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ZERO-SUM FLOWS FOR STEINER SYSTEMS

SAIEED AKBARI, HAMID REZA MAIMANI, LEILA PARSAEI MAJD,
AND IAN M. WANLESS

Abstract. Given a t-(v, k, λ) design, D = (X,B), a zero-sum n-flow of D is a map
f : B −→ {±1, . . . ,±(n− 1)} such that for any point x ∈ X , the sum of f over all
blocks incident with x is zero. For a positive integer k, we find a zero-sum k-flow for
an STS(uw) and for an STS(2v+7) for v ≡ 1 (mod 4), if there are STS(u), STS(w)
and STS(v) such that the STS(u) and STS(v) both have a zero-sum k-flow. In 2015,
it was conjectured that for v > 7 every STS(v) admits a zero-sum 3-flow. Here, it
is shown that many cyclic STS(v) have a zero-sum 3-flow. Also, we investigate the
existence of zero-sum flows for some Steiner quadruple systems.

1. Introduction

For a graph G we use V (G) and E(G) to denote the vertices and edges of G,
respectively. A zero-sum flow of G is an assignment of non-zero real numbers to the
edges of G such that the sum of the values of all edges incident with any given vertex
is zero. For a natural number n > 2, a zero-sum n-flow is a zero-sum flow with values
from the set {±1, . . . ,±(n − 1)}. For a subset S ⊆ E(G), the weight of S is defined
to be the sum of the values of all edges in S.

A t-(v, k, λ) design D (briefly, t-design), is a pair (X,B), where X is a v-set of points
and B is a collection of k-subsets of X , called blocks, with the property that every
t-subset of X is contained in exactly λ blocks. A t-(v, k, λ) design is also denoted
by Sλ(t, k, v). If λ = 1, then Sλ(t, k, v) is called a Steiner system, and λ is usually
omitted. If t = 2 and k = 3, then a 2-(v, 3, λ) design is denoted by TS(v, λ), and it is
called a triple system. For a triple system if λ = 1, then the design is called a Steiner

triple system and is denoted by STS(v).
Given an indexing of the points and blocks of a t-design D with the block set

B = {B1, . . . , Bb}, the incidence matrix of D is a v × b (0, 1)-matrix A = [aij ], where

aij =

{

1 if xi ∈ Bj ,
0 otherwise.

We refer the reader to [3] for notation and further results on designs.

2010 Mathematics Subject Classification. 05B05; 05B20; 05C21.
Key words and phrases. Zero-sum flow, Steiner triple system; Steiner quadruple system.
The research of the first author was partly funded by Iranian National Science Foundation (INSF)

under the contract No. 96004167. The research of the fourth author was supported by Australian
Research Council grant DP150100506.

1

http://arxiv.org/abs/2101.00867v1


2 S. AKBARI, H.R. MAIMANI, L. PARSAEI MAJD, AND I. M. WANLESS

Given a t-(v, k, λ)-design, D = (X,B), a zero-sum n-flow of D is a map f : B −→
{±1, . . . ,±(n−1)} such that for any point x ∈ X , the sum of f over all blocks incident
with x is zero. In other words, the sum of the block weights around any point is zero,
i.e.

w(x) =
∑

x∈B

f(B) = 0.

This is equivalent to finding a vector in the nullspace of the incidence matrix of the
design whose entries are all in the set {±1, . . . ,±(n−1)}. The following theorem and
two conjectures appeared in [2].

Theorem 1.1. Every non-symmetric 2-(v, k, λ) design admits a zero-sum k-flow for

some positive integer k.

Conjecture 1.2. Every non-symmetric design admits a zero-sum 5-flow.

Conjecture 1.3. Every STS(v), with v > 7, admits a zero-sum 3-flow.

Motivated by Conjecture 1.3, in Section 3 we prove that every cyclic STS(v) with
v > 7 admits a zero-sum k-flow for k = 3 or k = 4. In particular, we prove Conjecture
1.3 for cyclic STS(v) of order v ≡ 1 (mod 6) and v ≡ 9 (mod 18) and for many cyclic
STS(v) of other orders.

