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Abstract
We study a more general model to generate random
instances of Propositional Satisfiability (SAT) with
n Boolean variables, m clauses, and exactly k vari-
ables per clause. Additionally, our model is given
an arbitrary probability distribution (p1, . . . , pn) on
the variable occurrences. Therefore, we call it non-
uniform random k-SAT. The number m of randomly
drawn clauses at which random formulas go from
asymptotically almost surely (a. a. s.) satisfiable to
a. a. s. unsatisfiable is called the satisfiability thresh-
old. Such a threshold is called sharp if it approaches
a step function as n increases.
We identify conditions on the variable probability
distribution (p1, . . . , pn) under which the satisfiabil-
ity threshold is sharp if its position is already known
asymptotically. This result generalizes Friedgut’s
sharpness result from uniform to non-uniform ran-
dom k-SAT and implies sharpness for thresholds
of a wide range of random k-SAT models with het-
erogeneous probability distributions, for example
such models where the variable probabilities follow
a power-law.

1 Introduction
One of the most thoroughly researched topics in theoreti-
cal computer science is Satisfiability of Propositional For-
mulas (SAT). It was one of the first problems shown to
be NP-complete by Cook [Cook, 1971] and, independently,
by Levin [Levin, 1973]. Furthermore, SAT stands at the
core of many results of modern complexity theory, like NP-
completeness proofs [Karp, 1972] or lower bounds on runtime
assuming the (Strong) Exponential Time Hypothesis [Impagli-
azzo et al., 1998; Bringmann, 2014].

Additional to its importance for theoretical research, Propo-
sitional Satisfiability also has practical applications. Many
practical problems can be transformed into SAT formulas, for
example hard- and software verification, automated planning,
and circuit design. Such SAT formulas arising from practical
and industrial problems are commonly referred to as indus-
trial SAT instances. Surprisingly, even large industrial SAT
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instances with millions of variables can often be solved ef-
ficiently by state-of-the-art SAT solvers. This suggests that
these instances have a structure which makes them easier to
solve than the theoretical worst-case.

1.1 Uniform Random SAT and the Satisfiability
Threshold Conjecture:

In order to study the average-case complexity of Satisfiability,
one can generate a formula Φ at random in conjunctive normal
form (CNF) with n variables and m clauses. To this end, we
assume to have a probability distribution over all formulas
with those properties. If the probability distribution is uniform,
we will also refer to the model as uniform random k-SAT.

One of the most prominent questions related to uniform
random k-SAT is trying to prove the satisfiability threshold
conjecture. Intuitively, the satisfiability threshold is the clause-
variable-ratio m/n at which the probability to generate a satis-
fiable formula goes from one to zero. The satisfiability thresh-
old conjecture states that for a formula Φ drawn uniformly at
random from the set of all k-CNFs with n variables and m
clauses, there is a real number rk such that

lim
n→∞

Pr{Φ is satisfiable} =

{
1 m/n < rk;

0 m/n > rk.

For k = 2, Chvatal and Reed [Chvatal and Reed, 1992] and,
independently, Goerdt [Goerdt, 1996] proved that r2 = 1. For
k > 3, explicit upper and lower bounds have been derived,
e. g., 3.52 6 r3 6 4.4898 [Hajiaghayi and Sorkin, 2003;
Kaporis et al., 2006; Dı́az et al., 2009]. Coja-Oghlan
and Panagiotou [Coja-Oghlan and Panagiotou, 2016] de-
rived a bound (up to lower order terms) for k > 3 with
rk = 2k log 2− 1

2 (1 + log 2)± ok(1). Recently, Ding, Sly,
and Sun [Ding et al., 2015] proved the exact position of the
threshold for sufficiently large values of k.

One goal of showing the conjecture is to connect or dis-
connect threshold behavior to the average hardness of solving
instances. For uniform random k-SAT for example, the on
average hardest instances are concentrated around the thresh-
old [Mitchell et al., 1992]. However, the conjecture and a lot
of related work only consider formulas that are drawn uni-
formly at random. But what happens if the formulas are drawn
according to a different probability distribution?



