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Abstract. We investigate learning collections of languages from texts by an inductive inference machine with
access to the current datum and its memory in form of states. The bounded memory states (BMS) learner is
considered successful in case it eventually settles on a correct hypothesis while exploiting only �nitely many
di�erent states.

We give the complete map of all pairwise relations for an established collection of learning success re-
strictions. Most prominently, we show that non-U-shapedness is not restrictive, while conservativeness and
(strong) monotonicity are. Some results carry over from iterative learning by a general lemma showing that,
for a wealth of restrictions (the semantic restrictions), iterative and bounded memory states learning are
equivalent. We also give an example of a non-semantic restriction (strongly non-U-shapedness) where the two
settings di�er.

1. Introduction

We are interested in the problem of algorithmically learning a description for a formal language (a com-
putably enumerable subset of the set of natural numbers) when presented successively all and only the
elements of that language; this is sometimes called inductive inference, a branch of (algorithmic) learning
theory. For example, a learner h might be presented more and more even numbers. After each new number,
h outputs a description for a language as its conjecture. The learner h might decide to output a program for
the set of all multiples of 4, as long as all numbers presented are divisible by 4. Later, when h sees an even
number not divisible by 4, it might change this guess to a program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L have been proposed in the
literature. Gold, in his seminal paper [Gol67], gave a �rst, simple learning criterion, TxtEx-learning1, where
a learner is successful i�, on every text for L (listing of all and only the elements of L) it eventually stops
changing its conjectures, and its �nal conjecture is a correct description for the input sequence. Trivially, each
single, describable language L has a suitable constant function as an TxtEx-learner (this learner constantly
outputs a description for L). Thus, we are interested in analyzing for which classes of languages L is there a
single learner h learning each member of L. This framework is also sometimes known as language learning in
the limit and has been studied extensively, using a wide range of learning criteria similar to TxtEx-learning
(see, for example, the textbook [JORS99]).

One major criticism of the model suggested by Gold is it's excessive use of memory: for each new hypothesis
the entire history of past data is available. Iterative learning is the most common variant of learning in
the limit which addresses memory constraints: the memory of the learner on past data is just its current
hypothesis. Due to the padding lemma, this memory is still not void, but �nitely many data can be memorized
in the hypothesis. Another way of restricting the memory is in analogy to the computation of �nite automata:
a learner can pass on not it's current hypothesis, but a state which can be used in the computation of the
next hypothesis (and next state). This was introduced in [CCJS07] and called bounded memory states (BMS)
learning.

There is already a quite comprehensive body of work on iterative learning [CK10, CM08b, JKMS16,
JMZ13, JORS99]. In contrast, the rather natural setting of storing just a single state is not analyzed much
at all.

It is a reasonable assumption to have a countable reservoir of states. Hence, we use natural numbers as
such. Note that allowing arbitrary use of all natural numbers as states would e�ectively allow a learner to

1Txt stands for learning from a text of positive examples; Ex stands for explanatory.
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store all seen data in the state, thus giving the same mode as Gold's original setting. Probably the minimal
way to restrict the use of states is to demand that a learner must stop using new states in order to be
considered successfully learning (but may still traverse among the �nitely many states produced so far, and
may use in�nitely many states on garbage data). It was claimed that this setting is equivalent to iterative
learning [CCJS07, Remark 38] (this restriction is here called ClassBMS, we will call it TxtBMS�Ex).
However, this was only remarked for the plain setting of explanatory learning; for further restrictions, the
setting is completely unknown, only for explicit constant state bounds a few scattered results are known
[CCJS07, CK13].

In this paper, we consider a wealth of restrictions, described in detail in Section 2 (after an introduction
to the general notation of this paper). Following the approach of giving maps of pairwise relations suggested
in [KS16], we give a complete map in Figure 1. We note that this map is the same as the map for iterative
learning given in [JKMS16], but partially for di�erent reasons.

Based on carefully arranged de�nitions suitable for the general result, in Lemma 3.1 we show that, for
many restrictions (the so-called semantic restrictions, where only the semantics of hypotheses are restricted)
the learning setting with bounded memory states is equivalent to learning iteratively. This proves and
generalizes the aforementioned remark in [CCJS07] to a wide class of restrictions. The iterative learner
uses the hypotheses of the BMS�-learner on an equivalent text and additionally pads a subgraph of the
translation diagram of the BMS-learner to it. It keeps track of all states visited so far together with the
datum which caused the �rst transfer to the respective state. This way we can reconstruct the last �rst-time-
visited state while observing the equivalent sequence. Moreover, the equivalent text prevents the iterative
learner from returning to a previously visited state but the last one and hence enables the Ex-convergence.

However, if restrictions are not semantic, then iterative and bounded memory states learning can di�er. We
show this concretely for the case of so-called strongly non-U-shaped learning in Theorem 4.5; the proof uses an
intricate ORT-argument, indicating that the two settings, while di�erent, are very similar nonetheless. It is
based on the proof that strong non-U-shapedness restricts BMS�Ex-learning. The proof of the latter result
combines the techniques for showing that strong non-U-shapedness restricts iterative learning, as stated in
[CK13, Theorem 5.7], and that not every by an iterative learner strongly monotonically learnable set of
languages is strongly non-U-shapedly learnable by an iterative learner, see [JKMS16, Theorem 5]. Moreover,
it relies on showing that state decisiveness can be assumed in Lemma 4.1.

The remainder of Section 4 completes the map given in Figure 1 for the case of syntactic restrictions
(since these do not carry over from the setting of iterative learning). All syntactic learning requirements are
closely related to strongly locking learners. The fundamental concept of a locking sequence was introduced by
[BB75]. For a similar purpose than ours [JKMS16] introduced strongly locking learners. We generalize their
construction for certain syntactically restricted iterative learners from a strongly locking iterative learner.
Finally, we obtain that all non-semantic learning restrictions also coincide for BMS�-learning.

