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Abstract

Hadwiger’s conjecture asserts that any graph contains a clique minor with order no less
than the chromatic number of the graph. We prove that this well-known conjecture is true
for all graphs if and only if it is true for squares of split graphs. This observation implies
that Hadwiger’s conjecture for squares of chordal graphs is as difficult as the general case,
since chordal graphs are a superclass of split graphs. Then we consider 2-trees which are a
subclass of each of planar graphs, 2-degenerate graphs and chordal graphs. We prove that
Hadwiger’s conjecture is true for squares of 2-trees. We achieve this by proving the following
stronger result: for any 2-tree T , its square T 2 has a clique minor of order χ(T 2) for which
each branch set induces a path, where χ(T 2) is the chromatic number of T 2.
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1 Introduction

A graph H is called a minor of a graph G if a graph isomorphic to H can be obtained from

a subgraph of G by contracting edges. An H-minor is a minor isomorphic to H, and a clique

minor is a Kt-minor for some positive integer t, where Kt is the complete graph of order t.

The Hadwiger number of G, denoted by η(G), is the largest integer t such that G contains a

Kt-minor. A graph is called H-minor free if it does not contain an H-minor. The chromatic

number of G, denoted by χ(G), is the least positive integer k such that G is k-colorable, in the

sense that k colors are sufficient to color the vertices of G such that adjacent vertices receive

different colors.

In 1937, Wagner [19] proved that the Four Color Conjecture is equivalent to the following

statement: If a graph is K5-minor free, then it is 4-colorable. In 1943, Hadwiger [10] proposed

the following conjecture which is a far reaching generalization of the Four Color Theorem.

Conjecture 1.1. For any integer t ≥ 1, every Kt+1-minor free graph is t-colorable; that is,

η(G) ≥ χ(G) for any graph G.

∗Part of the work was done when this author was visiting Max Planck Institute for Informatics, Saarbruecken,
Germany supported by Alexander von Humboldt Fellowship.
†Research supported by ARC Discovery Project DP120101081.
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Hadwiger’s conjecture is well known to be a challenging problem. Bollobás, Catlin and Erdős

[5] describe it as “one of the deepest unsolved problems in graph theory”. Hadwiger himself [10]

proved the conjecture for t = 3. (The conjecture is trivially true for t = 1, 2.) In view of Wagner’s

result [19], Hadwiger’s conjecture for t = 4 is equivalent to the Four Color Conjecture, the latter

being proved by Appel and Haken [1, 2] in 1977. In 1993, Robertson, Seymour and Thomas [17]

proved that Hadwiger’s conjecture is true for t = 5. The conjecture remains unsolved for t ≥ 6,

though for t = 6 Kawarabayashi and Toft [11] proved that any graph that is K7-minor free and

K4,4-minor free is 6-colorable.

Similar to other difficult conjectures in graph theory, attempting Hadwiger’s conjecture for

some natural graph classes may lead to new techniques and shed light on the general case. So far

Hadwiger’s conjecture has been proved for several classes of graphs, including line graphs [16],

proper circular arc graphs [4], quasi-line graphs [7], 3-arc graphs [21], complements of Kneser

graphs [22], and powers of cycles and their complements [12]. There is also an extensive body

of work on the Hadwiger number; see, for example, [6] and [9].

As mentioned above, Reed and Seymour [16] proved that Hadwiger’s conjecture is true for

line graphs. Recently, there have been multiple attempts to generalize this result to graph classes

that properly contain all line graphs. This was typically achieved by identifying some features

of line graphs and using them as defining properties of the super class. An important super

class of line graphs introduced in [8], for which Hadwiger’s conjecture has been confirmed [7],

is the class of quasi-line graphs, which are graphs with the property that the neighborhood of

every vertex can be partitioned into at most two cliques.

Our research for this paper began with an unsuccessful attempt to generalize the result above

for quasi-line graphs by considering classes of graphs with the property that the neighborhood

of every vertex can be partitioned into a small number of cliques. A natural choice for us was

the class of square graphs of bounded degree graphs, where the square of a graph G, denoted

by G2, is the graph with the same vertex set as G such that two vertices are adjacent if and

only if the distance between them in G is equal to 1 or 2. It is readily seen that in G2 the

neighborhood of each vertex v can be partitioned into at most dG(v) cliques, where dG(v) is the

degree of v in G. However, we soon realized that proving Hadwiger’s conjecture for squares of

even split graphs is as difficult as proving it for all graphs, where a graph is split if its vertex

set can be partitioned into an independent set and a clique. This observation is our first result

whose proof is straightforward and will be given in the next section.

Theorem 1.2. Hadwiger’s conjecture is true for all graphs if and only if it is true for squares

of split graphs.

A graph is called a chordal graph if it contains no induced cycles of length at least 4. Since

split graphs form a subclass of the class of chordal graphs, Theorem 1.2 implies:

Corollary 1.3. Hadwiger’s conjecture is true for all graphs if and only if it is true for squares

of chordal graphs.

Theorem 1.2 and Corollary 1.3 suggest that squares of chordal or split graphs may capture

the complexity of Hadwiger’s conjecture. These are curious results for us, though they may

not make Hadwiger’s conjecture easier to prove. Nevertheless, the availability of the property

of being square of a split or chordal graph may turn out to be useful. Moreover, Theorem

1.2 motivates the study of Hadwiger’s conjecture for squares of graphs. In particular, in light

of Corollary 1.3, it would be interesting to study Hadwiger’s conjecture for squares of some

interesting subclasses of chordal graphs in the hope of getting new insights into the conjecture.
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As a step towards this, we prove that Hadwiger’s conjecture is true for squares of 2-trees. Before

presenting this result, let us explain why it is interesting to consider squares of 2-trees.

Chordal graphs are precisely the graphs that can be constructed by recursively applying the

following operation a finite number of times beginning with a clique: Choose a clique in the

current graph, introduce a new vertex, and make this new vertex adjacent to all vertices in the

chosen clique. If we begin with a k-clique and choose a k-clique at each step, then the graph

constructed this way is called a k-tree, where k is a fixed positive integer.

We call a graph G a 2-simplicial graph if V (G) has an ordering such that the higher numbered

neighbors of each vertex can be partitioned into at most two cliques.

