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Abstract In this paper, we bound the integrality gap and the approxima-
tion ratio for maximum plane multiflow problems and deduce bounds on
the flow-cut-gap. We consider instances where the union of the supply and
demand graphs is planar and prove that there exists a multiflow of value at
least half the capacity of a minimum multicut. We then show how to convert
any multiflow into a half-integer flow of value at least half the original multi-
flow. Finally, we round any half-integer multiflow into an integer multiflow,
losing at most half the value thus providing a 1/4-approximation algorithm
and integrality gap for maximum integer multiflows in the plane.
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1 Introduction

Given an undirected graph G = (V, E) with edge capacities c : E → R+,
and some pairs of vertices specified as edges of the graph H = (V, F), the
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maximum-multiflow problem with input (G, H, c), asks for the maximum flow
that can be routed in G, simultaneously, between the endpoints of edges in F,
while respecting the capacities c.

This is one of many widely studied variants of the multiflow problem.
Other popular variants include demand flows, all or nothing flows, unsplit-
table flows etc. In this paper, we are primarily interested in the integer version
of this problem, but would also be considering the half-integer and fractional
versions. When capacities are 1, the capacity constraint specialises to edge-
disjointness, whence the maximum edge disjoint paths problem (MEDP) between
given pairs of vertices is a special case. MEDP is NP-Hard even for very re-
stricted settings like when G is a tree [11].

The edges in F are called demand edges (sometimes commodities), those in
E are called supply edges; accordingly, H = (V, F) is the demand graph, and G =
(V, E) is the supply graph. If G + H = (V, E∪ F) is planar we call the problem
a plane multiflow problem. Plane multiflows have been studied for the past
forty years, starting with Seymour [27]. A flow of maximum value can be
computed in (strongly) polynomial time ([25], 70.6, page 1225) using linear
programming. If the flow on every path is integer or half-integer, we say that
the flow is integer or half-integer, respectively. Middendorf and Pfeiffer [21]
showed that the problem of finding edge disjoint paths between endpoints of
demand edges is NP-hard even in the special case when G + H is planar, and
this also implies NP-hardness of the problem of finding maximum integer
flow in this special case.

A multicut for (G, H) is a set of edges M ⊆ E whose removal disconnects
the endpoints of every demand edge. An inclusion-wise minimal multicut
defines a partition of V such that all demand edges have endpoints in differ-
ent sets of the partition; the supply edges with endpoints in different sets of
the partition form the multicut. The capacity of a multicut is the sum of ca-
pacities of edges in the multicut. It is easy to see that the value of any feasible
multiflow is less than or equal to the capacity of any multicut. Klein, Math-
ieu and Zhou [16] prove that computing the minimum multicut is NP-hard if
G + H is planar, and they also provide a PTAS for this problem.

How large is the ratio of the minimum multicut to the maximum mul-
tiflow for instances in a given class? This question has been considered for
many graph classes and in this paper we refer to the ratio as the flow-cut
gap1 The integer (resp. half-integer) flow-cut gap is the ratio of the minimum
multicut to the maximum integer (resp. half-integer) multiflow. The integer
flow-cut gap is 1 when G is a path and 2 when G is a tree. For arbitrary (G, H),
the flow-cut gap is θ(log |F|) [10]. Building on decomposition theorems from
Klein, Plotkin and Rao [15], Tardos and Vazirani [28] showed a flow-cut gap
of O(r3) for graphs which do not contain a Kr,r minor; note that for r = 3
this includes the class of planar graphs. A long line of impressive work, cul-
minated in [26] proving a constant approximation ratio for maximum half-

1 A reader familiar with the literature on multiflows with specified demands will note that the
flow-cut gap usually refers to the ratio of the sparsest cut to the maximum fraction of demands
that can be concurrently routed.
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integer flows, which together with [28] implies a constant half-integer flow-
cut gap for planar supply graphs. A simple topological obstruction proves
that the integer flow-cut gap for planar supply graphs, even when all demand
edges are on one face of the graph, also called Okamura-Seymour instances, is
Ω(|F|)[11].

Besides flow-cut gaps, this paper also considers the (half)-integrality gap
of multiflow problems. The (half)-integrality gap for an instance is the ratio
of the maximum (half)-integer flow to the maximum fractional flow and the
(half)-integrality gap for a class is the maximum (half)-integrality gap for any
instance in that class. A ρ-approximation algorithm (ρ ∈ R) for a maximisa-
tion (resp. minimisation) problem is a polynomial algorithm which outputs a
solution of value at least (resp. at most) ρ times the optimum; ρ is also called
the approximation ratio (or guarantee).

Our first result (Section 3, Theorem 1) is an upper bound of 2 for the flow-
cut gap (i.e. multicut/multiflow ratio) for plane instances. We prove this by
relating multicuts to 2-edge-connectivity-augmentation in the planar dual,
and using the algorithm of Williamson, Goemans, Mihail and Vazirani [30]
for this problem. We next show (Section 4, Theorem 3) how to obtain a half-
integer flow from a given (fractional) flow in plane instances, by reducing
the problem to a linear program with a particular combinatorial structure,
and solving it in integers. Finally (Section 5, Theorem 4), given any feasible
half-integer flow, we show how to extract an integer flow of value at least
half of the original, in polynomial time, using the 4-color theorem for planar
graphs [23].