2. Learners, Success Criteria and other Terminology

As far as possible, we follow [JORS99] on the learning theoretic side and [Odi99] for computability theory.
We recall the most essential notation and de�nitions.

We let N denote the natural numbers including 0. For a function f we write dompfq for its domain and
ranpfq for its range. If we deal with (a subset of) a cartesian product, we are going to refer to the projection
functions to the �rst or second coordinate by pr1 and pr2, respectively.

Further, X ω denotes the �nite sequences over the setX andXω stands for the countably in�nite sequences
over X. For every σ P X ω and t ¤ |σ|, t P N, we let σrts :� tps, σpsqq | s   tu denote the restriction of σ to
t. Moreover, for sequences σ, τ P X ω their concatenation is denoted by σaτ . Finally, we write lastpσq for
the last element of σ , σp|σ| � 1q, and σ� for the initial segment of σ without lastpσq, i.e. σr|σ| � 1s. Clearly,
σ � σ�alastpσq.

For a �nite set D � N and a �nite sequence σ P X ω, we denote by xDy and xσy a canonical index for D
or σ, respectively. Further, we �x a Gödel pairing function x., .y with two arguments.
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Let L � N. We interpret every n P N as a code for a word. If L is recursively enumerable, we call L a
language.

We �x a programming system ϕ as introduced in [RC94]. Brie�y, in the ϕ-system, for a natural number
p, we denote by ϕp the partial computable function with program code p. We call p an index for Wp de�ned
as dompϕpq.

In reference to a Blum complexity measure Φp, for all p, t P N, we denote by W t
p � Wp the recursive set

of all natural numbers less or equal to t, on which the machine executing p halts in at most t steps, i.e.

W t
p � tx | x ¤ t ^ Φppxq ¤ tu.

Moreover, the well-known s-m-n theorem gives �nite and in�nite recursion theorems. We will refer to Case's
Operator Recursion Theorem ORT in its 1-1-form.

Throughout the paper, we let Σ � N Y t#u be the input alphabet with n P N interpreted as code for a
word in the language and # interpreted as pause symbol, i.e. no new information. Further, let Ω � NY t?u
be the output alphabet with p P N interpreted as ϕ-index and ? as no hypothesis or repetition of the last
hypothesis, if existent.

A learner is always a (partial) computable function

M : dompMq � Σ ω Ñ Ω.

The set of all total computable functions M : Σ ω Ñ Ω is denoted by R.

Let f P Σ ω Y Σω, then the content of f , de�ned as contentpfq :� ranpfqzt#u, is the set of all natural
numbers, about which f gives some positive information. The set of all texts for the language L is de�ned as

TxtpLq :� tT P Σω | contentpT q � Lu.

De�nition 2.1. Let M be a learner. M is an iterative learner, for short M P It, if there is a computable

(partial) hypothesis generating function hM : Ω� Σ Ñ Ω such that M � h;M where h;M is de�ned on �nite
sequences by

h;M pεq � ?;

h;M pσ
axq � hM ph

;
M pσq, xq.

De�nition 2.2. Let M be a learner. M is a bounded memory states learner, for short M P BMS, if there
are a computable (partial) hypothesis generating function hM : N�Σ Ñ Ω and a computable (partial) state
transition function sM : N � Σ Ñ N such that domphM q � dompsM q and M � h�M where h�M and s�M are
de�ned on �nite sequences by

s�M pεq � 0;

h�M pσ
axq � hM ps

�
M pσq, xq;

s�M pσ
axq � sM ps

�
M pσq, xq.

Note that every iterative learner gives a BMS-learner by identifying the hypothesis space Ω with the set
of states via a computable bijection between N and Ω. The resulting BMS-learner will succeed on the same
languages the iterative learner does learn. Further, as the set of visited states contains exactly all hypotheses
the learner puts out, the BMS-learner only uses �nitely many states on all texts for languages it explanatory
learns. In [CCJS07, Rem. 38] the equality rTxtBMS�Exs � rItTxtExs is claimed. This also follows from
our more general Lemma 3.1.

De�nition 2.2 may be stated more generally for arbitrary �nite or in�nite sets of states Q, instead of N.
Moreover, s�M and h�M can easily be generalized to functions taking also a starting state s as input by

s�M ps, εq � s;

h�M ps, σ
axq � hM ps

�
M ps, σq, xq;

s�M ps, σ
axq � sM ps

�
M ps, σq, xq.
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We now clarify what we mean by succesful learning.

De�nition 2.3. Let M be a learner and L a collection of languages.

(1) Let L P L be a language and T P TxtpLq a text for L presented to M .
(a) We call h � phtqtPN P Ωω, where ht :�MpT rtsq for all t P N, the learning sequence of M on T .
(b) M learns L from T in the limit, for short M Ex-learns L from T or ExpM,T q, if there exitsts

t0 such that Wht0
� contentpT q and @t ¥ t0 p ht � ? ñ ht � ht0 q.

(2) M learns L in the limit, for shortM Ex-learns L, if ExpM,T q for every L P L and every T P TxtpLq.

Ex-learning is the most common de�nition for successful learning in inductive inference and corresponds
to the notion of identi�ability in the limit by [Gol67], where the learner eventually decides on one correct
hypotheses.

In our investigations, the most important additional requirement on a successful learning process is for a
BMS-learner to use �nitely many states only, as stated in the following de�nition.

De�nition 2.4. Let M be a BMS-learner and T P Txt. We say that M uses �nitely many memory states
on T , for short BMS�pM,T q, if t s�M pT rtsq | t P N u is �nite.

We list the most common additional requirements regarding the learning sequence, which may tag a
learning process. For this we �rst recall the notion of consistency of a sequence with a set.

De�nition 2.5. Let f P Σ ω Y Σω and A � Σ. We de�ne

Conspf,Aq :ô contentpfq � A

and say f is consistent with A.

The listed properties of the learning sequence have been in the center of di�erent investigations. Studying
how they relate to one another did begin quite recently in [KP16], [KS16], [JKMS16] and [AKS18].