It can be easily verified that all quasi-line graphs are 2-simplicial graphs, but the converse

is not true. Thus, in view of the above-mentioned result for quasi-line graphs [7], it would be

interesting to study whether Hadwiger’s conjecture is true for all 2-simplicial graphs. Considering

the effort [7] required for quasi-line graphs, resolving Hadwiger’s conjecture for 2-simplicial

graphs is likely to be a difficult task. Moreover, the class of circular arc graphs is a proper

subclass of 2-simplicial graphs 1 and as far as we know a lot of effort has already gone into proving

Hadwiger’s conjecture for circular arc graphs, without success. Therefore, before attempting the

entire class of 2-simplicial graphs it seems rational to start with some different but interesting

subclasses of 2-simplicial graphs. Viewing from the context of the squaring operation of graphs,

we asked the following question: Is there a subclass of 2-simplicial graphs which can be expressed

as the square of some natural class of graphs? If u ∈ V (G) and u1, u2, . . . , ut ∈ NG(u) ∩H(u)

(where H(u) is the vertices of G that are higher numbered than u with respect to the 2-simplicial

ordering), it is clear that in G2, ∪i(H(u) ∩ NG[ui]) will be a subset of the higher numbered

neighbors of u in G2. For each ui, NG[ui] will form a clique in G2 but there is no reason why

higher numbered neighbors of u in G2 can be partitioned into at most two cliques, if t ≥ 3. So,

we are tempted to consider only squares of 2-degenerate graphs, since for 2-degenerate graphs,

for each vertex u, |Nh(u)| = t ≤ 2. Unfortunately, even squares of all 2-degenerate graphs are

not 2-simplicial. If we carefully analyze the situation, we can see that if the two vertices in

Nh(u) are adjacent to each other, the square of such a 2-degenerate graph will be a 2-simplicial

graph. This subclass of 2-degenerate graphs is exactly the class of 2-trees. Note that though any

2-tree is a 2-degenerate graph, the converse is not true. The square of any 2-tree is a 2-simplicial

graph (but not necessarily a quasi-line graph), but the square of a 2-degenerate graph may not

be a 2-simplicial graph. To us, it seems that squares of 2-trees is one of the neatest non-trivial

case to consider.

The main result in this paper is as follows. It shows that Hadwiger’s conjecture is true for

a special class of 2-simplicial graphs that is not contained in the class of quasi-line graphs. The

definition of a branch set of a minor will be given at the end of this section.

Theorem 1.4. Hadwiger’s conjecture is true for squares of 2-trees. Moreover, for any 2-tree

T , T 2 has a clique minor of order χ(T 2) for which each branch set induces a path.

A graph is called a generalized 2-tree if it can be obtained by allowing one to join a new vertex

to a clique of order 1 or 2 instead of exactly 2 in the above-mentioned construction of 2-trees.

(This notion is different from the concept of a partial 2-tree which is defined as a subgraph of a

2-tree.) The class of generalized 2-trees contains all 2-trees as a proper subclass. The following

corollary is implied by (and equivalent to) Theorem 1.4.

1Consider an ordering of the vertices of a circular arc graph such that a vertex u with a smaller arc always
gets a smaller number.
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Corollary 1.5. Hadwiger’s conjecture is true for squares of generalized 2-trees. Moreover, for

any generalized 2-tree G, G2 has a clique minor of order χ(G2) for which each branch set induces

a path.

In general, in proving Hadwiger’s conjecture it is interesting to study the structure of the

branch sets forming a clique minor of order no less than the chromatic number. Theorem 1.4

and Corollary 1.5 provide this kind of information for squares of 2-trees and generalized 2-trees

respectively.

We remark that it is often challenging to establish Hadwiger’s conjecture for squares of even

very special classes of graphs. We elaborate this point for a few graph classes. Obviously, planar

graphs form a super class of the class of 2-trees, but their squares seem to be much more difficult

to handle than squares of 2-trees. In fact, the chromatic number of squares of planar graphs

is a very well studied topic in the context of Wegner’s conjecture [20]; we will say more about

this in section 5. Another graph class related to 2-trees is the class of squares of 2-degenerate

graphs. Recently, the first author of this paper and his collaborators [3] attempted Hadwiger’s

conjecture for squares of a special class of 2-degenerate graphs, namely subdivision graphs. The

subdivision of a graph G, denoted by S(G), is obtained from G by replacing each edge by a path

of length two. The square S(G)2 of S(G) is known as the total graph of G, and the chromatic

number χ(S(G)2) is simply the total chromatic number of G. Thus, unsurprisingly, Hadwiger’s

conjecture for squares of subdivision graphs is closely related to the long-standing total coloring

conjecture, which can be stated as χ(S(G)2) ≤ ∆(G)+2, where ∆(G) is the maximum degree of

G. It was shown in [3] that Hadwiger’s conjecture for squares of subdivisions is not difficult to

prove if we assume that the total coloring conjecture is true. The best result to date for the total

coloring conjecture, obtained by Reed and Molloy [15], asserts that χ(S(G)2) ≤ ∆(G) + 1026.

Using this result, it was proved in [3] that Hadwiger’s conjecture is true for squares of subdivisions

of highly edge-connected graphs. However, it seems non-trivial to prove Hadwiger’s conjecture

for squares of subdivisions of all graphs without getting tighter bounds for the total chromatic

number.

All graphs considered in the paper are finite, undirected and simple. The vertex and edge

sets of a graph G are denoted by V (G) and E(G), respectively. If u and v are adjacent in G,

then uv denotes the edge joining them. As usual we use ω(G) to denote the clique number of

G. A proper coloring of G using exactly χ(G) colors is called an optimal coloring of G.

An H-minor of a graph G can be thought as a family of t = |V (H)| vertex-disjoint subgraphs

G1, . . . , Gt of G such that each Gi is connected (possibly K1) and the graph constructed in the

following way is isomorphic to H: Identify all vertices of each Gi to obtain a single vertex vi,

and draw an edge between vi and vj if and only if there exists at least one edge of G between

V (Gi) and V (Gj). The vertex set of each subgraph Gi in the family is called a branch set of the

minor H. This equivalent definition of a minor will be used throughout the paper.

The proof of Theorem 1.4 is the main body of the paper and will be given in section 3.

In section 4 we prove Corollary 1.5 using Theorem 1.4, and in the last section we make a few

remarks to conclude the paper.

2 Proof of Theorem 1.2

It suffices to prove that if Hadwiger’s conjecture is true for squares of all split graphs then it is

also true for all graphs.

So we assume that Hadwiger’s conjecture is true for squares of split graphs. Let G be an

arbitrary graph with at least two vertices. Since deleting isolated vertices does not affect the
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chromatic or Hadwiger number, without loss of generality we may assume that G has no isolated

vertices. Construct a split graph H from G as follows: For each vertex x of G, introduce a vertex

vx of H, and for each edge e of G, introduce a vertex ve of H, with the understanding that all

these vertices are pairwise distinct. Denote

S = {vx : x ∈ V (G)}, C = {ve : e ∈ E(G)}.

Construct H with vertex set V (H) = S∪C in such a way that no two vertices in S are adjacent,

any two vertices in C are adjacent, and vx ∈ S is adjacent to ve ∈ C if and only if x and e

are incident in G. Obviously, H is a split graph as its vertex set can be partitioned into the

independent set S and the clique C.

Claim 1: The subgraph of H2 induced by S is isomorphic to G.

In fact, for distinct x, y ∈ V (G), vx and vy are adjacent in H2 if and only if they have

a common neighbor in H. Clearly, this common neighbor has to be from C, say ve for some

e ∈ E(G), but this happens if and only if x and y are adjacent in G and e = xy. Therefore, vx
and vy are adjacent in H2 if and only if x and y are adjacent in G. This proves Claim 1.

Claim 2: In H2 every vertex of S is adjacent to every vertex of C.

This follows from the fact that C is a clique of H and x is incident with at least one edge in

G.

