0 for some e ∈ P+, we move e
from P+ to P− and repeat. If f (e+) = 0 for all e ∈ P+ but f (e−) > 0 for some
e ∈ P−, we will show that no stable flow avoiding all forbidden edges exists in D.
Finally, if we reach a flow f where neither of these two things happens, then f ’s
restriction to D is a stable flow in D avoiding all forbidden edges, since f (e+) = 0
or f (e−) = 0 implies f (e) = 0 by choice of the ranks.

Algorithm 2: Stable flow with forbidden edges
1 Initialize P+ = P and P− = ∅.
2 repeat
3 Compute a stable flow f in D[P+|P−].
4 if ∃ e ∈ P+ with f (e+) > 0 then
5 P+ := P+ \ {e} and P− := P− ∪ {e}
6 until f (e+) = 0 for all e ∈ P+;
7 if ∃ e ∈ P− with f (e−) > 0 then
8 return ∅
9 else

10 return f

123

2576 Algorithmica (2019) 81:2557–2591

Before proving its correctness, we present our algorithm run on the instance of
Fig. 7.

Example 3 (Execution of Algorithm 2) Since P = {u1v1, u2v2}, we initialize P+ to
be {u1v1, u2v2} and P− to be the empty set. This defines the network D[P+|P−],
which is D complemented by sv1 and sv2. The stable flow f computed byAlgorithm 1
in D[P+|P−] saturates the edges sv1, v1t , su2, u2v3, v3t , su3, u3v2, and v2t . Since
f (sv1) > 0, the edge u1v1 is removed from P+ and added to P−.
In the second iteration, D[P+|P−] is D complemented by u1t and sv2. The algo-

rithm computes the stable flow in this network saturating the edges su1, u1t , sv2, v2t ,
su3, u3v3, and v3t . Because f (sv2) > 0, the edge u2v2 is moved from P+ to P−.

In the third iteration, D[P+|P−] is D complemented by u1t and u2t . The algorithm
computes the stable flow in this network saturating the edges su1, u1v2, v2t , su2, u2v1,
v1t , su3, u3v3, and v3t . Since P+ = ∅ and f (e−) = 0 for all e ∈ P−, the algorithm
terminates by returning this flow.

For the analysis of Algorithm 2, the following consequence of the augmenting path
algorithm presented earlier (Algorithm 1) is helpful. It essentially states that removing
an edge leaving s and recomputing a stable flow cannot decrease the flow value on any
other edge leaving s. This observation will allow us to prove an important invariant of
Algorithm 2.

Lemma 5 Let f be a stable flow in D. Let f ′ be a stable flow in D′ = D− e′ for some
edge e′ ∈ δ+(s). Then f ′(e) ≥ f (e) for all e ∈ δ+(s) \ {e′}.
Proof We run Algorithm 1 on the networks D and D′, respectively, to obtain stable
flows f and f ′. Recall thatAlgorithm1 uses an arbitrary but fixed order of the outgoing
edges of s. We choose this order such that e′ comes last for the run in D. Observe that
the algorithms run identically on both instances until π [s] reaches e′ for the run on D
and terminates on D′, respectively. Thus the flow f̄ computed by the algorithm on D
right before π [s] is advanced to e′ is identical to f ′. Further note that the algorithm
does not increase the flow value on any edge e ∈ δ+(s) \ {e′} after π [s] has passed e,
which comes before e′ by our choice of preferences. Hence f (e) ≤ f̄ (e) = f ′(e). ��
Lemma 6 Algorithm 2 maintains the following invariant. There is a stable flow in D
avoiding P if and only if there is a stable flow in D[∅|P−] avoiding P+ ∪ E−(P−).

Proof Clearly, the invariant holds initially as P+ = P and P− = ∅. Now consider
any later iteration of the algorithm in which P+, P− are changed. Let f0 be the
computed stable flow in D[P+|P−] and let e0 be the edge with f0(e

+
0) > 0 found in

that iteration. Let P+
old, P

−
old and P+

new, P−
new denote the partition before and after the

update, i.e., P+
new = P+

old \ {e0} and P−
new = P−

old ∪ {e0}.
If there is a stable flow in D[∅|P−

new] avoiding P+
new∪ E−(P−

new), then this flow also
avoids P , as for every e ∈ P either e ∈ P+

new or e− ∈ E−(P−
new) (note that in the latter

case e− dominates e at the start and ends at a terminal).
Conversely, if there is a stable flow in D avoiding P , then by induction hypothesis

there is a stable flow f in D[∅|P−
old] avoiding P+

old ∪ E−(P−
old). Note that e

+
0 starts at a

terminal and recall that f0(e
+
0) > 0 for the stable flow f0 in D[P+

old|P−
old]. By repeated

123

Algorithmica (2019) 81:2557–2591 2577

application of Lemma 5, deleting every e+ ∈ E+(P+
old \ {e0}) from D[P+

old|P−
old],

we obtain that f ′(e+
0) > 0 for every stable flow f ′ in D[{e0}|P−

old]. In particular,
this means that Property 1 of Lemma 4 fails for f and e0. Therefore, by Lemma 4,
Property 2 must hold for f , i.e., the extension of f to D[∅|P−

old ∪ {e−
0 }] = D[∅|P−

new]
with f (e−

0) = 0 is a stable flow avoiding P+
old ∪ E−(P−

old) ∪ {e−
0 }. As P+

new ⊆ P+
old

and E−(P−
new) = E−(P−

old) ∪ {e−
0 }, this completes the induction.

Lemma 7 If Algorithm 2 returns ∅, then no stable flow in D avoids P.

Proof If the algorithm returns ∅, then the algorithm computed a stable flow f in
D[P+|P−] with f (e+) = 0 for all e ∈ P+ but f (e−) > 0 for some e ∈ P−. Note
that by Observation 4, the restriction of f is also stable in D[∅|P−]. As e− is incident
to a terminal, f (e−) > 0 for every stable flow in D[∅|P−]. Therefore, by Lemma 6,
there is no stable flow in D avoiding P .

