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Abstract
Selfish Network Creation focuses on modeling real world networks from a game-
theoretic point of view. One of the classic models by Fabrikant et al. (2003) is the
network creation game, where agents correspond to nodes in a network which buy
incident edges for the price of α per edge to minimize their total distance to all other
nodes. The model is well-studied but still has intriguing open problems. The most
famous conjectures state that the price of anarchy is constant for all α and that for α ≥
n all equilibrium networks are trees. We introduce a novel technique for analyzing
stable networks for high edge-price α and employ it to improve on the best known
bound for the latter conjecture. In particular we show that for α > 4n − 13 all
equilibrium networks must be trees, which implies a constant price of anarchy for
this range of α. Moreover, we also improve the constant upper bound on the price of
anarchy for equilibrium trees.

Keywords Network creation games · Price of anarchy · Tree conjecture ·
Algorithmic game theory

1 Introduction

Many important networks, e.g. the Internet or (online) social networks, have not been
explicitly designed or planned by any central authority. Instead, they have emerged
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via a decentralized process in which independent and selfish agents interact [49].
Thus, such networks cannot be studied via the analysis of a suitable optimization
problem like variants of the Minimum Spanning Tree, the Steiner Tree or the Network
Design Problems [22, 29, 36].

Nevertheless, modeling and understanding such real world networks is an impor-
tant challenge for researchers in the fields of Computer Science, Network Science,
Economics and Social Sciences. A significant part of this research focuses on assess-
ing the impact of the lack of central coordination and the agents’ selfish behavior on
the overall network quality. This impact is measured via the price of anarchy [41],
which is the ratio of the overall network quality of the worst possible outcome of
the uncoordinated network creation process and the network quality of the centrally
designed optimal network. If this ratio is constant and close to 1, then this implies
that naturally grown networks are efficient in the sense that they approximate opti-
mal centrally designed networks well. Moreover, this implies that no coordinating
central authority is needed to guide the process to socially favorable outcomes. If, on
the other hand, the price of anarchy is high, i.e., non-constant in the number of nodes
of the network, then this is clear sign that a coordinating mechanism is needed.

Clearly, if there is no or little coordination among the egoistic agents, then it cannot
be expected that the obtained networks optimize the overall network quality. The
reason for this is that each agent aims to improve the network quality for herself and is
mostly agnostic to the overall network quality. However, empirical observations, e.g.
the famous small-world phenomenon [39, 50], low diameter and average distances
of real-world networks [10], suggest that selfishly built networks are indeed very
efficient in terms of the overall cost and of the individually perceived service quality
of the participating agents. Thus, it is a main challenge to justify these observations
analytically.

A very promising approach towards this end is to model the creation of a network
as a strategic game which yields networks as equilibrium outcomes and then to inves-
tigate the overall quality of these networks. For this, a thorough understanding of the
structure of such equilibrium networks is the key.

We contribute to this endeavor by providing new insights into the structure of
equilibrium networks for one of the classical models of selfish network creation [27].
In this model, agents correspond to nodes in a network and can buy costly links
to other nodes to minimize their total distance in the created network. Our insights
yield significant progress towards settling the so-called tree conjecture [27, 45] and
a simplified proof that the price of anarchy of the game is constant if the edge-price
is sufficiently high.

1.1 Model and Definitions

We consider the classical network creation game as introduced by Fabrikant et
al. [27]. There are n agents V , which correspond to nodes in a network, who want to
create a connected network among themselves. Each agent selfishly strives for min-
imizing her cost for creating network links while maximizing her own connection
quality. All edges in the network are undirected and unweighted and agents can create
any incident edge for the price of α > 0, where α is a fixed parameter of the game.
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The strategy Su ⊆ V \{u} of an agent u denotes which edges are bought by this agent,
that is, agent u is willing to create (and pay for) all the edges (u, x), for all x ∈ Su.
Let s be the n-dimensional vector of the strategies of all agents. The strategy-vector s
induces an undirected network G(s) = (V , E(s)), where for each edge (u, v) ∈ E(s)
we have v ∈ Su or u ∈ Sv . If v ∈ Su, then we say that agent u is the owner of edge
(u, v) or that agent u buys the edge (u, v), otherwise, if u ∈ Sv , then agent v owns
or buys the edge (u, v).1 Since the created networks will heavily depend on α we
emphasize this by writing (G(s), α) instead of G(s). The cost of an agent u in the
network (G(s), α) is the sum of her cost for buying edges, called the creation cost,
and her cost for using the network, called the distance cost, which depends on agent
u’s distances to all other nodes within the network. The cost of u is defined as

cost(G(s), α, u) = α|Su| + distcost(G(s), u),

where the distance cost is defined as

distcost(G(s), u) =
{ ∑

w∈V dG(s)(u, w), if G(s) is connected
∞, otherwise.

Here dG(s)(u, w) denotes the length of a shortest path between u and w in the network
G(s). We will mostly omit the reference to the strategy vector, since it is clear that a
strategy vector directly induces a network and vice versa.

A network (G(s), α) is in pure Nash equilibrium (NE), if no agent can unilaterally
change her strategy to strictly decrease her cost. That is, in a NE network no agent
can profit by a strategy change if all other agents stick to their strategies. Since in NE
networks no agent wants to change the network, we call them stable.

The social cost, denoted cost(G(s), α), of a network (G(s), α) is the sum of
the cost of all agents, that is, cost(G(s), α) = ∑

u∈V cost(G(s), α, u). Let OPTn

be the minimum social cost of a n-agent network and let maxNEn be the maximum
social cost of any NE network on n agents. The price of anarchy (PoA) [41] is the
maximum over all n of the ratio maxNEn

OPTn
.

Let G = (V , E) be any undirected connected graph with n vertices. A cut-vertex
x of G is a vertex with the property that G with vertex x removed contains at least
two connected components. We say that G is biconnected if n ≥ 3 and G contains
no cut-vertex. A biconnected component H of G is a maximal induced subgraph of
G which is also biconnected. Note that we rule out trivial biconnected components
which contain exactly one edge. Thus, there exist at least two vertex-disjoint paths
between any pair of vertices x, y in a biconnected component H , which implies that
there exists a simple cycle containing x and y.