For graphs G and H , the join of G and H is the graph G ∨ H with vertex set
V = V (G)∪V (H) and edge set E = E(G)∪E(H)∪{uv : u ∈ V (G), v ∈ V (H)}. The
complete graph Kn is the graph with n vertices in which every two distinct vertices
are adjacent. The complete bipartite graph Kn,m is U ∨V where U and V are disjoint
independent sets with |U | = n and |V | = m. The complete tripartite graph Kℓ,n,m is
U ∨ V ∨W , where U , V and W are disjoint independent sets with |U | = ℓ, |V | = n
and |W | = m.

2. Zero-sum flows on STS(vw) and STS(2v + 7)

Let STS(v) and STS(w) be two Steiner triple systems such that the STS(v) has a
zero-sum k-flow for k > 3. In this section, we provide a zero-sum k-flow for a Steiner
triple system STS(vw). Moreover, we find a zero-sum k-flow for an STS(2v+7), where
v ≡ 1 (mod 4).

Our constructions will use Latin squares. A Latin square of order n with entries
from a set X is an n×n array L such that every row and column of L is a permutation
of X . Suppose that L1 and L2 are two Latin squares of order n with entries from X
and Y , respectively. We say that L1 and L2 are orthogonal provided that, for every
x ∈ X and y ∈ Y , there is a unique cell (i, j) such that L1(i, j) = x and L2(i, j) = y.
Note that by [3, p.12] for every positive integer v /∈ {2, 6}, there are orthogonal Latin
squares of order v. A transversal of a Latin square is a set of entries which includes
exactly one representative from each row and column and one of each symbol.

Remark 2.1. It is not hard to see that a Latin square has an orthogonal mate if and

only if it can be decomposed into disjoint transversals.
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We refer the reader to [12] for a survey of results on transversals in Latin squares.

Next, we recall the following construction for STS(vw), see [4].

Construction A. STS(vw)-Construction

Let (X,B) be an STS(v) on the set X = {x1, . . . , xv} and (Y,B′) be an STS(w) on
the set Y = {y1, . . . , yw}. Then define (Z, C) as an STS(vw) on the set Z = {zij, 1 6

i 6 v, 1 6 j 6 w} with two types of blocks as follows:
For j = 1, . . . , w, consider a copy Kj

v of the complete graph Kv, with vertex set
{z1j , . . . , zvj}. Using B, one can partition the edges of each Kj

v into triangles, for
j = 1, . . . , w. We say that the blocks made by these triangles are of Type A. Now,
consider the complete graph Kw with vertex set Kj

v for 1 6 j 6 w. Using B′ one can
partition the edges of Kw into triangles. Join every vertex of Ki

v to every vertex of
Kj

v , for 1 6 i < j 6 w. Using the partition of Kw, every triangle in Kw corresponds
to a complete tripartite graph Kv,v,v which has 3v2 edges. Now, for each triangle
{Kp

v , K
s
v , K

t
v} of Kw, where 1 6 p < s < t 6 w, consider a Latin square L = L(p, s, t)

of order v on the set {z1t, . . . , zvt} such that the rows and columns are indexed by
{z1p, . . . , zvp} and {z1s, . . . , zvs}, respectively. For 1 6 i 6 v and 1 6 j 6 v, we make
a block {zip, zjs, L(zip, zjs)} of Type B. It is not hard to see that all blocks of Type A
and Type B together form an STS(vw).

This construction allows us to prove the following lemma.

Lemma 2.2. Let v and w be two positive integers for which there exist STS(v) and

STS(w), where at least one of the STS(v) and STS(w) has a zero-sum k-flow for some

k > 3. Then there exists an STS(vw) which has a zero-sum k-flow.

Proof. Suppose that an STS(v) has a zero-sum k-flow for k > 3. In Construction A,
we let the blocks of Type A inherit a zero-sum k-flow from the STS(v). According to
Remark 2.1, since v /∈ {2, 6}, in Construction A one can choose Latin squares that
decompose into transversals T1, . . . , Tv, each of which corresponds to a collection of
blocks in the STS(vw). Now, assign values +2,−1,−1 to the blocks from T1, T2, T3,
respectively. Then, label the blocks from Ti with (−1)i for i = 4, . . . , v. In this way,
the Type B blocks defined by each Latin square contribute a total of zero to the
weight of every vertex. �

We need the following observation to prove our next results. This can be found in
[7, p.41].

Remark 2.3. For odd v, the edges of Kv+7 can be partitioned into v+7 triangles and

v 1-factors. Note that each vertex appears in exactly three triangles.

