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Abstract. We study extension variants of the classical problems Ver-
tex Cover and Independent Set. Given a graph G = (V,E) and a
vertex set U ⊆ V , it is asked if there exists a minimal vertex cover
(resp. maximal independent set) S with U ⊆ S (resp. U ⊇ S). Possibly
contradicting intuition, these problems tend to be NP-complete, even
in graph classes where the classical problem can be solved efficiently.
Yet, we exhibit some graph classes where the extension variant remains
polynomial-time solvable. We also study the parameterized complexity
of theses problems, with parameter |U |, as well as the optimality of sim-
ple exact algorithms under ETH. All these complexity considerations are
also carried out in very restricted scenarios, be it degree or topological
restrictions (bipartite, planar or chordal graphs). This also motivates pre-
senting some explicit branching algorithms for degree-bounded instances.
We further discuss the price of extension, measuring the distance of U to
the closest set that can be extended, which results in natural optimization
problems related to extension problems for which we discuss polynomial-
time approximability.

Key words: extension problems, special graph classes, approximation
algorithms, NP-completeness

1 Introduction

We will consider extension problems related to the classical graph problems
Vertex Cover and Independent Set. Informally in the extension version
of Vertex Cover, the input consists of both a graph G and a subset U of
vertices, and the task is to extend U to an inclusion-wise minimal vertex cover
of G (if possible). With Independent Set, given a graph G and a subset U
of vertices, we are looking for an inclusion-wise maximal independent set of G
contained in U .

Studying such version is interesting when one wants to develop efficient enu-
meration algorithms or also for branching algorithms, to name two examples of
a list of applications given in [6].
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Related work In [5], it is shown that extension of partial solutions is NP-hard for
computing prime implicants of the dual of a Boolean function; a problem which
can also be seen as trying to find a minimal hitting set for the prime implicants of
the input function. Interpreted in this way, the proof from [5] yields NP-hardness
for the minimal extension problem for 3-Hitting Set (but polynomial-time
solvable if |U | is constant). This result was extended in [2] to prove NP-hardness
for computing the extensions of vertex sets to minimal dominating sets (Ext
DS), even restricted to planar cubic graphs. Similarly, it was shown in [1] that
extensions to minimal vertex covers restricted to planar cubic graphs is NP-hard.
The first systematic study of this type of problems was exhibited in [6] providing
quite a number of different examples of this type of problem.

An independent system is a set system (V, E), E ⊆ 2V , that is hereditary
under inclusion. The extension problem Ext Ind Sys (also called Flashlight)
for independent system was proposed in [17]. In this problem, given as input
X,Y ⊆ V , one asks for the existence of a maximal independent set including X
and that does not intersect with Y . Lawler et al. proved that Ext Ind Sys is
NP-complete, even when X = ∅ [17]. In order to enumerate all (inclusion-wise)
minimal dominating sets of a given graph, Kanté et al. studied a restriction of
Ext Ind Sys: finding a minimal dominating set containing X but excluding Y .
They proved that Ext DS is NP-complete, even in special graph classes like
split graphs, chordal graphs and line graphs [15, 14]. Moreover, they proposed a
linear algorithm for split graphs when X,Y is a partition of the clique part [13].

Organization of the paper After some definitions and first results in Section 2,
we focus on bipartite graphs in Section 3 and give hardness results holding with
strong degree or planarity constraints. We also study parameterized complexity
at the end of this section and comment on lower bound results based on ETH.
In Section 4, we give positive algorithmic results on chordal graphs, with a
combinatorial characterization for the subclass of trees. We introduce the novel
concept of price of extension in Section 5 and discuss (non-)approximability for
the according optimization problems. In Section 6, we prove several algorithmic
results for bounded-degree graphs, based on a list of reduction rules and simple
branching. Finally, in Section 7, we give some prospects of future research.