Claim 3: χ(H2) = χ(G) + |C|.
In fact, by Claim 1 we may color the vertices of S with χ(G) colors by using an optimal

coloring of G (that is, choose an optimal coloring φ of G and assign the color φ(x) to vx for each

x ∈ V (G)). We then color the vertices of C with |C| other colors, one for each vertex of C. It is

evident that this is a proper coloring of H2 and hence χ(H2) ≤ χ(G) + |C|. On the other hand,

since C is a clique, it requires |C| distinct colors in any proper coloring of H2. Also, by Claim

2 none of these |C| colors can be assigned to any vertex of S in any proper coloring of H2, and

by Claim 1 the vertices of S need at least χ(G) colors in any proper coloring of H2. Therefore,

χ(H2) ≥ χ(G) + |C| and Claim 3 is proved.

Claim 4: η(H2) = η(G) + |C|.
To prove this claim, consider the branch sets of G that form a clique minor of G with order

η(G), and take the corresponding branch sets in the subgraph of H2 induced by S. Take each

vertex of C as a separate branch set. Clearly, these branch sets produce a clique minor of H2

with order η(G) + |C|. Hence η(H2) ≥ η(G) + |C|.
To complete the proof of Claim 4, consider an arbitrary clique minor of H2, say, with branch

sets B1, B2, . . . , Bk. Define B′i = Bi if Bi∩C = ∅ (that is, Bi ⊆ S) and B′i = Bi∩C if Bi∩C 6= ∅.
It can be verified that B′1, B

′
2, . . . , B

′
k also produce a clique minor of H2 with order k. Thus,

if k > η(G) + |C|, then there are more than η(G) branch sets among B′1, B
′
2, . . . , B

′
k that are

contained in S. In view of Claim 1, this means that G has a clique minor of order strictly bigger

than η(G), contradicting the definition of η(G). Therefore, any clique minor of H2 must have

order at most η(G) + |C| and the proof of Claim 4 is complete.

Since we assume that Hadwiger’s conjecture is true for squares of split graphs, we have

η(H2) ≥ χ(H2). This together with Claims 3-4 implies η(G) ≥ χ(G); that is, Hadwiger’s

conjecture is true for G. This completes the proof of Theorem 1.2.
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3 Proof of Theorem 1.4

3.1 Prelude

By the definition of a k-tree given in the previous section, a 2-tree is a graph that can be

recursively constructed by applying the following operation a finite number of times beginning

with K2: Pick an edge e = uv in the current graph, introduce a new vertex w, and add edges uw

and vw to the graph. We say that e is processed in this step of the construction. We also say that

w is a vertex-child of e; each of uw and vw is an edge-child of e; e is the parent of each of w, uw

and vw; and uw and vw are siblings of each other. An edge e2 is said to be an edge-descendant

of an edge e1, if either e2 = e1, or recursively, the parent of e2 is an edge-descendant of e1. A

vertex v is said to be a vertex-descendant of an edge e if v is a vertex-child of an edge-descendant

of e.

An edge e may be processed in more than one step. If necessary, we can change the order

of edge-processing so that e is processed in consecutive steps but the same 2-tree is obtained.

So without loss of generality we may assume that for each edge e all the steps in which e is

processed occur consecutively.

We now define a level for each edge and each vertex as follows. Initially, the level of the

first edge and its end-vertices is defined to be 0. Inductively, any vertex-child or edge-child of

an edge with level k is said to have level k + 1. Observe that two edges that are siblings of

each other have the same level. If there exists a pair of edges e, f with levels i, j respectively

such that i < j and the batch of consecutive steps where e is processed is immediately after the

batch of consecutive steps where f is processed, then we can move the batch of steps where e is

processed to the position immediately before the processing of f without changing the structure

of the 2-tree. We repeat this procedure until no such pair of edges exists. So without loss of

generality we may assume that a breadth-first ordering is used when processing edges, that is,

edges of level i are processed before edges of level j whenever i < j.

To prove Theorem 1.4, we will prove η(T 2) ≥ χ(T 2) for any 2-tree T . In the simplest case

where χ(T 2) = 2, this inequality is true as T 2 has at least one edge and so contains a K2-minor.

Moreover, in this case both branch sets of this K2-minor are singletons (and so induce paths of

length 0).

In what follows T is an arbitrary 2-tree with χ(T 2) ≥ 3. Denote by Ti the 2-tree obtained

after the ith step in the construction of T as described above. Then there is a unique positive

integer ` such that χ(T 2) = χ(T 2
` ) = χ(T 2

`−1) + 1. Define

G = T`.

We will prove that η(G2) ≥ χ(G2) and G2 has a clique minor of order χ(G2) for which each

branch set induces a path. Once this is achieved, we then have η(T 2) ≥ η(G2) ≥ χ(G2) = χ(T 2)

and T 2 contains a clique minor of order χ(T 2) whose branch sets induce paths, as required to

complete the proof of Theorem 1.4.

Given X ⊆ V (G), define

N(X) = {v ∈ V (G) \X : v is adjacent in G to at least one vertex in X}.

Define

N [X] = N(X) ∪X, N2[X] = N [N [X]], N2(X) = N2[X] \X.

In particular, for x ∈ V (G), we write N(x), N [x], N2(x), N2[x] in place of N({x}), N [{x}],
N2({x}), N2[{x}], respectively.
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Figure 1: Lemmas to be proved and their relations.

Denote by `max the maximum level of any edge of G. Then the maximum level of any

vertex in G is also `max. Observe that the level of the last edge processed is `max − 1, and none

of the edges with level `max has been processed at the completion of the `th step, due to the

breadth-first ordering of processing edges. Obviously, `max ≤ `.
If `max = 0 or 1, then G2 is a complete graph and so χ(G2) = ω(G2) = η(G2). Moreover,

G2 contains a clique minor of order χ(G2) for which each branch set induces a path of length 0.

Hence the result is true when `max = 0 or 1.

We assume `max ≥ 2 in the rest of the proof. We will prove a series of lemmas that will be

used in the proof of Theorem 1.4. See Figure 1 for relations among some of these lemmas.

3.2 Pivot coloring, pivot vertex and its proximity

Lemma 3.1. There exist an optimal coloring µ of G2 and a vertex p of G at level `max such

that p is the only vertex with color µ(p).

Proof. Let v be the vertex introduced in the step `. Then v has level `max. By the definition of

G = T`, there exists a proper coloring of T 2
`−1 using χ(G2) − 1 colors. Extend this coloring to

G2 by assigning a new color to v. This extended coloring φ is an optimal coloring of G2 under

which v is the only vertex with color φ(v).

Note that, apart from the pair (φ, v) in the proof above, there may be other pairs (µ, p) with

the property in Lemma 3.1.

In the remaining part of the paper, we will use the following notation and terminology (see

Figure 2 for an illustration):

• µ, p: an optimal coloring of G2 and a vertex of G, respectively, as given in Lemma 3.1; we

fix a pair (µ, p) such that the minimum level of the vertices in N(p) is as large as possible;

we call this particular µ the pivot coloring and this particular p the pivot vertex ;

• uw: the parent of p;

• t: the vertex such that w is a child of ut, so that the level of ut is `max − 2, and uw and

wt are siblings with level `max − 1 (the existence of t is ensured by the fact `max ≥ 2);

• B: the set of vertex-children of wt;
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Figure 2: Vertex subsets of the 2-tree G used in the proof of Theorem 1.4.

