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Abstract The detection of outliers in a time series is an important issue be-
cause their presence may have serious negative effects on the analysis in many
different ways. Moreover the presence of a complex seasonal pattern in the
series could affect the properties of the usual outlier detection procedures.
Therefore modelling the appropriate form of seasonality is a very important
step when outliers are present in a seasonal time series. In this paper we present
some procedures for detection and estimation of additive outliers when para-
metric seasonal models, in particular Periodic AutoRegressive, are specified to
fit the data. A simulation study is presented to evaluate the benefits and the
drawbacks of the proposed procedure on a selection of seasonal time series.
An application to three real time series is also examined.

Keywords Periodic autoregressive process · Periodic autocorrelation · False
detection

1 Introduction

The presence of outliers in time series data is generally known as a source of
deviation from the assumptions of the statistical model employed for analysing
data. An undetected outlier can lead to model misspecification, biased param-
eter estimates and unreliable forecasting results.
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When outliers are present in a seasonal time series, modelling the appro-
priate form of seasonality may strongly influence the success of the outliers
detection procedure. This is also true because the influence of the outlier in
the series may be masked by the seasonal effect, which may have a complex
structure possibly subject to changes in time. In this paper we present some
estimation procedures for additive outliers detection when seasonal models are
specified to fit the data.

Among several approaches proposed to deal with outliers estimation we
shall focus on methods based on parametric models. In such a context we
refer to the classic works by, among others, Tsay (1986); Chang et al. (1988);
Chen and Liu (1993); Gómez and Maravall (2001). Under the assumption of
data generated by an ARIMA process and a contamination model, for each
observation a contamination measure is estimated by least squares. At the
times at which the largest measures occur, if above a pre-determined threshold,
the corresponding observations can be considered as aberrant. Several different
contamination models, corresponding to different outlier types, are considered:
additive outliers that influence only one observation, innovation outliers that
affect the innovation process of the ARMA model, level shifts that modify the
process mean from a certain time on, and transient level changes.

In this paper we extend this kind of outlier detection methodology to
Periodic Autoregressive (PAR) processes, that were proved very effective in
modelling complicated seasonality patterns. A PAR is a non-stationary pro-
cess where the observations at each seasonal position (month, quarter etc)
are generated by a different autoregressive structure, and may account for
seasonality not only in the means, but also in the autocorrelation and the
variance. These models were proposed for describing time series arising in dif-
ferent areas such as economics, hydrology, climatology and signal processing
(Hipel and McLeod 1994; Franses and Paap 2004; Ursu and Turkman 2012).
Robust estimation procedures for the parameters of univariate and multivari-
ate PAR models have been proposed in Shao (2008); Sarnaglia et al. (2010);
Ursu and Pereau (2014). For a review of contributions to PAR models see
Franses and Paap (2004) and references therein; these models were also con-
sidered in a Bayesian framework (e. g. Vosseler and Weber 2018).

The present authors have already considered the case of level shift (in-
cluding the seasonal level shift proposed by Kaiser and Maravall 2001), in a
more general setting of regime-switching PAR models (Battaglia et al. 2018;
Cucina et al. 2019). In the present work we shall focus on additive outliers,
which correspond to the situation in which an exceptional event, or ’a gross
error of observation or recording error, affects a single observation’ (Fox 1972).

For illustrating the relevance of seasonality in outlier analysis and the risk
that the seasonal effect decreases the evidence of a contaminated observation,
we consider a simple example. Starting from the same string of Gaussian white
noise innovations, we have simulated a stationary first-order autoregression
with parameter -0.5 and a strongly seasonal monthly periodic autoregressive
model (referred to as Model 2 in Section 4, with different monthly means and
autocorrelations), and added to both series at the same time q an outlier of
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Fig. 1 Detail of simulated series with an additive outlier of size 5 at time q. Left panel:
AR(1) with parameter −0.5. Right panel: PAR(1) according to Model 2 specification

equal size 5. The two models have approximately the same overall variance,
but the outlier for the AR data is relatively evident at first sight, while it is
not noticeable at all in the data generated by the seasonal model, as it may
be seen in Figure 1. We computed also the differences yt = xt − xt−12 of
the seasonal series, but the aberrant observation is unnoticeable even in the
differenced series.