1.2 RelatedWork

There is a huge body of literature on selfish network creation. A good source for an
overview of classical models is the survey by Jackson [32] and his book [33].

1No edge can have two owners in any equilibrium network. Hence, we will assume throughout the paper
that each edge in E(s) has a unique owner.
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Network creation games, as defined above, were introduced by Fabrikant et
al. [27]. Their model essentially is a simplified unilateral variant of the connections
model by Jackson & Wolinsky [34]. In this model agents have an individual intrin-
sic value and derive value from each other proportional to their proximity by buying
links. For establishing such a connection, both participating agents have to agree and
pay the individual price of the link. The authors introduce and use the solution con-
cept of pairwise stability for this model. A network is pairwise stable if all edges in
the network are profitable for both endpoints and if all non-edges of the network are
blocked by at least one of its endpoints since it does not yield positive utility. Later
Bala & Goyal [9] drastically simplified this model by introducing a version where
edges are unilaterally bought by one endpoint and where agents simply want to reach
all other agents in the created network.

For the network creation game Fabrikant et al. [27] gave the first general bound
of O(

√
α) on the PoA and they conjectured that above some constant edge-price α

all NE networks are trees. This conjecture, called the tree conjecture, is especially
interesting since they also showed that tree networks in NE have constant PoA. In
particular, they proved that the PoA of stable tree networks is at most 5. Interestingly,
the tree conjecture in its general version was later disproved by Albers et al. [1].
However, non-tree NE networks are known only when α < n, in particular, for every
ε > 0, there exist non-tree NE networks with α ≤ n − ε [45]. It is believed that for
α ≥ n the tree conjecture might be true. Settling this claim is currently a major open
problem and there has been a series of papers which improved bounds concerning
the tree conjecture.

First, Albers et al. [1] proved that for α ≥ 12n log n every NE network is a tree.
Then, using a technique based on the average degree of the biconnected component,
this was significantly improved to α > 273n by Mihalák & Schlegel [48] and even
further to α ≥ 65n by Mamageishvili et al. [45]. The main idea of this average degree
technique is to prove a lower and an upper bound on the average degree of the unique
biconnected component in any equilibrium network. The lower bound has the form
”for α > c1n the average degree is at least c2” and the upper bound has the form ”for
α > c3n the average degree is at most f (α)”, where c1, c2, c3 are constants and f

is a function which monotonically decreases in α. For large enough α both bounds
contradict each other, which proves that equilibrium networks for this α cannot have
a biconnected component and thus must be trees. Recently a preprint by Àlvarez &
Messegué [5] was announced which invokes the average degree technique with a
stronger lower bound. This then yields a contradiction already for α > 17n. For their
stronger lower bound the authors use that in every minimal cycle (we call them ”min
cycles”) of an equilibrium network all agents in the cycle buy exactly one edge of
the cycle. This fact has been independently established by us [44] and we also use it.
Moreover, the authors of [5] also provide an improved bound on the price of anarchy
which is achieved by a better bound on the diameter of the 2-edge-connected compo-
nent of any NE network. It is shown that the price of anarchy is constant for α > 9n.
Note, that this result does not imply that all NE networks are trees for α > 9n, hence
it has no implication on the tree conjecture. In a newer follow-up preprint [6], which
appeared after the extended abstract [15] of the present paper was published, Àlvarez
& Messegué significantly improve on their price of anarchy bounds by employing an
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even more refined and elaborate variant of the average degree technique. Their new
analysis yields a constant price of anarchy for α > n(1 + ε) for any constant ε > 0.
Also this newer result does not yield progress on the tree conjecture.

The currently best general upper bound of 2
O

(√
log n

)
on the PoA is due to

Demaine et al. [24] and it is known that the PoA is constant if α < n1−ε for any fixed
ε ≥ 1

log n
[24]. Moreover, Graham et al. [31] proved that for any constant α > 2 the

PoA is in 1 + o(1), i.e., it tends to 1 as n increases.
All in all, the PoA was shown to be constant for almost all α, except for the range

between n1−ε , for any fixed ε ≥ 1
log n

, and α < 65n (or α ≤ 9n which is claimed
in [5]). See Fig. 1 for an illustration.

It is widely conjectured that the PoA is constant for all α and settling this open
question is a long standing problem in the field. A constant PoA proves that agents
create socially close-to-optimal networks even without central coordination. Quite
recently, a constant PoA was proven by Chauhan et al. [17] for a version with non-
uniform edge prices. In contrast, non-constant lower bounds on the PoA have been
proven for local versions of the network creation game by Bilò et al. [11, 13] and
Cord-Landwehr & Lenzner [20].

For other variants and aspects of network creation games, we refer to [2–4, 7–9,
12, 14, 16, 18, 19, 21, 23, 25, 26, 28, 30, 32–35, 38, 40, 42, 43, 46, 47].

An extended abstract of this work appeared in [15].

1.3 Our Contribution

In this paper we introduce a new technique for analyzing stable non-tree networks
for high edge-price α and use it to improve on the current best lower bound for α for
which all stable networks must be trees. In particular, we prove that for α > 4n − 13
any stable network must be a tree (see Section 2). This is a significant improvement
over the known bound of α > 65n by Mamageishvili et al. [45] and the recently
claimed bound of α > 17n by Àlvarez & Messegué [5]. Since the PoA for stable tree
networks is constant [27], our bound directly implies a constant PoA for α > 4n−13.
Thus, compared to the highly technical proof in [6], our result yields a very simple
proof that the PoA is constant for α > 4n − 13. Last but not least, in Section 3, we
provide a refined analysis of the PoA of stable tree networks and thereby improve on
the best known constant upper bound for stable trees by Fabrikant et al. [27]. This
result yields an improved PoA for 4n − 13 < α < n2.

Fig. 1 Illustration of the best known bounds on the PoA and on the tree conjecture. The contribution of
this paper is highlighted
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Thus, by providing a novel analysis technique we make significant progress
towards settling the tree conjecture in network creation games and we provide a
simple proof for the PoA being constant for α > 4n − 13. See Fig. 1.