Construction B. STS(2v + 7)-Construction

Let (X,A) be a Steiner triple system of order v, with X = {x1, . . . , xv}, and let
Y be a set of size v + 7, such that X ∩ Y = ∅. Using Remark 2.3, partition the
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edges of Kv+7 with vertex set Y into a set L containing v + 7 triangles and a set
F = {F1, . . . , Fv} containing v 1-factors. Set Z = X ∪ Y and define a collection of
triples B as follows: We can consider a block corresponding to each triangle in L. Put
all such blocks in a set N . Now, join xi to the end vertices of each edge of Fi, for
i = 1, . . . , v, to obtain some new triangles. Let T be a set of blocks corresponding
to these new triangles. Then, (Z,B) is a Steiner triple system of order 2v + 7, where
B = A ∪N ∪ T . See [7, p.41–42].

Remark 2.4. Let n > 8 be an even positive integer, and let Y = {y1, . . . , yn}. It is

clear that n = v + 7, for some odd v > 1. We know that the edges of Kn, with vertex

set Y, can be partitioned into n triangles and v 1-factors, {F1, . . . , Fv}. If we assign

the value 1 to each of the n triangles, then the sum of the values of the three triangles

containing yi is 3, for i = 1, . . . , n.
Now, if v = 1, then we have just one 1-factor, F1. Assign −3 to each edge of F1.

Otherwise, v > 3. Assign −1 to the edges of F1, F2 and F3. Then assign (−1)j to

Fj for j = 4, . . . , v. Since v is odd, in all cases the sum of the values of the edges in

∪v
j=1Fj incident with yi is −3, for i = 1, . . . , n. Hence the total weight allocated to the

edges and triangles incident with any vertex in Y is 0.

Next, from a zero-sum k-flow for STS(v), we show how to obtain a zero-sum k-
flow for an STS(2v + 7), if v ≡ 1 (mod 4). We say that a graph G has a k-null

1-factorisation if G has a zero-sum k-flow and there is a 1-factorisation in which the
weight of each 1-factor is zero. We call each 1-factor in a k-null 1-factorisation of G
a k-null 1-factor. We use the following lemma, see the proof of Lemma 4.2 in [1].

Lemma 2.5. There exists a 3-null 1-factorization of Kn,n for every n > 3. If n is

even and n 6= 6, then Kn,n has a 2-null 1-factorization.

Theorem 2.6. Let v > 9 be a positive integer and v ≡ 1 (mod 4). If there exists an

STS(v) with a zero-sum k-flow for some positive integer k > 2, then there exists an

STS(2v + 7) with a zero-sum k-flow.

Proof. Let (X,A) be an STS(v), with X = {x1, . . . , xv}, which has a zero-sum k-flow,
and let Y be a set of size v + 7 such that X ∩ Y = ∅. Keep the values of the blocks
in A. Consider the Steiner triple system on X ∪ Y given in Construction B. Since
v ≡ 1 (mod 4) and v > 9, we know that v + 7 = 4s for some integer s > 5. Let
2s = t + 7, for some odd t > 3. We have Kv+7 = K ∨ K′, where K and K′ are
both copies of Kt+7. By Remark 2.3 we can decompose the edges of K into 1-factors
M1, . . . ,Mt and t + 7 triangles. We give each of these triangles a weight of 1. For
1 6 i 6 t and for each edge e in Mi we then make a new block containing xi and
the end vertices of e. We assign this block a weight equal to the value that e was
assigned in Remark 2.4. We then decompose K′ in a similar way into t + 7 triangles
and 1-factors M ′

1, . . . ,M
′

t. We allocate a weight of −1 to the t + 7 triangles and we
give each edge in M ′

i the negative of the weight that the edges in Mi were given. In
this way, when we join xi to M ′

i in the same way that we joined xi to Mi, the total
weight of the blocks incident with xi will be zero for 1 6 i 6 t. Similarly, Remark



ZERO-SUM FLOWS FOR STEINER SYSTEMS 5

2.4 shows that for any vertex in Y, there is zero total weight for the blocks so far
constructed that are incident with that vertex.

The edges between K and K′ form a Kt+7,t+7, which has a 2-null 1-factorization
F1, . . . , Ft+7, by Lemma 2.5. For i = 1, . . . , v − t and for each edge e′ in Fi, make a
new block containing xt+i and the end vertices of e′. Assign this block a weight equal
to the value that e′ received in the 2-null 1-factorization. By this process we obtain a
zero-sum k-flow for the STS(2v + 7) formed by Construction B. �

Remark 2.7. If v = 9 and there exists an STS(9) with a zero-sum 3-flow, then we

are not able to find a zero-sum 3-flow for the STS(25) obtained by Construction B.