The simultaneous influence of outlying observations and seasonal effect on
the data has already been analysed in Haldrup et al. (2011) where the authors
proposed a non parametric approach, based on seasonally differenced data, to
detect additive outliers in series with unit roots. The test (from now on HMS
test) may be employed also when the variance is subject to seasonal change
and for stationary series. It is compared with our methods in the next Section
and also through some simulations in Section 4.

The paper is organized as follows: Section 2 outlines the proposed method-
ology; Section 3 addresses computational issues; Section 4 reports some simu-
lation studies. In Section 5 we illustrate real data applications, and Section 6
concludes the paper.

2 Methodology

In this Section we extend the outlier estimation and detection method of Tsay
(1986, 1988) to periodic autoregressive processes, considering a seasonal series
with N observations recorded s times a year, generated by the PAR model:

Πt(B)[Xt −m(t)] = εt, (1)

where Πt(B) =
∑p

j=0 πt(j)B
j (πt(0) = 1), the single parameters πt(j) are

periodic with respect to t of period s, the seasonal meansm(t) are also periodic
of period s and the variables {εt} are uncorrelated with means E(εt) = 0 and
variances E(ε2t ) = σ2

ε(t), also periodic with period s. To allow for stochastic
seasonality, Πt(B) may have one or more seasonal unit roots. In this case we
assume that the polynomial may be written

Πt(B) = Φt(B)∆t(B)

where Φt(B) = φt(0)−φt(1)B−φt(2)B
2− . . .−φt(h)B

h with φt(0) ≡ 1 is the
autoregressive part with all roots outside the unit circle, and ∆t(B) is periodic
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of period s and has only k unit roots, possibly different for each t, with h+k =
p. The problem of seasonal unit roots has been extensively addressed mainly in
the econometrics literature (e.g. Ghysels and Osborn 2001) and several tests
are available in the literature for testing the existence of seasonal unit roots,
the most popular seems to be the HEGY test of Hylleberg et al. (1990). These
tests may help to evaluate the opportunity of including a unit root factor
∆t(B) in the autoregressive polynomial.

The observed perturbed series is Yt = Xt + δ(t, q)ω where δ(α, β) = 1 if
α = β and zero otherwise; {Yt} has an additive outlier of size ω at time q.
We suppose for simplicity that the series is observed for M full years, so that
N = Ms. The model for the observed data Yt is

Πt(B)[Yt −m(t)− δ(t, q)ω] = εt.

In order to estimate ω, we assume normality and minimize the sum of squares
of residuals in the log-likelihood:

∑

t

ε2t =
∑

t

{Πt(B)[Yt −m(t)− δ(t, q)ω]}
2
.

Denoting the observed residuals by et:

et = Πt(B)[Yt −m(t)] =

p
∑

j=0

πt(j)[Yt−j −m(t− j)] = εt +

p
∑

j=0

πt(j)δ(t− j, q)ω

we have

∑

t

ε2t =
∑

t







et −

p
∑

j=0

πt(j)δ(t− j, q)ω







2

.

Note that

p
∑

j=0

πt(j)δ(t− j, q) =















0 , t < q
1 , t = q
πt(t− q) , t = q + 1, . . . , q + p
0 , t > q + p

and on equating to zero the derivative with respect to ω we obtain the maxi-
mum likelihood estimate ω̂:

ω̂q =







p
∑

j=0

πq+j(j)eq+j







/







p
∑

j=0

π2
q+j(j)







.

Since E(eq) = ω,E(eq+j) = πq+j(j)ω, the above estimate is unbiased. Its
variance is (because the et’s are independent):

Var{ω̂q} =







p
∑

j=0

π2
q+j(j)σ

2
ε (q + j)







/







p
∑

j=0

π2
q+j(j)







2
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and therefore the standardized statistic is

Ω̂q =







p
∑

j=0

πq+j(j)eq+j







/

√

√

√

√

p
∑

j=0

π2
q+j(j)σ

2
ε (q + j) (2)

and an outlier at t = q is detected if |Ω̂q| > ∆, where ∆ is a predefined
threshold.