2 Definitions and preliminary results

Throughout this paper, we consider simple undirected graphs only, to which
we refer as graphs. A graph can be specified by the set V of vertices and the
set E of edges; every edge has two endpoints, and if v is an endpoint of e, we
also say that e and v are incident. Let G = (V,E) be a graph and U ⊆ V ;
NG(U) = {v ∈ V : ∃u ∈ U(vu ∈ E)} denotes the neighborhood of U in G and
NG[U ] = U ∪ NG(U) denotes the closed neighborhood of U . For singleton sets
U = {u}, we simply write NG(u) or NG[u], even omitting G if clear from the
context. The cardinality of NG(u) is called degree of u, denoted dG(u). A graph
where all vertices have degree k is called k-regular; 3-regular graphs are called
cubic. If 3 upper-bounds the degree of all vertices, we speak of subcubic graphs.
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A vertex set U induces the graph G[U ] with vertex set U and e ∈ E being an
edge in G[U ] iff both endpoints of e are in U . A vertex set U is called independent
if U ∩NG(U) = ∅; U is called dominating if NG[U ] = V ; U is a vertex cover if
each edge e is incident to at least one vertex from U . A graph is called bipartite if
its vertex set decomposes into two independent sets. A vertex cover S is minimal
if any proper subset S′ ⊂ S of S is not a vertex cover. Clearly, a vertex cover S
is minimal iff each vertex v in S possesses a private edge, i.e., an edge vu with
u /∈ S. An independent set S is maximal if any proper superset S′ ⊃ S of S is
not an independent set. The two main problems discussed in this paper are:

Ext VC
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Question: Does G have a minimal vertex cover S with U ⊆ S?

Ext IS
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Question: Does G have a maximal independent set S with S ⊆ U?

For Ext VC, the set U is also referred to as the set of required vertices.

Remark 1. (G,U) is a yes-instance of Ext VC iff (G,V \U) is a yes-instance of
Ext IS, as complements of maximal independent sets are minimal vertex covers.

Since adding or deleting edges between vertices of U does not change the
minimality of feasible solutions of Ext VC, we can first state the following.

Remark 2. For Ext VC (and for Ext IS) one can always assume the required
vertex set (the set V \ U) is either a clique or an independent set.

The following theorem gives a combinatorial characterization of yes-instances
of Ext VC that is quite important in our subsequent discussions.

Theorem 3. Let G = (V,E) be a graph and U ⊆ V be a set of vertices. The
three following conditions are equivalent:

(i) (G,U) is a yes-instance of Ext VC.
(ii) (G[NG[U ]], NG[U ] \ U) is a yes-instance of Ext IS.
(iii) There exists an independent dominating set S′ ⊆ NG[U ] \ U of G[NG[U ]].

3 Bipartite graphs

In this section, we focus on bipartite graphs. We prove that Ext VC is NP-
complete, even if restricted to cubic, or planar subcubic graphs. Due to Remark 1,
this immediately yields the same type of results for Ext IS. We add some
algorithmic notes on planar graphs that are also valid for the non-bipartite case.
Also, we discuss results based on ETH. We conclude the section by studying the
parameterized complexity of Ext VC in bipartite graphs when parameterized
by the size of U .
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Fig. 1. Graph G = (V,E) for Ext VC built from I. Vertices of U have a bold border.

Theorem 4. Ext VC (and Ext IS) is NP-complete in cubic bipartite graphs.

Proof. We reduce from 2-balanced 3-SAT, denoted (3, B2)-SAT, which is NP-
hard by [3, Theorem 1], where an instance I is given by a set C of CNF clauses
over a set X of Boolean variables such that each clause has exactly 3 literals and
each variable appears exactly 4 times, twice negative and twice positive. The
bipartite graph associated to I is BP = (C ∪X,E(BP )) with C = {c1, . . . , cm},
X = {x1, . . . , xn} and E(BP ) = {cjxi : xi or ¬xi is literal of cj}.

For an instance I = (C,X) of (3, B2)-SAT, we build a cubic bipartite graph
G = (V,E) by duplicating instance I (here, vertices C ′ = {c′1, . . . , c′m} and
X ′ = {x′1, . . . , x′n} are the duplicate variants of vertices C = {c1, . . . , cm} and
X = {x1, . . . , xn}) and by connecting gadgets as done in Figure 1. We also add
the following edges between the two copies: lil

′
i, mim

′
i and rir

′
i for i = 1, . . . , n.

