
Distance Sensitivity Oracles with Subcubic Preprocessing Time
and FastQuery Time∗

Shiri Chechik

shiri.chechik@gmail.com

Tel Aviv University

Israel

Sarel Cohen

sarelcoh@post.tau.ac.il

Tel Aviv University

Israel

ABSTRACT
We present the first distance sensitivity oracle (DSO) with subcubic

preprocessing time and poly-logarithmic query time for directed

graphs with integer weights in the range [−𝑀,𝑀].
Weimann and Yuster [FOCS 10] presented a distance sensitivity

oracle for a single vertex/edge failure with subcubic preprocess-

ing time of 𝑂 (𝑀𝑛𝜔+1−𝛼) and subquadratic query time of 𝑂 (𝑛1+𝛼),
where 𝛼 is any parameter in [0, 1], 𝑛 is the number of vertices,𝑚

is the number of edges, the 𝑂 (·) notation hides poly-logarithmic

factors in 𝑛 and 𝜔 < 2.373 is the matrix multiplication exponent.

Later, Grandoni and Vassilevska Williams [FOCS 12] substan-

tially improved the query time to sublinear in 𝑛. In particular, they

presented a distance sensitivity oracle for a single vertex/edge

failure with 𝑂 (𝑀𝑛𝜔+1/2 + 𝑀𝑛𝜔+𝛼 (4−𝜔)) preprocessing time and

𝑂 (𝑛1−𝛼) query time.

Despite the substantial improvement in the query time, it still

remains polynomial in the size of the graph, which may be undesir-

able in many settings where the graph is of large scale. A natural

question is whether one can hope for a distance sensitivity ora-

cle with subcubic preprocessing time and very fast query time (of

poly-logarithmic in 𝑛).

In this paper we answer this question affirmatively by presenting

a distance sensitive oracle supporting a single vertex/edge failure

in subcubic 𝑂 (𝑀𝑛2.873) preprocessing time for 𝜔 = 2.373, 𝑂 (𝑛2.5)
space and near optimal query time of 𝑂 (1).

For comparison, with the same 𝑂 (𝑀𝑛2.873) preprocessing time

the DSO of Grandoni and Vassilevska Williams has𝑂 (𝑛0.693) query
time. In fact, the best query time their algorithm can obtain is

𝑂 (𝑀𝑛0.385) (with 𝑂 (𝑀𝑛3) preprocessing time).

CCS CONCEPTS
• Theory of computation → Shortest paths; Dynamic graph
algorithms; Data structures design and analysis.

∗
This publication is part of a project that has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No 803118 UncertainENV)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06.

https://doi.org/10.1145/3357713.3384253

KEYWORDS
Distance Sensitivity Oracles, Replacement Paths, Fault-Tolerant,

Shortest Paths

ACM Reference Format:
Shiri Chechik and Sarel Cohen. 2020. Distance Sensitivity Oracles with

Subcubic Preprocessing Time and Fast Query Time. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC ’20),
June 22–26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3357713.3384253

1 INTRODUCTION
Resilience to failures is an indispensable issue in modern networks.

A failure event involves with some of the network’s vertices or

edges to be temporarily unavailable. This may cause some pre-

computed structural information, such as distances, connectivity,

flow, and so on, to be no longer valid.

In this paper we concentrate on maintaining distances in the

presence of one edge (or vertex) failure in directed weighted graphs.

Our goal is to preprocess a graph𝐺 = (𝑉 , 𝐸) in relatively short

time and produce a data structure that can later answer subsequent

queries of the form (𝑠, 𝑡, 𝑒), where 𝑠, 𝑡 ∈ 𝑉 and 𝑒 ∈ 𝐸. The answer

to such a query is the distance from 𝑠 to 𝑡 in the graph𝐺 \ {𝑒} (the
graph obtained from 𝐺 by discarding the edge 𝑒). We call such a

data structure a distance sensitivity oracle, or a DSO.

Existing Oracles. For the case of a single edge (or vertex) failure,
Demetrescu et al. [13] showed that it is possible to preprocess a

directedweighted graph in𝑂 (𝑚𝑛2) time to compute a data structure

of size 𝑂 (𝑛2 log𝑛) capable of answering distance queries in 𝑂 (1)
time. In two consecutive papers, Karger and Bernstein improved

the preprocessing time of [13], first to 𝑂 (𝑛2
√
𝑚) [7] and later to

𝑂 (𝑚𝑛) [1]. The size and the query time remain unchanged.