Lemma 8 If Algorithm 2 returns flow f , then f is stable in D and it avoids P.

Proof If the algorithm returns flow f then f (e+) = 0 for all e ∈ P+ and f (e−) = 0
for all e ∈ P−. Hence the restriction of f to E is stable and avoids P+ ∪ P− = P .

The correctness of Algorithm 2 follows immediately from the above lemmas. The
running time of this algorithm is bounded byO(|P||E | log |V |), as each stable flow f
can be computed in O(|E | log |V |) time and in each round either |P+| decreases by
one or the algorithm terminates.

4.3.3 Stable Matchings with Forbidden Edges

Just as earlier, in Sect. 4.2.3, we finish this part with the direct interpretation of our
results in the stable marriage instances.

Problem 3 sm forbidden Input: I = (G, r , P); a bipartite graph G, the preference
ordering r of vertices, and a set of forbidden edges P .
Question: Is there a stable matching avoiding all edges in P?

Let A∪ B be the bipartition of the vertices. One possibility to solve sm forbidden
would be to transform it into an instance of sf forbidden by the standard transfor-
mation of bipartite matching to flow (directing all edges from A to B and augmenting
the graph by a super source and a super sink connected to all vertices in A and B,
respectively). Running Algorithm 2 on this instance gives a stable flow that can be
transformed into a matching in the original instance.

However, we can adapt the Algorithm 2 to directly run on the matching instance as
follows. For forbidden each edge e ∈ P we introduce a new vertex ve. We maintain
a partition of P into sets PA and PB , with PA = P and PB = ∅ initially. For each
e = ab ∈ PA we introduce the edge ave to the graph with ra(ave) = ra(ab) − ε,
and for each edge e = ab ∈ PB we introduce the edge bve instead with rb(bve) =
rb(ab) − ε. We then compute a stable matching in the resulting graph. If an edge ave
is in the matching for some e ∈ PA we remove e from PA and add it to PB . We then

123

2578 Algorithmica (2019) 81:2557–2591

again compute a stable matching and repeat this procedure until no edge ave is in the
matching for any e = ab ∈ PA.

If in the resulting matching the vertices ve for e ∈ P are unmatched, i.e., also no
edge bve is used for any e = ab ∈ PB , the matching is stable in the original graph and
it does not use any edge in P (due to the choice of the ranks). If not, using the same
line of argumentation as in the proof of Lemma 6 we can show that no stable matching
avoiding P exists. (Here, the bipartite structure of the graph yields a straightforward
analogue of Lemma5.We remark that it is an open problemhow to adapt this technique
to the stable roommates problem for non-bipartite graphs.)

Our algorithm for several forbidden edges runs in O(|P||E |) time, because com-
puting stable matchings in each of the at most |P| rounds takes only O(|E |) time.
With this running time, it is somewhat slower than the best known methods [9,14]
that require only O(|E |) time, but it is a reasonable assumption that the number of
forbidden edges is small.

4.4 Forced and Forbidden Edges

If both forced and forbidden edges occur in the same instance, then they can be handled
by our two algorithms, applying them one after the other. First, all forced edges in
the graph D are substituted by the construction discussed in Sect. 4.2.2, obtaining the
graph DQ where the edges in Q are replaced by artificial edges Q̄. The following
corollary is a direct implication of Theorem 3.

Corollary 1 There is a stable flow in D saturating all edges in Q and avoiding all
edges in P if and only if there is a stable flow in DQ saturating all edges in Q̄ and
avoiding all edges in P.

We now run Algorithm 2 from Sect. 4.3.2 on DQ . If the algorithm asserts that no
stable flow in DQ avoiding P exists, then by Corollary 1, there is no stable flow in D
saturating all edges in Q and avoiding all edges in P . If, instead, the algorithm returns
a stable flow f ′ avoiding P , we check whether it also saturates all edges in Q̄. If this
is the case, the corresponding flow in D is a stable flow avoiding P and saturating all
edges in Q. If there is an edges e ∈ Q̄ with f ′(e) < c(e), then this is true for every
stable flow in DQ by the Rural Hospital Theorem (Theorem 1) and hence, no flow
saturating all edges in Q exists in D.

The procedure described above runs in timeO(|P||E | log |V |), as DQ can be con-
structed in time linear in |E | and the number of edges and vertices in DQ is at most
twice the number of edges and vertices in D, respectively (remember that we already
argued in Remark 1 that the initial transformation of the instance in Sect. 4.1 does not
change this asymptotic running time). We conclude the following result:

Theorem 5 sf restricted can be solved in O(|P||E | log |V |) time.

123

Algorithmica (2019) 81:2557–2591 2579

5 Stable Multicommodity Flows

In this section we turn our attention to stable multicommodity flows. We first present
the original definition of this concept by Király and Pap [27] and outline their results,
including the existence of a stable solution.We then proceed to our results: a reduction
of the general model to a much simpler special case and a hardness proof for deciding
the existence of an integral solution.

5.1 Problem Definition

Multicommodity networks model scenarios in which a common network is used by
several commodities. For example, roads serve personal vehicles, and also various
sorts of commercial transport vehicles. While each person and each type of goods has
its own origin and destination, they all share the same roads, which have a capacity
on all vehicles altogether and sometimes also separately on a specific type of vehicle.

A multicommodity network (D, ci , c), 1 ≤ i ≤ n consists of a directed graph
D = (V , E), non-negative commodity capacity functions ci : E → R≥0 for all the
n commodities and a non-negative cumulative capacity function c : E → R≥0 on E .
For every commodity i , there is a source si ∈ V and a sink t i ∈ V , also referred to as
the terminals of commodity i .