Our new technique exploits properties of cycles in stable networks by focusing on
critical pairs, strong critical pairs and min cycles. The latter have been introduced in
our earlier work [44] and are also used in the preprint by Àlvarez & Messegué [5].
However, in contrast to the last attempts for settling the tree conjecture [5, 6, 45, 48],
we do not rely on the average degree technique. Instead we propose a more direct
and entirely structural approach. Our main new contribution is that we reveal a rich
combinatorial structure within any non-tree NE network for α > 2n − 6. We show
that in this case any agent in any min cycle with a certain minimum length owns
exactly one edge of the respective min cycle. With this we prove that the biconnected
component of any non-tree NE network cannot be a cycle and thus must contain
two nodes with are situated in a particular configuration, which we denote as critical
pair. Finally we derive a contradiction to the existence of this specific critical pair for
α > 4n − 13.

Besides yielding a much simpler proof of the PoA being constant for α > 4n−13,
we believe that this approach may be crucial for finally settling the tree conjecture and
for further improvements on the PoA. The reason for this is that our proof technique
is orthogonal to the average degree technique used in [5, 6, 45, 48] and combining
these two approaches seems to be a promising next step. We discuss extensions in
that direction in the Conclusion.

2 Improving the Range of α of the Tree Conjecture

In this section we prove our main result, that is, we show that for α > 4n − 13, every
NE network (G, α) with n ≥ 4 nodes must be a tree.

We proceed by first establishing properties of cycles in stable networks. Then
we introduce the key concepts called critical pairs, strong critical pairs and min
cycles. Finally, we provide the last ingredient, which is a critical pair with a specific
additional property, and combine all ingredients to obtain the claimed result.

2.1 Properties of Cycles in Stable Networks

We begin by showing that for large values of α, stable networks cannot contain cycles
of length either 3 or 4.

Lemma 1 For α > n−1
2 , no stable network (G, α) contains a cycle of length 3.

Proof Let (G, α) be a stable network for a fixed value of α > n−1
2 . For the sake of

contradiction, assume that G contains a cycle C of length 3. Assume that V (C) =
{u0, u1, u2} and that C contains the three edges (u0, u1), (u1, u2), and (u2, u0). Let

Vi = {
x ∈ V | dG(ui, x) < dG(uj , x), ∀j 	= i

}
.
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Observe that, for every i ∈ {0, 1, 2} we have |Vi | ≥ 1, as ui ∈ Vi . Further-
more, all the Vi’s are pairwise disjoint. Without loss of generality, assume that
|V0| = max {|V0|, |V1|, |V2|} and that u1 buys the edge (u1, u2). Consider the strat-
egy change in which agent u1 deletes the edge (u1, u2). The building cost of the agent
decreases by α while her distance cost increases by at most |V2|. Since |V2| ≤ |V0|,
from |V0| + |V1| + |V2| ≤ n we obtain |V2| ≤ n−1

2 . Since G is stable, n−1
2 − α ≥ 0,

i.e., α ≤ n−1
2 , a contradiction.

Lemma 2 For α > n − 2, no stable network (G, α) contains a cycle of length 4.

Proof Let (G, α) be a stable network for a fixed value of α > n − 2. For the sake
of contradiction, assume that G contains a cycle C of length 4. Assume that V (C) =
{u0, u1, u2, u3} and that C contains the four edges (u0, u1), (u1, u2), (u2, u3), and
(u3, u0). For the rest of this proof, we assume that all indices are modulo 4 in order
to simplify notation. Let

Vi = {
x ∈ V | dG(ui, x) < dG(uj , x), ∀j 	= i

}
.

Note that for every i ∈ {0, 1, 2, 3} we have |Vi | ≥ 1, as ui ∈ Vi . Let

Zi = {x ∈ V | dG(ui, x) = dG(ui−1, x) and

dG(ui, x), dG(ui−1, x) < dG(uj , x), ∀j 	= i, i − 1
}

.

Observe that in the families of the sets Vi and Zi every pair of sets is pairwise disjoint.
We now rule out the case in which an agent owns two edges of C. Without loss

of generality, assume that agent u0 owns the two edges (u0, u1) and (u0, u3). Con-
sider the strategy change in which agent u0 swaps2 the edge (u0, u1) with the edge
(u0, u2) and, at the same time, deletes the edge (u0, u3). The creation cost of agent u0
decreases by α, while her distance cost increases by |V1| + |V3| − |V2|. Since (G, α)

is stable, agent u0 has no incentive in deviating from her current strategy. Therefore,
|V1| + |V3| − |V2| − α ≥ 0, i.e.,

α ≤ |V1| + |V3| − |V2| ≤ n − |V0| − |V2| − |V2| ≤ n − 3,

where the last but one inequality follows from the pairwise disjointness of all Vi sets,
which implies |V0|+ |V1|+ |V2|+ |V3| ≤ n. Since, α > n−2, no agent can own two
edges of C. Therefore, to prove the claim, we need to show that no agent can own a
single edge of C.

Without loss of generality, assume that for every i ∈ {0, 1, 2, 3} agent ui owns the
edge (ui, ui+1). Moreover, again without loss of generality, assume that

|V1| + |Z2| = min
0≤i≤3

{|Vi | + |Zi+1|} .

2A swap of edge (a, b) to edge (a, c) by agent a who owns edge (a, b) consists of deleting edge (a, b)

and buying edge (a, c).
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Since ∑
0≤i≤3

(|Vi | + |Zi+1|) ≤ n,

we have that |V1| + |Z2| ≤ n
4 .

Consider the strategy change in which agent u0 deletes the edge (u0, u1). The
creation cost of agent u0 decreases by α, while her distance cost increases by 2|V1|+
|Z2| ≤ n

2 .
Since (G, α) is stable, agent u0 has no incentive to deviate from her current strat-

egy. Therefore, n
2 − α ≥ 0, i.e., α ≤ n

2 ≤ n − 2, when n ≥ 4. We have obtained a
contradiction.

Definition 1 (Directed Cycle) Let C be a cycle of (G, α) of length k. We say that C

is directed if there is an ordering u0, . . . , uk−1 of its k vertices such that, for every
i = 0, . . . , k − 1, (ui, u(i+1) mod k) is an edge of C which is bought by agent ui .

We now show that if α is large enough, then directed cycles cannot be contained
in a stable network as a biconnected component.