Duan and Pettie [14] considered the more involved case of two

failures and presented an oracle with 𝑂 (𝑛2 log3 𝑛) size, 𝑂 (log𝑛)
query time and polynomial construction time.

The distance sensitivity oracle problem was also considered in

the approximate regime (see e.g. [9, 10, 17]) and for special families

of graphs (see e.g. [2, 3, 5, 8, 11, 12]).

Although this problem has been extensively studied and some

of the bounds seem to be close to optimal by now, all the above

mentioned algorithms for general graphs require at least Ω(𝑛3) pre-
processing time for dense graphs. This may make these algorithms

inadequate for many settings with large scale networks.

In the static regime, one can beat the Ω(𝑛3) bound in the case of

integer weights of small absolute value (see [19, 24]). The question

of the existence of distance sensitivity oracles with subcubic prepro-

cessing time and subquadratic query time was asked by Weimann

1375

https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1145/3357713.3384253

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

and Yuster [21]. They presented, for any parameter 𝛼 ∈ [0, 1], a
distance sensitivity oracle with 𝑂 (𝑀𝑛𝜔+1−𝛼) preprocessing time

(here 𝜔 < 2.373 is the matrix multiplication exponent [18, 23]) and

𝑂 (𝑛1+𝛼) query time. More precisely, they presented an algorithm

that can handle up to 𝑂 (log𝑛/log log𝑛) edges or vertices failures
but with query time that deteriorates as the number 𝑓 of failures

gets larger (that is, 𝑂 (𝑛2−(1−𝛼)/𝑓) query time and 𝑂 (𝑀𝑛𝜔+1−𝛼)
preprocessing time).

Recently, van den Brand and Saranurak [20] presented the first

distance sensitive oracle that can handle 𝑓 ≥ log𝑛 updates (where

an update is an edge insertion or deletion), with 𝑂 (𝑀𝑛𝜔+(3−𝜔)`)
preprocessing time,𝑂 (𝑀𝑛2−` 𝑓 2+𝑀𝑛𝑓 𝜔) update time, and𝑂 (𝑀𝑛2−` 𝑓 +
𝑀𝑛𝑓 2) query time, where the parameter ` ∈ [0, 1] can be chosen.

When𝑀 = 𝑂 (1), their DSO simultaneously improves the prepro-

cessing time, update time and query time of Weimann and Yuster

[21]. Note that their query time is at least linear.

In [15], Grandoni and Vassilevska Williams substantially im-

proved the query time to sublinear in 𝑛 for the case of a single edge

failure. In particular, they presented a distance sensitivity oracle

with 𝑂 (𝑀𝑛𝜔+1/2 +𝑀𝑛𝜔+𝛼 (4−𝜔)) preprocessing time and 𝑂 (𝑛1−𝛼)
query time. This is a huge improvement in the query time.

However, the query time still remains polynomial in the size

of the graph, which may be undesirable in many settings where

the graph is of large scale. This is especially important as often

when designing distance oracles, the requirement is to have a very

fast query time. A natural question is whether one can hope for a

distance sensitivity oracle with subcubic preprocessing time and

very fast query time (of poly-logarithmic in 𝑛). We answer this

question affirmatively.

Our results. In this paper we present the first distance sensitivity

oracle with subcubic preprocessing time and very fast query time

for directed graphs with integer weights of absolute value bounded

by𝑀 . Our result is summarized in the following theorem.

Theorem 1. Given a weighted directed graph 𝐺 with integer
weights in the range [−𝑀,𝑀], for 𝜔 ∈ [2.35, 2.373] 1 one can con-
struct w.h.p. (with probability of at least 1 − 1/𝑛𝑄 for any constant
𝑄 > 0) a DSO supporting one edge failure in subcubic 𝑂 (𝑀𝑛𝜔+1/2)
time. The size of the data-structure is 𝑂 (𝑛2.5). Given a query (𝑠, 𝑡, 𝑒),
the DSO returns w.h.p. the distance 𝑑𝐺 (𝑠, 𝑡, 𝑒) in 𝑂 (1) time, and the
replacement path 𝑃 (𝑠, 𝑡, 𝑒) is returned in time proportional to the
number of its edges 𝑂 (|𝑃 (𝑠, 𝑡, 𝑒) |).