1.2 Non-Uniform Random SAT:
There is a substantial body of work, which analyzes the sat-
isfiability threshold in different SAT models, like regular ran-
dom k-SAT [Boufkhad et al., 2005a], random geometric k-
SAT [Bradonjic and Perkins, 2014] and 2 + p-SAT [Monasson
et al., 1996]. However, these models are not motivated by
trying to model or understand the properties of industrial in-
stances.

One property of industrial instances we can consider is their
degree distribution. The degree distribution of a formula Φ
is a function f : N → N, where f(x) denotes the number
of different Boolean variables that appear x times in the for-
mula Φ (negated or unnegated). In uniform random k-SAT
this distribution is binomial, but recently it has been found
out that the degree distribution of many families of indus-
trial instances follows a power-law [Boufkhad et al., 2005b;
Ansótegui et al., 2009a]. This means that the fraction of vari-
ables that appear k times is proportional to k−β , where β is
a constant intrinsic to the instance. To help close the gap
between the degree distribution of uniform random and indus-
trial instances, Ansótegui, Bonet, and Levy [Ansótegui et al.,
2009a] proposed a power-law random SAT model. Empiri-
cal studies [Ansótegui et al., 2009a; Ansótegui et al., 2009b;
Ansótegui et al., 2015] found that SAT solvers that are special-
ized in industrial instances also perform better on power-law
formulas than on uniform random formulas. However, it looks
like a power-law degree distribution alone makes instances a
bit easier to solve, but not actually “easy”: median runtimes
around the threshold still look like they scale exponentially
for several state-of-the-art solvers [Friedrich et al., 2017b;
Bläsius et al., 2019].

Instead of studying random k-SAT with power-law distri-
butions we would like to have a way of choosing any variable
distribution we want. One model that can achieve this goal is
a configuration-type model for random k-SAT in which each
variable has a fixed number of appearances that are distributed
uniformly at random among the k ·m variable positions in the
formula. For k = 2 this model has already been studied by
Cooper, Frieze and Sorkin [Cooper et al., 2007], Levy [Levy,
2017], and Omelchenko and Bulatov [Omelchenko and Bula-
tov, 2019]. However, we want to consider a slightly different
model that is much easier to analyze.

In our paper we consider a generalization of the power-law
random SAT model by Ansótegui, Bonet, and Levy [Ansótegui
et al., 2009a]. Our model also allows instances with any given
ensemble of variable distributions, instead of just power laws:
The variables of each clause are drawn with a probability pro-
portional to the n-th distribution in the ensemble, then they
are negated independently with a probability of 1/2 each. Let
D (n, k, (~pn)n∈N,m) be such a model with a variable distri-
bution ensemble (~pn)n∈N, where m clauses of length k over
n variables are drawn. We call this the clause-drawing model.
If we draw clauses in such a way, the variable probability dis-
tribution also defines a probability distribution over k-clauses.
Instead of drawing exactly m k-clauses over n variables, one
can now imagine flipping a coin for each possible k-clause and
taking the clause into the formula with the clause probability
multiplied with a certain scaling factor s. By doing so, the
expected number of clauses in the formula will be exactly s.

We will denote this model by F (n, k, (~pn)n∈N, s) and call it
the clause-flipping model.

Although F (n, k, (~pn)n∈N, s) and D (n, k, (~pn)n∈N,m)
cannot represent industrial instances accurately, they might
still give us some insights into which properties of real-world
instances make them easy to solve. The one property our mod-
els provide is degree distribution. They allow us to look at
the connection between degree distribution and hardness in an
average-case scenario.

As one of the steps in analyzing the connection between
hardness and threshold behavior in non-uniform random k-
SAT, we would like to find out for which ensembles of vari-
able probability distributions an equivalent of the satisfiability
threshold conjecture holds. To see which ingredients we need
to prove the conjecture and which of these ingredients this
work provides, we first have to introduce the concept of thresh-
old functions more formally.

1.3 Threshold Functions:
Formally, due to [Friedgut, 2005] a threshold for a monotone
property P is defined as follows in the classical context of
uniform probability distributions: Let p ∈ [0, 1] and let V =

{0, 1}N be endowed with the product measure µp(·): for x ∈
V define µp(x) = p

∑
xi(1− p)N−

∑
xi , and, for W ⊆ V ,

µp(W ) =
∑
x∈W µp(x). Now let P = P (n) be a family of

monotone properties. p∗ = p∗(n) is an asymptotic threshold
function for P (n) if for every p = p(n)

lim
n→∞

µp(P ) =

{
0, if p = o(p∗)

1, if p = ω(p∗).