Lemma 3 For α > n − 2, no stable network (G, α) with n ≥ 6 vertices contains a
biconnected component which is also a directed cycle.

Proof Let (G, α) be a stable network for a fixed value of α > n − 2. Let H be
a biconnected component of G. For the sake of contradiction, assume that H is a
directed cycle of length k. We can apply Lemma 2 to exclude the case in which k = 4.
Similarly, since α > n − 2 ≥ n−1

2 for every n ≥ 3, we can use Lemma 1 to exclude
the case in which k = 3.

Let u0, . . . , uk−1 be the k vertices of H and, w.l.o.g., assume that every agent ui

is buying an edge towards agent u(i+1) mod k . To simplify notation, in the rest of this
proof we assume that all indices are modulo k. Let

Vi = {
x ∈ V | dG(ui, x) < dG(uj , x), ∀j 	= i

}
.

Observe that Vi is a partition of V . We divide the proof into two cases.
The first case occurs when H is a cycle of length k ≥ 6. Without loss of generality,

assume that
|V2| = max

0≤i≤k−1
|Vi |.

In this case, consider the strategy change of agent u0 when she swaps the edge
(u0, u1) with the edge (u0, u2). The distance cost of agent u0 increases by

|V1| − |V2| − |V3| ≤ −1.

Thus, agent u0 has an improving strategy, a contradiction.
The second and last case occurs when H is a cycle of length k = 5. If |Vi | 	= |Vj |

for some i, j ∈ {0, 1, 2, 3, 4}, then there exists an i ∈ {0, 1, 2, 3, 4} such that |Vi | <

|Vi+1|. Without loss of generality, let |V1| < |V2|. The distance cost of agent u0 when
she swaps the edge (u0, u1) with the edge (u0, u2) increases by |V1| − |V2| ≤ −1.
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Thus agent u0 has an improving strategy, a contradiction. If |V0| = |V1| = |V2| =
|V3| = |V4|, then the increase in the overall cost incurred by agent u0 when she
deletes the edge (u0, u1) would be equal to

3|V1| + |V2| − α = 4

5
n − α.

Since G is stable and n is a multiple of 5, 4
5n − α ≥ 0, i.e., α ≤ 4

5n ≤ n − 2, for
every n ≥ 10, a contradiction.

2.2 Critical Pairs

The next definition introduces the concept of a (strong) critical pair. As we will see,
(strong) critical pairs are the first key ingredient for our analysis. Essentially, we will
show that stable networks cannot have critical pairs, if α is large enough.

Definition 2 (Critical Pair) Let (G, α) be a non-tree network and let H be a bicon-
nected component of G. We say that 〈v, u〉 is a critical pair if all of the following
five properties hold:

1. Agent v ∈ V (H) buys two distinct non-bridge edges, say (v, v1) and (v, v2),
with v1, v2 ∈ V (H);

2. Agent u ∈ V (H), with u 	= v buys at least one edge (u, u′) with u′ ∈ V (H) and
u′ 	= v;

3. dG(v, u) ≥ 2;
4. there is a shortest path between v and u in G which uses the edge (v, v1);
5. there is a shortest path between v and u′ in G which does not use the edge (u, u′).

The critical pair 〈v, u〉 is strong if there is a shortest path between u and v2 which
does not use the edge (v, v2). See Fig. 2 for an illustration.

In the rest of this section, when we say that two vertices v and u of G form a
critical pair, we will denote by v1, v2, and u′ the vertices corresponding to the critical

Fig. 2 Illustrations of a critical pair 〈v, u〉. Edge-ownership is depicted by directing edges away from their
owner. Left: Edge (u, u′) belongs to a shortest path tree T rooted at v and u′ is the parent of u in T .
Middle: Edge (u, u′) does not belong to any shortest path tree T rooted at v. Note that in this case (v, v2)

can also be on the shortest path from v to u′. Right: Illustration of a strong critical pair 〈v, u〉
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pair 〈v, u〉 that satisfy all the conditions given in Definition 2. We can observe the
following.

Observation 4 If 〈v, u〉 is a critical pair of a network (G, α), then there exists a
shortest path tree T of G rooted at v, where either the edge (u, u′) is not an edge of
T or u′ is the parent of u in T .

Observation 5 If 〈v, u〉 is a critical pair, then for every shortest path tree T of (G, α)

rooted at u, either the edge (v, v1) is not an edge of T or v1 is the parent of v in T .
Furthermore, if 〈v, u〉 is a strong critical pair, then there is a shortest path tree of G
rooted at u such that the edge (v, v2) is not contained in the shortest path tree.

The next technical lemma provides useful bounds on the distance cost of the nodes
involved in a critical pair.

Lemma 6 Let (G, α) be a stable network and let a, b be two distinct vertices of G

such that a buys an edge (a, a′), with a′ 	= b. If dG(a, b) ≥ 2 and there exists a
shortest path tree T of G rooted at b such that either (a, a′) is not an edge of T or a′
is the parent of a in T , then

distcost(G, a) ≤ distcost(G, b) + n − 3.

Furthermore, if a is buying also the edge (a, a′′), with a′′ 	= a′, a′′ 	= b, and (a, a′′)
is not an edge of T , then

distcost(G, a) ≤ distcost(G, b) + n − 3 − α.

Proof Consider the strategy change in which agent a swaps the edge (a, a′) with the
edge (a, b) and deletes any other edge she owns and which is not contained in T , if
any. Let T ′ be a shortest path tree rooted at b of the graph obtained after the swap.
Observe that dT ′(b, x) ≤ dG(b, x), for every x ∈ V . Furthermore, as dG(a, b) ≥ 2,
while dT ′(a, b) = 1, we have dT ′(a, b) ≤ dG(a, b) − 1. Therefore,∑

x∈V

dT ′(b, x) ≤ distcost(G, b) − 1.

Moreover, the distance from a to every x 	= a is at most 1 + dT ′(b, x). Finally, the
distance from a to herself, which is clearly 0, is exactly 1 less than the distance from
b to a in T ′. Therefore the distance cost of a in T ′ is less than or equal to

distcost(G, b) − 1 + (n − 1) − 1 = distcost(G, b) + n − 3.