Definition 3 (multicommodity flow) A set of functions f i : E → R≥0, 1 ≤ i ≤ n is
a multicommodity flow if it fulfills all of the following requirements:

1. Capacity constraints for commodities:
f i (uv) ≤ ci (uv) for all uv ∈ E and commodity i ;

2. Cumulative capacity constraints:
f (uv) = ∑

1≤i≤n f i (uv) ≤ c(uv) for all uv ∈ E ;
3. Flow conservation:∑

uv∈E f i (uv) = ∑
vw∈E f i (vw) for all i : 1 ≤ i ≤ n and v ∈ V \ {si , t i }.

The concept of stability was extended to multicommodity flows by Király and
Pap [27]. A stable multicommodity flow instance I = (D, ci , c, rE , r iV), 1 ≤ i ≤ n
comprises a network (D, ci , c), 1 ≤ i ≤ n, edge preferences rE over commodities,
and vertex preferences r iV , 1 ≤ i ≤ n over incident edges for commodity i . Each
edge uv ranks all commodities in a strict order of preference. Separately for every
commodity i , each non-terminal vertex ranks its incoming and also its outgoing edges
strictly with respect to commodity i . Note that these preference orderings of v can be
different for different commodities and they do not depend on the edge preferences
rE over the commodities. If edge uv prefers commodity i to commodity j , then we
write ruv(i) < ruv(j). Analogously, if vertex v prefers edge vw to vz with respect to
commodity i , then we write riv(vw) < riv(vz). We denote the flow value with respect
to commodity i by f i = ∑

u∈V f i (si u).

Definition 4 (stable multicommodity flow) A blocking walk with respect to commodity
i of a multicommodity flow f is a directed walk W = 〈v1, v2, . . . , vk〉 such that all
of the following properties hold:

123

2580 Algorithmica (2019) 81:2557–2591

1. f i (v jv j+1) < ci (v jv j+1) for each edge v jv j+1, j = 1, . . . , k − 1;
2. v1 = si or there is an edge v1u such that f i (v1u) > 0 and riv1(v1v2) < riv1(v1u);
3. vk = t i or there is an edge wvk such that f i (wvk) > 0 and rivk (vk−1vk) <

rivk (wvk);

4. If f (v jv j+1) = c(v jv j+1), then there is a commodity i ′ such that f i ′(v jv j+1) >

0 and rv jv j+1(i) < rv jv j+1(i
′).

A multicommodity flow is stable, if there is no blocking walk with respect to any
commodity.

In words, a walk blocks the multicommodity flow with respect to commodity i
if both the starting and end vertices of the walk are willing to reroute some units
of flow of commodity i along it, moreover, the edges along the walk either have free
capacity for forwarding these or they are inclined to drop some units of flow of another
commodity. This last point can be seen as a clear difference to single-commodity stable
flows. Due to point 4, Definition 4 allows saturated edges to occur in a blocking walk
with respect to commodity i , provided that these edges are inclined to trade in some
of their forwarded commodities for more flow of commodity i . On the other hand, the
role of edge preferences is limited: blocking walks still must start at vertices who are
willing to reroute or send extra flow along the first edge of the walk according to their
vertex preferences with respect to commodity i .

Problem 2 smf Input: I = (D, ci , c, rE , r iV), 1 ≤ i ≤ n ; a directed multicommodity
network (D, ci , c), 1 ≤ i ≤ n, edge preferences over commodities rE and vertex
preferences over incident edges r iV , 1 ≤ i ≤ n.
Question: Is there a stable multicommodity flow?

Theorem 6 (Király andPap [27]) Astablemulticommodity flowexists for any instance,
but it is PPAD-hard to find.

Király and Pap use a polyhedral version of Sperner’s lemma [26] to prove the
existence result. PPAD-hardness [31] is considered a somewhat weaker evidence of
intractability thanNP-hardness that applies for problemswhose decision versions have
a ’yes’ answer for sure. Note that smf is one of the very few problems in stability [3]
where a stable solution exists, but no extension of the Gale–Shapley algorithm is
known to solve it—not even a variant with exponential running time.

5.2 Problem Simplification

The definition of smf involves many distinct components and constraints. It is natural
to investigate how far the model can be simplified without losing any of its generality.
In particular, Király and Pap [27] pose an open question on the PPAD-hardness of the
problem if there are no individual capacities. Here we give a positive answer to this
and further intuitive questions on possible restricted cases. It turns out that themajority
of the commodity-specific input data can be dropped, as shown by Theorem 7. This
result not only simplifies the instance, but it also sheds light to the most important
characteristic of the problem, which seems to be the preference ordering of edges over
commodities.

123

Algorithmica (2019) 81:2557–2591 2581

Theorem 7 There is a polynomial-time transformation that, given an instance I of
smf, constructs an instance I ′ of smf with the following properties:

1. All commodities have the same source and sink,
2. At each vertex, the preference lists are identical for all commodities,
3. There are no commodity-specific edge capacities,

and there is a polynomially computable bijection between the stable multicommodity
flows of I and the stable multicommodity flows of I ′. The bijection preserves integral-
ity.

Proof We present the construction in three steps, each ensuring one of the properties
without destroying those established before.

1. All commodities have the same source and sink We introduce two new super
terminals s∗ and t∗. These will substitute all commodity-specific sources and
sinks. For every commodity i and its terminals si and t i , we introduce the
edges s∗si and t i t∗ with capacities ci (s∗si) = c(s∗si) = ∑

e∈δ+(si) c(e) and
ci (t i t∗) = c(t i t∗) = ∑

e∈δ−(t i) c(e). These edges cannot carry any other com-
modity: c j (s∗si) = c j (t i t∗) = 0 for all j �= i . We assign arbitrary ranks to
the edges originally incident to si or t i and put s∗si and t i t∗ to the end of the
preference list of si and t i for all commodities. Finally, we set s∗ and t∗ as source
and sink for every commodity i . It is easy to verify that a flow f is stable in the
original network D if and only if the natural extension of f to the added edges is
a stable flow.