Our results imply a half-integrality gap of 1/2 and an integrality gap of
1/4 for maximum multiflows in plane instances. These together with the
flow-cut gap of 2 imply a half-integer flow-cut gap of 4 and an integer flow-
cut gap of 8 for plane instances. Our proofs are constructive and lead to a
2-approximation algorithm for minimum multicut, a 1/2-approximation al-
gorithm for maximum half-integer flows and a 1/4-approximation algorithm
for maximum integer flows. In section 6 we provide an example which shows
a lower bound of 3/2 on the flow-cut gap and a lower bound of 2 on the half-
integer flow-cut gap. Figure 1 provides a summary of our results.

Independent of this work Huang, Mari, Mathieu, Vygen [13] gave con-
stant bounds on the flow-cut and integrality gaps for multiflows on plane in-
stances. Although their bounds are not as sharp as the ones in this paper, they
propose an interesting new rounding method, and prove a new complexity
result (stated in the next section). In another paper Huang, Mari, Mathieu,
Vygen [14] generalize our results to prove a O(g3.5 log g) integer flow-cut gap
when G + H can be embedded on an orientable surface of genus g.

Garg and Kumar [8] modified the primal-dual algorithm of Williamson et
al. [30] to compute a multicut of capacity at most twice a half-integer flow.
This improves the half-integer flow-cut gap to 2 and the integer flow-cut gap
to 4 for plane instances. However, their results do not imply better bounds on
the (half)-integrality gap.
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2 Preliminaries

Let (G, H, c), G = (V, E), H = (V, F), c : E → R+ be an instance of a plane
multiflow maximisation problem. Let Pe (e ∈ F) be the set of simple paths in
G between the endpoints of e, and P := ∪e∈FPe. For P ∈ Pe, the edge e is
said to be the demand-edge of P, denoted by eP. A multiflow, or for simplicity
a flow in this paper, is a function f : P → R+. For a path P ∈ P , we refer to
f (P) as the flow on P. The flow f is called feasible, if ∑{P∈P :e∈P} f (P) ≤ c(e)
for all e ∈ E. The value of a flow f is defined as | f | := ∑P∈P f (P).

In this paper we are primarily concerned with finding a flow of maximum
value and do not place any upper bound on the flow between endpoints of a
particular demand edge e. Such an upper bound can be realized by replacing
edge e with two edges in series - a demand edge (which we continue to call e)
and a supply edge of capacity d(e). In the instance so obtained the maximum
flow between endpoints of e cannot exceed d(e). We will use this transfor-
mation later in this paper and refer to it as capping demands. Middendorf and
Pfeiffer [21] proved that finding edge disjoint paths between endpoints of
demand edges in a plane instance is NP-hard. By setting all capacities to 1
and capping demands to 1, we obtain an instance of a plane multiflow max-
imisation problem which has an integer flow of value |F| if and only if there
are edge disjoint paths between endpoints of demand edges. This establishes
NP-hardness of the integer plane multiflow maximization problem.

Demand flows and the Cut Condition An instance of the demand flow problem is
defined by the quadruple (G, H, c, d), where G, H, c are as before, demands d :
F → Z+ are given, and we are looking for a feasible (sometimes in addition
integer or half-integer) flow f satisfying ∑P∈Pe f (P) = d(e) for all e ∈ F.

In a graph G = (V, E), for S ⊂ V, E′ ⊂ E, we denote by δE′(S) the set
of edges of E′ with exactly one endpoint in S. A cut in G is a partition of the
vertex set (S, V \ S). Note that δE(S) = δE(V \ S) are the edges in the cut and
S, V \ S are called the shores of the cut. We adopt the usual way of extending
a function on single elements to subsets. For instance, d(F′) := ∑e∈F′ d(e) is
the demand of the set F′ ⊂ F.

A necessary condition for the existence of a feasible multiflow satisfy-
ing all demands is the so called Cut Condition: for every S ⊆ V, c(δE(S)) ≥
d(δF(S)), that is, the capacity of each cut must be at least as large as its de-
mand. The cut condition is not sufficient for a flow in general, but Seymour
[27] showed that it is sufficient provided G + H is planar. We call G + H Eu-
lerian when capacities and demands are integer, and their sum, on the edges
incident to any vertex, is even. Seymour in fact showed that the cut condition
is sufficient for a half-integer flow in plane instances with integer capacities
and demands. The same also holds true for Okamura-Seymour instances [22].
Moreover, if G + H is Eulerian then the cut condition is sufficient for the ex-
istence of integer multiflows in both of these cases. There are more examples,
unrelated to planarity, where the cut condition is sufficient to satisfy all de-
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mands, and with an integer flow, for instance when all demand edges can be
covered by at most two vertices.