If besides performing the mentioned swap agent a additionally saves at least α in
cost by deleting at least one additional edge which is not in T , then

distcost(G, a) ≤ distcost(G, b) + n − 3 − α.

This is true since G is stable, which implies that the overall cost of a in G cannot be
larger than the overall cost of a after the strategy change.
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Now we employ Lemma 6 to prove the structural property that stable networks
cannot contain strong critical pairs if α is large enough.

Lemma 7 For α > 2n − 6, no stable network (G, α) contains a strong critical pair.

Proof Let (G, α) be a non-tree stable network for a fixed value of α > 2n − 6 and,
for the sake of contradiction, let 〈v, u〉 be a strong critical pair. Using Observation 4
together with Lemma 6 (where a = u, a′ = u′, and b = v), we have that

distcost(G, u) ≤ distcost(G, v) + n − 3.

Furthermore, using Observation 5 together with Lemma 6 (where a = v, a′ =
v1, a

′′ = v2, and b = u), we have that

distcost(G, v) ≤ distcost(G, u) + n − 3 − α.

By summing up both the left-hand and the right-hand side of the two inequalities we
obtain 0 ≤ 2n − 6 − α, i.e., α ≤ 2n − 6, a contradiction.

2.3 Min Cycles

We now introduce the second key ingredient for our analysis: min cycles.

Definition 3 (Min Cycle) Let (G, α) be a non-tree network and let C be a cycle in
G. We say that C is a min cycle if, for every two vertices x, x′ ∈ V (C), dC(x, x′) =
dG(x, x′).

First, we show that every edge of every biconnected graph is contained in some
min cycle. This was also proven in [44] and [5].

Lemma 8 Let H be a biconnected graph. Then, for every edge e of H , there is a min
cycle that contains the edge e.

Proof Since H is biconnected, there exists at least one cycle containing the edge e.
Among all the cycles in H that contain the edge e, let C be a cycle of minimum
length. We claim that C is a min cycle. For the sake of contradiction, assume that C

is not a min cycle. This implies that there are two vertices x, y ∈ V (C) such that
dH (x, y) < dC(x, y). Among all pairs x, y ∈ V (C) of vertices such that dH (x, y) <

dC(x, y), let x′, y′ be the one that minimizes the value dH (x′, y′) (ties are broken
arbitrarily). Let Π be a shortest path between x′ and y′ in G. By the choice of x′ and
y′, Π is edge disjoint from C. Let P and P ′ be the two edge-disjoint paths between
x′ and y′ in C and, w.l.o.g., assume that e is contained in P . (See Fig. 3 for an
illustration.) Let � and �′ be the length of P and P ′, respectively. Clearly, the length of
C is equal to � + �′. Since dC(x′, y′) ≤ �′, we obtain dH (x′, y′) < �′. Therefore, the
cycle obtained by concatenating P and Π has a length equal to �+dH (x′, y′) < �+�′,
and therefore, it is strictly shorter than C, a contradiction.
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Fig. 3 The cycle C containing edge e and the paths P,P ′ and Π

Now we proceed with showing that stable networks contain only min cycles which
are directed and not too short. For this, we employ our knowledge about strong
critical pairs.

Lemma 9 For α > 2n − 6, every min cycle of a non-tree stable network (G, α) with
n ≥ 4 vertices is directed and has a length of at least 5.

Proof Let (G, α) be a non-tree stable network for a fixed α > 2n − 6 and let C be
a min cycle of G. Since 2n − 6 ≥ n−1

2 for every n ≥ 4, using Lemma 1, we have
that C cannot be a cycle of length equal to 3. Furthermore, since 2n − 6 ≥ n − 2 for
every n ≥ 4, using Lemma 2, we have that C also cannot be a cycle of length equal
to 4. Therefore, C is a cycle of length greater than or equal to 5.

For the sake of contradiction, assume that C is not directed. This means that C

contains an agent, say v, that is buying both her incident edges in C. We prove the
contradiction thanks to Lemma 7, by showing that C contains a strong critical pair.

If C is an odd-length cycle, then v has two distinct antipodal vertices u, u′ ∈ V (C)

which are adjacent in C.3 Without loss of generality, assume that u is buying the edge
towards u′. Clearly, dG(v, u) ≥ 2. Furthermore, since C is a min cycle, it is easy to
check that 〈v, u〉 is a strong critical pair.

If C is an even-length cycle, then let u ∈ V (C) be the (unique) antipodal vertex of
v and let u′ be a vertex that is adjacent to u in C. Observe that dG(v, u), dG(v, u′) ≥
2. Again using the fact that C is a min cycle, we have the following:

– If u is buying the edge towards u′, then 〈v, u〉 is a strong critical pair.
– If u′ is buying the edge towards u, then 〈v, u′〉 is a strong critical pair.

In both cases, we have proved that C contains a strong critical pair.

3In a cycle of length �, two vertices of the cycle are antipodal if their distance is �/2�.
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Let (G, α) be a non-tree stable network with n ≥ 6 vertices for a fixed α > 2n−6
and let H be a biconnected component of G. Since 2n − 6 ≥ n − 2 for every n ≥ 4,
Lemma 3 implies that H cannot be a directed cycle. At the same time, if H is a cycle,
then it is also a min cycle and therefore, Lemma 9 implies that H must be directed,
which contradicts Lemma 3. Therefore, we have proved the following.

Corollary 1 For α > 2n − 6, no non-tree stable network (G, α) with n ≥ 6 vertices
contains a cycle as one of its biconnected components.

2.4 Combining the Ingredients

Towards our main result, we start with proving that every stable network must contain
a critical pair which satisfies an interesting structural property. This lemma is the
third and last ingredient that is used in our analysis.

Lemma 10 For α > 2n−6, every non-tree stable network (G, α) with n ≥ 6 vertices
contains a critical pair 〈v, u〉. Furthermore, there exists a path P between v and v2
in G such that (a) the length of P is at most 2dG(u, v) and (b) P uses none of the
edges (v, v1) and (v, v2). Here, vertices v1 and v2 are defined as in Definition 2.

Proof Let (G, α) be a network of n ≥ 6 vertices which is stable for a fixed α >

2n − 6, and let H be any biconnected component of G. By Corollary 1, we have that
H cannot be a cycle. As a consequence, H contains at least |V (H)| + 1 edges and,
therefore, it has a vertex, say v, that buys at least two edges of H .