Under the Gaussian assumption, the statistic Ω̂q is normal with mean

E(Ω̂q) and variance 1. Therefore if there is an outlier of size ω at time q the
probability of detecting it is

Pr{|Ω̂q| > ∆} = 1− Pr{−∆ < Ω̂q < ∆} = 1− Pr{−∆− E(Ω̂q) < Z < ∆− E(Ω̂q)}

= 1− F{∆− E(Ω̂q)} + 1− F{∆+ E(Ω̂q)}

where Z is N(0, 1) and F is its cumulative probability function, where

E(Ω̂q) = ω







p
∑

j=0

π2
q+j(j)







/

√

√

√

√

p
∑

j=0

π2
q+j(j)σ

2
ε (q + j).

If ω >> 0 then F{∆+E(Ω̂q)} ≃ 1, while if ω << 0 then F{∆−E(Ω̂q)} ≃ 1.
It follows that the probability of detecting the outlier at t = q may be written
1− F{∆− |E(Ω̂q)|}, or

Pq = 1− F







∆− |ω|

∑p

j=0 π
2
q+j(j)

√

∑p

j=0 π
2
q+j(j)σ

2
ε (q + j)







. (3)

Formula (3) details the effect of the chosen threshold ∆, the outlier size ω, the
innovation variances σ2

ε(t) and the model structure {πt(j)} on the detection
ability.

In order to evaluate the probability of false detections, let us consider the
behaviour of the statistic on times t 6= q. Since E(et) = 0 for t < q and
t > q + p, the mean of ω̂t is zero except for t = q − p, q − p+ 1, . . . , q + p and
for k = 0, 1, . . . , p:

E(ω̂q−k) = ω

p
∑

j=k

πq+j−k(j)πq+j−k(j − k)/







p
∑

j=0

π2
q+j−k(j)







E(ω̂q+k) = ω

p−k
∑

j=0

πq+j+k(j)πq+j+k(j + k)/







p
∑

j=0

π2
q+j+k(j)







.

It follows that, especially whenΠt(B) contains unit roots, the outlier estimates
for times around q may be largely biased.

In practice both the autoregressive parameters and the residual variances
have to be estimated from the data. The autoregressive parameters may be
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estimated, for each season, by least squares on the observations related to that
season only and in a similar manner the estimated residual variances may be
obtained (see Section 3). Under the hypothesis that the model is correctly
identified, both the parameters and residual variances estimates may be easily
shown to be consistent as M → ∞. A valid alternative, especially when many
outliers are suspected, is using robust estimates (see e.g. Chen and Liu 1993).

The HMS test (Haldrup et al. 2011) is based on the seasonally differenced
series, and the size of an additive outlier at t = q is estimated by

d̂(q) =
1

2
{(1−Bs)Yq − (1−Bs)Yq+s}.

The test statistic is obtained by standardizing d̂(q) with the following es-
timate of its variance:

ŝ2(q) =
1

2
{R̂(0)− R̂(s)}

where R̂(j) = N−1
∑N

t=s+j+1 v̂j v̂t−j and v̂t = (1 − Bs)Yt − d̂(q)[δ(t, q) −
δ(t + s, q)]. Alternatively, in order to allow for seasonally varying variances,
the covariances R̂(0) and R̂(s) are estimated using only the observations be-
longing to the same seasonal position as time q (HMS-PH test for periodic
heteroscedasticity). We note that only in the particular case that the enter-

tained PAR model is (1) with Πt(B) = (1−Bs), d̂(q) would be exactly equal
to ω̂q, while the denominator of the HMS statistic differs from that of Ω̂q be-
cause it takes into account the possible correlation between eq and eq+s. Thus,
only if the seasonally differenced series is actually generated by a white noise,
the HMS statistic and ours give essentially equal values. In all other cases our
test is based on the maximum likelihood estimate of the outlier size (given
the model), therefore it is likely to produce more precise results, as will be
exemplified with some simulations in Section 4.

3 Computational issues

We shall denote by X(n−1)s+k the series value during the k−th season, with
k = 1, . . . , s, at year n = 1, 2, . . . ,M . The periodic model used in this paper
assumes a different mean for each season and (optionally) a linear trend. The
residuals are treated as zero mean and described by an autoregressive model
with order p, and parameters varying with seasons. Then

X(n−1)s+k = a+ b[(n− 1)s+ k] +m(k) +W(n−1)s+k, (4)

where n = 1, . . . ,M ; k = 1, . . . , s and W(n−1)s+k is a PAR process given by:

W(n−1)s+k =

p
∑

i=1

φk(i)W(n−1)s+k−i + ε(n−1)s+k. (5)

The innovations ε(n−1)s+k in equation (5) are uncorrelated with means zero
and variance σ2(k) > 0, k = 1, . . . , s.
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For estimating trend and seasonal means by Ordinary Least Squares (OLS)
we assume that the seasonal means sum to zero on one year:

m(1) +m(2) + . . . ,+m(s) = 0.