The construction is illustrated in Figure 1 and clearly, G is a cubic bipartite
graph. Finally we set U = {ci, c′i : i = 1, . . . ,m} ∪ {mj ,m

′
j : j = 1, . . . , n}.

We claim that I is satisfiable iff G admits a minimal vertex cover containing U .
Assume I is satisfiable and let T be a truth assignment which satisfies all clauses.
We set S = {¬xi, li,¬x′i, r′i : T (xi) = true} ∪ {xi, ri, x′i, l′i : T (xi) = false} ∪ U .
We can easily check that S is a minimal vertex cover containing U .
Conversely, assume that G possesses a minimal vertex cover S containing U . For
a fixed i, we know that |{li, l′i, ri, r′i} ∩ S| ≥ 2 to cover the edges lil

′
i and rir

′
i.

If {li, ri} ⊆ S (resp. {l′i, r′i} ⊆ S), then S is not a minimal vertex cover because
mi (resp. m′i) can be deleted, a contradiction. If {li, l′i} ⊆ S (resp. {ri, r′i} ⊆ S),
then S must contain another vertex to cover rir

′
i (resp. lil

′
i), leading to the
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previous case, a contradiction. Hence, if {li, r′i} ⊆ S (resp., {ri, l′i} ⊆ S), then
{¬xi,¬x′i} ⊆ S (resp., {xi, x′i} ⊆ S), since the edges l′i¬x′i and ri¬xi (resp., lixi
and r′ixi) must be covered. In conclusion, by setting T (xi) = true if ¬xi ∈ S
and T (xi) = false if xi ∈ S we obtain a truth assignment T which satisfies all
clauses, because {Ci, C ′i : i = 1, . . . ,m} ⊆ U ⊆ S. ut

Theorem 5. Ext IS is NP-complete on planar bipartite subcubic graphs.

Algorithmic notes for the planar case By distinguishing between whether a
vertex belongs to the cover or not and further, when it belongs to the cover, if it
already has a private edge or not, it is not hard to design a dynamic programming
algorithm that decides in time O∗(ct) if (G,U) is a yes-instance of Ext VC or
not, given a graph G together with a tree decomposition of width t. With some
more care, even c = 2 can be achieved, but this is not so important here. Rather,
below we will make explicit another algorithm for trees that is based on several
combinatorial properties and hence differs from the DP approach sketched here
for the more general notion of treewidth-bounded graphs.

Moreover, it is well-known that planar graphs of order n have treewidth
bounded by O(

√
n). In fact, we can obtain a corresponding tree decomposition

in polynomial time, given a planar graph G. Piecing things together, we obtain:

Theorem 6. Ext VC can be solved in time O∗(2O(
√
n)) on planar graphs.

Remarks on the Exponential Time Hypothesis Assuming ETH, there is
no 2o(n+m)-algorithm for solving n-variable, m-clause instances of (3, B2)-SAT.
As our reduction from (3, B2)-SAT increases the size of the instances only in a
linear fashion, we can immediately conclude:

Theorem 7. There is no 2o(n+m)-algorithm for n-vertex, m-edge bipartite sub-
cubic instances of Ext VC, unless ETH fails.

This also motivates us to further study exact exponential-time algorithms.
We can also deduce optimality of our algorithms for planar graphs based on the
following auxiliary result.

Proposition 8. There is no algorithm that solves 4-Bounded Planar 3-
Connected SAT (see [16]) on instances with n variables and m clauses in

time 2o(
√
n+m), unless ETH fails.

Corollary 9. There is no 2o(
√
n) algorithm for solving Ext VC on planar in-

stances of order n, unless ETH fails.

Remarks on Parameterized Complexity We now study our problems in
the framework of parameterized complexity where we consider the size of the set
of fixed vertices as standard parameter for our extension problems.

Theorem 10. Ext VC with standard parameter is W[1]-complete, even when
restricted to bipartite instances.

Theorem 11. Ext VC with standard parameter is in FPT on planar graphs.