Planar Duality Following Schrijver [25, p. 27] let (G + H)∗ = (V∗, E∗ ∪ F∗)
be the planar-dual of G + H. Note that V∗ corresponds to faces in the planar
embedding of G + H and each edge e ∈ E (resp. f ∈ F) corresponds to an
edge e∗ ∈ E∗ (resp. f ∗ ∈ F∗) joining the two faces that share e (resp. f ).
The cost of an edge in E∗ equals the capacity of the corresponding edge in E;
we overload notation and let c : E∗ → Z+ be this cost function. Let r∗ be the
vertex in (G+ H)∗ corresponding to the infinite face of the planar embedding
of G + H.

For X ⊆ E denote X∗ := {e∗ : e ∈ X}. A circuit is a connected subgraph
with all vertices having degree two. An important fact about planar duality
we use is that C is an inclusion-wise minimal cut in G+ H if and only if C∗ is a
circuit in (G + H)∗. This correspondence between cuts in a planar graph and
circuits in the dual allows one to transform any fact on cuts to circuits in the
dual and vice versa. For example fractional, half-integer or integer packings
of cuts in (G + H)∗, where each cut contains exactly one edge of F∗ corre-
spond to a fractional, half-integer or integer multiflow in G + H.

Seymour’s proof on the sufficiency of the cut condition for plane instances
is based on a nice correspondence to other combinatorial problems through
planar duality. The cut condition can be checked in polynomial time as it
reduces to the problem of checking whether F∗ is a minimum cost T-join (see
eg. [25]) in (G + H)∗, where T is the set of odd degree vertices of F∗, edges
in E∗ have cost equal to the capacity of the corresponding edge in E, and
edges of F∗ have cost equal to the demand of the corresponding edge in F.
However, checking if demands can be routed integrally is NP-hard [21].

It is tempting to reduce multiflow maximisation to demand flows and
use the sufficiency of the cut condition to compute a maximum (half-)integer
multiflow. Given a multiflow f assign every edge e ∈ F∗ a length equal to
the negative of the flow between the endpoints of e. Let every edge in E∗

be assigned a length equal to its capacity. Since f is feasible, all circuits in
(G + H)∗ have non-negative length. Thus the problem of finding a maximum
(half-)integer multiflow can be viewed as finding an assignment of negative
lengths to edges in F∗ of maximum total absolute value so that all circuits
in (G + H)∗ have non-negative length. Note however, that since the Eule-
rian condition need not be satisfied, an integer solution to this problem only
implies a half-integer multiflow2. Further, finding such an integer solution
when G + H is planar is NP-hard as was proved recently [13].

Laminar Families and Flows Let S be a collection of subsets of a ground set X.
The family S is laminar if for all S1, S2 ∈ S , either S1 ∩ S2 = φ or S1 ⊂ S2 or
S2 ⊂ S1. If for all S1, S2 ∈ C ⊆ S either S1 ⊂ S2 or S2 ⊂ S1 then C is a chain.

2 Let G = C4 (a circuit on 4 vertices) and H = 2K2 (complement of G) so G + H = K4. The
supply edges have capacity 1 and the demands are capped at 1. An integer solution which routes
1 unit of each demand can only route flow half-integrally.
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A chain is full (in S) if for all X, Y, Z ∈ S , X ⊆ Y ⊆ Z and X, Z ∈ C implies
Y ∈ C. Edmonds and Giles [4] showed that the sets of any laminar family can
be represented as vertices of a rooted directed tree (arborescence) such that
full chains correspond to directed paths.

With every path P ∈ P in G on which flow can be routed we associate a
set of vertices φ(P) ⊆ V∗ \ {r∗} defined as follows: if C is the circuit P∪ {eP}
then φ(P) is the unique set of vertices in V∗ \ {r∗} such that δ(φ(P)) = C∗.
Given a multiflow f in (G, H), let S( f ) =

{
A ⊆ V∗ \ r∗, f (φ−1(A)) > 0

}
.

Thus, S( f ) is the collection of subsets of V∗ \ {r∗}, corresponding to paths
P ∈ P such that f (P) > 0.

If S( f ) is laminar then we say that multiflow f is laminar.

Lemma 1 For every feasible multiflow f there exists a laminar feasible multiflow f ′

such that | f ′| = | f |, and f ′ can be found in polynomial time.

Proof Given a instance (G, H, c, d) of the demand flow problem where G + H
is planar, Matsumoto et al. [20] give a O(n5/2 log n) algorithm which com-
putes a laminar flow satisfying all demands or shows that the cut condition
is violated (Theorem 4, [20]). Given any feasible fractional flow f , for every
demand edge we can compute the total flow routed between its endpoints
and use the algorithm in [20] to compute a laminar flow, f ′, in O(n5/2 log n)
time. ut

3 Multi-Cuts and 2-Edge Connectivity Augmentation

In this section we show that computing a multicut when G + H is planar
is equivalent to solving a 2-edge connectivity augmentation problem. This
equivalence allows us to prove that the the flow-cut gap is at most two for
plane instances.

Given G = (V, E), H = (V, F), a 2-connector for H in G is a set of edges Q ⊆
E such that each e ∈ F is contained in a circuit of Q∪ F. If H = (V, F) contains
a circuit, we can contract all edges of this circuit in both G, H to obtain a
smaller equivalent problem. Hence, it is no loss of generality to assume that
H is a forest.