Our DSO has 𝑂 (𝑀𝑛2.873) preprocessing time for 𝜔 = 2.373

and 𝑂 (1) query time. For comparison, with the same 𝑂 (𝑀𝑛2.873)
preprocessing time the DSO of Grandoni and Vassilevska Williams

has𝑂 (𝑛0.693) query time. In fact, the best query time their algorithm

can obtain is 𝑂 (𝑀𝑛0.385) (with 𝑂 (𝑀𝑛3) preprocessing time).

Notice that our preprocessing algorithm is subcubic for small

integer weights in the range [−𝑀,𝑀]. More precisely, for𝜔 = 2.373

the preprocessing algorithm is subcubic when 𝑀 = 𝑜 (𝑛2.5−𝜔) =

𝑜 (𝑛0.127).

1
We note that our running time is 𝑂 (𝑀𝑛𝜔+1/2) for any 𝜔 ∈ [2.35, 2.373]. Our
running time consists of several factors, some of which are dominated by𝑂 (𝑀𝑛𝜔+1/2)
for any𝜔 ∈ [2.35, 2.373]. For smaller𝜔 our running time becomes more complicated.

In this paper for simplicity, we consider only edge failures, but

we note that in the directed case, edge failures subsume vertex fail-

ures. This is a consequence of the following well known reduction.

Replace every vertex 𝑣 with two vertices 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 , and connect

them by a direct edge (𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡). In addition, move all incoming

edges to 𝑣 to 𝑣𝑖𝑛 and all outgoing edges from 𝑣 to 𝑣𝑜𝑢𝑡 . Now the

failure of the edge (𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡) has the same effect as the failure of

the vertex 𝑣 .

In our construction we essentially show a subcubic reduction

from DSO to the problem of computing a single distance for every

pair of vertices 𝑠 and 𝑡 , that is, the distance from 𝑠 and 𝑡 avoiding

𝑃𝑅
𝐺
(𝑠, 𝑡) (where 𝑃𝑅

𝐺
(𝑠, 𝑡) is the subpath of the shortest path from 𝑠

to 𝑡 not including the first and last 𝑅 edges) for some parameter 𝑅.

Computing these 𝑛2 distances is the most technical and challenging

part of our algorithm.

Loosely speaking, in order to compute these 𝑛2 distances we

sample a small set 𝐵 of vertices that w.h.p. hits the detour part of

every replacement path 𝑃 (𝑠, 𝑡, 𝑃𝑅
𝐺
(𝑠, 𝑡)) (where 𝑃 (𝑥,𝑦, 𝑆) for a pair

of vertices 𝑥 and 𝑦 and a subset 𝑆 of vertices is the shortest path

between 𝑠 and 𝑡 in the graph 𝐺 \ 𝑆). Then, for every vertex 𝑣 ∈ 𝐵

and a destination vertex 𝑡 (independent to 𝑠) we compute some

replacements paths such that given 𝑠 and 𝑡 one can quickly pick

one of these replacement paths in order to compute 𝑃 (𝑣, 𝑡, 𝑃𝑅
𝐺
(𝑠, 𝑡)).

Similarly, the algorithm computes 𝑃 (𝑠, 𝑣, 𝑃𝑅
𝐺
(𝑠, 𝑡)). The algorithm

then uses all these paths to deduce 𝑃 (𝑠, 𝑡, 𝑃𝑅
𝐺
(𝑠, 𝑡)).

Unique shortest paths is a desired property in many algorithms

and applications. This is also the case in our algorithm. However, it

is not known how to achieve unique shortest paths in subcubic time.

We present a subcubic algorithm that computes unique shortest

paths whenever the paths contains more than 𝑅 edges (and handles

separately the case where the shortest path contains at most 𝑅

edges).

Our generalization to negative weights is substantially more

complicated as outlined in this paper, and described in detail in the

full version.

2 PRELIMINARIES
Let 𝐻 = (𝑉 , 𝐸) be a weighted graph with integer edge weights in

the range [−𝑀,𝑀]. Let 𝑃 be a path in 𝐻 . We denote by 𝑤 (𝑃) the
length of the path 𝑃 which is defined as the sum of weights of the

edges along 𝑃 , and by |𝑃 | the number of edges of 𝑃 .