This is because, in Remark 2.4 we utilised a weight of −3 in the case when t = 1.
Note that in this case, we can find a zero-sum 4-flow for the constructed STS(25).
However, in [1] it was proved that for every pair (v, λ) such that a TS(v, λ) exists,

there is one with a zero-sum 3-flow, except when (v, λ) ∈ {(3, 1), (4, 2), (6, 2), (7, 1)}.

It would be interesting to know if the restriction to v ≡ 1 (mod 4) is really needed
in Theorem 2.6.

Question 2.8. Let v, k be positive integers such that v ≡ 3 (mod 4) and k > 2.
Suppose that in Construction B we use an STS(v) that has a zero-sum k-flow. Is
there necessarily a zero-sum k-flow for the resulting STS(2v + 7)?

3. Flows in cyclic STS

In this section we are going to verify that for v > 7 each cyclic STS(v) has a zero-
sum 4-flow and that many such systems have a zero-sum 3-flow. First we need some
definitions.

An automorphism of a t-(v, k, λ) design, (X,B), is a bijection α : X −→ X such
that B = {x1, . . . , xk} ∈ B if and only if Bα = {x1α, x2α, . . . , xkα} ∈ B. A t-(v, k, λ)
design is called cyclic if it has an automorphism that is a permutation consisting
of a single cycle of length v; this automorphism is called a cyclic automorphism.
Throughout, we will assume for our cyclic t-(v, k, λ) design that X = Zv, and α :
i −→ i+1 (mod v) is its cyclic automorphism. The blocks of a cyclic t-(v, k, λ) design
are partitioned into orbits under the action of the cyclic group generated by α. Each
orbit of blocks is completely determined by any of its blocks, and B is determined by
a collection of blocks called base blocks (sometimes also called starter blocks or initial
blocks) containing one block from each orbit. For an example, X = {1, 2, 3, 4, 5, 6, 7}
and

B =
{

{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}
}

,

form an STS(7) which is cyclic, since the permutation α = (1234567) is an automor-
phism.

In 1939, Rose Peltesohn solved both of Heffter’s Difference Problems, see [10]. This
solution provides the following theorem, see [7, Section 1.7].
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Theorem 3.1. For all v ≡ 1 or 3 (mod 6) with v 6= 9, there exists a cyclic STS(v).

Remark 3.2. If v ≡ 1 (mod 6), every cyclic STS(v) has v−1
6

full orbits. Also, if

v ≡ 3 (mod 6), every cyclic STS(v) has v−3
6

full orbits and one short orbit which

contains the block {0, v
3
, 2v

3
}. Moreover, note that every full orbit contains each point

3 times, and each point appears once in the short orbit, see [4].

For v ≡ 3 (mod 6), we will classify orbits of a cyclic STS(v) into three types. For
i = 1, 2, 3 an orbit is of Type i if every block in the orbit contains representatives of
precisely i different congruence classes modulo 3. As v is divisible by 3, every orbit
will be of Type 1, Type 2 or Type 3 and its type can be established by examining any
single block in the orbit.

Since the incidence matrix of STS(7) has full rank, STS(7) has no zero-sum k-flow.
Also, by [7, Section 1.7], there is no cyclic STS(9). In the following we are going to
show that every cyclic STS(v) for v > 7 admits a zero-sum k-flow for k = 3 or k = 4.

We will split the v ≡ 3 (mod 6) case into three subcases: v ≡ 3, 9 or 15 (mod 18). In
the following we prove that if v ≡ 1 (mod 6) or v ≡ 9 (mod 18) and v 6= 7, then each
cyclic STS(v) admits a zero-sum 3-flow. In other words, Conjecture 1.3 is true for
these families of Steiner triple systems. Also, we show that for v ≡ 3 or 15 (mod 18),
each cyclic STS(v) has a zero-sum 4-flow. We need the following lemmas to prove our
main results.

Lemma 3.3. For v ≡ 9 (mod 18), every cyclic STS(v) has a full orbit of Type 3.