2. At each vertex, the preference lists over the edges are identical for all commodities
The main idea here is to substitute every edge by a gadget that separates different
commodities. Then the edges can be ranked in a single preference list, since each
edge is designated to carry its own commodity only and for edges carrying a
specific commodity, the list on other edges is irrelevant.
For any e ∈ E ,we remove e = uv from thegraph and replace it by the construction
shown in Fig. 8. We introduce two new vertices v′

e and v′′
e and add the edge v′

ev
′′
e

with c(v′
ev

′′
e) = ci (v′

ev
′′
e) = c(e) for every commodity i . We also add n new

edges e′
i for 1 ≤ i ≤ n from u to v′

e. We set c(e′
i) = ci (e′

i) = ci (e), c j (e′
i) = 0

for j �= i , and ru(e′
i) = |E |i + riu(e). We choose rv′

e
(e′

i) arbitrarily. Likewise, we
add n new edges e′′

i for 1 ≤ i ≤ n from v′′
e to v. We set c(e′′

i) = ci (e′′
i) = ci (e),

c j (e′′
i) = 0 for j �= i , and rv(e′′

i) = |E |i + riv(e). We choose rv′′
e
(e′

i) arbitrarily.
Let D′ be the network resulting from this modification.
If f is a stable flow in D, then we define a flow f ′ in D′ as follows. For every
commodity i and every e ∈ E , we set f ′i (e′

i) = f ′i (v′
ev

′′
e) = f ′i (e′′

i) = f i (e)
and we set f ′ j (e′

i) = f ′ j (e′′
i) = 0 for j �= i . It is easy to check that f ′ is a stable

flow in D′ and that the mapping from f to f ′ is a bijection between stable flows
in D and D′.

3. There are no commodity-specific capacities Finally we ensure that ci (e) = c(e)
for all i and all e ∈ E , which implies that the commodity-specific capacities do
not play any role. To this end, we introduce a new commodity i∗. Each edge will
be replaced by a gadget in which the capacity on a specific commodity translates

123

2582 Algorithmica (2019) 81:2557–2591

Fig. 8 The gadget ensuring that the preference lists of each vertex are identical for all commodities

Fig. 9 The gadget ensuring that there are no commodity-specific capacities

into an edge willing to carry i∗ rather than forwarding more flow of the specific
commodity.
Note that the transformation described in point 2 above already ensures that for
every edge e ∈ E one of the following is true: Either ci (e) = c(e) for all i , or
there is an i such that ci (e) = c(e) and c j (e) = 0 for all j �= i . We only have
to deal with the latter case, that is, edge e being designated to carry commodity
i only, up to its full capacity. Let edge e and commodity i be such a pair.
We replace e = uv by the gadget He,i , depicted in Fig. 9. First, four new vertices
u′, u′′, v′ and v′′ are introduced. We add the edges uu′, u′v′, v′v, su′′, u′′v′′, v′′t ,
u′′u′ and v′v′′, all with capacity c(e). For the edges su′′, u′′v′′, v′′t , u′′u′ and v′v′′
the new commodity i∗ is on top of their preference list, followed by all other
commodities in arbitrary order. For edge u′v′ commodity i is first on the list, i∗
is second, followed by all other commodities in arbitrary order. For the edges
uu′ and v′v, commodity i∗ is last on the list, the rank of the other commodi-
ties is arbitrary. For the vertex preferences, we set ru′′(u′′u′) < ru′′(u′′v′′) and
rv′′(v′v′′) < rv′′(u′′v′′), as well as ru′(u′′u′) < ru′(uu′) and rv′(v′v′′) < rv′(v′v).
We further set ru(uu′) = ru(e) and rv(v′v) = rv(e).
Let us denote the modified network by D̄. For a stable flow f in the original
network D, we define a flow f̄ in D̄ as follows. For edges e that were not
replaced by a gadget in D̄, we set f̄ i (e) = f i (e) for all i . For every e that
was replaced by a gadget (because ci (e) = c(e) and c j (e) = 0 for all j �= i),
we set the flow values within the gadget as follows. For the new commodity
i∗ we set f̄ i (uu′) = f̄ i (u′v′) = f̄ i (v′v) = f i (e), and we set f̄ i∗(u′′u′) =
f̄ i∗(u′v′) = f̄ i∗(v′v′′) = c(e) − f i (e), so that u′v′ is saturated with its two
top-ranked commodities. Furthermore we set f̄ i∗(su′′) = f̄ i∗(v′′t) = c(e), and
f̄ i∗(u′′v′′) = f i (e). All other flow values are set to zero within the gadget (recall
that f j (e) = 0 for all j �= i).

Claim The flow f̄ is stable in D̄.

123

Algorithmica (2019) 81:2557–2591 2583

Proof We have constructed f̄ so that it respects all capacities and fulfills flow con-
servation in D̄. To see that f̄ is a stable flow, assume by contradiction that there is an
f̄ -blocking walk W̄ for some commodity j .
First assume W̄ starts in the interior of a gadget, i.e., with an edge of a gadget He,i

different from uu′. We eliminate the edges of the gadget one by one to show that this
is not possible.

• W̄ cannot start with su′′, as this edge is saturated with its most preferred commod-
ity i∗.

• W̄ also cannot start with u′′v′′, u′v′, or v′v, as these edges are the last-choice
outgoing edges on the preference lists of u′′, u′ and v′ respectively.

• If W̄ starts at u′′u′, then j = i∗, because this is the only commodity on the
dominated edge u′′v′′. But then W̄ must end at u′ because u′v′ is saturated with
commodities it ranks at least as high as i∗. However, f̄ i∗(uu′) = 0, so W̄ does not
dominate f at u′.

• Finally, if W̄ starts with v′v′′, then j �= i∗ because f̄ i
∗
(v′v) = 0. But it can neither

end at v′′ as v′′ only receives commodity i∗ from u′′v′′, nor can it continue as v′′t
is saturated with its favorite commodity.