The following lemma shows a one to one correspondence between a mul-
ticut in (G, H) and a 2-connector for (V∗, F∗) in (V∗, E∗).

Lemma 2 The edge-set Q ⊆ E is a multicut for (G, H) if and only if Q∗ is a 2-
connector for (V∗, F∗) in (V∗, E∗).

Proof The edge-set Q ⊆ E forms a multicut in G if and only if for every de-
mand edge (u, v) ∈ F, the endpoints u, v are in different connected compo-
nents of (V, E \Q). This implies that for all (u, v) ∈ F there exists a inclusion-
wise minimal set of edges C ⊆ Q∪ F such that C is a u− v cut in G+ H. How-
ever, C is an inclusion-wise minimal cut in G + H if and only if C∗ ⊆ Q∗ ∪ F∗

is a circuit in G∗ + H∗. Hence Q ⊆ E forms a multicut in G, if and only if for
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all f ∗ ∈ F∗ there exists a circuit C∗ in Q∗ ∪ F∗ such that f ∗ ∈ C∗. This implies
Q∗ is a 2-connector for (V∗, F∗), in (V∗, E∗).

We now prove the converse. Let Q∗ be a 2-connector for (V∗, F∗) in (V∗, E∗).
We show that the dual edges corresponding to Q∗, ie. Q, form a multicut in
G. Consider an edge f ∗ ∈ F∗. Since Q∗ is a 2-connector for (V∗, F∗), there
exists a circuit C∗ ⊆ Q∗ ∪ F∗ containing f ∗. The corresponding dual edges C
form a cut separating the endpoints of f in G + H. This argument applies to
each edge in F∗ and shows that Q is a multicut for the instance (G, H). ut

Given graphs G = (V, E), H = (V, F) and edge costs c : E → R+, the
2-edge-connectivity Augmentation Problem (2ECAP) is to find a minimum cost 2-
connector for H in G. The 2ECAP is a NP-hard network design problem and
similar problems have been studied extensively. In a network design problem
given graph G = (V, E) with edge costs c : E → R+, we find a minimum-
cost subgraph such that the number of edges crossing each cut (S, S), S ⊂ V
is at least a specified requirement, r(S) where r : 2V → Z+ is the require-
ment function. A network design problem can be formulated as an integer
program.

minimize ∑e∈E c(e)x(e)
subject to

∑e∈δE(S) x(e) ≥ r(S) S ⊆ V
x(e) ∈ {0, 1} e ∈ E

Relaxing the integrality constraint on x(e) to 0 ≤ x(e) ≤ 1 gives a linear
program whose (LP)-dual is:

maximize ∑S⊆V r(S)y(S)
subject to

∑S:e∈δE(S) y(S) ≤ c(e) e ∈ E
y(S) ≥ 0 S ∈ V

A requirement function r : 2V → {0, 1} is called uncrossable if r(V) = 0 and
for any A, B ⊆ V, r(A) = r(B) = 1 implies either r(A ∩ B) = r(A ∪ B) = 1
or r(A \ B) = r(B \ A) = 1. For uncrossable r, Williamson et al. [30] gave a
primal-dual 2-approximation algorithm (the WGMV algorithm) for the above
integer program. The WGMV algorithm returns a feasible solution xWGMV to
the integer program and a feasible dual solution yWGMV, such that

∑
e∈E

c(e)xWGMV(e) ≤ 2 ∑
S⊆V

r(S)yWGMV(S)

To frame 2ECAP as a network design problem we view 2ECAP as finding
a minimum cost set of edges Q ⊆ E such that for all S ⊆ V, |δF(S)| = 1
implies

∣∣δQ(S)
∣∣ ≥ 1. This suggests defining a requirement function, rF : 2V →

{0, 1} as rF(S) = 1 if and only if |δF(S)| = 1. 2ECAP is then a network design
problem with the 0-1 requirement function rF.

Lemma 3 Given H = (V, F), rF as defined above is uncrossable.
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Proof We prove the claim by case analysis. Suppose rF(A) = rF(B) = 1 and
f1 ∈ F be the unique edge incident to A and f2 ∈ F the unique edge incident
to B. We consider two cases:
Case 1: f1 = f2. Either f1 has endpoints in A \ B and B \ A or in A ∩ B and

A ∪ B. In the former case, rF(A \ B) = rF(B \ A) = 1 and in the latter case
rF(A ∩ B) = rF(A ∪ B) = 1.

Case 2: f1 6= f2.
2.1 Both f1 and f2 have an endpoint in A ∩ B. Then the other endpoints

are in B \ A and A \ B which implies rF(A \ B) = rF(B \ A) = 1.
2.2 Neither f1 nor f2 have an endpoint in A ∩ B. Then both f1, f2 have an

endpoint in V \ A ∪ B which implies rF(A \ B) = rF(B \ A) = 1.
2.3 Exactly one of f1, f2, say f1, has an endpoint in A ∩ B. Then the other

endpoint of f1 is in B \ A. Then f2 has endpoints in B \ A and A ∪ B
which implies rF(A ∩ B) = rF(A ∪ B) = 1.