Proof. Suppose that there exists a cyclic STS(v), S, with no full orbit of Type 3. Let
S have t full orbits of Type 2 and s full orbits of Type 1. Note that t and s are two
non-negative integers and t + s = (v − 3)/6. Now, count the number of pairs {a, b}
where a 6≡ b (mod 3), among all blocks of S. Since the short orbit has Type 1, and
every full orbit has v blocks, we obtain the following equality:

2vt = 3
v

3
×

v

3
.

Hence t = v/6, a contradiction. �

Lemma 3.4. Let v ≡ 3 or 15 (mod 18) and S be a cyclic STS(v) with no full orbit

of Type 3. Then S has no full orbit of Type 1.

Proof. Suppose S has t full orbits of Type 2 and s full orbits of Type 1. We have
t + s = (v − 3)/6. Since v/3 is not divisible by 3, the short orbit has Type 3. Now,
count the number of pairs {a, b} in all blocks of S, where a 6≡ b (mod 3). We have

2tv + 3
v

3
= 3

v

3
×

v

3
.

Hence, t = (v − 3)/6 and s = 0. �

Remark 3.5. Let v ≡ 9 (mod 18), and suppose that a cyclic STS(v) has a full orbit

of Type 3 generated from a base block {a, b, c}. Then the blocks {a+3i, b+3i, c+ 3i}
for 0 6 i 6 v

3
− 1, contain exactly one occurrence of each point in Zv. This is because
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{a + 3i : 0 6 i 6 v
3
− 1} contains the v/3 points that are congruent to a (mod 3).

Similar statements holds for {b+3i} and {c+3i}, and these sets are disjoint because

the orbit is of Type 3.

Using Lemmas 3.3 and 3.4, and Remark 3.5, we have the following theorems about
the existence of a zero-sum k-flow with k = 3 or k = 4, for every cyclic STS(v).

Theorem 3.6. Every cyclic STS(v) for v ≡ 1 (mod 6) or v ≡ 9 (mod 18) with v 6= 7
admits a zero-sum 3-flow.

Proof. There is no cyclic STS(9), so v > 9 and we have at least two full orbits.
The case when v ≡ 1 (mod 6) is handled by [1, Theorem 1.7], so we assume that
v ≡ 9 (mod 18). In this case, by Lemma 3.3, there exists a full orbit with a block
{a, b, c} congruent to {0, 1, 2} (mod 3). So, assign the weight of all blocks within a
full orbit of Type 3 as follows:

−1,+1,+1,−1,+1,+1,−1,+1,+1, . . . .

Note that by Remark 3.5, each point gets weight +1 along this orbit. Now, if
O2, O3, . . . , O v−3

6

are the other full orbits, assign weight (−1)i+1 to every block Oi,

for 2 6 i 6 v−3
6
. If v−3

6
is odd, assign weight −1 to the blocks in the short orbit.

Otherwise, assign value 2 to the blocks in the short orbit. �

For the cases not covered by Theorem 3.6, we have the following result.

Theorem 3.7. Suppose that S is a cyclic STS(v), where v ≡ 3 or 15 (mod 18) and
v > 3. Then S has a zero-sum 4-flow. If S has any full orbit of Type 1 or Type 3,
then S has a zero-sum 3-flow.

Proof. We first show that S admits a zero-sum 4-flow. Assign value −3 to the blocks
in the short orbit. For the first full orbit, assign a value of 2 if there are an even
number of full orbits, and a value of 1 otherwise. For the other full orbits, alternate
between assigning −1 and 1 to the orbit. This produces a zero-sum 4-flow for S. If
S has a full orbit of Type 3, then similar to the proof of Theorem 3.6, there exists
a zero-sum 3-flow for S. By Lemma 3.4, we know that if some full orbit has Type 1
then there will be a full orbit of Type 3, so we are also done in that case. �

Corollary 3.8. Every cyclic STS(v) with v > 7 admits a zero-sum 4-flow.

We stress that Theorem 3.7 does not rule out the existence of a zero-sum 3-flow
for a cyclic STS(v) that has no full orbits of Type 1 or 3. Such triple systems do
exist. For example, any triple system built using three identical cyclic quasigroups
in the Bose Construction ([7, Section 1.2]), will have only full orbits of Type 2. We
next show that such STS may still have a zero-sum 3-flow. There are two cyclic
STS(15). The cyclic STS(15) with the base blocks {0, 1, 4}, {0, 2, 8} and {0, 5, 10} is
not obtained from the Bose construction, but the other one constructed by the base
blocks {0, 1, 4}, {0, 2, 9} and {0, 5, 10} arises from the Bose construction. However,
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both of them admit a zero-sum 3-flow and the full orbits of these cyclic STS(15) are
all of Type 2.