We conclude that W̄ cannot start in the interior of a gadget. By a symmetric argu-
ment, W̄ cannot end in the interior of a gadget, i.e., with an edge of a gadget He,i

different from v′v.
Thus, if W̄ contains any edge of a gadget He,i , it must traverse all the edges

uu′, u′v′, v′v of the gadget. As u′v′ is saturated with commodities i and i∗, we con-
clude that j = i and c(e) − f i (e) = f̄ i

∗
(u′v′) > 0. We replace all such segments

uu′, u′v′, v′v from any traversed gadget He,i with the corresponding edge e and get a
walk W in D. Because f i (e) < c(e) for all inserted edges, W is a blocking walk for
f , contradicting the stability of f . ��
It is easy to see that the mapping defined by φ(f) = f̄ is injective, and as argued
above, preserves stability. We now show that it is indeed a bijection from stable flows
in D to stable flows in D̄.

Claim For any stable flow y in D̄, there is a stable flow f in D with φ(f) = y.

Proof Let y be a stable flow in D̄. Consider a gadget He,i . By contradiction assume
yi

∗
(uu′) > 0. Then yi

∗
(su′′) = yi

∗
(u′′u′) = c(e) as otherwise either 〈s, u′′, u′〉 or

〈u′′, u′〉 is a blocking walk for commodity i∗. But then yi
∗
(uu′)+ yi

∗
(u′′u′) > c(e) ≥

yi
∗
(u′v′), contradicting flow conservation. Hence yi

∗
(uu′) = 0 and, by a symmetric

argument, yi
∗
(v′v) = 0. As no flow of commodity i∗ enters or leaves He,i , and the

path 〈s, u′′, v′′, t〉 is not blocking, we conclude that yi∗(su′′) = yi
∗
(v′′t) = c(e). By

flow conservation, yi
∗
(u′′u′) = yi

∗
(u′v′) = yi

∗
(v′v′′) = c(e) − yi

∗
(u′′v′′). Since the

path 〈u′′, u′, v′, v′′〉 is not blocking and i is the only commodity that comes before i∗
on an edge of that path, we conclude that yi

∗
(u′v′) + yi (u′v′) = c(e). Hence, by flow

conservation, yi (uu′) = yi (u′v′) = yi (v′v) = c(e) − yi
∗
(v′v′′), and y j (e′) = 0 for

all j /∈ {i, i∗} and all edges e′ in the gadget He,i .
Now define f by setting f i (e) = yi (u′v′) for every gadget He,i in D̄ and f i (e) =

yi (e) for all edges in E ∩ ED̄ and all commodities i . Using the above observations, it

123

2584 Algorithmica (2019) 81:2557–2591

is easy to check that φ(f) = y and that f fulfills flow conservation and respects all
capacity constraints (in particular f j (e) = y j (u′v′) = 0 for all j �= i at any gadget
He,i). To see that f is a stable flow, assume by contradiction that there is a blocking
walk W for f and commodity i . We obtain a walk W̄ in D̄ by replacing the edges of
W with the corresponding gadgets He,i . At any such edge, f i (e) < c(e) because W
is blocking with respect to i and i is the only commodity that can traverse e. Hence,
yi (uu′) = yi (u′v′) = yi (v′v) < c(e). Also, as the preference lists of non-gadget
vertices are the same in D and D̄, W̄ is indeed a blocking walk for y contradicting its
stability. ��
It is easy to check that all transformations described above can be carried out in
polynomial time and that integral stable flows in the original graph correspond to
integral stable flows in the transformed graph.

5.3 Integral Multicommodity Stable Flows

First we modify Definition 2 so that it describes the integral version of smf. Then we
carefully analyze an example network with no integral solution. This network is used
in the last part of this subsection, in which we present our hardness proof.

Problem 3 ismf Input:I = (D, ci , c, rE , r iV), 1 ≤ i ≤ n ; a directedmulticommodity
network (D, ci , c), 1 ≤ i ≤ n, edge preferences over commodities rE and vertex
preferences over incident edges r iV , 1 ≤ i ≤ n.
Question: Is there a stable multicommodity flow with integral f i (uv) values for all
uv ∈ E and 1 ≤ i ≤ n?

Király andPap [27] give, for every integer N , an example instancewith N commodi-
ties and N vertices, where no stable multicommodity flow exists with denominators
at most N . Here we present a small and slightly modified version of that instance as
an example and later use it as a gadget in our hardness proof.

Example 4 (ISMF instancewith no solution) Consider the network depicted in Fig. 10.
We consider two variants of an ismf instance in this network. In both cases, u is the
only terminal vertex in the graph, but the variants differ in that either 3 or only 2
commodities are present:

1. s1 = s2 = s3 = t1 = t2 = t3 = u (see Lemma 9) and
2. ∃i ∈ {1, 2, 3} : {si , t i } = ∅ (see Lemma 10).

We will show below that in the first case, the instance admits no integer multicom-
modity flow, whereas such a flow exists in the second case.

The edge capacities with respect to commodities are 1 for the commodities that
appear in rE for the specific edge and 0 for the remaining commodities. All edges have
cumulative capacity 1. The vertex preferences are the same for all commodities: v1, v2
and v3 are inclined to receive and send the flow along the edges between themselves
rather than trading with u. Each commodity i has a unique feasible cycle Ci through
u and it is easy to see that due to the choice of the ci functions, no other cycle or
terminal-terminal path exists in the network.

123

Algorithmica (2019) 81:2557–2591 2585

Fig. 10 The edge preferences are marked with colored labels in the middle of edges, while r iV is black and
closer to the vertices. For all edges, c = 1. The purple edges of the triangle can forward two commodities,
while the bent black edges can carry only one commodity (Color figure online)

• C1 = 〈u, v1, v2, v3, u〉
• C2 = 〈u, v2, v3, v1, u〉
• C3 = 〈u, v3, v1, v2, u〉

Lemma 9 If s1 = s2 = s3 = t1 = t2 = t3 = u, then there is no integer stable
multicommodity flow.