De�nition 2.6. Let M be a learner, T P Txt and h � phtqtPN P Ωω the learning sequence of M on T . We
write

(1) ConvpM,T q ([Ang80]), if M is conservative on T , i.e., for all s, t with s ¤ t holds
ConspT rts,Whsq ñ hs � ht.

(2) DecpM,T q ([OSW82]), if M is decisive on T , i.e., for all r, s, t with r ¤ s ¤ t holds
Whr �Wht ñ Whr �Whs .

(3) CautpM,T q ([OSW86]), if M is cautious on T , i.e., for all s, t with s ¤ t holds  Wht �Whs .
(4) WMonpM,T q ([Jan91],[Wie91]), if M is weakly monotonic on T , i.e., for all s, t with s ¤ t holds

ConspT rts,Whsq ñ Whs �Wht .
(5) MonpM,T q ([Jan91],[Wie91]), if M is monotonic on T , i.e., for all s, t with s ¤ t holds Whs X

contentpT q �Wht X pospT q.
(6) SMonpM,T q ([Jan91],[Wie91]), if M is strongly monotonic on T , i.e., for all s, t with s ¤ t holds

Whs �Wht .
(7) NUpM,T q ([BCM�08]), if M is non-U-shaped on T , i.e., for all r, s, t with r ¤ s ¤ t holds

Whr �Wht � contentpT q ñ Whr �Whs .
(8) SNUpM,T q ([CM11]), if M is strongly non-U-shaped on T , i.e., for all r, s, t with r ¤ s ¤ t holds

Whr �Wht � contentpT q ñ hr � hs.
(9) SDecpM,T q ([KP16]), if M is strongly decisive on T , i.e., for all r, s, t with r ¤ s ¤ t holds

Whr �Wht ñ hr � hs.
(10) WbpM,T q ([KS16]), if M is witness-based on T , i.e., for all r, t such that for some s with r   s ¤ t

holds holds hr � hs we obtain contentpT rssq X pWhtzWhrq � ∅.

It has been observed that ConvpM,T q implies SNUpM,T q and WMonpM,T q; SDecpM,T q implies
DecpM,T q and SNUpM,T q; SMonpM,T q implies CautpM,T q,DecpM,T q,MonpM,T q, WMonpM,T q
and �nally DecpM,T q, WMonpM,T q and SNUpM,T q imply NUpM,T q. Figure 1 includes the resulting
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backbone with arrows indicating the aforementioned implications. Further, WbpM,T q implies ConvpM,T q,
SDecpM,T q and CautpM,T q.

In order to characterize what successful learning means, these predicates may be combined with the
explanatory convergence criterion. For this, we let ∆ :� tCaut,Conv,Dec,SDec,WMon,Mon,SMon,
NU,SNU,T u denote the set of admissible learning restrictions, with T standing for no restriction. Further,
a learning success criterion is an element of

t
n£
i�0

δi XEx | n P N,@i ¤ npδi P ∆qu.

Note that plain explanatory convergence is a learning success criterion by letting n � 0 and δ0 � T.

We refer to all δ P tCaut,Cons,Dec,Mon,SMon,WMon,NU,Tu also as semantic learning restric-
tions, as they do not require the learner to settle on exactly one hypothesis.

In order to state observations about how two ways of de�ning learning success relate to each other, the
learning power of the di�erent settings is encapsulated in notions rαTxtβs de�ned as follows.

De�nition 2.7. Let α be a property of partial computable functions from the set Σ ω to N and β a learning
success criterion. We denote by rαTxtβs the set of all collections of languages that are β-learnable from
texts by a learner M with the property α.

At position α, we restrict the set of admissible learners for example by requiring them to be iterative
or �nite bounded memory states learners. The properties stated at position α are independent of learning
success.

In contrast, at position β, the required learning behavior and convergence criterion are speci�ed.

For example, a collection of languages L lies in rBMSTxtBMS�ConvExs if and only if there is a bounded
memory states learner M conservatively explanatory learning every L P L from texts while using only �nite
memory. More concretely, for all L P L and for every text T P TxtpLq we have ConvpM,T q, BMS�pM,T q
and ExpM,T q.

The proof of our general observation employs a property of learning requirements and learning success
criteria, that applies to all such considered in this paper.

De�nition 2.8. Denote the set of all unbounded and non-decreasing functions by S, i.e.,

S :� t s : NÑ N | @x P N Dt P N : sptq ¥ x and @t P N : spt� 1q ¥ sptq u.

Then every s P S is a so called admissible simulating function.

A predicate β on pairs of learners and texts allows for simulation on equivalent text, if for all simulating
functions s P S, all texts T, T 1 P Txt and all learners M,M 1 holds: Whenever we have contentpT 1rtsq �
contentpT rsptqsq and M 1pT 1rtsq �MpT rsptqsq for all t P N, from βpM,T q we can conclude βpM 1, T 1q.

Intuitively, as long as the learner M 1 conjectures hsptq � MpT rsptqsq at time t and has, in form of T 1rts,
the same data available as was used by M for this hypothesis, M 1 on T 1 is considered to be a simulation of
M on T .

It is easy to see that all learning success criteria considered in this paper allow for simulation on equivalent
text.

3. Relations between Semantic Learning Requirements

We show that bounded memory states learners and iterative learners have equal learning power, when a
semantic learning requirement is added to the standard convergence criterion. With this the results from
iterative learning are transferred to this setting.

The following lemma formally establishes the equal learning power of iterative and BMS�-learning for all
learning success criteria but Conv, SDec and SNU. We are going to prove in Section 4 that even for the
three aforementioned non-semantic additional requirements we obtain the same behavior.
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Lemma 3.1. Let δ allow for simulation on equivalent text.

(1) We have rTxtBMS�δExs � rItTxtδExs.
(2) If δ is semantic then rTxtBMS�δExs � rItTxtδExs.