Intuitively, a sharp threshold means that the change in prob-
ability around the threshold becomes steeper and steeper as
the problem size increases, converging to a step function as
n tends to infinity. Formally, we say that P (n) has a sharp
threshold if there exists a function p∗ = p∗(n) such that for
every constant ε > 0 and for every p = p(n)

lim
n→∞

µp(P ) =

{
0, if p 6 (1− ε)p∗
1, if p > (1 + ε)p∗.

Otherwise we call a threshold coarse. The region of p where
the limit of µp(P ) is bounded away from zero and one is
called the threshold interval.

Note, that this definition only holds for satisfiability in the
uniform clause-flipping model. In the case of the uniform
clause-drawing model, the sharpness of the threshold is de-
fined the same way, but with respect to m or s instead of p on
the appropriate probability space.

1.4 Proving the Satisfiability Threshold
Conjecture:

In terms of threshold functions, the conjecture states that there
is a sharp threshold for satisfiability at m = rk · n and the
constant rk is the same for a fixed k and all sufficiently large
n. For k = 2, Chvatal and Reed [Chvatal and Reed, 1992]
and Goerd [Goerdt, 1996] proved the conjecture and showed
that r2 = 1. However, random 2-SAT is easier to analyze than
random k-SAT and their techniques do not work for bigger



values of k. For uniform random k-SAT the “recipe” for
proving the conjecture is as follows:

1. Show the existence of an asymptotic threshold function,
i. e. show constant lower and upper bounds on rk.

2. Prove that the threshold is sharp. Friedgut [Friedgut,
1999] showed that the satisfiability threshold for uni-
form random k-SAT is sharp, although its location is not
known exactly for all values of k. However, his result
does not prove that rk is the same for a fixed k and all
sufficiently large values of n. Friedgut’s proof relies on
knowing the asymptotic threshold function.

3. Derive the actual constant rk. Ding, Sly, and Sun [Ding
et al., 2015] were the first to prove the exact value of rk
for values of k bigger than 2. Their proof relies on the
result of Friedgut.

We now want to see if we can prove equivalents of these
results for non-uniform random k-SAT, more specifically for
the clause-drawing model. For non-uniform random 2-SAT
we already provided all ingredients to prove or disprove the
conjecture for given probability ensembles [Friedrich and
Rothenberger, 2019a; Friedrich and Rothenberger, 2019b].
For non-uniform random k-SAT with a power law probabil-
ity distribution, we provided the first step, showing that the
asymptotic threshold is Θ(n) if the power law exponent is
β > 2k−1

k−1 [Friedrich et al., 2017a].
The goal of this paper is to show the second ingredient for

proving the satisfiability threshold conjecture for non-uniform
random k-SAT, sharpness of the satisfiability threshold. In
addition to being a stepping stone to proving the conjecture,
sharpness of the threshold is of independent interest, since a
coarse threshold implies that there is a local property which
approximates unsatisfiability. For random SAT this means that
with constant probability instances have a constant-sized unsat-
isfiable subformula, making many instances easy to solve even
around the threshold. Moreover, some of our techniques could
also be used to analyze more sophisticated models, e.g. the
popularity-similarity model [Giráldez-Cru and Levy, 2017],
which was used in the 2017 SAT Competition.

1.5 Our Results:
We study the sharpness of the satisfiability threshold for non-
uniform random k-SAT and identify sufficient conditions
on the variable probability distribution which imply a sharp
threshold. Therefore, this work provides the second ingredient
for proving a version of the satisfiability threshold conjec-
ture for the non-uniform models D (n, k, (~pn)n∈N,m) and
F (n, k, (~pn)n∈N, s). In the context of these models, the clas-
sical result of Friedgut [Friedgut, 1999] reads as follows:
Theorem 1.1 (by Friedgut). For all n ∈ N let ~pn =
(1/n, 1/n, . . . , 1/n) be a variable probability distribution on
n variables. If there is an asymptotic satisfiability threshold
mc = t(n) on D (n, k, (~pn)n∈N,m), then satisfiability has a
sharp threshold on F (n, k, (~pn)n∈N, s) with respect to s, and
a sharp threshold on D (n, k, (~pn)n∈N,m) with respect to m.