We propose to estimate the model parameters according to the following
steps:

1. In the first step the following equation is estimated:

X(n−1)s+k = b[(n− 1)s+ k] + c(1) + c(2) + . . .+ c(s) + et. (6)

The design matrix V : N × (p + 1) has first column equal to time, while
the other columns are zero-one vectors with value one only at rows corre-
sponding to the appropriate season. The parameter vector with dimension
(s+ 1) is

β = [b, c(1), c(2), . . . , c(s)]′

and estimated with

β̂ = [b̂, ĉ(1), ĉ(2), . . . , ĉ(s)]′ = (V ′V )−1V x

where x is the data vector.
2. From the {ĉ(k)}, the intercept â and seasonal means m̂(k) are recovered

assuming that the means sum to zero on a whole year. It follows

â =
1

s

s
∑

k=1

ĉ(k) , m̂(k) = ĉ(k)− â.

3. Based on estimated trend and seasonal means, the residual series is com-
puted:

Ŵ(n−1)s+k = X(n−1)s+k−â−b̂[(n−1)s+k]−m̂(k), n = 1, ...,M, k = 1, ..., s

4. We denote by I(k) the set of times belonging to season k. For each sea-
son k the observations belonging to the subseries I(k) are selected and the
least squares estimates of the parameters {φk(i), i = 1, . . . , p} are obtained.
For each season k (k = 1, . . . , s) the subseries {Ŵt, t ∈ I(k)} is arranged
in a vector zk with nk = M entries. The design matrix Z : nk × p has
rows containing the regressors Ŵt−1, Ŵt−2, . . . , Ŵt−p and the parameter
vector to be estimated is φk = [φk(1), φk(2), . . . , φk(p)]

′. The final estimate

φ̂k = [φ̂k(1), . . . , φ̂k(p)]
′ of φk is obtained by φ̂k = (Z ′Z)−1Z ′zk .

5. Lastly, the estimation of error variances σ̂2(k) is performed for each season
on the final residuals:

σ̂2(k) =
1

M

M
∑

n=1

ε̂2(n−1)s+k,

where ε̂(n−1)s+k = Ŵ(n−1)s+k −
∑p

i=1 φ̂k(i)Ŵ(n−1)s+k−i.
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The models discussed in this section extend the class of autoregressive (AR)
models by allowing the autoregressive parameters to vary with the seasons.
If at step 4 we assume that the autoregressive parameter do not change with
seasons: φk(i) ≡ φ(i) we obtain the constant parameter periodic autoregressive
model

W(n−1)s+k =

p
∑

i=1

φ(i)W(n−1)s+k−i + ε(n−1)s+k, (7)

where the εt have constant variance σ2 > 0. It may also be assumed that the
seasonal means or the autoregressive parameters, or both, remain equal on
groups of adjacent months, so that the final number of seasons ranges from 1
to s (see Thompstone et al. 1985; Battaglia et al. 2018).

The code that implements the proposed procedures is written in Matlab
and has been run on MS-Windows-based system.

In our simulations the normal random numbers are generated by the func-
tion randn of Matlab that uses the method of Marsaglia and Tsang (2000).
The simulated monthly series following the PAR models are generated accord-
ing to equations (4) and (5) with n = 1, . . . , 100, k = 1, . . . , 12, initialized with
Wt = εt = 0, t ≤ 0, and discarding the first 100 terms.

4 Simulation study

We consider monthly series (s = 12) recorded on M = 100 years for a total of
N = 1200 observations, and four data generating processes:

Model 1: a first-order periodic autoregressive model with 12 different monthly
means (figures are taken from Lu et al. 2010) and autoregressive parame-
ters φt(1) generally different for each month.