6 Casel et al.

4 Chordal and Circular-arc graphs

An undirected graph G = (V,E) is chordal iff each cycle of G with a length
at least four has a chord (an edge linking two non-consecutive vertices of the
cycle) and G is circular-arc if it is the intersection graph of a collection of n arcs
around a circle. We will need the following problem definition.

Minimum Independent Dominating Set (MinISDS for short)
Input: A graph G = (V,E).
Solution: Subset of vertices S ⊆ V which is independent and dominating.
Output: Solution S that minimizes |S|.

Weighted Minimum Independent Dominating Set (or WMinISDS for
short) corresponds to the vertex-weighted variant of MinISDS, where each ver-
tex v ∈ V has a non-negative weight w(v) ≥ 0 associated to it and the goal
consists in minimizing w(S) =

∑
v∈S w(v). If w(v) ∈ {a, b} with 0 ≤ a < b, the

weights are called bivaluate, and a = 0 and b = 1 corresponds to binary weights.

Remark 12. MinISDS for chordal graphs has been studied in [10], where it
is shown that the restriction to binary weights is solvable in polynomial-time.
Bivalued MinISDS with a > 0 however is already NP-hard on chordal graphs,
see [7]. WMinISDS (without any restriction on the number of distinct weights)
is also polynomial-time solvable in circular-arc graphs [8].

Corollary 13. Ext VC is polynomial-time decidable in chordal and in circular-
arc graphs.

Farber’s algorithm [10] (used in Corollary 13) runs in linear-time and is based
on the resolution of a linear programming using primal and dual programs. Yet,
it would be nice to find a (direct) combinatorial linear-time algorithm for chordal
and circular-arc graphs, as this is quite common in that area. We give a first step
in this direction by presenting a characterization of yes-instances of Ext VC on
trees. Consider a tree T = (V,E) and a set of vertices U . A subtree T ′ = (V ′, E′)
(i.e., a connected induced subgraph) of a tree T is called edge full with respect
to (T,U) if U ⊆ V ′, dT ′(u) = dT (u) for all u ∈ U . A subtree T ′ = (V ′, E′) is
induced edge full with respect to (T,U) if it is edge full with respect to (T,U∩V ′).

For our characterization, we use a coloring of vertices with colors black and
white. If T = (V,E) is a tree and X ⊆ V , we use T [X → black] to denote the
colored tree where exactly the vertices from X are colored black. Further define
the following class of black and white colored trees T , inductively as follows.
Base case: A tree with a single vertex x belongs to T if x is black.
Inductive step: If T ∈ T , the tree resulting from the addition of a P3 (3 new
vertices that form a path p), one endpoint of p being black, the two other vertices
being white and the white endpoint of p linked to a black vertex of T , is in T .

The following theorem can be viewed as an algorithm for Ext VC on trees.

Theorem 14. Let T = (V,E) be a tree and U ⊆ V be an independent set. Then,
(T,U) is a yes-instance of Ext VC iff there is no subtree T ′ = (V ′, E′) of T
that is induced edge full with respect to (T,U) such that T ′[U → black] ∈ T .
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5 Price of extension

Considering the possibility that some set U might not be extendible to any
minimal solution, one might ask how wrong U is as a choice for an extension
problem. One idea to evaluate this, is to ask how much U has to be altered when
aiming for a minimal solution. Described differently for our extension problems
at hand, we want to discuss how many vertices of U have to be deleted for Ext
VC (added for Ext IS) in order to arrive at a yes-instance of the extension
problem. The magnitude of how much U has to be altered can be seen as the
price that has to be paid to ensure extendibility. To formally discuss this concept,
we consider according optimization problems. From an instance I = (G,U) of
Ext VC or Ext IS, we define the two NPO problems:

Max Ext VC
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Solutions: Minimal vertex cover S of G.
Output: Solution S that maximizes |S ∩ U |.

Min Ext IS
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Solutions: Maximal independent set S of G.
Output: Solution S that minimizes |U |+ |S ∩ (V \ U)|.