Our main theorem extends this to our non-uniform model.
Theorem 1.2. Let k > 2, let (~pn)n∈N be an ensemble
of variable probability distributions on n variables each

and let sc = t(n) be an asymptotic satisfiability thresh-
old for F (n, k, (~pn)n∈N, s) with respect to s. If ‖~pn‖∞ =

o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
and ‖~pn‖22 = O

(
t−2/k

)
, then satis-

fiability has a sharp threshold on F (n, k, (~pn)n∈N, s) with
respect to s.

Furthermore, we show that the same holds for the clause-
drawing model of non-uniform random k-SAT.

Theorem 1.3. Let k > 2, let (~pn)n∈N be an ensemble of
variable probability distributions on n variables each and let
mc = t(n) = ω(1) be the asymptotic satisfiability thresh-
old for D (n, k, (~pn)n∈N,m) with respect to m. If ‖~pn‖∞ =

o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
and ‖~pn‖22 = O

(
t−2/k

)
, then satis-

fiability has a sharp threshold on D (n, k, (~pn)n∈N,m) with
respect to m.

Our results actually state that the threshold is sharp for
a certain, fixed value of n in the following sense: Let P
be the monotone property that a k-CNF is unsatisfiable
and let µs be the product probability measure induced by
F (n, k, (~pn)n∈N, s). It then holds that there is a function
s∗ = s∗(n) such that

µs(P ) =

{
o(1), if s 6 (1− ε)s∗
1− o(1), if s > (1 + ε)s∗.

It is still possible that the probability function behaves differ-
ently for higher n due to the changing number of variables and
probabilities. Nevertheless, Friedgut’s original result also only
asserts sharpness for a certain, fixed value of n. This is also the
reason why the sharp threshold result does not automatically
prove the satisfiability threshold conjecture: There could be
different sharp threshold functions (including leading constant
factors) for different values of n. For example, there could be
some strange oscillations of the function.

2 Proof Sketch
In the paper we only show Theorem 1.2, i. e. we show the
result in the non-uniform clause-flipping model. However, we
can show that in the context of the main theorem, the sharpness
of the threshold carries over to the clause-drawing model with
the same ensemble of probability distributions, thus implying
Theorem 1.3. We also show that under the same conditions,
the asymptotic thresholds of the two models coincide. This is
important in order to use Theorem 1.2 in the first place if only
the asymptotic threshold in D (n, k, (~pn)n∈N,m) is known.

The proof of Theorem 1.2 uses Bourgain’s Sharp Threshold
Theorem in the version from O’Donnell’s book [O’Donnell,
2014]. In general, it follows the lines of Friedgut’s
proof of sharpness for the threshold of uniform random k-
SAT [Friedgut, 1999].

We assume toward a contradiction that the threshold is
coarse. Then the Sharp Threshold Theorem tells us that there
have to be so-called “boosters” of constant size that appear
with constant probability in the random formula. These boost-
ers have the property that conditioning on their existence
boosts the probability of the random formula to be unsat-
isfiable by at least an additive constant.



One kind of booster are unsatisfiable subformulas of con-
stant size. Conditioning on these would boost the probability
to be unsatisfiable to one. We rule these out by showing that
they do not appear with constant probability.

Then, we consider subformulas, which give the second high-
est boost: maximally quasi-unsatisfiable subformulas. These
are subformulas which have only one satisfying assignment
for the variables appearing in them and adding any new clause
over those variables makes them unsatisfiable. We want to
show that these cannot boost the probability of a formula to
be unsatisfiable by a constant.