Model 2: a first-order periodic autoregressive model with only three different
means, related to the months of January to April, May to August, Septem-
ber to December. The autoregressive parameters are also grouped: the first
value operates on months from January to March, the second value is used
for months from April to July, the third one relates to August–October,
and the last one to November and December.

Model 3: it uses the estimated values of a periodic autoregressive model fitted
to the Italian industrial production index (see Battaglia et al. 2019): there
are 11 different monthly means (May and June share the same value) and
the autoregressive structure is of order 3, and varies across months in the
following way: a first set of parameters is used for January; a second set
operates from February to July; a third set relates to August, and a final
set of values is employed for the remaining months.

Model 4: monthly means equal to those of Model 1 and a constant second
order autoregression with parameters φ(1) = 0.5, φ(2) = −0.73 (equal for
each month).

The detailed values of the parameters are reported in Table 1. The innovations
were always simulated according to standard normal independent variates, and
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Table 1 Parameter values used in the simulations

Month Model 1 Model 2 Model 3 Model 4

m(t) φt(1) m(t) φt(1) m(t) φt(1), φt(2), φt(3) m(t) φt(1), φt(2)

1 -.61 0.3 0 0.7 104 0.5,-.73,0.0 -.61 0.5, -.73
2 .99 0.3 0 0.7 111 0.0, 0.3, 0.63 .99 0.5, -.73
3 2.35 0.5 0 0.7 112 0.0, 0.3, 0.63 2.35 0.5, -.73
4 4.91 0.3 0 0.3 107 0.0, 0.3, 0.63 4.91 0.5, -.73
5 8.74 0.35 6 0.3 117 0.0, 0.3, 0.63 8.74 0.5, -.73
6 12.15 0.3 6 0.3 117 0.0, 0.3, 0.63 12.15 0.5, -.73
7 15.55 0.25 6 0.3 121 0.0, 0.3, 0.63 15.55 0.5, -.73
8 15.47 0.1 6 -.2 52 0.0, 0.56, 0.42 15.47 0.5, -.73
9 12.79 0.1 2 -.2 116 0.18, 0.0, 0.69 12.79 0.5, -.73
10 7.82 0.1 2 -.2 121 0.18, 0.0, 0.69 7.82 0.5, -.73
11 2.32 0.2 2 0.0 116 0.18, 0.0, 0.69 2.32 0.5, -.73
12 -.25 0.2 2 0.0 98 0.18, 0.0, 0.69 -.25 0.5, -.73

500 replications for each model were generated. Two additive outliers of size
ω were added to each series at times selected at random: 302 (month 2) and
969 (month 9) for models 1 and 3, and times 121 (month 1) and 609 (month
9) for models 2 and 4, and the standardized statistics Ω̂t in (2) were computed
for each t according to the following methods, that fit different models:

method 1: different monthly means and autoregressive parameters are esti-
mated for each month, i.e. we fit a complete periodic autoregressive model

method 2: twelve monthly means are estimated, and a stationary autoregres-
sive model is fitted to the data after removing the seasonal means, i. e.
φt(j) ≡ φ(j) and σ2

ε(t) ≡ σ2
ε for any t.

method 3: a parsimonious periodic autoregressive model is considered, esti-
mating only parameters that are actually different according to the data
generating process; e. g. for model 2 we estimate only three seasonal means
and four different autoregressive parameters, using observations of the ap-
propriate months. Thus we fit a grouped periodic autoregressive model
(Thompstone et al. 1985).

Method 2 assumes that the second order properties (variance and autocor-
relations) do not vary with the season: the autoregressive parameters and
the innovations variance (hence the variance of the series) are equal for each
month.

First of all the outlier size estimates ω̂q were always found, for any method
and model, with good accuracy, with a small bias and without large differences.
Also the bias of autoregressive parameters was found moderate and scarcely
influenced by the presence and size of the outliers.

As far as the behaviour of the standardized statistics computed at the per-
turbed times is considered, Figure 2 reports, for each model, the distributions
(smoothed with a gaussian kernel density estimator) of the standardized statis-
tics for the three methods and an outlier of size ω = 3. It may be seen that the
methods based on periodic autoregressive models generally give larger values
of the statistic for model 1 to 3, while in the case of model 4 (constant au-
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Fig. 2 Distributions of the standardized statistics computed at perturbed times with outlier
size ω = 3. Dashed line: method 1, dotted line: method 2; continuous line: method 3

−4 −2 0 2 4

Fig. 3 Distribution of the standardized statistics computed at time 500 (not perturbed)
for model 2. Dashed line: method 1, dotted line: method 2; continuous line: method 3

toregressive), method 2 (based actually on a constant autoregressive structure)
yields better results, but the method based on grouped periodic autoregression
is only slightly less satisfying.