Let 𝑢, 𝑣 ∈ 𝑉 be two vertices. We denote by 𝑃𝐻 (𝑢, 𝑣) a short-

est path from 𝑢 to 𝑣 in 𝐻 , and by 𝑑𝐻 (𝑢, 𝑣) the distance from 𝑢 to

𝑣 in the graph 𝐻 (i.e., 𝑑𝐻 (𝑢, 𝑣) = 𝑤 (𝑃𝐻 (𝑢, 𝑣)). When 𝐻 is clear

from the context, we sometimes abbreviate 𝑃𝐻 (𝑢, 𝑣) = 𝑃 (𝑢, 𝑣)
and 𝑑𝐻 (𝑢, 𝑣) = 𝑑 (𝑢, 𝑣). Let 𝑒 = (𝑥,𝑦) ∈ 𝐸, we define 𝑑𝐻 (𝑠, 𝑒) =

min{𝑑𝐻 (𝑠, 𝑥), 𝑑𝐻 (𝑠,𝑦)}.
Let 𝐹 ⊂ 𝐸 ∪𝑉 be a set of edges and/or vertices, we denote by

𝐻 \𝐹 the graph obtained by removing the set 𝐹 of edges and vertices

(along with their incident edges) from 𝐻 .

Let 𝑠, 𝑡 ∈ 𝑉 be two vertices and 𝑒 ∈ 𝑃𝐻 (𝑠, 𝑡) be an edge on

the shortest path from 𝑠 to 𝑡 in the graph 𝐻 . The replacement path

associated with the triple (𝑠, 𝑡, 𝑒), denoted by 𝑃𝐻 (𝑠, 𝑡, 𝑒), is a shortest
path from the source vertex 𝑠 to the target vertex 𝑡 avoiding the

edge 𝑒 in the graph 𝐻 . We denote by 𝑑𝐻 (𝑠, 𝑡, 𝑒) = 𝑤 (𝑃𝐻 (𝑠, 𝑡, 𝑒)) the
distance from 𝑠 to 𝑡 in the graph 𝐻 \ {𝑒}. Similarly, let 𝐹 ⊂ 𝐸 ∪𝑉 be

1376

Distance Sensitivity Oracles with Subcubic Preprocessing Time and Fast Query Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

a subset of edges and/or vertices, we denote by 𝑃𝐻 (𝑠, 𝑡, 𝐹) a shortest
path from 𝑠 to 𝑡 in the graph𝐻\𝐹 and by𝑑𝐻 (𝑠, 𝑡, 𝐹) = 𝑤 (𝑃𝐻 (𝑠, 𝑡, 𝐹))
the distance from 𝑠 to 𝑡 in the graph 𝐻 \ 𝐹 .

For a graph 𝐺 ′
we denote by 𝑉 (𝐺 ′) the set of its vertices, and

by 𝐸 (𝐺 ′) the set of its edges.
Given a path 𝑃 that contains the vertices 𝑢, 𝑣 ∈ 𝑉 such that 𝑢

appears before 𝑣 along 𝑃 , we denote by 𝑃 [𝑢, 𝑣] the subpath of 𝑃

from 𝑢 to 𝑣 . Let 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑉 such that 𝑒 appears before 𝑣 along 𝑃 ,

we denote by 𝑃 [𝑒, 𝑣] the subpath of 𝑃 from 𝑒 to 𝑣 (including the

edge 𝑒).

We now define the path concatenation operator ◦. Let 𝑃1 =

(𝑥1, 𝑥2, . . . , 𝑥𝑟) and 𝑃2 = (𝑦1, 𝑦2, . . . , 𝑦𝑡) be two paths. 𝑃 = 𝑃1 ◦𝑃2 is
defined as the path 𝑃 = (𝑥1, 𝑥2, . . . , 𝑥𝑟 , 𝑦1, 𝑦2, . . . , 𝑦𝑡), and it is well

defined if either 𝑥𝑟 = 𝑦1 or (𝑥𝑟 , 𝑦1) ∈ 𝐸.