In all cases we concluded that either rF(A \ B) = rF(B \ A) = 1 or rF(A ∩
B) = rF(A ∪ B) = 1 which proves the claim. ut
The above lemma implies that one can use the WGMV algorithm to obtain a
2-approximation algorithm for the 2ECAP problem which in turn leads to a 2-
approximation algorithm for the multicut. We formalise this in the following
Theorem.

Theorem 1 Let (G, H, c) be a plane multiflow problem. Then there exists a feasible
multiflow f and a multicut Q, such that c(Q) ≤ 2| f |, and both f and Q can be
computed in polynomial time.

Proof We run the WGMV algorithm on the 2ECAP instance (V∗, E∗), (V∗, F∗)
and let Q = {e ∈ E, xWGMV(e∗) = 1}. To simplify presentation we let r denote
the requirement function rF∗ . By the feasibility of xWGMV it follows that for
all S ⊆ V∗,

∣∣δQ∗(S)
∣∣ ≥ r(S). Hence if |δF∗(S)| = 1 then

∣∣δQ∗(S)
∣∣ ≥ 1 which

implies Q∗ is a 2-connector of (V∗, F∗) in (V∗, E∗) and which in turn implies
that Q is a multicut in (G, H).

Consider a set S ⊆ V∗ with r(S) = 1. Then |δF∗(S)| = 1 and let e∗ =
δF∗(S). This implies there exists a circuit C in G + H containing e such that
C∗ ⊆ δ(S). Hence C \ F is a path in G; denote this by PS. Define a mul-
tiflow f in G + H by setting for all S ⊆ V∗, f (PS) = yWGMV(S). The fea-
sibility of f follows from the feasibility of the dual solution yWGMV. Since
| f | = ∑S⊆V∗ r(S)yWGMV(S), we get

c(Q) = ∑
e∈E

c(e)xWGMV(e∗) ≤ 2 ∑
S⊆V∗

r(S)yWGMV(S) = 2| f |,

which proves the Lemma. ut
If yWGMV is half-integer (assuming integer edge-costs), the multiflow f

is half-integer and this implies a half-integer flow-cut gap of 2. The WGMV
algorithm does not necessarily produce half-integer dual solutions, but it can
be modified to do so, thus establishing the upper bound of 2 on the half-
integer flow-cut gap [8].
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4 From Fractional to Half-Integer Flow

We assume edge capacities are integers and show how to round a laminar
flow f into a laminar integer flow f ′, | f ′| ≥ | f |, where f ′ violates edge capac-
ities by at most 1. As a corollary we obtain a laminar half-integer flow f1/2
which respects edge capacities and | f1/2| ≥ | f |/2.

Let us denote by 1 the all 1 function on E.

Theorem 2 Let (G, H, c) be a plane multiflow problem, where c : E → Z+. Given
a laminar multiflow f , one can in polynomial time compute a laminar integer multi-
flow f ′ which is feasible for the capacity function c + 1 and | f ′| ≥ | f |.

Proof Let S( f ) = L. Since f respects capacity constraints, for every edge
e ∈ E, ∑L∈L,e∗∈δ(L) f (L) ≤ c(e). Conversely any solution x to the following
linear program is a feasible multiflow in (G, H, c)

[LP1] maximize ∑L∈L x(L)
subject to

∑L∈L,e∗∈δ(L) x(L) ≤ c(e) ∀e ∈ E
x(L) ≥ 0 ∀L ∈ L

For a 6= b ∈ V∗, let L(a, b) = {L ∈ L : a ∈ L, b /∈ L}. The sets in L which
contribute to the constraint corresponding to edge e in [LP1] are exactly the
sets in L(u, v) and L(v, u) where e∗ = (u, v). Let d(u, v) = ∑L∈L(u,v) f (L) and
since f is a feasible multiflow d(u, v) + d(v, u) ≤ c(e). Consider the linear
program

[LP2] maximize ∑L∈L x(L)
subject to

∑L∈L(u,v) x(L) ≤ dd(u, v)e ∀(u, v) ∈ E∗

∑L∈L(v,u) x(L) ≤ dd(v, u)e ∀(u, v) ∈ E∗

x(L) ≥ 0 ∀L ∈ L

Note that f is a feasible solution to this linear program. Let f ′ be an op-
timum solution; then ∑L∈L f ′(L) ≥ ∑L∈L f (L) = | f |. By assigning a flow
value f ′(L) to the path P ∈ P where φ(P) = L, we get a multiflow in
(G, H) which need not be feasible since it might violate capacity constraints.
However, since dd(u, v)e + dd(v, u)e ≤ c(e) + 1, we have that for all e ∈ E,
∑L∈L,e∗∈δ(L) f ′(L) ≤ c(e) + 1, and so the violation of any capacity constraint
is by at most 1. Thus f ′ is a feasible multiflow for (G, H, c + 1).