In the following one can find a zero-sum 3-flow for the cyclic STS(15) with the base
blocks {0, 1, 4}, {0, 2, 8} and {0, 5, 10}. The fourth number (after each block) is the
flow value assigned to that block. We omit the { } symbols in each block.

0 1 4 −1 0 2 8 1 0 5 10 2
1 2 5 −1 1 3 9 1 1 6 11 2
2 3 6 1 2 4 10 −1 2 7 12 2
3 4 7 −1 3 5 11 −1 3 8 13 2
4 5 8 1 4 6 12 −1 4 9 14 2
5 6 9 −1 5 7 13 −1
6 7 10 1 6 8 14 −1
7 8 11 −1 7 9 0 1
8 9 12 −1 8 10 1 −1
9 10 13 −1 9 11 2 −1
10 11 14 1 10 12 3 −1
11 12 0 −1 11 13 4 1
12 13 1 1 12 14 5 1
13 14 2 −1 13 0 6 −1
14 0 3 −1 14 1 7 −1

Also, a cyclic STS(15) with the base blocks {0, 1, 4}, {0, 2, 9} and {0, 5, 10} has a
zero-sum 3-flow as follows:

0 1 4 1 0 2 9 −1 0 5 10 1
1 2 5 −2 1 3 10 −2 1 6 11 1
2 3 6 1 2 4 11 2 2 7 12 1
3 4 7 −2 3 5 12 1 3 8 13 1
4 5 8 −1 4 6 13 2 4 9 14 −1
5 6 9 −2 5 7 14 2
6 7 10 1 6 8 0 −2
7 8 11 −2 7 9 1 2
8 9 12 1 8 10 2 1
9 10 13 2 9 11 3 −1
10 11 14 −2 10 12 4 −1
11 12 0 1 11 13 5 1
12 13 1 −2 12 14 6 −1
13 14 2 −2 13 0 7 −2
14 0 3 2 14 1 8 2

4. Steiner Quadruple Systems

In this section we study zero-sum k-flows in Steiner quadruple systems (SQS). For
k > 3 we show the following results. If we have a zero-sum k-flow for two SQS(v),
then we can find a zero-sum k-flow for an SQS(2v). Also, if there are an SQS(u) and
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an SQS(v) both with a zero-sum k-flow, then we can find a zero-sum k-flow for an
SQS(uv).

First we recall some definitions and background about Steiner quadruple systems
from [8] and [11]. A Steiner quadruple system (or simply a quadruple system) is a
pair (X,B) which is a 3-design with parameters (v, 4, 1) such that any 3-subset of X
belongs to exactly one block of B. A Steiner quadruple system of order v is denoted by
SQS(v). One obtains immediately that v ≡ 2 or 4 (mod 6) is a necessary condition for
the existence of an SQS(v). The total number of quadruples is 1

24
v(v− 1)(v− 2), the

number of quadruples containing a given element is 1
6
(v − 1)(v − 2), and the number

of quadruples containing a given pair of elements is 1
2
(v − 2). In 1960, Hanani [5]

proved that the set of possible orders for quadruple systems consists of all positive
integers v ≡ 2 or 4 (mod 6). If (X,B) is a quadruple system and x is any element in
X , put Xx = X \ {x} and B(x) = {B \ {x} : B ∈ B, x ∈ B}. It can be easily checked
that (Xx,B(x)) is a Steiner triple system which is called a derived triple system of the
quadruple system (X,B).

We now recall two recursive constructions of SQS(2v) and SQS(uv) from [8].

Construction C. SQS(2v)-Construction

Let v ≡ 2 or 4 (mod 6). Consider two disjoint copies of Kv, with vertex sets X
and Y such that |X| = |Y | = v. Let (X,A) and (Y,B) be any two SQS(v). Let
F = {F1, . . . , Fv−1} and G = {G1, . . . , Gv−1}, be two 1-factorizations of Kv on X and
Y, respectively. Assume that C = A ∪ B ∪ T on the point set Z = X ∪ Y , where the
elements of T are defined as follows:

If x1, x2 ∈ X and y1, y2 ∈ Y , then {x1, x2, y1, y2} ∈ T if and only if there exists i,
with 1 6 i 6 v − 1 such that x1x2 and y1y2 are edges in Fi and Gi, respectively. It is
shown in [8] that (Z, C) is an SQS(2v).