Proof. (1) and ��� of (2). LetM be an iterative learner, i.e. there is a computable function hM : Ω�Σ Ñ Ω

with M � h;M where h;M pεq � ? and h;M pσ
axq � hM ph

;
M pσq, xq for all σ P Σ ω and x P Σ. We show that

M can be obtained as a state driven learner by using the hypotheses also as states. For this, we �x the
computable bijection π : QÑ Ω with computable inverse, de�ned by πp0q � ? and πpiq � i� 1 for all i ¡ 0.
Then the learner N � h�N with xsN , hNypq, xq � pπ

�1phM pπpqq, xqq, hM pπpqq, xqq is as wished because the
state corresponds via π directly to the last hypothesis of M and so the learners M and N act identically.

Formally, this follows by an induction showing for every τ P Σ ω that s�N pτq � π�1pMpτqq and moreover
if |τ | ¡ 0 we have Npτq � Mpτq. The claim holds for τ � ε, because of s�N pεq � 0 � π�1pMpεqq. In case

there are σ P Σ ω and x P Σ such that τ � σax, we may assume s�N pσq � π�1pMpσqq and obtain

s�N pτq
Def. s�N� sN ps

�
N pσq, xq

s�N pσq�π�1pMpσqq
� sN pπ

�1pMpσqq, xq
Def. sN� π�1phM pMpσq, xqq

M�h;M� π�1pMpτqq,

Npτq
N�h�N� hN ps

�
N pσq, xq

s�N pσq�π�1pMpσqq
� hN pπ

�1pMpσqq, xq
Def. hN� hM pMpσq, xqq

M�h;M� Mpτq.

ThatM in case of learning success uses only �nitely many states follows immediately from theEx-convergence,
implying to output only �nitely many pairwise distinct hypotheses.

��� of (2). Let L P rTxtBMS�δExs be witnessed by the learnerM , i.e., there is xsM , hMy : Q�Σ Ñ Q�Ω
such that M � h�M . Further, we may assume that for all L P L and T P TxtpLq the set of visited states
s�M rtT rts | t P Nus is �nite and M δEx-learns L from T .

Intuitively, the iterative learner MIt uses the hypotheses of M on an equivalent text T̂ and additionally
pads a subgraph V pσq of the translation diagram of the BMS-learnerM to it. In V pσq, which is being build
after having observed σ, we keep track of all states visited so far together with the datum which caused the
�rst transfer to the respective state. In order to assure Ex-convergence, we do not change the subgraph in
case the new state had already been visited after some proper initial segment of σ was observed. From V pσq
we can reconstruct the last �rst-time-visited state s�MIt

pσq of M while observing the equivalent sequence

corresponding to σ. Moreover, we build the equivalent text T̂ by inserting a path of already observed data
leading to state s�MIt

pσq, in case this is necessary to prevent the learner MIt from returning to a previously
visited state but the last one. With this strategy we make sure that the last state is the one we are currently
in, as keeping track of the current state while observing the original text may destroy the Ex-convergence.

Formally, we de�ne functions pump : Σ ωztεu � NÑ Σ ω and V : Σ ω Ñ Σ ω by

pumppV pσq, xq �

#
x, if sM ps

�
MIt
pσq, xq R pr1rV pσqs;

xapathpsM ps
�
MIt
pσq, xq, s�MIt

pσqq, otherwise;

V pεq � ε;

V pσaxq �

#
V pσqaxsM ps

�
MIt
pσq, xq, xy, if sM ps

�
MIt
pσq, xq R pr1rV pσqs;

V pσq, otherwise;

with the application of the projection to the �rst coordinate extracting the set of visited states. Moreover,
for states s0, s1 P S with pathps0, s1q we refer to the unique sequence pσpiq, σpi � 1q, . . . , σpjqq of second
coordinates in V pσq such that ps0, σpiqq

a . . .aps1, σpjqq is an intermediate sequence in V pσq. The learner
MIt is now de�ned by

MItpσ
axq � padph�M ps

�
MIt
pσq, pumppV pσq, xqq, V pσaxqq.

By construction s�MIt
pσq � lastppr1pV pσqqq and therefore the hypothesis of MIt on some sequence σax is

always only based on V pσq and x, which makes MIt iterative.

The text T̂ �
�
tPN τt with τ0 � ε and τt�1 � τt

apumppV pT rtsq, T ptqq is a text for L. Let s : NÑ N, t ÞÑ |τt|

be the corresponding simulating function. As for all t P N holds contentpT rtsq � contentpT̂ rsptqsq and
6



MItpT rtsq � padpMpT̂ rsptqsq, V pT rtsqq, we obtain WMItpT rtsq � WMpT̂ rsptqsq and because δ is semantic and

afsoet, we conclude the semantic δ-convergence of MIt on T . Having in mind that M uses only �nitely
many pairwise distinct states V pT rtsq stabilizes. Paired with the Ex-convergence of M on T̂ we conclude
the Ex-convergence of MIt on T .

Note that obviously the proof is identical for learning from positive and negative information, introduced
by [Gol67]. In this learning model the information the learner receives is labeled, like in binary classi�cation,
and has to be complete in the limit. See [AKS18] for a formal de�nition, a summary of results on this model
and the complete map.

With Lemma 3.1 the following results transfer from learning with iterative learners and it remains to
investigate the relations to and between the non-semantic requirements Conv,SDec and SNU.

Theorem 3.2. (1) rTxtBMS�NUExs � rTxtBMS�Exs
(2) rTxtBMS�DecExs � rTxtBMS�WMonExs � rTxtBMS�CautExs � rTxtBMS�Exs
(3) rTxtBMS�MonExs � rTxtBMS�Exs
(4) rTxtBMS�SMonExs � rTxtBMS�MonExs

Proof. The respective results for iterative learners can be found in [CM08a, Theorem 2], [JKMS16, Theo-
rem 10], [JKMS16, Theorem 3] and [JKMS16, Theorem 2].