Let v1 and v2 be the two distinct vertices of H such that v buys the edges (v, v1)

and (v, v2). Let Ci be the min cycle that contains the edge (v, vi), whose existence
is guaranteed by Lemma 8. Lemma 9 implies that Ci is a directed cycle of length
greater than or equal to 5. Therefore, since (v, v1) is an edge of C1 bought by agent
v, C1 cannot contain the edge (v, v2), which is also bought by v. Similarly, since
(v, v2) is an edge of C2 bought by agent v, C2 cannot contain the edge (v, v1), which
is also bought by v.

Let T be a shortest path tree rooted at v which gives priority to the shortest paths
using the edges (v, v1) or (v, v2). More precisely, for every vertex x, if there is a
shortest path from v to x containing the edge (v, v1), then x is a descendant of v1 in
T . Furthermore, if no shortest path from v to x contains the edge (v, v1), but there is
a shortest path from v to x containing the edge (v, v2), then x is a descendant of v2
in T .

Consider the directed version of Ci in which each edge is directed from their owner
agent towards the other end vertex. Let ui be, among the vertices of Ci which are also
descendants of vi in T , the one which is in maximum distance from v with respect
to the directed version of Ci . Finally, let (ui, u

′
i ) be the edge of Ci which is bought

by agent ui . Clearly, u′
i is not a descendant of vi in T . Therefore, by construction of

T , dG(v, u′
i ) ≤ dG(v, ui), otherwise u′

i would have been a descendant of vi in T , or
there would have been a min cycle containing both edges (v, v1) and (v, v2) (which
are both bought by agent v), thus contradicting Lemma 9.
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Without loss of generality, assume that dG(v, u2) ≤ dG(v, u1). Let u = u1 and
u′ = u′

1. We show that 〈v, u〉 is a critical pair. By Lemma 9, C1 is a cycle of length
k ≥ 5. As C1 is a min cycle, k = dG(v, u) + 1 + dG(v, u′). Moreover, since
dG(v, u′) ≤ dG(v, u), we have that dG(v, u) ≥ k−1

2 ≥ 2. Therefore u′ 	= v. Next,
the shortest path in T between v and u uses the edge (v, v1) which is owned by agent
v. Furthermore, the shortest path in T between v and u′ does not use the edge (u, u′).
Therefore, 〈v, u〉 is a critical pair.

Now, consider the path P which is obtained from C2 by removing the edge (v, v2).
Recalling that C2 does not contain the edge (v, v1), it follows that P is a path between
v and v2 which uses none of the two edges (v, v1) and (v, v2). Therefore, recalling
that dG(v, u′

2) ≤ dG(v, u2), the overall length of P is less than or equal to

dG(v, u′
2) + 1 + dG(v2, u2) ≤ dG(v, u2) + 1 + dG(v, u2) − 1

≤ 2dG(v, u1)

= 2dG(v, u).

Finally, we prove our main result. For this and in the rest of the paper, given a
vertex x of a network (G, α) and a subset U of vertices of G, we denote by dG(x, U)

the sum of the shortest path lengths from x to all nodes in U , i.e.,

dG(x, U) =
∑
x′∈U

dG(x, x′).

Theorem 1 For α > 4n − 13, every stable network (G, α) with n ≥ 4 vertices is a
tree.

Proof First of all, it is easy to check that for α > 3 every stable network with n = 4
vertices is a tree. Moreover, the same holds true for n = 5 and for α > 7.

Let α > 4n − 13 be a fixed value and let (G, α) be a stable network with n ≥ 6
vertices. Since 4n−13 ≥ 2n−6, for every n ≥ 4, we have that if (G, α) is not a tree,
then, by Lemma 10, it contains a critical pair 〈v, u〉 satisfying the conditions stated
in Lemma 10. Moreover, Lemma 7 implies that 〈v, u〉 cannot be a strong critical pair.
As a consequence, every shortest path from u to v2 uses the edge (v, v2). Since 〈v, u〉
is a critical pair, this implies that there is a shortest path from u to v2 which uses both
the edges (v1, v) and (v, v2). To finish our proof, we show that this contradicts the
assumed stability of (G, α). This implies that (G, α) must be a tree.

Let T (u) be a shortest path tree of G rooted at u having v1 as the parent of v and
v as the parent of v2. Observe that, by definition of a critical pair, there is a shortest
path between v and u containing the edge (v, v1). Therefore, T (u) is well defined.
Furthermore, let X be the set of vertices which are descendants of v2 in T (u). Note
that since v2 ∈ X, we have |X| ≥ 1.
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Since 〈v, u〉 is a critical pair, thanks to Observation 4, we can use Lemma 6 (where
a = u, a′ = u′, and b = v) to obtain

distcost(G, u) ≤ distcost(G, v) + n − 3. (1)

Furthermore, observe that

distcost(G, u) =
∑
x∈X

(dG(u, v) + dG(v, x)) + dG(u, V \ X)

= dG(u, v)|X| + dG(v, X) + dG(u, V \ X). (2)

Therefore, by substituting distcost(G, u) in (1) with (2) we obtain the following

dG(u, v)|X| + dG(v, X) + dG(u, V \ X) ≤ distcost(G, v) + n − 3. (3)

Let T ′(u) be the tree obtained from T (u) by the the swap of the edge (v, v1) with the
edge (v, u). The distance cost incurred by agent v if she swaps the edge (v, v1) with
the edge (v, u) is at most

dT ′(u)(v, V ) = dT ′(u)(v, X) + dT ′(u)(v, V \ X)

= dT (u)(v, X) + dT ′(u)(v, V \ X)

≤ dT (u)(v, X) +
∑

x∈V \(X∪{v})

(
1 + dT (u)(u, x)

)

≤ dG(v, X) +
∑

x∈V \X
(1 + dG(u, x)) − 2

= dG(v, X) + n − |X| + dG(u, V \ X) − 2.