In the following lemma, we assume that there are two SQS(v) with a zero-sum
k-flow. Then, we find a zero-sum k-flow for an SQS(2v).

Lemma 4.1. Let (X,A) and (Y,B) be two SQS(v) with X ∩ Y = ∅, where both

SQS(v) have a zero-sum k-flow for k > 3. Then there is an SQS(2v) with a zero-sum

k-flow.

Proof. In Construction C, we keep the values of all blocks in A ∪ B. Hence, it only
remains to define weights for the blocks in T . First, we assign 2, −1 and −1, to the
elements of F1, F2, and F3, respectively, and assign (−1)i to Fi, for 4 6 i 6 v − 1.
Note that v − 1 is odd. Now, each block of T contains exactly one element of one
of the Fi, so we may assign the value of that element to the block. In this way, we
obtain a zero-sum 3-flow for an SQS(2v). �

Construction D. SQS(uv)-Construction

Let (X,A) and (Y,B) be an SQS(u) and an SQS(v), respectively, and consider
the following properties: Define a ternary operation 〈 , , 〉 on X by 〈a, b, c〉 = d
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whenever {a, b, c, d} ∈ A, and 〈a, a, b〉 = b. Now, denote Xy = X × {y}, and for
every y ∈ Y , let Ay be a collection of quadruples on Xy such that (Xy,Ay) is an

SQS(u). Let Y = {y1, . . . , yv}, and F (yi) = {F
(yi)
1 , F

(yi)
2 , . . . , F

(yi)
u−1} for i ∈ {1, . . . , v},

be a 1-factorization of Ku on Xyi. For the set X × Y define the following collection
C of quadruples:

(1) C contains every quadruple belonging to Ayi for any yi ∈ Y.
(2) If (a, yi), (b, yi) ∈ Xyi and (c, yj), (d, yj) ∈ Xyj for i < j, then

{(a, yi), (b, yi), (c, yj), (d, yj)} ∈ C

if and only if (a, yi)(b, yi) and (c, yj)(d, yj) are edges in F
(yi)
k and F

(yj)
k , respec-

tively, for some 1 6 k 6 u− 1.
(3) For every quadruple {yi, yj, yt, ys} ∈ B and for every three (not necessarily

distinct) elements a, b, c ∈ X , C contains {(a, yi), (b, yj), (c, yt), (〈a, b, c〉, ys)}
where i < j < t < s.

It is shown in [8] that (X × Y, C) is an SQS(uv).

In the following lemma we present a zero-sum k-flow for an SQS(uv) using Con-
struction D.

Lemma 4.2. Let (X,A) and (Y,B) be an SQS(u) and an SQS(v), respectively, both
having a zero-sum k-flow for some k > 3. Then there is an SQS(uv) which admits a

zero-sum k-flow.

Proof. In Construction D, one can ignore the blocks from (1) because they inherit
their value from the zero-sum flow of the SQS(u). It is not hard to see that there
exists a zero-sum 3-flow on the blocks from (2), by treating them as a complete
bipartite graph similar to the proof of Lemma 4.1. That leaves the blocks from (3),
where for each given block of B we have u3 quadruples in SQS(uv) because we have u
choices for each of a, b and c. There are exactly u2 blocks obtained from a given block
{yi, yj, yt, ys} ∈ B that contain an element (a, yi) for any fixed a ∈ X . Now, assign
to all blocks obtained from {yi, yj, yt, ys}, the weight of the block {yi, yj, yt, ys} in the
zero-sum k-flow for the SQS(v). In this way we obtain an SQS(uv) with a zero-sum
k-flow. �

A t-design (X,B) is said to be α-resolvable if there exists a partition of the collection
B into parts called α-parallel classes (or α-resolution classes) such that each point of
X occurs in exactly α blocks in each class. When α = 1, α is omitted. We denote
the number of α-parallel classes by ρ = r/α, where r is the number of appearances of
each point x ∈ X among the blocks of the design. A t-(v, k, λ) design is called an even

design when it is α-resolvable with even ρ. Moreover, a t-(v, k, 1) design, S(t, k, v),
is called i-partitionable (some literature uses the alternative term i-resolvable, but to
avoid confusion we will not) if the block set can be partitioned into S(i, k, v) designs
for 0 < i < t. Note that by [8, Section 11], if α = i = 2, then 2-resolvability
and 2-partitionability are the same for SQS(v). We refer the reader to [9] for more
information about these concepts.
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Lemma 4.3. A t-(v, k, λ) design has a zero-sum 2-flow if and only if it is even.