4. Relations to and between Syntactic Learning Requirements

The following lemma establishes that we may assume BMS�-learners to never go back to withdrawn
states. We are going to employ this property in almost all of the following proofs.

Lemma 4.1. Let β be a learning success criterion allowing for simulation on equivalent text and L P
rTxtBMS�βs. Then there is a BMS-learner N such that N never returns to a withdrawn state and BMS�β-
learns L from texts.

Proof. Let M be a BMS-learner with L P TxtBMS�βpMq. We employ a construction similar to the
one in the proof of Theorem 3.1. Again for V P p ωQ � Σq with pairwise distinct �rst coordinates and
s1 P pr1rV s by pathpV, s1q we denote the unique sequence of second coordinates x0

a . . .axξ of V such

that ps1, x0q
a . . .aplastppr1rV sq, xξq is a �nal segment of V . The BMS learner N is initialized with state

padp0, p0,#qq and for every s P Q, V P p ωQ� Σq and x P Σ de�ned by

sN pxs, V y, xq �

#
xs, V y, if sM ps, xq P pr1rV s;

xsM ps, xq, V
apsM ps, xq, xqy, otherwise;

hN pxs, V y, xq �

#
h�M ps, x

apathpV, sM ps, xqqq, if sM ps, xq P pr1rV s;

hM ps, xq, otherwise.

By construction N is a BMS�-learner, as it only uses states xs, V y where s � pr1plastpV qq is a state used
by M and for every s P Q, visited by M , there is exactly one sequence V P p ωQ � Σq such that xs, V y is
used by N . The learner N simulates M on an equivalent text just as in the proof of Theorem 3.1.

We show that strongly monotonically BMS�-learnability does not imply strongly non-U-shapedly BMS�-
learnability.

Theorem 4.2. rTxtBMS�SMonExs � rTxtBMS�SNUExs

Proof. Consider the BMS-learner M initialized with state x ?, x∅yy and hM and sM for every e P Ω, D � N
�nite and x P Σ de�ned by:

sM pxe, xDyy, xq �

$'&
'%
xe, xDyy, if x P D Y t#u _ ϕxpeq � e;

xϕxpeq, xD Y txuyy, else if ϕxpeq � e;

Ò, otherwise.
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hM pxe, xDyy, xq �

$'&
'%
e, if x P D Y t#u _ ϕxpeq � e;

ϕxpeq, else if ϕxpeq � e;

Ò, otherwise.

Thus, M is self-learning by interpreting the datum x as a program and the conjectures are generated by
applying this program to the last hypothesis. (We identify ϕx with the function obtained by using a bijection
from N to Ω.) Further, in form of the states, the last hypothesis as well as exactly the data that already
lead to a mind change of M is stored.

Let L � TxtBMS�SMonExpMq.
Assume there is a BMS�-learner N with hypothesis generating function hN and state transition function

sN , such that L � TxtBMS�SNUExpNq. By Lemma 4.1 we assume that N does not return to withdrawn
states.

We are going to obtain a language L P L not strongly non-U-shapedly learned by N by applying 1-1
ORT and thereby refering to the c.e. predicates MC and NoMC de�ned for �xed a, b P R, all k P N and
σ P Σ ω with the help of the formulas ψkp`q, expressing that the BMS�-learner N does not perform a mind-
or state-change on the text arksabpkqa#8 after having observed arksabpkqa#`. The predicates state that N
does converge and (not) make a mind-change when observing σ after having observed arksaapkqa#`k , with
`k being the least ` with ψkp`q.

ψkp`q ô Nparksabpkqa#`q � Nparksabpkqa#`�1q ^ s�N parks
abpkqa#`q � s�N parks

abpkqa#`�1q;

NoMCpk, σq ô D`k P N pψkp`kq ^ @`   `k  ψkp`q ^ Nparksabpkqa#`kaσqÓ � Nparksabpkqa#`kq q;

MCpk, σq ô D`k P N pψkp`kq ^ @`   `k  ψkp`q ^ Nparksabpkqa#`kaσqÓ � Nparksabpkqa#`kq q.

Now, let p be an index for the program which on inputs k P N and σ P Σ ω searches for `k. In case `k
exists, the program encoded in p runs N on arksabpkqa#`kaσ. Hence, Φppk, σq stands for the number of
computation steps the program just described needs on input k, σ. By the de�nition of p we have Φppk, σqÒ

if and only if `k Ò or Nparks
abpkqa#`kaσqÒ.

We abbreviate with p ωa, iq �  ω
¤ipranparisq Y t#uq the set of all �nite sequences over ranparisq Y t#u

with length at most i. Moreover, we employ a well-order  a on p ωranpaqq by letting ρ  a σ if and only if
for the unique iρ such that ρ P p ωa, iρ � 1qzp ωa, iρq holds σ R p

 ωa, iρ � 1q or else σ R p ωa, iρq and at the
same time xρy   xσy. For constructing L we will also make use of the c.e. sets

Ek � t apiq | @σ P p
 ωa, iqNoMCpk, σq _ p Dσ@ρ  a σ NoMCpk, ρq ^ Φppk, σq ¡ i q u.

It is easy to see that Ek is �nite and equals t apiq | i   maxptiσ0u Y tΦppk, σq | σ ¤a σ0uq u if and only if for
σ0 P p

 ωranpaqq holds MCpk, σ0q and NoMCpk, σq for all σ  a σ0. Otherwise Ek � ranpaq.
By 1-1 ORT there are a, b, e1, e2 P R with pairwise disjoint ranges and e0 P N, such that

ϕapiqpeq �

$'&
'%
e0 if e P t?, e0u;

e2pkq else if e � e1pkq for some k ¤ i;

e, otherwise;

ϕbpkqpeq �

#
e1pkq if e P t?, e0u;

e, otherwise;

We0 �

#
ranpart0sq if t0 is minimal with @t ¥ t0 pNpartsq � Npart0sq ^ s

�
N partsq � s�N part0sq q;

ranpaq, no such t0 exists.;

We1pkq � contentparksq Y tbpkqu Y

#
Ek if Dσ0 pMCpk, σ0q ^ @σ  a σ0 NoMCpk, σq q;

∅, otherwise;

We2pkq � contentparksq Y tbpkqu Y Ek.