Again toward a contradiction, we assume, that conditioning
on a maximally quasi-unsatisfiable subformula T is enough to
boost the unsatisfiability probability by a constant. First, we
prove that conditioning on T is equivalent to adding a num-
ber of clauses of size shorter than k to the random formula
over variables not appearing in T . Then, we use a version of
Friedgut’s coverability lemma to show that, if adding these
clauses of size smaller than k makes the random formula unsat-
isfiable with constant probability, then also adding o(t) clauses
of size k makes the random formula unsatisfiable with nearly
the same constant probability. We prove that this probability
is dominated by the probability to make the original random
formula unsatisfiable for a slightly bigger scaling factor. How-
ever, due to the assumption of a coarse threshold, the slope of
the probability function for unsatisfiability has to be small at
one point in the threshold interval. If we consider exactly this
point, the probability to make the original random formula un-
satisfiable cannot be increased by a constant with our slightly
increased scaling factor. This contradicts our assumption that
the probability is boosted by a constant in the first place. Thus,
quasi-unsatisfiable subformulas cannot be boosters.

After showing this, every less restrictive subformula cannot
be a booster either. That means, the only possible boosters
are unsatisfiable subformulas, which we ruled out already.
Therefore, the implication of the Sharp Threshold Theorem
does not hold, which contradicts the assumption of a coarse
threshold and therefore proves the statement.

In order to come to this conclusion, we have to general-
ize Friedgut’s results, like showing that no short unsatisfiable
subformula can exist with sufficiently high probability. Fur-
thermore, his lemma to bound the maximum slope of the
probability function cannot be applied anymore, even in a
more general form. Instead, we use the maximum slope that
is implied by assuming a coarse threshold. Also, we had
to adapt Friedgut’s lemma which allowed us to substitute
clauses of size smaller than k with k-clauses. In his work, a
quasi-unsatisfiable subformula can spawn a constant number
of clauses of length k − 1. Now a quasi-unsatisfiable subfor-
mula can spawn clauses of any length l 6 k and it can spawn
more than a constant number of clauses.

3 Example Application of the Theorem
We can use Theorem 1.3 as a tool to show sharpness of the
threshold for non-uniform random k-SAT with different prob-
ability distributions on the variables. As an example, we apply
the theorem for an ensemble of power-law distributions.

Corollary 3.1. Let (~pn)n∈N be an ensemble of general power-
law distributions with the same power-law exponent β >
2k−1
k−1 + 1 + ε, where ε > 0 is a constant and ~pn is defined

over n variables. For k > 2 both F (n, k, (~pn)n∈N, s) and
D (n, k, (~pn)n∈N,m) have a sharp threshold with respect to
s and m, respectively.

Proof. From [Friedrich et al., 2017a] we know that the
asymptotic threshold for D (n, k, (~pn)n∈N,m) is at m =
Θ(n) for β > 2k−1

k−1 + ε. We know that this implies an
asymptotic threshold at s = Θ(n) for the clause-flipping
model F (n, k, (~pn)n∈N, s) with the same probability ensem-
ble (~pn)n∈N. It is now an easy exercise to see that

‖~pn‖22 =

n∑
i=1

p2n,i =


O
(
n−2

β−2
β−1

)
, β < 3

O
(
lnn
n

)
, β = 3

O
(
n−1

)
, β > 3

and that ‖~pn‖∞ = maxi=1,...,n(pn,i) = O
(
n−(β−2)/(β−1)

)
.

One can now verify ‖~pn‖22 = O
(
n−2/k

)
and

‖~pn‖∞ = o(n−k/(2k−1) · log−(k−1)/(2k−1)(n)) for
β > 2k−1

k−1 + 1 + ε and k > 2. This implies a sharp
threshold for F (n, k, (~pn)n∈N, s) and D (n, k, (~pn)n∈N,m)
due to Theorem 1.2 and Theorem 1.3.

4 Discussion
In our paper we show sufficient conditions on the variable
probability distribution of non-uniform random k-SAT for
the satisfiability threshold to be sharp. The main theorems
can readily be used to prove sharpness for a wide range of
random k-SAT models with heterogeneous distributions on
the variable occurrences: If the threshold function is known
asymptotically, one only has to verify two conditions on the
variable distribution, which can be done easily in most cases.

We suspect that it is possible to generalize the result to de-
manding only ‖~p‖∞ = o

(
t−1/k

)
, since the additional factor

is only needed in one lemma. In any case it would be inter-
esting to complement the result with matching conditions on
coarseness of the threshold.

We hope that our results make it possible to derive a proof
in the style of Ding, Sly, and Sun [Ding et al., 2015] for
certain variable probability ensembles, effectively proving the
satisfiability threshold conjecture for these ensembles.
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