Here, the differences among the three estimation methods are not markedly
large. However, the behaviour on clean (not perturbed) observations changes:
the distributions of the standardized statistics computed under method 2 (con-
stant autoregressive) tend to show much larger tails (an example for model 2 at
t = 500 appears in Figure 3), leading to a larger frequency of false detections.

We shall consider now a detection procedure based on the threshold ∆ =
3.5, and simulated series not perturbed or with outliers of size 2.0, 2.5, 3.0,
3.5, 4.0 or 4.5. Let us consider first the series without outliers. The number
of observed false detections (standardized statistic absolute values larger than
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Table 2 Observed frequencies of false detections on the 500 simulated replications

Model 1 2 3 4

method 1 195 225 228 226
method 2 268 439 1597 273
method 3 275 301 273 292

2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

ω

Model 1

2 2.5 3 3.5 4 4.5
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0.8

1

ω

Model 2
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1

ω

Model 3

2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

ω

Model 4

Fig. 4 Relative frequency of detection of an outlier of size ω. Dashed line: method 1, dotted
line: method 2; continuous line: method 3

3.5) on the 500 replications (with 1200 observations each) is reported in Table
2. It appears clearly that, especially for the strongly periodic model 3, method
2 (based on constant autoregression) tends to overdetect with respect to the
other methods. The frequency of false detections found for series with the
outliers were similar to those of Table 2 for all outlier sizes ω and are omitted.

The performance on detecting outlying observations, in dependence of their
actual size, is illustrated in Figure 4, where the relative frequency of significant
values (larger than 3.5) for the standardized statistics for each model and
method is reported (figures computed at t = 969 for model 1 and 3, and at
t = 121 for model 2 and 4). It may be concluded that the differences among
the three methods remain similar also when the outlier size ω is increased.

A further important topic is the precision of the detection procedure: if the
maximum (in absolute value) of the standardized statistic is at time q, and is
larger than the threshold ∆, then q is detected as a perturbed observation, but
it could be an actually clean observation. We have computed (for each method,
model and outlier size) the percentage of significant replications on which the
maximum standardized statistic corresponds to an actual outlier, results are
shown in Table 3. Again we may see less satisfying results for method 2, and
a good detection ability for the other methods, nearly perfect for outlier size
at least 4.

The following conclusions may be tentatively drawn:
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Table 3 Percentage of replications in which the maximum significant statistic corresponds
to true outlier locations

ω Model 1 Model 2 Model 3 Model 4

3.0 method 1 71 78 81 89
method 2 67 50 20 90
method 3 66 66 85 89

3.5 method 1 85 90 92 96
method 2 84 67 35 97
method 3 82 83 94 96

4.0 method 1 94 96 97 99
method 2 91 85 60 99
method 3 91 94 98 98

4.5 method 1 98 98 99 99
method 2 98 94 80 99
method 3 98 98 99 99

1. Bias in autoregressive parameters and outlier size estimation was found
limited. It happens also because we simulated long series with only one or
two aberrant observations, and it cannot be excluded that the bias would
be more serious for more perturbed and shorter series, and in that case
robust variance estimators would be advisable.

2. The detection method based on constant autoregressive parameters and
different monthly means (corresponding to the popular idea of stationary
seasonal differences) is effective when seasonality is constant, but much
worse when the seasonality affects also autocorrelations and variance.

3. The proposed detection methods, based on periodic autoregressive models,
are satisfying and precise also for complex seasonality, and yield nearly
equivalent results to the previous method when seasonality is constant.

4. The idea of fitting parsimonious periodic autoregressive models, consider-
ing different parameters only for groups of similar months, seems not to
produce relevant benefits in outlier detection, because the frequencies of
correct detection are only slightly larger but coupled with a bit more false
detections.