For Π =Max Ext VC or Min Ext IS, we denote by optΠ(I, U) the value of
an optimal solution of Max Ext VC or Min Ext IS, respectively. Since for
both of them, optΠ(I, U) = |U | iff (G,U) is a yes-instance of Ext VC or Ext
IS, respectively, we deduce that Max Ext VC and Min Ext IS are NP-hard
as soon as Ext VC and Ext IS are NP-complete. Alternatively, we could write
optMax Ext VC(G,U) = arg max{U ′ ⊆ U : (G,U ′) is a yes-instance of Ext VC},
optMin Ext IS(G,U) = arg min{U ′ ⊇ U : (G,U ′) is a yes-instance of Ext IS}.

Similarly to Remark 1, one observes that the decision variants of Max Ext
VC and Min Ext IS are equivalent, more precisely:

optMax Ext VC(G,U) + optMin Ext IS(G,V \ U) = |V | . (1)

We want to discuss polynomial-time approximability of Max Ext VC and Min
Ext IS. Considering Max Ext VC on G = (V,E) and the particular subset
U = V (resp., Min Ext IS with U = ∅), we obtain two well known optimization
problems called upper vertex cover (UVC for short, also called maximum
minimal vertex cover) and maximum minimal independent set (ISDS
for short). In [18], the computational complexity of these problems are studied
(among 12 problems), and (in)approximability results are given in [19, 4] for
UVC and in [11] for ISDS where lower bounds of O(nε−1/2) and O(n1−ε),
respectively, for graphs on n vertices are given for every ε > 0. Analogous bounds
can be derived depending on the maximum degree ∆. In particular, we deduce:

Corollary 15. For any constant ε > 0, any ρ ∈ O
(
n1−ε

)
and ρ ∈ O

(
∆1−ε),

there is no polynomial-time ρ-approximation for Min Ext IS on graphs of n
vertices and maximum degree ∆, even when U = ∅, unless P = NP.
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Theorem 16. Max Ext VC is as hard as MaxIS to approximate even if the
set U of required vertices forms an independent set.

Sketch. Let G = (V,E) be an instance of MaxIS. Construct H = (VH , EH)
from G, where vertex set VH contains two copies of V , V and V ′ = {v′ : v ∈ V }.
Let EH = E ∪ {vv′ : v ∈ V }. Consider I = (H,U) as instance of Max EXT
VC, where the required vertex subset is given by U = V ′.
We claim: H has a minimal vertex cover containing k vertices from U iff G has
a maximal independent set of size k.

Using the strong inapproximability results for MaxIS given in [20, 21], ob-
serving ∆(H) = ∆(G) + 1 and |VH | = 2|V |, we deduce the following result.

Corollary 17. For any constant ε > 0, any ρ ∈ O
(
∆1−ε) and ρ ∈ O

(
n1−ε

)
,

there is no polynomial-time ρ-approximation for Max Ext VC on graphs of n
vertices and maximum degree ∆, unless P = NP.

In contrast to the hardness results on these restricted graph classes from
the previous sections, we find that restriction to bipartite graphs or graphs of
bounded degree improve approximability of Max Ext VC. For the following
results, we assume, w.l.o.g., that the input graph is connected, non-trivial and
therefore without isolated vertices, as we can solve our problems separately on
each connected component and then combine the results. By simply selecting the
side containing the largest number of vertices from U , we can show the following.

Theorem 18. A 2-approximation for Max Ext VC on bipartite graphs can be
computed in polynomial time.

Theorem 19. A ∆-approximation for Max Ext VC on graphs of maximum
degree ∆ can be computed in polynomial time.

Proof. Let G = (V,E) be connected of maximum degree ∆, and U ⊆ V be an
instance of Max Ext VC. If ∆ ≤ 2, or if G = K∆+1 (the complete graph on
∆ + 1 vertices), it is easy to check Max Ext VC is polynomial-time solvable;
actually in these two cases, G is either chordal or circular-arc and Theorem
20 gives the conclusion. Hence, assume ∆ ≥ 3 and G 6= K∆+1. By Brooks’s
Theorem, we can color G properly with at most ∆ colors in polynomial-time
(even linear). Let (S1, . . . , S`) be such coloring of G with ` ≤ ∆. For i ≤ `, set
Ui = U ∩ NG(Si) where we recall NG(Si) is the open neighborhood of Si. By
construction, Si is an independent set which dominates Ui in G so it can be
extended to satisfy (iii) of Theorem 3, so (G,Ui) is a yes-instance of Ext VC.
Choosing U ′ = arg max |Ui| yields a ∆-approximation, since on the one hand∑`
i=1 |Ui| ≥ |U ∩