• C: the set of vertex-children of uw;

• µ(X) = {µ(x) : x ∈ X}, for any subset X ⊆ V (G);

• when we say the color of a vertex, we mean the color of the vertex under the coloring µ,

unless stated otherwise.

Lemma 3.2. All colors used by µ are present in N2[p].

Proof. If there is a color c used by µ that is not present in N2 [p], then we can re-color p with c.

Since p is the only vertex with color µ(p) under µ, we then obtain a proper coloring of G2 with

χ(G2)− 1 colors, which is a contradiction.

Lemma 3.3. N(b) = {w, t} for any b ∈ B, and N(c) = {u,w} for any c ∈ C.

Proof. Since both bw and bt have level `max, they have not been processed at the completion of

the `th step. Hence the first statement is true. The second statement can be proved similarly.

Define

F = (N(u) ∩N(t)) \ {w}

C ′ = {x ∈ N(t) : µ(x) ∈ µ(C)}

A = N(t) \ (B ∪ F ∪ C ′ ∪ {u,w}).

Note that C ′ ⊆ N(t) \ (B ∪ F ∪ {u,w}) and {A,C ′} is a partition of N(t) \ (B ∪ F ∪ {u,w}).
Note also that there may exist edges between F and A ∪ C ′.

Lemma 3.4. µ(A) ⊆ µ(N(u) \ (C ∪ F ∪ {w, t})).

Proof. Let a ∈ A. Clearly, µ(a) /∈ µ(N2(a)). On the other hand, µ(a) ∈ µ(N2 [p]) by Lemma 3.2.

So µ(a) ∈ µ(N2[p] \ N2(a)). Since N2[p] \ N2(a) ⊆ N(u) \ (F ∪ {w, t}), it follows that µ(a) ∈
µ(N(u) \ (F ∪ {w, t})). By the definition of A, we also have µ(a) /∈ µ(C). Therefore, µ(a) ∈
µ(N(u) \ (C ∪ F ∪ {w, t})).
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By Lemma 3.4, for each color c ∈ µ(A), there is a c-colored vertex in N(u)\ (C ∪F ∪{w, t}).
On the other hand, no two vertices in N(u) can have the same color. So each color in µ(A) is

used by exactly one vertex in N(u). Let

A′ = {x ∈ N(u) : µ(x) ∈ µ(A)}.

Then A′ ⊆ N(u) \ (C ∪ F ∪ {w, t}) and

µ(A′) = µ(A).

Since no two vertices in A (A′, respectively) are colored the same, the relation µ(a) = µ(a′)

defines a bijection a 7→ a′ from A to A′. We call a and a′ the mates of each other and denote

the relation by

a = mate(a′), a′ = mate(a).

Note that a 6= a′ as A and A′ are disjoint. Define

Q = N(u) \ (A′ ∪ C ∪ F ∪ {w, t}).

Then {A′, Q} is a partition of N(u) \ (C ∪F ∪{w, t}). Note that there may exist edges between

F and A′ ∪Q.

Define

D = {x ∈ B : µ(x) /∈ µ(N(u))}

Q′ = B \D.

Then A′, A,C,C ′, D, F,Q,Q′, {u,w, t} are pairwise disjoint. See Figure 2 for an illustration of

these sets.

3.3 A few lemmas

Lemma 3.5. Suppose D = ∅. Then η(G2) ≥ χ(G2). Moreover, χ(G2) = ω(G2) and so G2

contains a clique minor of order χ(G2) for which each branch set is a singleton.

Proof. Since D = ∅, we have N2[p] = N [u] ∪ Q′. So by Lemma 3.2 all colors of µ are present

in N [u] ∪ Q′. However, µ(Q′) ⊆ µ(N [u]) by the definition of Q′. So all colors of µ are present

in N [u]. Since N [u] is a clique of G2, it follows that χ(G2) = |N [u]| ≤ ω(G2). Therefore,

χ(G2) = ω(G2) ≤ η(G2).

Lemma 3.6. For any d ∈ D, no vertex in N2[p] other than d is colored µ(d).

Proof. Suppose that there is a vertex in N2[p] \ {d} with color µ(d). Such a vertex must be in

N2[p] \ N2[d]. However, N2[p] \ N2[d] = Q ∪ A′, but µ(d) /∈ µ(Q) by the definition of D and

µ(d) /∈ µ(A′) = µ(A) as A ⊆ N2[d]. This contradiction proves the result.

Lemma 3.7. Suppose D 6= ∅. Then µ(Q) = µ(Q′).

Proof. We prove µ(Q′) ⊆ µ(Q) first. By the definition of Q′, µ(Q′) ⊆ µ(N(u)). Clearly, µ(Q′)∩
µ(N2(Q

′)) = ∅, and µ(Q′)∩µ(A′) = ∅ as µ(A′) = µ(A). Hence µ(Q′) ⊆ µ(N(u)\ (N2(Q
′)∪A′)).

However, N(u) \ (N2(Q
′) ∪A′) = Q. Therefore, µ(Q′) ⊆ µ(Q).

Now we prove µ(Q) ⊆ µ(Q′). Suppose otherwise. Say, q ∈ Q satisfies µ(q) /∈ µ(Q′). Since

D 6= ∅ by our assumption, we may take a vertex d ∈ D. We claim that µ(q) /∈ N2(d). This

is because N2(d) \ N2[q] ⊆ A ∪ C ′ ∪ Q′ ∪ D, but µ(q) /∈ µ(A) = µ(A′), µ(q) /∈ µ(C ′) ⊆ µ(C),

µ(q) /∈ µ(Q′), and µ(q) /∈ µ(D) by the definition of D. So we can recolor d with µ(q). By

Lemma 3.6, we can then recolor p with µ(d). In this way we obtain a proper coloring of G2 with

χ(G2)− 1 colors, which is a contradiction. Hence µ(Q) ⊆ µ(Q′).
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Lemma 3.8. Suppose D 6= ∅ but A = ∅. Then η(G2) ≥ χ(G2). Moreover, χ(G2) = ω(G2) and

so G2 contains a clique minor of order χ(G2) for which each branch set is a singleton.

Proof. Since A = ∅, we have A′ = ∅ and µ(N2[p]) = µ(N [w]∪F ) by Lemma 3.7. By Lemma 3.2,

|µ(N2[p])| = χ(G2). On the other hand, N [w]∪F is a clique of G2 and so |µ(N [w]∪F )| ≤ ω(G2).

So χ(G2) = |µ(N2[p])| = |µ(N [w] ∪ F )| ≤ ω(G2), and therefore χ(G2) = ω(G2) ≤ η(G2).

Due to Lemmas 3.5 and 3.8, in the rest of the proof we assume without mentioning explicitly

that D 6= ∅ and A 6= ∅. Then A′ 6= ∅ and µ(Q) = µ(Q′).

Lemma 3.9. The following hold:

(a) `max ≥ 3;

(b) the level of u is `max − 2.

Proof. (a) We have assumed `max ≥ 2. Suppose `max = 2 for the sake of contradiction. Take

a′ ∈ A′ and d ∈ D. Since `max = 2, we have that ut is the only edge with level 0, and moreover

V (G) = N [{u, t}].
We claim that no vertex in N2[a

′] is colored µ(d) under the coloring µ. Suppose otherwise.