Since (G, α) is stable, agent v cannot decrease her distance cost by swapping any of
the edges she owns. Therefore, we obtain

distcost(G, v) ≤ dG(v, X) + n − |X| + dG(u, V \ X) − 2. (4)

By summing both the left-hand and the right-hand sides of the two inequalities (3)
to (4) and simplifying we obtain

dG(u, v)|X| ≤ 2n − 5 − |X|. (5)

Consider the network (G′, α) induced by the strategy vector in which agent v deviates
from her current strategy by swapping the edge (v, v1) with the edge (v, u) and,
at the same time, by deleting the edge(v, v2). By Lemma 10, there exists a path P

between v and v2 in G, of length at most 2dG(u, v), such that P uses none of the
edges (v, v1) and (v, v2). As a consequence, using both (1) and (5) in the second to
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last inequality of the following chain, the distance cost of v with respect to (G′, α) is
upper bounded by

dG′(v, V ) ≤
∑
x∈X

(2dG(u, v) + dG(v2, x)) +
∑

x∈V \(X∪{v})
(1 + dG(u, x))

≤ 2dG(u, v)|X| + dG(v2, X) + n − |X| + dG(u, V \ X) − 2

≤ 2dG(u, v)|X| + dG(v, X) − |X| + n − |X| + dG(u, V \ X) − 2

= 2dG(u, v)|X| + dG(u, X) − dG(u, v)|X| + n − 2|X|
+dG(u, V \ X) − 2

= dG(u, v)|X| + n − 2|X| + distcost(G, u) − 2

≤ 2n − 5 − |X| + n − 2|X| + distcost(G, v) + n − 3 − 2

= distcost(G, v) + 4n − 10 − 3|X|
≤ distcost(G, v) + 4n − 13.

By her strategy change, agent v will save α in edge cost and her distance cost will
increase by at most 4n − 13. Thus, if α > 4n − 13, then this yields a strict cost
decrease for agent v which contradicts the stability of (G, α).

With the results from Fabrikant et al. [27] Theorem 1 yields:

Corollary 2 For α > 4n − 13 the PoA is at most 5.

In Section 3 we improve the upper bound of 5 on the PoA for stable tree networks
from Fabrikant et al. [27]. With this, we establish the following:

Corollary 3 For every α > 4n − 13 the PoA is at most 3 + 2n
2n+α

.

3 Improved Price of Anarchy for Stable Tree Networks

In this section we show a better bound on the PoA of stable tree networks. To prove
the bound, we need to introduce some new notation first. Let T be a tree on n vertices
and, for a vertex v of T , let T − v be the forest obtained by removing vertex v

together with all its incident edges from T . We say that v is a centroid of T if every
tree in T −v has at most n/2 vertices. It is well known that every tree has at least one
centroid vertex [37].

Lemma 11 Let (T , α) be a stable tree network rooted at a centroid c of T , and let
u, v ∈ V (T ), with u, v 	= c, be two vertices such that u buys the edge towards v in T .
Then dT (c, u) < dT (c, v), i.e., u is the parent of v in T . Furthermore, if T denotes
the subtree of T rooted at v, then v is a centroid of T .

Proof We show that dT (c, u) < dT (c, v) by proving that if dT (c, u) > dT (c, v),
then (T , α) is not stable. So, assume that dT (c, u) > dT (c, v). Consider the forest
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obtained from T after the removal of the edge (u, v) and let Tv be the tree of the
forest that contains vertex v. Since v is closer to c than u in T and u is not a vertex
of Tv , it follows that c is a vertex of Tv . See Fig. 4.

Since u and v are both in the same tree, say T ′′, of the forest T − c, it follows
that the tree induced by all the vertices of T which are not contained in T ′′, say T ′,
is entirely contained in Tv and has n′ ≥ n/2 vertices, as c is a centroid of T . Now
consider the strategy change in which agent u swaps the edge (u, v) with the edge
(u, c). Observe that after the swap of the edge (u, v) with the edge (u, c), the distance
from u to each vertex in T ′ decreases by dT (v, c), while the distance from u to each
vertex in Tv \ T ′ increases by at most dT (v, c). Therefore, if we denote by nv the
number of vertices of Tv , then the cost of agent u increases by at most

dT (v, c)(nv − n′) − dT (v, c)n′ = dT (v, c)(nv − 2n′)
≤ dT (v, c)(n − 1 − 2n/2)

≤ −1.

Therefore, (T , α) is not stable.
We now prove that v is a centroid of T . Let V be the set of vertices of T . Observe

that the claim trivially holds if |V | ≤ 2. Therefore, we assume that |V | ≥ 3. Notice
that

distcost(G, u) = dT (u, V ) + dT (u, V \ V ) = |V | + dT (v, V ) + dT (u, V \ V ).

Since (T , α) is stable, dT (v, V ) = minv′∈V dT (v′, V ), otherwise u would have incen-
tive to change her strategy by swapping the edge (u, v) with the edge (u, v∗) such
that v∗ ∈ arg minv′∈V dT (v′, V ).

Let x1, . . . , xk be the k neighbors of v in T . Clearly, x1, . . . , xk are also the k

children of v in T . Let (v, xi) be any edge of T adjacent to v. Consider the forest F

obtained by removing the edge (v, xi) from T . Let Xi be the set of vertices of the

Fig. 4 Illustration of the subtrees Tv , T ′ and T ′′ used in the proof of Lemma 11
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tree of F that contains xi . Let Yi = V \ Xi be the set of vertices of the tree of F that
contains v. We have that

dT (v, V ) = dT (v, Yi) + dT (v, Xi) = dT (v, Yi) + |Xi | + dT (xi, Xi).

Similarly,

dT (xi, V ) = dT (xi, Yi) + dT (xi, Xi) = |Yi | + dT (v, Yi) + dT (xi, Xi).

Since dT (v, V ) ≤ dT (xi, V ), it follows that

dT (v, Yi) + |Xi | + dT (xi, Xi) ≤ |Yi | + dT (v, Yi) + dT (xi, Xi)

and hence we have |Xi | ≤ |Yi |. Therefore, for every i = 1, . . . , k, we have that

|Xi | ≤ 1 +
k∑

j=1,j 	=i

|Xj | = |V | − |Xi |,

which implies that |Xi | ≤ |V |/2. Hence, v is a centroid of T .

We now show a useful bound on the number of vertices contained in each of the
subtrees of a stable tree network rooted at a centroid.