Proof Assume that there is an integral stable multicommodity flow f in the instance.
The empty flow cannot be f , because there is a cycle running through u for each
commodity and such cycles block the empty flow. Without loss of generality we can
now assume that C1 is saturated by commodity 1:

f 1(uv1) = f 1(v1v2) = f 1(v2v3) = f 1(v3u) = 1,

while all other flow values must be 0 due to commodity capacity constraints on edges.
This flow is blocked by commodity 3 on the cycle 〈u, v3, v1, v2, u〉. It is easy to see
that analogous arguments work for C2 and C3 as well. Thus, no integer stable flow
exists in the graph. ��
Lemma 10 If u is a terminal for at most two out of the three commodities, then an
integer stable multicommodity flow exists.

123

2586 Algorithmica (2019) 81:2557–2591

Proof Let us now investigate the same instance with a slight modification: s1 = s2 =
t1 = t2 = u, but {s3, t3} = ∅. Then, the following integer flow is stable:

f 1(uv1) = f 1(v1v2) = f 1(v2v3) = f 1(v3u) = 1.

A blocking walk with respect to commodity 1 cannot exist, because all edges that can
carry commodity 1 also carry it to their upper capacity. Commodity 2 could block
along C2, but edge v2v3 is saturated with its most preferred commodity. It is trivial
that the same flow remains stable if we set s1 = t1 = u and {s2, t2} = {s3, t3} = ∅.
If {s1, t1} = {s2, t2} = {s3, t3} = ∅, then the empty flow is stable. ��

To sum up the established results about Example 4: the instance admits an integer
stable flow if and only if u has at most two commodities. This argument will help us
prove a claim later in our hardness proof.

Theorem 8 Deciding whether ismf has a solution is NP-complete. This holds even
if all commodities share the same set of terminal vertices, all vertices have the same
preferences with respect to all commodities, and edges do not have commodity-specific
capacities (but edges have preferences over different commodities).

Proof In the following, we show NP-completeness for the general version ismf.
By Theorem 7, this also implies NP-completeness for ismf restricted to instances
with identical terminal sets, commodity-independent vertex preferences, and without
commodity-specific edge capacities.

Testing whether a feasible integral multicommodity flow is stable can be done in
polynomial time, as pointed out also in [27]. It is sufficient to check the existence of
edges fulfilling points 2 and 3 in Definition 4 for every commodity and then execute
a breadth-first search for every pair of vertices as v1 and vk vertices of the potential
blocking walk. Thus ismf is in NP.

We now describe how to construct an ismf instance I ′ from any given instance I
of 3- sat with n variables and m clauses, also illustrated in Fig. 11. For each variable
i in the Boolean formula we create 2 commodities, i and ī , corresponding to truth

values true and false. To simplify notation, we say that ¯̄i = i . Every clause in the
formula is assigned a clause gadget, identical to the instance presented in Example 4,
but with u being a non-terminal for all commodities. The three relevant commodities
are the commodities corresponding to the negations of the three literals appearing in
the clause. The preferences of u in such a gadget are chosen so that the edges of the
gadget are preferred to edges outside of the gadget. The order of the edges at u inside
the gadget is irrelevant due to the commodity-specific capacity constraints.

All commodities share the same terminals s and t . There is a long path running from
s to t , consisting of three segments. The first and the third segments are two disjoint
copies of the same variable gadget, while the second segment consists of the u-vertices
of them clause gadgets. A variable gadget is defined on vertices {a, b1, b2, . . . , bn, d}
with edges abi and bid for all i . For each i and each e ∈ {abi , bid} we set the
capacities ci (e) = cī (e) = c(e) = 1 and c j (e) = c j̄ (e) = 0 for j �= i . Edge
abi ranks commodity i best, and ī second, while bid ranks commodity ī best, and

123

Algorithmica (2019) 81:2557–2591 2587

Fig. 11 A variable gadget and the entire construction for ismf

i second. The vertex preferences of a and d are arbitrary. These three segments are
chained together so that the only edge of s ends at a′ in the first variable gadget, d ′ in
the same gadget is connected to the first u vertex of the second segment, the last u of
the same segment is adjacent to a′′ in the second variable gadget and d ′′ in this gadget
has an edge running to t . For the edges connecting the segments and the u-vertices
of clause gadgets with each other and with the terminals, the capacities are set to
ci = cī = c = n for all 1 ≤ i ≤ n, and edge preferences are chosen arbitrarily.

Having described the full construction we now prove in Lemmas 11 and 12 the
equivalence between the existence of an integral stable multicommodity flow in I ′
and a satisfying truth assignment in I.
Lemma 11 If an integral stable multicommodity flow f exists in I ′, then there is a
satisfying truth assignment in I.
Proof As defined after Definition 3, f i denotes the total flow value with respect to
commodity i .

Claim For every commodity i , f i + f ī = 1.

Proof If f i (abi) + f ī (abi) < 1 for some commodity i and edge abi of a variable
gadget, then there is an unsaturated s-t path through bi with respect to commodity i ,
because the edges abi and bid are not saturated and all other edges along the main
path have capacity n. This path blocks f . Since c(abi) = 1 for every 1 ≤ i ≤ n,
f i (abi) + f ī (abi) = 1, thus edges abi and bid of the variable gadgets are saturated
with commodities i and ī . This already implies that f i + f ī = 1 for every 1 ≤ i ≤ n.

��

123

2588 Algorithmica (2019) 81:2557–2591

This claim allows us to assign exactly one truth value to each variable: xi is true if
f i = 1 and it is false if f ī = 1.

Claim For every clause C = xi ∨ x j ∨ xk, where the variables in C can be in negated

or unnegated form, f ī + f j̄ + f k̄ ≤ 2, for every 1 ≤ i, j, k ≤ n.

Proof Since u prefers sending flow along its edges in the gadget over forwarding it
to the next u vertex on the path, u can be seen as a terminal vertex with respect to
the commodities reaching it. As we have shown in Example 4, if there is a solution to
ismf, then at most two of the three relevant commodities are present at u. ��

The latter claim is the reason why we took the negated version of each literal in the
clause: at most two literals are false in each clause, thus the clause is satisfied by the
truth assignment.