Say, d1 is such a vertex. Then d1 6= d as d ∈ D but D ∩ N2[a
′] = ∅. We have d1 /∈ N(u) by

the definition of D. We also have d1 /∈ N(t) for otherwise two distinct vertices in N(t) have the

same color. Thus, d1 /∈ N(u) ∪N(t) = N [{u, t}] = V (G), a contradiction. Therefore, no vertex

in N2[a
′] is colored µ(d).

So we can recolor a′ with color µ(d) but retain the colors of all other vertices. In this way

we obtain another proper coloring of G2. Observe that a′ was the only vertex in N2[p] with

color µ(a′) under µ as N2[p] ⊆ N2[a
′] ∪ N2(a), where a = mate(a′) /∈ N2[p]. Since a′ has been

recolored µ(d), we can recolor p with µ(a′) to obtain a proper coloring of G2 using fewer colors

than µ, but this contradicts the optimality of µ.

(b) Suppose otherwise. Since the level of ut is `max − 2, the level of t must be `max − 2 and

the level of u must be smaller than `max − 2. Take d ∈ D. Denote by µ′ the coloring obtained

by exchanging the colors of d and p (while keeping the colors of all other vertices). By Lemma

3.6, µ′ is a proper coloring of G2. Note that d is the only vertex with color µ′(d) = µ(p) under

the coloring µ′. The minimum level of a vertex in N(d) is `max− 2, and the minimum level of a

vertex in N(p) is smaller than `max − 2 since the level of u is smaller than `max − 2. However,

this means that we would have selected respectively µ′ and d as the pivot coloring and pivot

vertex instead of µ and p, which is a contradiction.

In the sequel we fix a vertex s ∈ F such that ut is a child of st. The existence of s is ensured

by Lemma 3.9. Note that the level of st is lmax − 3, and us is the sibling of ut and has level

`max − 2.

3.4 Bichromatic paths

Definition 3.1. Given a proper coloring φ of G2 and two distinct colors r and g, a path in G2

is called a (φ, r, g)-bichromatic path if its vertices are colored r or g under the coloring φ.

Lemma 3.10. For any a′ ∈ A′ and d ∈ D, there exists a (µ, µ(a′), µ(d))-bichromatic path from

a′ to mate(a′) in G2.

Proof. We will use the well known Kempe chain technique. Let a = mate(a′). Denote r = µ(a′)

(= µ(a)) and g = µ(d). Then r 6= g as d ∈ N2(a). Consider the subgraph H of G2 induced
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by the set of vertices with colors r and g under µ. Let H ′ be the connected component of H

containing a′. It suffices to show that a is contained in H ′.

Suppose to the contrary that a 6∈ V (H ′). Define

µ′(v) =


µ(v), if v ∈ V (G) \ (V (H ′) ∪ {p})
r, if v = p
r, if v ∈ V (H ′) and µ(v) = g
g, if v ∈ V (H ′) and µ(v) = r.

In particular, µ′(a′) = g. We will prove that µ′ is a proper coloring of G2, which will be a

contradiction as µ′ uses less colors than µ. Since exchanging colors r and g within H ′ does not

produce an improper coloring, in order to prove µ′ is proper, it suffices to prove that N2(p) does

not contain any vertex with color µ′(p) under µ′. Suppose otherwise. Say, v ∈ N2(p) satisfies

µ′(v) = µ′(p) = r. Consider first the case when v ∈ V (H ′). In this case, we have µ(v) = g,

and so v = d since by Lemma 3.6, d is the only vertex in N2[p] with color g under µ. On the

other hand, d /∈ V (H ′) as a /∈ V (H ′) is the only vertex in N2[d] with color r under µ. Hence

v /∈ V (H ′), which is a contradiction. Now consider the case when v /∈ V (H ′). In this case, we

have µ(v) = r. Since N2[p] ⊆ N2[a
′]∪N2(a), a′ is the only vertex in N2[p] with color r under µ.

So v = a′ ∈ V (H ′), which is again a contradiction.

Lemma 3.11. For any edge e = xy with level `max − 2 and any vertex-descendant z of e, we

have N2(z) ⊆ N [{x, y}].

Proof. Consider an arbitrary vertex v in N2(z). Since the level of e is `max − 2, there are only

two possibilities for z. The first possibility is that z is a vertex-child of e. In this possibility,

either v is a vertex-child of xz or yz, or v ∈ {x, y}, or v ∈ N(x) ∪ N(y); in each case we have

v ∈ N [{x, y}]. The second possibility is that z is the vertex-child of an edge-child of e. Without

loss of generality we may assume that z is the vertex-child of xq, where q is a vertex-child of e.

Then either v is a vertex-child of yq or v ∈ N [x]; in each case we have v ∈ N [{x, y}].

Lemma 3.12. The following hold:

(a) N2(A
′ ∪Q) ⊆ N [{u, t, s}];

(b) if v ∈ N2(A
′ ∪Q) and µ(v) ∈ µ(B), then v ∈ N({u, s});

(c) if v ∈ N2(A
′ ∪Q) and µ(v) ∈ µ(D), then v ∈ N(s).

Proof. (a) Any vertex x ∈ A′ ∪Q is a vertex-descendant of ut or us. Since the levels of ut and

us are both `max − 2, by Lemma 3.11, if x is a vertex-descendant of ut then N2(x) ⊆ N [{u, t}],
and if x is a vertex-descendant of us then N2(x) ⊆ N [{u, s}]. Therefore, N2(x) ⊆ N [{u, t, s}].

(b) Consider v ∈ N2(x) for some x ∈ A′ ∪ Q such that µ(v) ∈ µ(B). Since v ∈ N [{u, t, s}]
by (a), it suffices to prove v /∈ N [t]. Suppose otherwise. Since µ(v) ∈ µ(B), if v 6∈ B, then both

v ∈ N [t] and another neighbor of t in B have color µ(v), a contradiction. Hence v ∈ B. Since

N2(x) ∩B = ∅, we then have v /∈ N2(x), but this is a contradiction.

(c) By (b), every vertex v ∈ N2(A
′∪Q) with µ(v) ∈ µ(D) must be in N({u, s}). If v ∈ N(u),

then µ(v) ∈ µ(N(u)) and so µ(v) /∈ µ(D) by the definition of D, a contradiction. Hence v /∈ N(u)

and therefore v ∈ N(s).

Define

D′ = {x ∈ N(s) : µ(x) ∈ µ(D)}.

Lemma 3.13. The following hold:
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(a) µ(D′) = µ (D);

(b) for any a′ ∈ A′ and d′ ∈ D′, there exists a (µ, µ(a′), µ(d′))-bichromatic path in G2 from a′

to mate(a′) such that d′ is adjacent to a′ in this path.