Lemma 12 Let (T , α) be a stable tree network rooted at a centroid c of T and let v
be a leaf of T . Let c1, . . . , ck be the vertices along the path in T between c1 = c and
ck = v, where ci+1 is the child of ci , and, finally, for every i = 1, . . . , k, let

ni = ∣∣{x ∈ V | dT (ci, x) < dT (cj , x), j 	= i
}∣∣ .

We have that
i∑

j=1

nj ≥ n ·
i∑

j=1

1/2j .

Proof The proof is by induction on i. The base is when i = 1. Since c = c0 is a
centroid of T , the subtree of T rooted at c1 contains at most n/2 vertices. Therefore
n1 ≥ n/2.

Now, assume that
∑i

j=1 nj ≥ n
∑i

j=1 1/2j . We prove the claim for i + 1. Using
Lemma 11, we have that ci+1 is a centroid of the subtree of T rooted at ci+1. As a
consequence, if m = ∑i

j=1 nj , we have that ni+1 ≥ n−m
2 . Therefore,

i+1∑
j=1

nj = m + ni+1 ≥ m + n − m

2
= m + n

2

≥ n ·
i∑

j=1

1/2j+1 + n

2
= n ·

i+1∑
j=1

1

2j
.

We can finally prove our upper bound on the PoA of stable tree networks.
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Theorem 2 For α ≥ 2, the PoA restricted to the class of stable tree networks of n

vertices is upper bounded by 3 + 2n2−8n−4α

2n2+(α−2)n
.

Proof Let (T , α) be a stable tree network rooted at a centroid c of T and let v be any
leaf of T . Let c1, . . . , cr+2 be the vertices along the path in T between c1 = c and
cr+2 = v, where ci+1 is the child of ci , and, finally, for every i = 1, . . . , r + 2, let

ni = ∣∣{x ∈ V | dT (ci, x) < dT (cj , x), j 	= i
}∣∣ .

Consider the strategy change in which agent v buys the edge (v, c1) and let k =
r/2�. The creation cost of agent v clearly increases by α, while her distance cost
decreases by at least

k∑
i=1

((r + 2 − 2i)ni) .

Since, r + 2 − 2i is strictly positive and monotonically decreasing with respect to
i, using Lemma 12 we can observe that the distance cost of agent v is minimized
when, for every i = 1, . . . , k, nr−i is minimum, i.e., when nr−i ≥ n

2i . Therefore, the
distance cost decrease of v is lower bounded by

k∑
i=1

((r + 2 − 2i)ni) ≥
k∑

i=1

(
(r + 2 − 2i)n/2i

)

= (r + 2)n

k∑
i=1

1

2i
− 2n

k∑
i=1

i

2i

= (r + 2)n

(
1 − 1

2k

)

−2n

(
k/2k+2 − (k + 1)/2k+1 + 1/2

(1/2 − 1)2

)

= (r + 2)n − r + 2

2k
n − 2k

2k
n + 4(k + 1)

2k
n − 4n

= (r − 2)n + n

(
2k + 2 − r

2k

)

≥ (r − 2)n,

where last inequality holds because r ≤ 2k + 1.
Since (T , α) is stable, agent v has no incentive to buy the edge (v, c1). Hence,

α − (r − 2)n ≥ 0, i.e., r ≤ α/n + 2. This implies that the length of the path from the
centroid to any leaf of T is at most α/n + 4. Thus, the diameter of T is less than or
equal to 2α/n + 8. Since in every tree of n vertices, there are 2(n − 1) distinct pairs
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of vertices at distance 1, while the other (n−1)(n−2) pairs are at distance of at most
2α/n + 8, the upper bound on the social cost of T is

cost(T ) = α(n − 1) +
(

2α

n
+ 8

)
(n − 1)(n − 2) + 2(n − 1)

= 8n2 + (3α − 14)n − 4α

n
· (n − 1).

The cost of the social optimum on n nodes, which for α ≥ 2 is the star [27], is

cost(Sn) = α(n − 1) + 2(n − 1)(n − 2) + 2(n − 1) = (2n + α − 2) (n − 1).

Therefore,

cost(T )

cost(Sn)
= 8n2 + (3α − 14)n − 4α

2n2 + (α − 2)n
= 3 + 2n2 − 8n − 4α

2n2 + (α − 2)n
.

4 Conclusion

In this paper we have opened a new line of attack on settling the tree conjecture
and on proving a constant price of anarchy for the network creation game for all α.
Our technique is orthogonal to the known approaches using bounds on the average
degree of vertices in a biconnected component. We are confident that our methods
can be refined and/or combined with the average degree technique to obtain even
better bounds – ideally proving or disproving the conjectures. For further progess on
these problems we propose as first refinement to prove that any non-tree NE network
for α > 2n − 6 must contain a strong critical pair, which would prove the following
conjecture:

Conjecture 1 For α > 2n − 6 all NE networks must be trees.

Also the facts that strong critical pairs cannot exist in any NE network (Lemma 7)
and that the edge ownership configuration in any min cycle in any NE is heavily
restricted (Lemma 9) should be utilized. Using these, we have already established
some structural implications in our earlier work [44]. In particular, both mentioned
facts imply that a particular substructure, called a wheel of min-cycles, exists in any
non-tree NE network for α > 2n − 6. Thus, this yields further insight into the struc-
ture of the biconnected component of any NE network. These additional constraints
could be employed to obtain better lower bounds on the average degree of the bicon-
nected component of any non-tree NE network and hence a further refinement of the
average degree technique. Moreover, besides focusing on strong critical pairs, which
essentially decribe a particular structural relationship of two nodes in the network,
it seems possible to apply our technique to other types of node-pairs or even to spe-
cific configurations of more than two nodes. For example, considering two nodes
which both buy at least two edges and analyzing suitable potential strategy changes
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involving both nodes may yield a contradiction to the respective network being in NE
for α ≤ 2n − 6.

Another interesting approach is to modify our techniques to cope with the so-
called max-version of the network creation game [24], where agents try to minimize
their maximum distance to all other nodes, instead of minimizing the sum of dis-
tances. Also for the max-version it is still open for which α all stable networks must
be trees.
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