Lemma 12 If there is a satisfying truth assignment in I, then there is an integral stable
multicommodity flow f in I ′.

Proof The constructed flow to the given truth assignment is the following. For every
variable i , f i = 1, f ī = 0 if i is true, and f i = 0, f ī = 1 otherwise. This rule
obviously determines f on all edges not belonging to clause gadgets. Since we started
with a valid truth assignment, each clause gadget has at most two out of the three rel-
evant commodities i1, i2 and i3 reaching u. Commodity i j corresponds to commodity
j in Example 4. If one commodity i j , j ∈ {1, 2, 3} is not present at u, then we send
commodity i j+1 (modulo 3) along cycle Ci j+1 and set all other flow values in the
gadget to 0. Note that this also implies that commodity i j+2 (modulo 3) is forwarded
by u without entering the clause gadget. If two commodities are missing, we send the
third along its cycle. If no relevant commodity reaches the gadget, then we leave all
edges of the gadget empty.

We need to show now that f is an integral stable flow. Feasibility and integrality
clearly follow from the construction. Proceeding from s to t in the graph,we investigate
at which vertex a blocking walk W might start.

1. AssumeW starts at s. If a′b′
j is the edge saturated by its best commodity, thenW

cannot proceed through a′b′
j . If a

′b′
j is not saturated by its preferred commodity,

then b′
j d

′ is and W cannot pass through b′
j d

′. Hence W either ends at a′ or b′
j

for some j . In either case, it ends at a non-terminal vertex with a single incoming
edge. Thus a walk W starting at s cannot block f .

2. Similarly, ifW starts at a′, it has to end at b′
j for some j and thusW cannot block

f .
3. For each j , the non-terminal vertex b′

j has a single outgoing edge. Thus it also
cannot start a blocking walk.

4. The same holds for d ′.
5. The same arguments apply for walks starting at a′′, b′′

j for some j , or d ′′, respec-
tively.

123

Algorithmica (2019) 81:2557–2591 2589

6. If W starts at a vertex u j , then its first edge must be in a clause gadget, because
the edge running outside of the clause gadget is the least preferred outgoing edge
of u j .
Assume now without loss of generality that the first edge of W is u jv1 in some
clause gadget with relevant commodities i1, i2 and i3, in this order. Because u jv1
only admits flow of commodity i1, the walkW can only be blocking with respect
to commodity i1, and f i1(e) = 1 on the edge e leaving u j outside the clause
gadget. Thus, u jv1 is not saturated, which means that commodity i1 was not
chosen to fill C1. According to our rules above, the only reason for this is that
commodity i2 is not present at u and commodity i3 saturates C3. Then the only
edge that could be the second edge of W is v1v2 in the gadget, but this edge is
saturated by its best ranked commodity i3. We conclude that a blocking walk
cannot start at u j for any j .

7. Now assume W starts at a vertex v in the interior of a clause gadget attached
to u j . Without loss of generality, let this vertex be v1. Note that v1 has two
outgoing edges v1v2 and v1u j , but v1v2 only supports flow of commodities i1
and i3, whereas v1u j only supports flow of commodity i2. A walk starting with
v1u j can only block f with respect to commodity i2, but then it cannot dominate
f at the start because f i2(v1v2) = 0. Likewise, a walk starting with v1v2 can
only block f with respect to i1 or i3, but cannot dominate f at the start because
f i1(v1u j) = f i3(v1u j) = 0.

8. No edge leaves t , so W cannot start with t .

We thus eliminated all possible starting vertices for blocking walks. Since no walk
blocks the constructed flow, it is stable. ��

6 Conclusion and Open Problems

In this paper we presented four results:

1. A polynomial version of the Gale–Shapley algorithm for stable flows;
2. A direct algorithm for stable flows with restricted intervals;
3. A simplification of the stable multicommodity flow problem;
4. The NP-completeness of the integral stable multicommodity flow problem.

A natural open question regarding the problem of stable flows with restricted edges
presented in Sect. 4 is that of approximation. The approximation concept of minimum
number of blocking edges or minimum number of violated restrictions [6] can be
translated to sf restricted. Even if there is no stable flow saturating all forced
edges or avoiding all forbidden edges, how can stability be relaxed such that all edge
conditions are fulfilled? Or the other way round: how many edge conditions must be
violated by stable flows?

The big open question of Sect. 5 is clearly algorithms for finding a (possibly frac-
tional) stablemulticommodity flow. Even thoughTheorem6 states that it is PPAD-hard
to find a solution in the general case, it is natural to askwhether this complexity changes
when restricting the number of commodities, the maximum degree, or other parame-
ters of the instance. Since the Gale–Shapley algorithm typically executes steps with

123

2590 Algorithmica (2019) 81:2557–2591

integer values if the input is integral and we showed the hardness of ismf, it is likely
that a novel approach is needed. Linear programming is a promising direction, but
constructing a description of the smf polytope seems to be an extremely challenging
task. At the moment, the most elaborate structure for which a linear program is known
is many-to-many stable matchings [12].

Finally, all stable flow models discussed in this paper can be combined with other
common notions in stability or flows, such as ties in preference lists, edge weights,
unsplittable flows, and so on.

Acknowledgements We thank Tamás Fleiner for discussions on Lemma 3, and our reviewers for their
suggestions that significantly improved the presentation of the paper.