As We0 P L by construction, N has to learn it and hence t0 exists.
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We �rst observe that there exists σ0 such that MCpt0, σ0q and NoMCpt0, σq for all σ  a σ0. Assume
otherwise, then either `t0Ò or for all σ P p

 ωranpaqq holds NoMCpt0, σq or for σ0 minimal with  NoMCpt0, σ0q
we have Npart0s

abpt0q
a#`t0aσ0qÒ. Anyhow, this would mean Et0 � ranpaq. By the de�nition of e1, e2 and

our converse assumption we obtain We1pt0q � contentpart0sq Y tbpt0qu and We2pt0q � ranpaq Y tbpt0qu. It can
be easily checked that We1pt0q andWe2pt0q are strongly monotonically learned byM and hence lie in L. As N
has to learn We1pt0q from the text art0s

abpt0q
a#8, we know `t0Ó and moreover WNpart0sabpt0qa#`q � We1pt0q

holds for all ` ¥ `t0 . Moreover, N has to learn We2pt0q from all the texts art0s
abpt0q

a#`t0aσaa with

σ P p ωranpaqq. Thus, Npart0s
abpt0q

a#`t0aσqÓ for all σ P p ωranpaqq. Because of our converse assumption,
the only option left is NoMCpt0, σq for all σ P p

 ωranpaqq. Since this is equivalent toNpart0s
abpt0q

a#`t0aσq �
Npart0s

abpt0q
a#`t0 q for all σ P p ωranpaqq, N cannot learn both We1pt0q and We2pt0q. Hence σ0 exists.

By the choice of t0 and σ0 we obtain Et0 � contentpart1sq for t1 � maxptiσ0u Y tΦppk, σq | σ ¤a σ0uq P N.
Let t̂ � maxtt0, t1u and L � contentpart̂sq Y tbpt0qu. Then We1pt0q � We2pt0q � L P L and by construction

of Et0 we have Conspσ0, Lq. Because of t̂ ¥ t0, we obtain s�N part̂sq � s�N part0sq. With this and the

choice of t0 we conclude Npart̂sabpt0q
a#`q � Npart0s

abpt0q
a#`q for all ` P N. Further, as N learns L

from the text art̂sabpt0q
a#8 we have W

Npart̂sabpt0qa#
`t0 q

� L. On the other hand by MCpt0, σ0q we obtain

Npart̂sabpt0q
a#`t0 q � Npart̂sabpt0q

a#`t0aσ0q, which forces N to perform a syntactic U-shape on the text
art̂sabpt0q

a#`t0aσ0
a#8 for L.

For inferring the relations between the syntactic learning requirements SNU, SDec and Conv, we refer
to Wb. All these criteria are closely related to strongly locking learners, which we de�ne in the following.

It was observed by [BB75] that the learnability of every language L by a learner M is witnessed by a
sequence σ, consistent with L, such that Mpσq is an index for L and no extension of σ consistent with L will
lead to a mind-change of M . Such a sequence σ is called locking sequence for M on L. For a similar purpose
as ours [JKMS16] introduced strongly locking learners. A learner M acts strongly locking on a language L,
if for every text T for L there is an initial segment σ of T that is a locking sequence for M on L.

The proof of the following proposition generalizes the construction of a conservative and strongly decisive
iterative learner from a strongly locking iterative learner in [JKMS16, Theorem 8]. With it we obtain in the
Corollary thereafter, that all non-semantic learning restrictions coincide.

Theorem 4.3. Let L be a set of languages BMS�Ex-learned by a strongly locking BMS-learner. Then

L P rTxtBMS�WbExs.

Proof. Let L P rTxtBMS�Exs be learned by the strongly locking learnerM . By Lemma 4.1 we may assume
that M does not return to withdrawn states.

We proceed in two steps. First we construct a learner M 1 conservatively BMS�Ex-learning at least L in
a strong sense, i.e.,

(1) @σ P Σ ω @x P Σ pM 1pσaxq �M 1pσq ñ x RWM 1pσq q.

That we require the last datum to violate consistency with the former hypothesis �ts the setting of BMS-
learners and is also called locally conservative by [JLZ06]. Second, with such a learner at hand, we are going
to construct a learner N which BMS�Ex-learns L in a witness-based fashion.

For de�ning the strongly conservative learner M 1, we employ a one-one function f : N�QÑ Ω satisfying

Wfpe,sq �
¤
tPN

#
W t
e , if @x PW t

ephM ps, xq � e ^ sM ps, xq � s q;

∅, otherwise

for every hypothesis e P N � Ω and state s P Q. The existence of f is granted by the smn theorem. Thus, f
takes into account only the initial part of We not necessary to possibly justify a mind-change or state-change
later on. Now de�ne for all σ P Σ ω

M 1pσq � fpMpσq, s�M pσqq.
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As M never returns to withdrawn states and behaves strongly locking while BMS�Ex-learning L, M 1 also
Ex-learns L. For σ � ε the values of Mpσq and s�M pσq only depend on s�M pσ

�q and lastpσq and hence M 1 is
a BMS�-learner with sM 1 � sM . Moreover, by construction it is conservative in the strong sense de�ned in
(1).

We now de�ne the witness-based learner N . In addition to thinning out the hypotheses of M 1, as we did
with the hypotheses ofM when constructingM 1 fromM , we patch all data causing mind-changes to it. This
data is stored in the states used by N . Further, we only alter our old hypothesis in case we can guarantee
the existence of a witness justifying the possible mind-change. To do this in a computable way, we need to
store also the last hypothesis of M 1 in the states of N .