We now argue that f ′ is an integer solution. The sets of L appearing in
any constraint in LP2 correspond to full chains in L and hence correspond
to directed paths in a rooted arborescence representing L. This implies that
the constraint matrix of [LP2] is a network matrix and as such, is totally uni-
modular, which implies [LP2] has an integer optimum which can be com-
puted in polynomial time. ut
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The rooted arborescence representation of L and its consequence for the in-
teger optimum of linear programs through total unimodularity are highly
nontrivial but well-known tools of combinatorial optimization developed by
Edmonds and Giles [4]. The existence of an integer optimum solution was
proved by Tutte [29] (see also [6, 1.4.1, Section 4.2.2] and [25, Theorem 13.21,
pages 213-216]) and Hoffman and Kruskal [12], [24, Theorem 19.3 (ii), p. 269]
showed that the integer optimum can be computed in polynomial time. Our
variant of the matrix representation is similar to the “one-way cut incidence
matrix” of [18, Theorem 5.28].

For integer capacities c, (c + 1)/2 ≤ c. Hence f1/2 = f ′/2 is a half-integer
feasible flow and | f1/2| ≥ | f |/2, proving the following Theorem.

Theorem 3 Let (G, H, c) be a plane multiflow problem, where c : E → Z+. Given
a laminar multiflow f , one can in polynomial time compute a half-integer laminar
multiflow f1/2 such that | f1/2| ≥ | f |/2.

It is interesting to contrast Theorem 2 with similar results for demand
flows in non-Eulerian plane instances satisfying the cut condition. Korach
and Penn [17] proved that all demands with the exception of at most one
unit on each bounded face of G can be routed integrally. Frank and Szigeti [7]
extended this result to prove that if for every set S ⊂ V, c(δE(S))− d(δF(S))
exceeds the number of faces of G containing a demand edge in δF(S), then all
demands can be routed integrally.

Recall that [8] sharpens Theorem 1 by showing a half-integer multiflow f
of value at least half the capacity of a multicut and hence at least half the max-
imum fractional flow. While [8] provides an alternate argument to show that
the half-integrality gap is 1/2 we believe that the sharper result in Theorem 2
is of independent interest.

5 From Half-Integer to Integer Flow

In this section, we show how to round a laminar half-integer flow to an inte-
ger one, losing at most one half of the flow value. Note that a laminar half-
integer flow is provided by Theorem 3.

In order to round the half-integer flow to an integer flow we will need
to find a stable-set of size n/4 in a planar auxiliary graph on n vertices. The
maximum stable set problem is NP-hard, but there is a PTAS for it in planar
graphs [2], which, combined with the 4-color theorem [1] provides a stable-
set of size n/4. An alternative is to use the 4-coloring algorithm of Robertson,
Sanders, Seymour and Thomas [23] which directly provides a 4-coloring of a
planar graph in polynomial time, and the largest color class is clearly of size
at least n/4.

Theorem 4 Let (G, H, c) be a plane multiflow problem, where G = (V, E), H =
(V, F) and c : E → Z+. Given a laminar, half-integer multiflow f1/2, one can in
polynomial time compute a laminar integer multiflow f ′ such that | f ′| ≥ | f1/2|/2.
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Fig. 1: The graph G + H with edges of H dotted and G solid. The paths along
which half-integer flow is routed are shown dashed. The tree T is on the top
right while the auxiliary graph U corresponding to vertex vB0 is at the bottom
right.

Proof Let T be a rooted arborescence whose vertices are the sets in the laminar
family L = S( f1/2). Let vA ∈ T be the node corresponding to A ∈ L. Note
that (vA, vB) ∈ T if A ⊂ B and there does not exist an X ∈ L such that
A ⊂ X ⊂ B. Thus A ⊂ B if and only if vA is a descendant of vB.

Let vB1 , vB2 , . . . , vBk be the children of a node vB0 ∈ T. The sets B1, B2, . . . , Bk
and V∗ \ B0 are disjoint. Construct an auxiliary graph, U, which has a ver-
tex ui for each set Bi, 0 ≤ i ≤ k. Vertices ui, uj, 0 ≤ i, j ≤ k are adjacent if
δE∗(Bi), δE∗(Bj) are not disjoint.

For 0 ≤ i ≤ k, let φ(Pi) = Bi and Ci = Pi ∪
{

ePi

}
. Thus Ci is a circuit

in G + H corresponding to vertex ui in U. Since Bi, Bj are disjoint, circuits
Ci, Cj correspond to disjoint regions in a planar embedding of G + H. Further
ui, uj are adjacent if and only if Ci, Cj share an edge. The planar embedding
of G + H thus yields a planar embedding of U and hence U is planar. Thus
given a color for vertex u0 we can color the remaining vertices of U with at
most 4 colors so that no two adjacent vertices have the same color.

We use this observation to color the nodes of T with 4 colors by starting at
the root, building an auxiliary graph on the root and its children and coloring
it with 4 colors. We continue this process down the tree and at each step we
color the children of a node which has been assigned a color in a previous
step. Our coloring has the property that two nodes vA, vB which are siblings
or parent/child in T have different colors if δE∗(A), δE∗(B) are not disjoint.

The coloring of nodes of T yields a coloring on sets in L. Let X ⊂ L be the
largest color class; then |X| ≥ |L|/4. For all A ∈ X we set f ′(φ−1(A)) = 1 and
for A ∈ L \ X we set f ′(φ−1(A)) = 0. Thus | f ′| = |X| ≥ |L|/4 = | f1/2|/2.