Finally, we compared our proposed methods with the HMS test. First of all
we considered the case of series whose seasonal differences are white noise:
in this case, as explained in Section 2, we expect equivalent results. A set of
simulated series generated by xt = xt−12 + εt with the εt’s independent unit
normal was considered, adding at t = 121 an outlier of size 4. The resulting test
statistics of the HMS test and our methods applied with Πt(B) = (1 − B12)
were found nearly equal. The same happened when the variances of the εt’s
were taken different, but periodic with period 12. Then, we considered the
more realistic case of autocorrelated series, using the same set of previously
simulated series according to models 1-4, but with only one outlier (at time
q = 969 for models 1 and 3, and at time q = 121 for models 2 and 4) and size
ωq = 4. The test statistics of our methods and HMS were computed on each of
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Table 4 Comparison of the HMS test with our methods: percentages of detection and
number of false detections based on threshold ∆ = 3.5 and 500 replications

Model 1 Model 2 Model 3 Model 4

% detection HMS 36 30 17 7
HMS-PH 46 23 23 9
method 1 64 86 86 93
method 2 74 64 71 95
method 3 74 76 92 93

false detect. HMS 327 569 321 241
HMS-PH 637 618 588 612
method 1 178 258 281 394
method 2 237 379 1477 565
method 3 237 294 347 571

the 500 replications, and with the same threshold ∆ = 3.5, we registered the
number of replications at which the test statistic in t = q was larger than ∆ in
absolute value (detections) and the number of times the statistics computed
for t 6= q were found larger than ∆ in absolute value (false detections). The
results appear in Table 4. It may be concluded that our methods always yield
definitely better results than the HMS test, differences being larger for the
models with stronger autocorrelations.

5 Case studies

We consider three series widely studied in the literature, that exhibit strong
and complex seasonality and have been analysed with periodic autoregressive
models: the Central England Temperature series, the Saugeen and the Fraser
river flow data.

For identifying the PAR models to be fitted we first applied the HEGY test,
that did not provide evidence of seasonal unit roots in any of the three series,
thus we consider autoregressive polynomials with roots only outside the unit
circle. For selecting the order p we have used (as suggested by several authors,
see e. g. Gómez and Maravall 2001) the Bayesian Identification Criterion of
Schwarz (1978): BIC(w) = −2 log(L̂) + w log(N) where w is the number of
parameters and L̂ the maximized likelihood. The results are shown for the
three series in Table 5 and suggest for all of them order p = 1. A constant
autoregressive model (according to method 2) of the same order was also fitted
to the series.

The Central England Temperature series is one of the longest existing
monthly temperature recording and was recently studied by Proietti and Hillebrand
(2017). We take into account data from January 1921 to December 2013, that
are also characterized by a slow increase (due to global warming), therefore a
linear trend will be included in our models. The estimated residual autocorrela-
tions of the PAR(1) model were small and none of the usual portmanteau tests
applied to global residuals suggests to reject this model. The residual variance
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Table 5 Identification of the PAR models for the series of Central England Temperature,
Saugeen and Fraser riverflows: values of Schwarz’s criterion for p = 1, 2, 3, 4

order CET Saugeen Fraser

p = 1 3822 985 -245
p = 2 3883 1028 -188
p = 3 3953 1121 -125
p = 4 4021 1192 -53

J F M A M J J A S O N D
1
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2

2.5

J F M A M J J A S O N D
0

0.05

0.1

Central England Temperature Fraser river flow

Fig. 5 Residual variances for single months of the PARmodel. Dotted line: residual variance
of the AR model

of the fitted constant autoregressive model (method 2) is 1.59, and the overall
average residual variance of the fitted PAR model is 1.56, but much different
across months, ranging from about 1 in May, June, August, September, 1.3
in July, up to about 2.5 for December to February (see Figure 5, left panel).
If we consider method 2 based on a constant autoregressive structure sev-
eral observations have notably large outlier statistics, the largest are at times
1080 (December 2010, Ω̂ = −4.16) and 732 (December 1981, Ω̂ = −3.57);
also, there are standardized values larger than three at 289 (January 1945,
Ω̂ = −3.24) and 422 (February 1956, Ω̂ = −3.14). On the contrary when a
periodic autoregressive model is used (method 1) we get mild suspicious values
only at times 1080 (Ω̂ = −3.35) and 1027 (July 2006, Ω̂ = 3.22), while at all
other times the values are moderate, due to a better fit and a more accurate
residual variance estimate of the PAR model with respect to the constant au-
toregressive. On the other side, observation 1027 is not indicated by method
2 because of the difference between the uncertainty for July and the global
measure (residual variance 1.3 instead of 1.59). The two suggested outliers
correspond to July 2006 with an estimated size ω̂1027 = 3.02, and December
2010 with estimated size ω̂1080 = −5.31. A plot of the series for the years
2004–2012 is reported together with the trend-seasonal means component in
Figure 6, where the abnormal size of the average temperature in those two
months appears clear. They are actually the largest and the smallest monthly
temperature in the whole series.