For every datum x P Σ, data-sequence σ P Σ ω, hypothesis e P N � Ω and every �nite sequence MC
of natural numbers, interpreted as pairs of hypotheses and data, we de�ne a state transition function sN ,
auxiliary hypothesis generating function h, recursive function g : N2 Ñ Ω and the learner N by

hpxs, xMCyy, xq �

#
hM 1ps,#q, if x P pr2rMCs;

hM 1ps, xq, otherwise;

sN pxs, xMCyy, xq �

$'''&
'''%
xsM 1ps,#q, xMCyy, if x P pr2rMCs ^ hM 1ps,#q � pr1plastpMCqq;

xsM 1ps,#q, xMCaxhM 1ps,#q,#yyy, if x P pr2rMCs ^ hM 1ps,#q � pr1plastpMCqq;

xsM 1ps, xq, xMCyy, else if hM 1ps, xq � pr1plastpMCqq;

xsM 1ps, xq, xMCaxhM 1ps, xq, xyyy, otherwise;

Wgpe,xs,xMCyyq � pr2rMCs YWe;

Npσaxq �

$'&
'%

?, if h�pσaxq � ?;

gph�pσaxq, s�N pσ
axqq, else if h�pσaxq � pr1plastpdecodeppr2ps

�
N pσqqqqqq;

Npσq, otherwise.

Thus with the help of g the data stored in the second coordinates of MC is patched to the language encoded
in e. Further, N only makes a mind-change if h� does, as h�pσq � pr1plastpdecodeppr2ps

�
N pσqqqqqq. The

learner h� behaves like M 1 on the text, in which every datum repeatedly causing a mind-change is replaced
by the pause symbol.

Let L P L and T P TxtpLq. It is easy to see that for the text T 1 recursively de�ned by

T 1ptq �

#
#, if Ds   t pT psq � T ptq ^ M 1pT 1rssaT psqq �M 1pT 1rssq q;

T ptq, otherwise,

holds h�pT rtsq �M 1pT 1rtsq for all t P N. This follows with a simultaneous induction also showing pr1ps
�
N pT rtsqq �

s�M 1pT 1rtsq. Hence h� on T behaves like M 1 on T 1 P TxtpLq.
Because M 1 Ex-converges on T 1, it makes only �nitely many mind-changes and uses only �nitely many

states, which implies that N also only uses �nitely many states. Let e � M 1pT 1rt0sq be the �nal correct
hypothesis of M 1 on T 1 with t0 P N chosen appropriately. Because M 1 never returns to withdrawn states,
the states of N also stabilize. Moreover, NpT rt0sq has to be correct since pr2rMCs �We.

As already mentioned, N learns every L P L witness-based because M 1 is strongly conservative. Every
time N performs a mind-change on T , so does M 1 on T 1. Therefore, there is a responsible datum x which
was not in the former hypothesis of M 1 and also has not occured so far, as no datum in T 1 causes more than
one mind-change. This datum x will be contained in all languages hypothesized by N in the future.

With the former theorem it is straightforward to observe that in the BMS�Ex-setting conservative,
strongly decisive and strongly non-U-shaped Ex-learning are equivalent.

Corollary 4.4. We have rTxtBMS�ConvExs � rTxtBMS�SDecExs � rTxtBMS�SNUExs.

Proof. On the one hand a conservative or strongly decisive learning behavior is also a strongly non-U-shaped
learning behavior. On the other hand, a learner behaving strongly non-U-shaped proceeds strongly locking
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and, by Theorem 4.3, from a strongly locking learner we may construct a learner with at least equal learning
power, acting witness-based and hence also conservatively and strongly decisively.

By [JKMS16, Theorem 2] and Lemma 3.1 (1) we obtain

rTxtBMS�ConvExs � rTxtBMS�SMonExs.

From this we conclude with Theorem 4.2 and Corollary 4.4 the following incomparability

rTxtBMS�ConvExs K rTxtBMS�SMonExs.

Similarly, with [JKMS16, Theorem 3] and again Lemma 3.1 (1) we obtain rTxtBMS�ConvExs �
rTxtBMS�MonExs. As Theorem 4.2 implies rTxtBMS�MonExs � rTxtBMS�SNUExs, with Corol-
lary 4.4 follows

rTxtBMS�ConvExs K rTxtBMS�MonExs.

Because Theorem 4.2 also reproves rTxtBMS�SNUExs � rTxtBMS�Exs, �rst observed in [CK13,
Th. 3.10], we completed the map for BMS�Ex-learning from texts. An overview is depicted in Figure 1.

TxtBMS�Ex

T

NU

Dec

SMon

Mon

WMon

Caut

SDec

SNU

Conv

Figure 1. Relations between delayable learning restrictions in explanatory �nitely bounded
memory states learning of languages from informants. The arrows represent implications
independent of the model. The outlined areas stand for equivalence classes with respect to
learning power, when the underlying model is TxtBMS�Ex.

As this map equals the one for It-learning, naturally the question arises, whether a result similar to Lemma
3.1 can be observed for the syntactic learning criteria. In the following we show that this is not the case.

Theorem 4.5. rItTxtSNUExs � rTxtBMS�SNUExs

Proof. Clearly, the inclusion holds. Similar to the proof of Lemma 4.2, we consider the BMS-learner M
initialized with state xx ?, 0y, x∅yy and hM and sM for every xe, ξy P Ω, D � N �nite and x P Σ de�ned by:

sM pxxe, ξy, xDyy, xq �

$'&
'%
xxe, ξy, xDyy, if x P D Y t#u _ π1pϕxpxe, ξyq q � e;

xϕxpxe, ξyq, xD Y txuyy, else if π1pϕxpxe, ξyq q � e;

Ò, otherwise.
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hM pxxe, ξy, xDyy, xq �

$'&
'%
e, if x P D Y t#u _ π1pϕxpxe, ξyq q � e;

π1pϕxpxe, ξyq q, else if π1pϕxpxe, ξyq q � e;

Ò, otherwise.

Additionally to the last hypothesis as well as exactly the data that already lead to a mind change ofM , some
parameter ξ P t0, 1, 2u is stored, indicating whether a further mind-change may cause a syntactic U -shape.