References

1. Baïou, M., Balinski, M.: Many-to-many matching: stable polyandrous polygamy (or polygamous
polyandry). Discrete Appl. Math. 101, 1–12 (2000)

2. Balinski, M., Sönmez, T.: A tale of two mechanisms: student placement. J. Econ. Theory 84, 73–94
(1999)

3. Biró, P., Kern, W., Paulusma, D., Wojuteczky, P.: The stable fixtures problem with payments. Games
Econ. Behav. 108, 245–268 (2017)

4. Braun, S., Dwenger, N., Kübler, D.: Telling the truth may not pay off: an empirical study of centralized
university admissions in Germany. B.E. J. Econ. Anal. Policy (2010). https://doi.org/10.2202/1935-
1682.2294

5. Chen, Y., Sönmez, T.: Improving efficiency of on-campus housing: an experimental study. Am. Econ.
Rev. 92, 1669–1686 (2002)

6. Cseh, Á., Manlove, D.F.: Stable marriage and roommates problems with restricted edges: complexity
and approximability. Discrete Optim. 20, 62–89 (2016)

7. Cseh, Á., Matuschke, J., Skutella, M.: Stable flows over time. Algorithms 6, 532–545 (2013)
8. Dean, B.C., Munshi, S.: Faster algorithms for stable allocation problems. Algorithmica 58, 59–81

(2010)
9. Dias, V.M.F., da Fonseca, G.D., de Figueiredo, C.M.H., Szwarcfiter, J.L.: The stable marriage problem

with restricted pairs. Theor. Comput. Sci. 306, 391–405 (2003)
10. Feder, T.: A new fixed point approach for stable networks and stable marriages. J. Comput. Syst. Sci.

45, 233–284 (1992)
11. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11, 291–319 (1994)
12. Fleiner, T.: On the stable b-matching polytope. Math. Soc. Sci. 46, 149–158 (2003)
13. Fleiner, T.: On stable matchings and flows. Algorithms 7, 1–14 (2014)
14. Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalised stable marriage and

roommates problems. Theor. Comput. Sci. 381, 162–176 (2007)
15. Fleiner, T., Jagadeesan, R., Jankó, Z., Teytelboym, A.: Trading networks with frictions. In: Proceedings

of the 2018 ACM Conference on Economics and Computation. ACM, pp. 615–615 (2018)
16. Fleiner, T., Jankó, Z., Schlotter, I., Teytelboym, A.: Complexity of stability in trading networks. arXiv

preprint arXiv:1805.08758 (2018)
17. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
18. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.: Acyclic preference

systems in P2P networks. In: Kermarrec, A., Bougé, L., Priol, T. (eds.) Proceedings of Euro-Par
’07 (European Conference on Parallel and Distributed Computing): The 13th International Euro-Par
Conference. Lecture Notes in Computer Science, vol. 4641, pp. 825–834. Springer (2007)

19. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15
(1962)

20. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Appl. Math. 11,
223–232 (1985)

21. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)

123

https://doi.org/10.2202/1935-1682.2294
https://doi.org/10.2202/1935-1682.2294
http://arxiv.org/abs/1805.08758

Algorithmica (2019) 81:2557–2591 2591

22. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cam-
bridge (1989)

23. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable marriage. J.
ACM 34, 532–543 (1987)

24. Jagadeesan, R.: Complementary inputs and the existence of stable outcomes in large trading networks.
In: Proceedings of the 2017 ACM Conference on Economics and Computation. ACM, pp. 265–265
(2017)

25. Jewell, W.S.: Multi-commodity Network Solutions. Operations Research Center, University of Cali-
fornia, California (1966)

26. Király, T., Pap, J.: A note on kernels and Sperner’s Lemma. Discrete Appl. Math. 157, 3327–3331
(2009)

27. Király, T., Pap, J.: Stable multicommodity flows. Algorithms 6, 161–168 (2013). https://doi.org/10.
3390/a6010161

28. Knuth, D.: Mariages Stables. Les Presses de L’Université de Montréal (1976). In: English translation
in Stable Marriage and its Relation to Other Combinatorial Problems, vol. 10 of CRM Proceedings
and Lecture Notes, American Mathematical Society (1997)

29. Lin, Y.S., Nguyen, T.: On variants of network flow stability. arXiv preprint arXiv:1710.03091 (2017)
30. Ostrovsky, M.: Stability in supply chain networks. Am. Econ. Rev. 98, 897–923 (2008)
31. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence.

J. Comput. Syst. Sci. 48, 498–532 (1994)
32. Perach, N., Polak, J., Rothblum, U.G.: A stable matching model with an entrance criterion applied to

the assignment of students to dormitories at the Technion. Int. Jo. Game Theory 36, 519–535 (2008)
33. Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game

theory. J. Polit. Econ. 92, 991–1016 (1984)
34. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-Theoretic Modeling and

Analysis. Econometric Society Monographs, vol. 18. Cambridge University Press, Cambridge (1990)
35. Shepherd, F.B., Vetta, A., Wilfong, G.T.: Polylogarithmic approximations for the capacitated single-

sink confluent flow problem. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, pp. 748–758 (2015)

36. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34,
250–256 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Ágnes Cseh1 · Jannik Matuschke2

Jannik Matuschke
jannik.matuschke@tum.de

1 Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of
Sciences, Tóth Kálmán u. 4., Budapest 1097, Hungary

2 TUM School of Management and Department of Mathematics, Technische Universität München,
Arcisstraße 21, 80333 Munich, Germany

123

https://doi.org/10.3390/a6010161
https://doi.org/10.3390/a6010161
http://arxiv.org/abs/1710.03091
http://orcid.org/0000-0003-4991-2599

	New and Simple Algorithms for Stable Flow Problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Polynomial-Time Augmenting Path Algorithm for Stable Flows
	3.1 Our Algorithm
	3.2 Example Run of the Algorithm
	3.3 Analysis

	4 Stable Flows with Restricted Intervals
	4.1 Problem Simplification
	4.2 Forced Edges
	4.2.1 A Single Forced Edge
	4.2.2 Multiple Forced Edges
	4.2.3 Stable Matchings with Forced Edges

	4.3 Forbidden Edges
	4.3.1 A Single Forbidden Edge
	4.3.2 Multiple Forbidden Edges
	4.3.3 Stable Matchings with Forbidden Edges

	4.4 Forced and Forbidden Edges

	5 Stable Multicommodity Flows
	5.1 Problem Definition
	5.2 Problem Simplification
	5.3 Integral Multicommodity Stable Flows

	6 Conclusion and Open Problems
	Acknowledgements
	References