Proof. Let d be an arbitrary vertex in D. Let a′1 and a′2 be arbitrary vertices in A′. By

Lemma 3.10, there exists a (µ, µ(a′1), µ(d))-bichromatic path P1 from a′1 to mate(a′1), and there

exists a (µ, µ(a′2), µ(d))-bichromatic path P2 from a′2 to mate(a′2). Note that P1 and P2 each has

at least three vertices. Let d1 be the vertex adjacent to a′1 in P1 and d2 the vertex adjacent to a′2
in P2. Clearly, µ(d1) = µ(d2) = µ(d). By Lemma 3.12(c), both d1 and d2 are in N(s), and hence

d1 ∈ N2[d2]. This together with µ(d1) = µ(d2) implies d1 = d2. Thus, for any d ∈ D, there exists

d′ ∈ N(s) with µ(d′) = µ(d) such that for each a′ ∈ A′, there exists a (µ, µ(a′), µ(d))-bichromatic

path from a′ to mate(a′) that passes through the edge a′d′. Both statements in the lemma easily

follow from the statement in the previous sentence.

Since no two vertices in D (D′, respectively) are colored the same, by Lemma 3.13 we have

|D| = |D′| and every d′ ∈ D′ corresponds to a unique d ∈ D such that µ(d) = µ(d′), and vice

versa. We call d and d′ the mates of each other, written d = mate(d′) and d′ = mate(d). Lemma

3.13 implies the following results (note that for a′ ∈ A′ and d′ ∈ D′, mate(a′) is adjacent to

mate(d′) in G2).

Corollary 3.14. The following hold:

(a) each a′ ∈ A′ is adjacent to each d′ ∈ D′ in G2;

(b) for any a′ ∈ A′ and d′ ∈ D′, there exists a (µ, µ(a′), µ(d′))-bichromatic path from d′ to

mate(d′) in G2.

3.5 Bridging sets, bridging sequences, and re-coloring

Definition 3.2. An ordered set {x1, x2, . . . , xk} of vertices of G2 is called a bridging set if for

each i, 1 ≤ i ≤ k, xi ∈ N(s) \D′ and there exists a vertex qi ∈ Q such that µ(qi) = µ(xi) and

qi is not adjacent in G2 to at least one vertex in D′ ∪ {x1, x2, . . . , xi−1}. Denote qi = bp(xi) and

call it the bridging partner of xi. We also fix one vertex in D′ ∪ {x1, x2, . . . , xi−1} not adjacent

to qi in G2, denote it by bn(qi), and call it the bridging non-neighbor of qi. (If there is more

than one candidate, we fix one of them arbitrarily as the bridging non-neighbor.)

In the definition above we have bp(xi) 6= xi for each i, for otherwise bp(xi) would be adjacent

in G2 to all vertices in N(s) and so there is no candidate for the bridging non-neighbor of bp(xi),

contradicting the definition of a bridging set.

In the following we take L to be a fixed bridging set with maximum cardinality. Note that

µ(L) ⊆ µ(Q) by the definition of a bridging set.

Definition 3.3. Given z ∈ D′ ∪ L, the bridging sequence of z is defined as the sequence of

distinct vertices s1, s2, . . . , sj such that s1 = z, sj ∈ D′, and for 2 ≤ i ≤ j, si is the bridging

non-neighbor of the bridging partner of si−1.

By Definition 3.2, it is evident that the bridging sequence of every z ∈ D′ ∪ L exists. In

particular, for d ∈ D′, the bridging sequence of d consists of only one vertex, namely d itself.

Lemma 3.15. Let x ∈ L, q = bp(x) and y = bn(q). If there exists v ∈ N2(q) such that

µ(v) = µ(y), then y ∈ L and v = bp(y).
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Proof. We know that q ∈ Q and y ∈ D′ ∪ L. Since µ(L) ⊆ µ(Q) by the definition of a bridging

set, we have µ(v) = µ(y) ∈ µ(D′ ∪ L) ⊆ µ (B). Hence, by Lemma 3.12(b), v must be in

N({s, u}). If v ∈ N(s), then v = y, but this cannot happen as y = bn(q) /∈ N2(q). Hence

v ∈ N(u). This implies that µ(v) ∈ µ(Q ∪ A′ ∪ C ∪ {w, t, s}) and in particular µ(v) /∈ µ(D′).

Therefore, µ(y) /∈ µ(D′), which implies y ∈ L. Since the only vertex in N(u) with color µ(y) is

bp(y), we obtain v = bp(y).

Definition 3.4. Given a vertex z ∈ D′ ∪ L with bridging sequence s1, s2, . . . , sj , define the

bridging re-coloring ψz of µ with respect to z by the following rules:

(a) ψz(x) = µ(x) for each x ∈ V (G) \ {bp(si) : 1 ≤ i < j};

(b) ψz(bp(si)) = µ(si+1) for 1 ≤ i < j.

Observe that for i 6= j we have µ(si) 6= µ(sj) as si, sj ∈ N(s). So each color is used at most

once for recoloring in (b) above.

Lemma 3.16. For any z ∈ D′ ∪ L, ψz is an optimal coloring of G2.

Proof. Since ψz only uses colors of µ, it suffices to prove that it is a proper coloring of G2.

Let s1, s2, . . . , sj be the bridging sequence of z. Suppose to the contrary that ψz is not a

proper coloring of G2. Then by the definition of ψz there exists 1 ≤ i ≤ j − 1 such that

ψz(bp(si)) ∈ ψz(N2(bp(si))). Denote x = bp(si). Then there exists v ∈ N2(x) such that

ψz(v) = ψz(x) = µ(si+1). Since x is the only vertex that has the color µ(si+1) under ψz

and a different color under µ, we have µ(v) = µ(si+1). Since si+1 = bn(x), by Lemma 3.15 we

have si+1 ∈ L and v = bp(si+1). Thus j 6= i+ 1. However, ψz(bp(si+1)) = µ(si+2) 6= µ(si+1) by

the definition of ψz. Therefore, ψz(v) 6= µ(si+1), which is a contradiction.

Lemma 3.17. Let a′ ∈ A′, z ∈ L, r = µ(a′) and g = µ(z). Let c ∈ {r, g}. Then for

any x ∈ V (G) \ {bp(z)}, ψz(x) = c if and only if µ(x) = c, whilst µ(bp(z)) = µ(z) = g but

ψz(bp(z)) /∈ {r, g}.

Proof. This follows from the definition of ψz and the fact that r, g /∈ µ({s2, s3, . . . , sj}) for the

bridging sequence s1, s2, . . . , sj of z.

Lemma 3.18. For any a′ ∈ A′ and q ∈ L, there exists a (µ, µ(a′), µ(q))-bichromatic path from

a′ to mate(a′) in G2 which contains the edge a′q.

Proof. Denote µ(a′) = r, µ(q) = g and a = mate(a′). In view of Lemma 3.17, it suffices to

prove that there exists a (ψq, r, g)-bichromatic path from a′ to a in G2 which uses the edge a′q.

Consider the subgraph H of G2 induced by the set of vertices with colors r and g under ψq.

Denote by H ′ the connected component of H containing a′.