Let L � TxtBMS�SNUExpMq.
Assume there is an iterative learnerN with hypothesis generating function hN and L � ItTxtSNUExpNq.
We obtain L P LzItTxtSNUExpNq by applying 1-1 ORT referring to the Σ1-predicates MC and NoMC,

expressing that N does (not) perform a mind-change on a text built from parameters a, b P R. More
speci�cally, the predicates state thatN does converge and (not) make a mind-change when observing σ P Σ ω

after having observed arksabpkqa#`k , with k P N.

ψkp`q ô Nparksabpkqa#`q � Nparksabpkqa#`�1q;

NoMCpk, σq ô D`k P N pψkp`kq ^ @`   `k  ψkp`q ^ Nparksabpkqa#`kaσqÓ � Nparksabpkqa#`kq q;

MCpk, σq ô D`k P N pψkp`kq ^ @`   `k  ψkp`q ^ Nparksabpkqa#`kaσqÓ � Nparksabpkqa#`kq q.

By 1-1 ORT there are a, b, e1, e2 P R with pairwise disjoint ranges and e0 P N, such that

ϕapiqpxe, ξyq �

$''''''''&
''''''''%

xe0, ξy, if e P t?, e0u;

xe1pkq, 1y, else if e � e1pkq for some k ¤ i and ξ � 0 and i even;

xe1pkq, 2y, else if e � e1pkq for some k ¤ i and ξ � 0 and i odd;

xe2pkq, 0y, else if e � e1pkq for some k ¤ i and ξ � 1 and i odd;

xe2pkq, 0y, else if e � e1pkq for some k ¤ i and ξ � 2 and i even;

xe, ξy, otherwise;

ϕbpkqpxe, ξyq �

#
xe1pkq, ξy, if e P t?, e0u;

xe, ξy, otherwise;

We0 �

#
ranpart0sq, if t0 is minimal with @t ¥ t0Npartsq � Npart0sq;

ranpaq, no such t0 exists;

We1pkq � contentparksq Y tbpkqu Y

#
tapikqu if Dik ¥ k �rst found pMCpk, apikqq;

∅, otherwise;

We2pkq � ranpaq Y tbpkqu.

As the learner constantly puts out e0 on every text for We0 , we have We0 P L. Thus, also N has to
learn the �nite language We0 and t0 exists. Note that by the iterativeness of N we obtain Npart0sq �
Npart0s

aapiqq for all i ¥ t0 and with this

Npart0s
abpt0q

a#`t0 q � Npart0s
aapiqabpt0q

a#`t0 q for all i ¥ t0.

We1pt0q and We2pt0q also lie in L. To see that M explanatory learns both of them, note that, after having
observed bpt0q, M only changes its mind from e1pt0q to e2pt0q after having seen apiq and apjq with i, j ¥ t0
and i P 2N as well as j P 2N � 1. This clearly happens for every text for the in�nite language We2pt0q.
As |We1pt0qz pcontentpart0sq Y tbpt0quq | ¤ 1, this mind change never occurs for any text for We1pt0q. The
syntactic non-U-shapedness of the learning processes can be easily seen as for all k, l P N the languages We0 ,
We1pkq and We2plq are pairwise distinct and the learner never returns to an abandoned hypothesis.

Next, we show the existence of it0 ¥ t0 with MCpt0, apit0qq. Assume towards a contradiction that it0
does not exist. Hence, it holds We1pt0q � contentpart0sq Y tbpt0qu. As M learns this language from the text

art0s
abpt0q

a#8, so does N . The convergence of N implies the existence of `t0 . Thus, for every i P N we have
Npart0s

abpt0q
a#`t0aapiqq Ò or Npart0s

abpt0q
a#`t0aapiqq � Npart0s

abpt0q
a#`t0 q. Because N is iterative and

learns We2pt0q, it may not be unde�ned and therefore always the latter is the case. But then N will not learn
12



We1pt0q and We2pt0q as they are di�erent but it does not make a mind-change on the text art0s
abpt0q

a#`t0aa

after having observed the initial segment art0s
abpt0q

a#`t0 , due to its iterativeness. Hence it0 exists.
By the choice of it0 , the learner N does perform a syntactic U-shape on the following text for We1pt0q

art0s
aapit0q

abpt0q
a#`t0aapit0q

a#8.

More precisely, t0 and `t0 were chosen such that Npart0s
aapit0q

abpt0q
a#`t0 q has to be correct and the

characterizing property of it0 assures Npart0s
aapit0q

abpt0q
a#`t0 q � Npart0s

aapit0q
abpt0q

a#`t0aapit0qq. This
is a contradiction to We1pt0q P ItTxtSNUExpNq. Thus no iterative learner can explanatory syntactically
non-U-shapedly learn L.

Note that by Corollary 4.4 we also obtain rItTxtSDecExs � rTxtBMS�SDecExs and rItTxtConvExs �
rTxtBMS�ConvExs.

5. Related Open Problems

We have given a complete map for learning with bounded memory states, where, on the way to success,
the learner must use only �nitely many states. Future work can address the complete maps for learning with
an a priori bounded number of memory states, which needs very di�erent combinatorial arguments. Results
in this regard can be found in [CCJS07] and [CK13]. We expect to see trade-o�s, for example allowing
for more states may make it possible to add various learning restrictions (just as non-deterministic �nite
automata can be made deterministic at the cost of an exponential state explosion).

Also memory-restricted learning from positive and negative data (so-called informant) has only partially
been investigated for iterative learners and to our knowledge not at all for other models of memory-restricted
learning. Very interesting also in regard of 1-1 hypothesis spaces that prevent coding tricks is the Bem-
hierarchy, see [FJO94], [LZ96] and [CJLZ99].

In the spirit of grammatical inference, we encourage to investigate the learnability of carefully chosen
indexable families arising from applied machine learning or cognitive science research.
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