The Saugeen river data set was considered in Hipel and McLeod (1994);
Wong et al. (2007); Ye and Dai (2018). The time series consists of average
monthly log river flows in m3/sec collected at Walkerton, Canada from January
1915 to December 1976. We estimated a PAR(1) model and obtained very
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Fig. 6 Observations (continuous line) and trend-seasonal means component (dashed line)
of the CET series, years 2004–2012

small residual autocorrelations. The estimated residual variance for a constant
autoregressive model is 0.209, while fitting the PAR yields an overall average
residual variance equal to 0.179, but varying across months from about 0.1 for
June, August and September to 0.25 for December and January, to 0.35 for
March. The method based on PAR detects time 478 (October 1954, Ω̂ = 4.28)
and, less evident, time 512 (August 1957, Ω̂ = −3.34). Method 2 based on
constant autoregressive structure does highlight time 478 (Ω̂ = 3.90) but does
not discover time 512, and in addition detects time 303 (March, Ω̂ = −3.86)
and further (but with standardized values smaller than 3.5) observations 267
and 315, both in March. These disagreements seem to be due to a less precise
estimation of the residual variance implied by the non periodic structure.

River Fraser was often analysed in the literature of seasonal time series,
and has also been fitted by means of periodic autoregressive models (McLeod
1994; Sarnaglia et al. 2010; Ursu and Turkman 2012). The related time series
consists of mean monthly river flows collected at Hope, British Columbia.
We study observations from January 1931 to December 1990 (720 monthly
observations of the log river flows). The usual portmanteau tests applied to
global residuals of the PAR(1) model do not reject this model. The residual
variance of the constant autoregressive model is estimated equal to 0.0378,
while the overall average residual variance of the fitted PAR model is 0.0338,
but there are large differences among the various months: for February and
August it is about 0.015, for May and November about 0.05, for April is more
than 0.08 and for the other months around 0.025 (see Figure 5, right panel).
Method 1, based on a PAR model, detects significant observations at times
374 (February 1962, Ω̂ = 4.10) and 108 (December 1939, Ω̂ = 3.77), and some
other suspicious observations at times 211 (July 1948, Ω̂ = −3.38) and 636
(December 1983, Ω̂ = −3.34). Method 2 (based on a constant autoregressive
structure), does suggest an outlier at 108 and 374 (though with a smaller
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significance) but detects also time 280 (April 1954, Ω̂ = −3.9) and (with
standardized values between 3 and 3.5) times 148, 208, 317, 447, 616, 641,
712. These observations generally belong to the month of April, the most
difficult to fit (residual variance of April data is 0.08), and may be considered
all false detections.

6 Conclusions

Our findings confirm that a complicated and strong seasonal behaviour may
produce serious problems for the standard outlier detection procedures based
on ARIMA models.

The proposed method, based on periodic autoregressive models, yields bet-
ter results because, on one hand, it ensures a better general fitting, and on the
other hand it allows a more precise estimation of the uncertainty, that may
differ from month to month.

In these cases, the use of a stationary autoregressive model, also if modified
with seasonal means, or applied to seasonal differences, is subject to several
false detections and lack of precise outlier detection.

The present research may be forwarded in several directions, for example
including moving average structures (PARMA models), considering periodi-
cally integrated autoregressive processes (Franses and Paap 2004), studying
outlier patches (e. g. Justel et al. 2001). Moreover, the PAR idea may be ex-
tended to other outlier detection procedures, e. g. those based on genetic al-
gorithms (Baragona et al. 2001; Cucina et al. 2014) and to multivariate time
series (Ursu and Duchesne 2009).
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