(
∪`i=1NG(Si)

)
| = |U ∩ V | and on the other hand ∆ × |U ′| ≥∑`

i=1 |Ui| ≥ |U | ≥ optMax Ext VC(G,U). ut

Along the lines of Corollary 13 with more careful arguments, we can prove:

Theorem 20. Max Ext VC can be solved optimally for chordal graphs and
circular-arc graphs in polynomial time.
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Proof. Let (G,U) be an instance of Max Ext VC where G = (V,E) is a chordal
graph (resp., a circular-arc graph) and U is an independent set. We build a
weighted graph G′ for WMinISDS such that G′ is the subgraph of G induced by
NG[U ] and the weights on vertices are given by w(v) = 1 if v ∈ U and w(v) = 0
for v ∈ NG[U ]\U . Thus, we get: optWMinISDS(G′, w) = |U |−optMax Ext VC(G,U).

ut

6 Bounded degree graphs

Our NP-hardness results also work for the case of graphs of bounded degree,
hence it is also interesting to consider Ext VC with standard parameter with
an additional degree parameter ∆.

Theorem 21. Ext VC is in FPT when parameterized both by the standard
parameter and by the maximum degree ∆ of the graph.

Sketch. Recursively, the algorithm picks some u ∈ U and branches on every
neighbor x ∈ N(u) \U to be excluded from the vertex cover to ensure a private
edge xu for u. This is a limited choice of at most ∆ neighbors, and considering
the new instance (G−N [x], U \N [x]), this yields a running time in O∗(∆k).

Let us look at this algorithm more carefully in the case of ∆ = 3 analyzing
it from the standpoint of exact algorithms, i.e., dependent on the number of
vertices n of the graph. Our algorithm has a branching vector of (2, 2, 2) (in
each branch, u and a neighbor of u is removed, so n reduces by 2), resulting
in a branching number upper-bounded by 1.733. However, the worst case is a
vertex in U that has three neighbors of degree one. Clearly, this can be improved.
We propose the following reduction rules for Ext VC on an instance (G,U),
G = (V,E), which have to be applied exhaustively and in order:

0. If U = ∅, then answer yes.
1. If some u ∈ U is of degree zero, then (G,U) is a no-instance.
2. If some x /∈ U is of degree zero, then delete x from V .
3. If u, u′ ∈ U with uu′ ∈ E, then delete uu′ from E.
4. If u ∈ U is of degree one, then the only incident edge e = ux must be private,

hence we can delete N [x] from V and all u′ from U that are neighbors of x.
5. If u ∈ U has a neighbor x that is of degree one, then assume e = ux is the

private edge of u, so that we can delete u and x from V and u from U .

After executing the reduction rules exhaustively, the resulting graph has only
vertices of degree two and three (in the closed neighborhood of U) if we start
with a graph of maximum degree three. This improves the branching vector to
(3, 3, 3), resulting in a branching number upper-bounded by 1.443. However, the
rules are also valid for arbitrary graphs, as we show in the following.

Lemma 22. The reduction rules are sound for general graphs when applied ex-
haustively and in order.
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Theorem 23. Ext VC can be solved in time O∗(( 3
√
∆)n) on graphs of order n

with maximum degree ∆.

This gives interesting branching numbers for ∆ = 3: 1.443, ∆ = 4: 1.588, ∆ = 5:
1.710, etc., but from ∆ = 8 on this is no better than the trivial O∗(2n)-algorithm.