Recall that for u 6= v ∈ V∗,L(u, v) = {L ∈ L : u ∈ L, v /∈ L}. To prove that
f ′ is feasible we note that f (e) = (|L(u, v)|+ |L(v, u)|)/2 where e∗ = (u, v).
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Consecutive sets in the chains L(u, v), L(v, u) have different colors. Let A
(resp. B) be the maximal set in L(u, v) (resp. L(v, u)). Then vA, vB are siblings
in T and e∗ ∈ δ(A) ∩ δ(B) and hence A, B have different colors. Thus

f ′(e) = |X ∩ (L(u, v) ∪ L(v, u))| ≤ d|L(u, v)|+ |L(v, u)|)/2e = d f (e)e ≤ c(e)

which implies that f ′ does not violate capacity constraints. ut

A similar rounding argument appeared in the work of Fiorini, Hardy,
Reed and Vetta [5] in the somewhat different context of proving an upper
bound of Král and Voss [19] for the ratio between “minimum size of an odd
cycle edge transversal” versus the “maximum odd cycle edge packing” using
the 4-color theorem [1].

6 Lower Bounds

In the previous sections we showed upper bounds on the flow-cut gap, and
lower bounds on the (half)-integrality gap for multiflow maximization. In
this Section we present some examples which establish lower/upper bounds
on these gaps.

The plane instance G = C4, H = 2K2, with edge capacities 1 and demands
capped at 1 shows an integrality gap of 1/2 since the maximum integer flow
in this instance is 1 while the maximum fractional flow (which is also half-
integer) is 2. The maximum fractional flow need not be half-integer as shown
by the example in Figure 2. This example shows a half-integrality gap of 6/7,
a flow-cut gap of 9/7, and a half-integer flow-cut gap of 3/2. The gap values

Fig. 2: Supply edges have capacity 1 and are solid while demand edges are
dotted. The maximum (fractional) flow is 7/3, while the maximum half-
integer (or integer) flow equals 2. The minimum multicut is 3.

of Figure 2 are not best possible. Cheriyan et.al. [3] defined a class of instances
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to show integrality gap results for the Tree Augmentation Problem. We ob-
serve that these instances provide asymptotically the best possible values for
some of the gaps.

Let Gk = (Vk, Ek), Hk = (Vk, Fk), k ≥ 3 be an instance of the multi-
flow problem defined as follows: Vk = {a1, a2, . . . , ak} ∪{b1, b2, . . . , bk}, Ek =
{(ai, bi)|i ∈ [1, k]} ∪ {(ai, ai+1)|i ∈ [1, k− 1]} and Fk = {(bi, bi+1)|i ∈ [1, k−
1]} ∪ {(bi, ai+2)|i ∈ [1, k− 2]}. The capacity of all edges in Ek is 1 (see Fig. 3).

Fig. 3: G8: the capacity of supply edges is 1; demand edges are dotted.

Theorem 5 The graph Gk + Hk is planar for all k ≥ 3, and the following hold:
1. The minimum multicut has capacity k− 1.
2. The maximum multiflow has value 2(k− 1)/3.
3. The maximum half-integer multiflow has value k/2.
4. The maximum integer multiflow has value bk/2c.

Proof The minimum multicut has capacity at most k − 1, since deleting the
k − 1 edges on the path (a1, ak), disconnects the endpoints of all demand
edges. We prove by induction that for an arbitrary multicut, C, |C| ≥ k − 1.
For k = 3 the statement can be easily checked. Deleting vertices b1, a1 and
the incident supply and demand edges gives a graph (G′, H′) which is iso-
morphic to Gk−1, Hk−1. Since removing edges (a1, b1) and (a1, a2) can only
separate demands b1b2 and b1a3, C′ := C \ {(a1, b1), (a1, a2)} is a multicut in
(G′, H′).

By the induction hypothesis, C′ has capacity at least k − 2. We consider
two cases.
1. Both the edges (a2, b2), (a2, a3) are in C′. Since C′ \ {(a2, b2)} is also a mul-

ticut in (G′, H′), our induction hypothesis implies that capacity of C′ is at
least k− 1.

2. At most one of (a2, b2), (a2, a3) is in C′. This implies at least one of (a1, b1),
(a1, a2) must be in C, since otherwise C does not disconnect b1 from b2 or
from a3. Since capacity of C′ is at least k− 2, capacity of C is at least k− 1.
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For the second assertion of the Theorem note that the supply edges form
a tree and so P , the set of paths between endpoints of demand edges con-
tains exactly one path Pe for each demand edge e. The flow f defined as
f (Pbk−1bk

) = 2/3 and f (P) = 1/3 for each other path P ∈ P , has value
2(k− 1)/3. Since a supply edge is on at most 3 paths of P , f is feasible. Note
that the total capacity of supply edges is 2k− 1 and every path in P uses ex-
actly 3 supply edges. Hence no flow can have value more than (2k− 1)/3. A
more careful analysis shows that f with value 2(k− 1)/3 is in fact maximum.