We first prove that a ∈ V (H ′). Suppose otherwise. Define a coloring φ of G2 as follows:

for each v ∈ V (H ′), if ψq(v) = r then set φ(v) = g, and if ψq(v) = g then set φ(v) = r; set

φ(p) = r; and set φ(x) = ψq(x) for each x ∈ V (G) \ (V (H ′) ∪ {p}). We claim that φ is a proper

coloring of G2. To prove this it suffices to show r /∈ φ(N2(p)) because exchanging the two colors

within V (H ′) does not produce an improper coloring. Suppose to the contrary that there exists

a vertex v ∈ N2(p) such that φ(v) = r. If v ∈ V (H ′), then ψq(v) = g and so v 6= bp(q) by the

definition of ψq. Also µ(v) = g by Lemma 3.17. The only vertices in N2[p] with color g under

µ are bp(q) and one vertex in Q′, say, q′. Since v 6= bp(q), we have v = q′. Since a ∈ N2(q
′),

we get a ∈ V (H ′), which is a contradiction. If v /∈ V (H ′), then ψq(v) = r, and by Lemma 3.17,

µ(v) = r. However, the only vertex in N2[p] with color r under µ is a′ (as N2[p] ⊆ N2[{a, a′}],
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µ(a) = µ(a′) = r and a′ /∈ N2[p]). Then v = a′ and hence ψq(v) = ψq(a
′) = g 6= r, which is

a contradiction. Thus φ is a proper coloring of G2. Recall that p is the only vertex in G with

color µ(p) under µ. By the definition of ψq, p remains to be the only vertex with color µ(p)

under ψq. Hence φ uses one less color than ψq as it does not use the color ψq(p) = µ(p). This

is a contradiction as by Lemma 3.16 ψq is an optimal coloring of G2. Therefore, a ∈ V (H ′).

Since a ∈ V (H ′), there is a (ψq, r, g)-bichromatic path from a′ to a in G2. We show that

in this path a′ has to be adjacent to q. Suppose otherwise. Say, v 6= q is adjacent to a′ in this

path. Then ψq(v) = g, and by Lemma 3.17, µ(v) = g. By Lemma 3.12(b), v ∈ N({u, s}). Since

v 6= q, we have v 6∈ N(s). Hence, v ∈ N(u), which implies v = bp(q). Since ψq(bp(q)) 6= g by

the definition of ψq, it follows that ψq(v) 6= g, but this is a contradiction. This completes the

proof.

Corollary 3.19. Each a′ ∈ A′ is adjacent to each q ∈ L in G2.

We now extend the definition of mate to the set L. For each q ∈ L, define mate(q) to be the

vertex in Q′ with the same color as q under the coloring µ. We now have the following corollary

of Lemma 3.18.

Corollary 3.20. For any a′ ∈ A′ and q ∈ L, there is a (µ, µ(a′), µ(q))-bichromatic path from q

to mate(q).

Proof. This follows because mate(a′) is adjacent to mate(q) in G2.

Define

bp(L) = {bp(q) : q ∈ L}.

Then bp(L) ⊆ Q, µ(bp(L)) = µ(L), and µ(L ∪ (Q \ bp(L))) = µ(Q) = µ(Q′).

Lemma 3.21. For any q ∈ Q \ bp(L), D′ ∪ L ⊆ N2[q].

Proof. Suppose otherwise. Say, q ∈ Q \ bp(L) and z ∈ (D′ ∪ L) \N2[q].

Consider first the case when µ(q) ∈ µ(N(s)), say, µ(q) = µ(x) for some x ∈ N(s). Then

x 6= q for otherwise z ∈ N2[q]. Also, x /∈ L for otherwise, bp(x) and q are adjacent in G2 but have

the same color under µ. We also know that x /∈ D′ as µ(D′) ∩ µ(N [u]) = ∅. Hence L ∪ {x} is a

larger bridging set than L by taking bp(x) = q and bn(q) = z. This contradicts the assumption

that L is a bridging set with maximum cardinality.

Henceforth we assume that µ(q) /∈ µ(N(s)). Since A′ 6= ∅ by our assumption, we can take a

vertex a′ ∈ A′. Define a coloring φ of G2 as follows: set φ(q) = ψz(z) = µ(z), φ(a′) = ψz(q) =

µ(q) and φ(p) = ψz(a
′) = µ(a′), and color all vertices in V (G) \ {q, a′, p} in the same way as in

ψz. Clearly, φ uses less colors than ψz as it does not use the color ψz(p). Since by Lemma 3.16,

ψz is an optimal coloring of G2, φ cannot be a proper coloring of G2. Hence one of the following

three cases must happen. In each case, we will obtain a contradiction and thus complete the

proof. Note that, by the definition of Q \ bp(L), A′, L and D′, the colors µ(z), µ(q) and µ(a′)

used by φ are pairwise distinct.

Case 1: There exists v ∈ N2(q) such that φ(v) = φ(q) = µ(z).

In this case q is the only vertex with color µ(z) under φ that has a different color under

ψz. Since v 6= q, ψz(v) = φ(v) = µ(z). Since µ(z) is not a color that was recolored to some

vertex during the construction of ψz, we have µ(v) = ψz(v) = µ(z). By Lemma 3.12(b),

v ∈ N({u, s}). If v ∈ N(s), then v = z, which is a contradiction as z /∈ N2[q]. Thus, v ∈ N(u),

which implies v = bp(z) as bp(z) is the only vertex in N(u) with color µ(z) under µ. However,

φ(bp(z)) = ψz(bp(z)) = µ(bn(bp(z))) 6= µ(z) = φ(v), which is a contradiction.
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Case 2: There exists v ∈ N2(a
′) such that φ(v) = φ(a′) = µ(q).

In this case a′ is the only vertex with color µ(q) under φ that has a different color under ψz.

Since v 6= a′, ψz(v) = φ(v) = µ(q). Since µ(q) is not a color that was recolored to some vertex

during the construction of ψz, we have µ(v) = ψz(v) = µ(q). By Lemma 3.12(b), v ∈ N({u, s}).
As µ(q) /∈ µ(N(s)) by our assumption, we have v /∈ N(s). So v ∈ N(u) which implies v = q. On

the other hand, by the construction of φ, we have φ(q) = µ(z) 6= µ(q), which means φ(q) 6= φ(v),

which is a contradiction to v = q.

Case 3: There exists v ∈ N2(p) such that φ(v) = φ(p) = µ(a′).

In this case p is the only vertex with color µ(a′) under φ that has a different color under ψz.

Since v 6= p, ψz(v) = φ(v) = µ(a′). Since µ(a′) is not a color that was recolored to some vertex

during the construction of ψz, we have µ(v) = ψz(v) = µ(a′). Note that a′ is the only vertex

in N2(p) with color µ(a′) under µ, which implies that a′ = v. However, φ(a′) = µ(q) 6= µ(a′),

which is a contradiction.

3.6 Finale

Denote by a′1, a
′
2, . . . , a

′
k the vertices in A′ and z1, z2, . . . , z` the vertices in D′∪L, where k = |A′|

and ` = |D′ ∪ L|.
Case A: k ≤ `.
In this case, by Lemmas 3.13 and 3.18, for each 1 ≤ i ≤ k, we can take a (µ, µ(a′i), µ(zi))-

bichromatic path Pi from a′i to mate(a′i). Define B to be the family of the following branch sets:

each vertex in N [w] is a singleton branch set, each vertex in F is a singleton branch set, and

each V (Pi) for 1 ≤ i ≤ k is a branch set.