Proof. Let (X,B) be a t-(v, k, λ) design. If (X,B) is even, it is sufficient to assign +1
to each block in half, namely ρ

2
, of the α-parallel classes and assign −1 to each block

in the other half of the α-parallel classes. Note that α = r/ρ, where r is the number
of appearances of each point x ∈ X among the blocks of the design. For the converse,
suppose (X,B) has a zero-sum 2-flow. Since for each arbitrary element x ∈ X , there
exist r blocks containing x, exactly half of these blocks have the value +1 and the
rest have the value −1. If we take all blocks with the same value in a set, we have two
sets such that in each of them every element appears in r

2
blocks. Therefore, α = r

2
and ρ = 2. Hence, (X,B) is an even design. �

Remark 4.4. By [11, Theorem 10.1], a resolvable S(2, 4, v) exists if and only if

v ≡ 4 (mod 12). Moreover, a 2-partitionable SQS(v) is one that can be decomposed

into S(2, 4, v) designs. According to [6], a Steiner system S(2, 4, v) exists if and only

if v ≡ 1 or 4 (mod 12). So, a necessary condition for the existence of a 2-partitionable
SQS(v) is v ≡ 4 (mod 12). For any positive integer n, there exists a 2-partitionable
SQS(4n) as well as a 2-partitionable SQS(2pn+ 2), for p ∈ {7, 31, 127}, see [9].

Lemma 4.5. Let (X,B) be a 2-resolvable SQS(v). Then (X,B) has a zero-sum 3-flow.
Moreover, the derived triple system (Xx,B(x)) for any x ∈ X, also has a zero-sum

3-flow.

Proof. We can decompose (X,B) into v−2
2

S(2, 4, v) designs. We know that in this

case v ≡ 4 (mod 12), so v−2
2

is an odd number. Using this decomposition, it is not
hard to construct a zero-sum 3-flow for (X,B). For the second part, let x ∈ X and
consider all blocks of (X,B) containing x to construct the derived STS(v − 1). Let
y ∈ X \{x}. As we know each pair of elements of X appears in any obtained S(2, 4, v)
exactly once; y appears in all of these S(2, 4, v). By an appropriate assignment (using
the values 2,±1), one can obtain a zero-sum 3-flow on the derived STS(v − 1). �

Remark 4.6. By [8], the constructions of SQS(8) and SQS(10) are unique. We

show that SQS(8) and SQS(10) admit a zero-sum 3-flow. The following blocks form

SQS(8), and the value from {±1, 2} given on the right hand side of each block is the

flow assigned to that block.

1 2 4 8 1 3 5 6 7 1
2 3 5 8 1 1 4 6 7 1
3 4 6 8 2 1 2 5 7 2
4 5 7 8 −1 1 2 3 6 −1
1 5 6 8 −1 2 3 4 7 −1
2 6 7 8 −1 1 3 4 5 −1
1 3 7 8 −1 2 4 5 6 −1

Moreover, the blocks below form SQS(10), with the assigned flows of a zero-sum

2-flow specified next to the corresponding blocks. Note that its derived STS(9) also
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has a zero-sum 2-flow.

1 2 4 5 1 1 2 3 7 −1 1 3 5 8 1
2 3 5 6 −1 2 3 4 8 1 2 4 6 9 −1
3 4 6 7 1 3 4 5 9 −1 3 5 7 0 1
4 5 7 8 −1 4 5 6 0 1 1 4 6 8 −1
5 6 8 9 1 1 5 6 7 −1 2 5 7 9 1
6 7 9 0 −1 2 6 7 8 1 3 6 8 0 −1
1 7 8 0 1 3 7 8 9 −1 1 4 7 9 1
1 2 8 9 −1 4 8 9 0 1 2 5 8 0 −1
2 3 9 0 1 1 5 9 0 −1 1 3 6 9 1
1 3 4 0 −1 1 2 6 0 1 2 4 7 0 −1

Corollary 4.7. Every SQS(v) admits a zero-sum k-flow for some positive integer k.

Proof. Since every 3-design is also a 2-design, by Theorem 1.1, the assertion is proved.
�
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