We prove the third and fourth assertions by induction. Note that in any
feasible flow f in (Gk, Hk) the flow on edges (a1, b1) and (a1, a2) is equal; let
α( f , k) denote this quantity. We prove that a half-integer flow f , has value at
most k/2 if α( f , k) = 1 and value at most (k− 1)/2 if α( f , k) ≤ 1/2. It is easy
to check this for k = 3. Let f be an arbitrary half-integer flow in Gk, Hk and
let f ′ be the flow induced on (G′, H′). The following three cases complete the
argument.

1. α( f , k) = 0. Since α( f ′, k − 1) ≤ 1, | f ′| ≤ (k − 1)/2 which implies | f | ≤
(k− 1)/2.

2. α( f , k) = 1/2. Then α( f ′, k − 1) ≤ 1/2 and so | f ′| ≤ (k − 2)/2 which
implies | f | ≤ (k− 1)/2.

3. α( f , k) = 1. Then either f routes 1/2 units for demands b1b2 and b1a3 or
1 unit for one of the demands b1b2, b1a3. In both cases α( f ′, k− 1) ≤ 1/2
which implies | f ′| ≤ (k− 2)/2. Hence | f | ≤ k/2.

A flow f which routes 1/2 units for demands bibi+1, 1 ≤ i ≤ k − 1 satisfies
α( f , k) = 1/2 and has value (k− 1)/2. Augmenting f by routing 1/2 unit of
demand b1a3 yields a flow f ′ satisfying α( f ′, k) = 1 with value k/2.

This proves that the maximum half-integer flow in (Gk, Hk) = k/2. It also
implies that the maximum integer flow is at most bk/2c. An integer flow of
this value can be obtained by sending unit flow for demands bibi+1, 1 ≤ i ≤
k− 1, i ≡ 1( mod 2). ut

7 Conclusions

This paper establishes bounds on the integrality gap of multiflows, develops
approximation algorithms for them, and bounds the flow-cut gap. Applying
the best bounds for each variant, the main facts can be summarized in the
following theorem; the pointers to the proofs are included thereafter.

Theorem 6 There exists a 1/4-approximation algorithm for maximum integer mul-
tiflow a 1/2-approximation algorithm for maximum half-integer multiflow and a
2-approximation algorithm for minimum multicut in plane instances. In plane in-
stances the flow-cut gap is at most 2, the half-integer flow-cut gap is at most 4 and
the integer flow-cut gap is at most 8. Furthermore, the maximum multiflow problem
in plane instances has a half-integrality gap of at least 1/2 and an integrality gap of
at least 1/4.
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max fractional flow max half-integer flow max integer flow

max (fractional) flow 1
[

1
2 , 3

4

) [
1
4 , 1

2

)
min multicut

( 3
2 , 2
]

[2, 4) [2, 8)
Complexity P ? NP-hard

Table 1: Gaps, complexity, and approximation ratios for plane multiflows and
multicuts. The first row shows the integrality gaps, the second row the flow-
cut gaps and the last row the complexity.

Half-integrality gap We do not know the complexity of finding a maximum
half-integer multiflow in plane instances. However, a 1/2-approximation al-
gorithm follows by starting with a maximum fractional flow fOPT (which can
be computed in polynomial time by solving a Linear Program), converting
fOPT into a laminar flow f (where | f | = | fOPT|) using Lemma 1 and then con-
verting f into a half-integer flow f1/2 (where | f1/2| = | f |/2) using Theorem 3.
This implies that the half-integrality gap, which is the ratio of the maximum
half-integer flow to the maximum flow, is at least 1/2 for plane instances. The
half-integrality gap is 3/4 for the example in Theorem 5 and finding a tight
bound on the half-integrality gap for plane instances remains an interesting
open question.

Integrality gap Computing a maximum integer flow is NP-hard and a 1/4-
approximation can be obtained by converting the half-integer flow f1/2 com-
puted above (where | f1/2| ≥ | fOPT|/2) to an integer flow f1 using Theorem 4
such that | f1| ≥ | f1/2|/2. This also proves that the integrality gap for maxi-
mum flow in plane instances is at least 1/4. The instance (C4, 2K2) with unit
capacities and demands capped to 1 shows that the integrality gap can be as
small as 1/2. The ratio of the maximum integer flow to the maximum half-
integer flow is at least 1/2 by Theorem 4 and the example of (C4, 2K2) shows
this is tight.

Multicuts and flow-cut gap Finding the minimum multicut in plane instances
is NP-hard but using the equivalence to 2-connectors (Lemma 2) one can ob-
tain a PTAS [16]. The (fractional) flow-cut gap is at least 3/2 by Theorem 5 and
at most 2 by Theorem 1. The half-integer flow-cut gap is at least 2 by Theo-
rem 5 and at most 4 since the half-integrality gap is at least 1/2. We note that
the improvement by Garg and Kumar [8] shows that the half-integer flow-cut
gap is at most 2. For the integer flow-cut gap, Theorem 5 gives a lower bound
of 2 and an upper bound of 8 follows from the fact that the integrality gap is
at least 1/4 and the (fractional) flow-cut gap is at most 2. The improvement
of Garg and Kumar [8] together with Theorem 4 implies an upper-bound of
4 on the integer flow-cut gap.
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