Case B: ` < k.

In this case, by Corollaries 3.14(b) and 3.20, for each 1 ≤ i ≤ `, we can take a (µ, µ(a′i), µ(zi))-

bichromatic path Pi from zi to mate(zi). Define B to be the family of the following branch sets:

each vertex in N [u] \ bp(L) is a singleton branch set, and each V (Pi) for 1 ≤ i ≤ ` is a branch

set.

In either case above, the paths P1, P2, . . . , Pn (where n = min{k, `}) are pairwise vertex-

disjoint because the colors of the vertices in Pi and Pj are distinct for i 6= j. Therefore, the

branch sets in B are pairwise disjoint in either case.

Lemma 3.22. Each pair of branch sets in B are joined by at least one edge in G2.

Proof. Consider Case A first. It is readily seen that N(w) ∪ F is a clique of G2. Hence the

singleton branch sets in B are pairwise adjacent. For 1 ≤ i ≤ k, each vertex in N(w) ∪ F is

adjacent to a′i or mate(a′i) in G2. Hence each singleton branch set is adjacent to each path

branch set. For 1 ≤ i, j ≤ k with i 6= j, we have a′j ∈ N2[a
′
i] and thus the branch sets V (Pi) and

V (Pj) are joined by at least one edge.

Now consider Case B. Since N(u) \ bp(L) is a clique of G2, the singleton branch sets in B
are pairwise adjacent. All vertices in N(u) \ (bp(L) ∪A′ ∪ (Q \ bp(L))) are adjacent to mate(zi)

in G2 for 1 ≤ i ≤ `. By Corollaries 3.19 and 3.14(a), all vertices in A′ are adjacent to zi in G2

for 1 ≤ i ≤ `. By Lemma 3.21, all vertices in Q \ bp(L) are adjacent to zi in G2 for 1 ≤ i ≤ `.

Hence each singleton branch set is joined to each path branch set by at least one edge. Since

zi ∈ N(s) for 1 ≤ i ≤ `, the path branch sets are pairwise joined by at least one edge.

Lemma 3.23. |B| ≥ χ(G2).

Proof. By Lemma 3.2, all colors used by µ are present in µ(N2[p]). In Case A, all colors

in µ(N2[p]) \ µ(A) are present in N(w) ∪ F , the set of singleton branch sets in B. Hence
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|B| ≥ (|N2[p]|−|µ(A)|)+k = (χ(G2)−k)+k = χ(G2). In Case B, all colors in µ(N2[p])\µ(D′∪L)

are present in N(u) \ bp(L), the set of singleton branch sets in B. Hence |B| ≥ (|N2[p]|− |µ(D′ ∪
L)|) + ` = (χ(G2)− `) + ` = χ(G2).

Theorem 1.4 follows from Lemmas 3.22 and 3.23 immediately.

4 Proof of Corollary 1.5

We now prove Corollary 1.5 using Theorem 1.4. It can be easily verified that if G is a generalized

2-tree with small order, say at most 4, then G2 has a clique minor of order χ(G2) for which

each branch set induces a path. Suppose by way of induction that for some integer n ≥ 5, for

any generalized 2-tree H of order less than n, H2 has a clique minor of order χ(H2) for which

each branch set induces a path. Let G be a generalized 2-tree with order n. If G is a 2-tree,

then by Theorem 1.4, the result in Corollary 1.5 is true for G2. Assume that G is not a 2-tree.

Then at some step in the construction of G, a newly added vertex v is made adjacent to a single

vertex u in the existing graph. (Note that v may be adjacent to other vertices added after this

particular step.) This means that u is a cut vertex of G. Thus G is the union of two edge-disjoint

subgraphs G1, G2 with V (G1) ∩ V (G2) = {u}. Since both G1 and G2 are generalized 2-trees,

by the induction hypothesis, for i = 1, 2, G2
i has a clique minor of order χ(G2

i ) for which each

branch set induces a path. It is evident that G2 is the union of G2
1, G

2
2 and the clique induced

by the neighborhood NG(u) of u in G.

Denote Ni = NGi(u) for i = 1, 2. Then in any proper coloring of G2
i , the vertices in Ni

need pairwise distinct colors. Without loss of generality we may assume χ(G2
1) ≤ χ(G2

2). If

|NG(u)| = |N1| + |N2| ≤ χ(G2
2) − 1, then we can color the vertices in N1 using the colors that

are not present at the vertices in N2 in an optimal coloring of G2
2. Extend this coloring of N1

to an optimal coloring of G2
1. One can see that we can further extend this optimal coloring of

G2
1 to obtain an optimal coloring of G2 using χ(G2

2) colors. Thus, if |NG(u)| ≤ χ(G2
2)− 1, then

χ(G2) = χ(G2
2). Moreover, the above-mentioned clique minor of G2

2 is a clique minor of G2 with

order χ(G2) for which each branch set induces a path. On the other hand, if |NG(u)| ≥ χ(G2
2),

then one can show that χ(G2) = |NG(u)| and NG(u) induces a clique minor of G2, with each

branch set a singleton. In either case we have proved that G2 has a clique minor of order

χ(G2) = max{χ(G2
1), χ(G2

2), |NG(u)|} for which each branch set induces a path. This completes

the proof of Corollary 1.5.

5 Concluding remarks

We have proved that for any 2-tree G, G2 has a clique minor of order χ(G2). Since large cliques

played an important role in our proof of this result, it is natural to ask whether G2 has a clique

of order close to χ(G2), say, ω(G2) ≥ cχ(G2) for a constant c close to 1 or even ω(G2) = χ(G2).

Since the class of 2-trees contains all maximal outerplanar graphs, this question seems to be

relevant to Wegner’s conjecture [20], which asserts that for any planar graph G with maximum

degree ∆, χ(G2) is bounded from above by 7 if ∆ = 3, by ∆+5 if 4 ≤ ∆ ≤ 7, and by (3∆/2)+1

if ∆ ≥ 8. For ∆ = 3, this conjecture has been proved by Thomassen in [18]. In the case of

outerplanar graphs with ∆ = 3, a stronger result holds as shown by Li and Zhou in [13]. In [14],

Lih, Wang and Zhu proved that for any K4-minor free graph G with ∆ ≥ 4, χ(G2) ≤ (3∆/2)+1.

Since 2-trees are K4-minor free, this bound holds for them. Combining this with ω(G2) ≥ ∆(G),

we then have ω(G2) ≥ 2(χ(G2)− 1)/3 for any 2-tree G. It turns out that the factor 2/3 here is
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Figure 3: A 2-tree G with ω(G2) = 2λ+ 5 and χ(G2) = 3λ+ 3.

the best one can hope for: In Figure 3, we give a 2-tree whose square has clique number 2λ+ 5

and chromatic number 3λ+ 3.

In view of Theorem 1.4, the obvious next step would be to prove Hadwiger’s conjecture for

squares of k-trees for a fixed k ≥ 3. Since squares of 2-trees are 2-simplicial graphs, another

related problem would be to prove Hadwiger’s conjecture for the class of 2-simplicial graphs

or some interesting subclasses of it. It is also interesting to work on Hadwiger’s conjecture for

squares of some other special classes of graphs such as planar graphs.
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