Let us remark that the same reasoning that resulted in Rule 5 is valid for:

5’. If x /∈ U satisfies N(x) ⊆ U , then delete N [x] from V and from U .
6. Delete V \NG[U ]. (inspired by Theorem 3)

We now run the following branching algorithm:

1. Apply all reduction rules exhaustively in the order given by the numbering.
2. On each connected component, do:

– Pick a vertex v of lowest degree.
– If v ∈ U : Branch on all possible private neighbors.
– If v /∈ U : Branch on if v is not in the cover or one of its neighbors.

A detailed analysis of the suggested algorithm gives the following result.

Theorem 24. Ext VC on subcubic graphs can be solved in time O∗(1.26n) on
graphs of order n.

Corollary 25. Ext VC on subcubic graphs can be solved in time O∗(2|U |) with
fixed vertex set U .

Our reduction rules guarantee that each vertex not in U (and hence in
NG(U)) has one or two neighbors in U , and each vertex in U has two or three
neighbors in NG(U). Hence, |NG(U)| ≤ 3|U |. In general, due to Rule 6:

Theorem 26. Ext VC on graphs of maximum degree ∆ allows for a vertex
kernel of size (∆+ 1)|U |, parameterized by the size of the given vertex set U .

Looking at the dual parameterization (i.e., Ext IS with standard parameter),
we can state due to all reduction rules:

Theorem 27. Ext VC on graphs of maximum degree ∆ allows for a vertex
kernel of size ∆−1

2 |V \ U |, parameterized by |V \ U |.

For ∆ = 3, we obtain vertex kernel bounds of 4|U | and 2|V \U |, respectively.
With the computations of [9, Cor. 3.3 & Cor. 3.4], we can state the following.

Corollary 28. Unless P = NP, for any ε > 0, there is no size (2−ε)|U | and no
size ( 4

3 − ε)|V \U | vertex kernel for Ext VC on subcubic graphs, parameterized
by |U | or |V \ U |, respectively.

This shows that our (relatively simple) kernels are quite hard to improve on.

Remark 29. Note that the arguments that led to the FPT-result for Ext VC
on graphs of bounded degree (by providing a branching algorithm) also apply to
graph classes that are closed under taking induced subgraphs and that guarantee
the existence of vertices of small degree. This idea leads to a branching algorithm
with running time O∗(5|U |) or O∗(1.32|V |).
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Remark 30. Let us mention that we also derived several linear-time algorithms
for solving Ext VC (and hence Ext IS) on trees in this paper. (1) A simple re-
striction of the mentioned DP algorithm on graphs of bounded treewidth solves
this problem. (2) Apply our reduction rules exhaustively. (3) Check the charac-
terization given in Theorem 14. Also, Theorem 20 provides another polynomial-
time algorithm on trees.

7 Conclusions

We have found many graph classes where Ext VC (and hence also Ext IS)
remains NP-complete, but also many classes where these problems are solvable
in poly-time. The latter findings could motivate looking into parameterized al-
gorithms that consider the distance from favorable graph classes in some way.

It would be also interesting to study further optimization problems that
could be related to our extension problems, for instance the following ones,
here formulated as decision problems (a) Given G,U, k, is it possible to delete
at most k vertices from the graph such that (G,U) becomes a yes-instance of
Ext VC? Clearly, this problem is related to the idea of the price of extension
discussed in this paper, in particular, if one restricts the possibly deleted vertices
to be vertices from U . (b) Given G,U, k, is it possible to add at most k edges
from the graph such that (G,U) becomes a yes-instance of Ext VC? Recall that
adding edges among vertices from U does not change our problem, as they can
never be private edges, but adding edges elsewhere might create private edges
for certain vertices. Such problems would be defined according to the general
idea of graph editing problems studied quite extensively in recent years. These
problems are particularly interesting in graph classes where Ext VC is solvable
in poly-time.

Considering the underlying classical optimization problems, it is also a rather
intriguing question to decide for a given set U if it can be extended not just to
any inclusion minimal vertex cover but to a globally smallest one, as a kind of
optimum-extension problem. However, it has been shown in [12, Cor. 4.13] that
the Vertex Cover Member problem (given a graph G and a vertex v, does
there exist a vertex cover of minimum size that has v as a member, or, in other
words, that extends {v} is complete for the complexity class PNP

‖ , which is above

NP and co-NP.
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