A distance sensitivity oracle (abbreviated DSO) is a space efficient

data-structure, which preprocesses a graph 𝐻 , such that given a

query (𝑠, 𝑡, 𝑒), computes efficiently the distance 𝑑𝐻 (𝑠, 𝑡, 𝑒) from 𝑠 to

𝑡 in the graph 𝐻 \ {𝑒} and a replacement path 𝑃𝐻 (𝑠, 𝑡, 𝑒).
The Single-Source Replacement Paths (SSRP) problem is de-

fined as follows. Given a fixed source vertex 𝑠 in the graph 𝐻 the

SSRP𝐻 (𝑠) problem is to compute the distances 𝑑𝐻 (𝑠, 𝑡, 𝑒) and re-

placement paths 𝑃𝐻 (𝑠, 𝑡, 𝑒) for every vertex 𝑡 ∈ 𝑉 and for every

edge 𝑒 ∈ 𝑃𝐻 (𝑠, 𝑡).
Given 𝐺 = (𝑉 , 𝐸), we denote by 𝐺𝑇 = (𝑉 , 𝐸𝑇) the graph 𝐺 with

reversed edge directions, i.e., 𝐸𝑇 = {(𝑣,𝑢) | (𝑢, 𝑣) ∈ 𝐸}. Given an

edge 𝑒 = (𝑢, 𝑣) we denote by 𝑒𝑇 = (𝑣,𝑢).
It is well known that given (𝑠, 𝑡, 𝑒) there exists a replacement

path 𝑃 (𝑠, 𝑡, 𝑒) that is composed of a common prefix

CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃 (𝑠, 𝑡)) with the shortest path 𝑃 (𝑠, 𝑡), a de-
tour Detour(𝑃 (𝑠, 𝑡, 𝑒), 𝑃 (𝑠, 𝑡)) which is disjoint from the shortest

path 𝑃 (𝑠, 𝑡), and finally a common suffixCommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃 (𝑠, 𝑡))
which is common with the shortest path 𝑃 (𝑠, 𝑡). Therefore, it holds
that

𝑃 (𝑠, 𝑡, 𝑒) = CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃 (𝑠, 𝑡))◦Detour(𝑃 (𝑠, 𝑡, 𝑒), 𝑃 (𝑠, 𝑡))◦
CommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃 (𝑠, 𝑡)).

The following sampling Lemma is a folklore.

Lemma 2. [Random Sampling, proof in the full version] Let 𝐺
be a graph with 𝑛 vertices of which 𝑅 vertices are red and 𝑛 − 𝑅

vertices are blue. By choosing a random set of 𝑂 (𝑛/𝑅) vertices (more
precisely, 𝑛𝑄 ln𝑛/𝑅 expected number of vertices), at least one of the
chosen vertices is red with high probability (with probability at least
1 − 1/𝑛𝑄 for any constant 𝑄 > 0).

Given a rooted tree 𝑇 containing 𝑛 vertices, the Least Common

Ancestor of a pair of vertices 𝑢 and 𝑣 (LCA(𝑢, 𝑣)) is the lowest (i.e.
farthest from the root) vertex that has both 𝑢 and 𝑣 as descendants,

where we define each vertex to be a descendant of itself (so if 𝑢 is

the direct parent of 𝑣 then𝑢 is the lowest common ancestor). Bender

and Farach-Colton [6] presented a simple LCA data-structure that

preprocesses 𝑇 in linear time and answers LCA queries in constant

time.

Lemma 3. [See [6]] Given a rooted tree𝑇 containing 𝑛 vertices, one
can construct an LCA data-structure in linear 𝑂 (𝑛) time and answer
LCA queries in constant time.

We next list several previous algorithms and data-structures we

use in our construction.

Lemma 4 (See [24]). Given a directed graph with integer weights
in the range [−𝑀,𝑀], APSP can be computed in 𝑂 (𝑀

1

4−𝜔 𝑛2+
1

4−𝜔)
time.

Definition 1. [The distance 𝑑≤𝑅 (𝑠, 𝑡) and path 𝑃 ≤𝑅 (𝑠, 𝑡)] Let
𝐺 = (𝑉 , 𝐸) be a weighted graph, let 𝑠, 𝑡 ∈ 𝑉 and let 𝑅 > 0 be an
integer parameter. Define 𝑑≤𝑅 (𝑠, 𝑡) to be the length of the shortest 𝑠-
to-𝑡 path on at most 𝑅 edges, and 𝑃 ≤𝑅 (𝑠, 𝑡) is one such path. If there is
no path from 𝑠 to 𝑡 containing at most 𝑅 edges then set 𝑑≤𝑅 (𝑠, 𝑡) = ∞.

In the following lemma,we describe how to compute𝐴𝑃𝑆𝑃 ≤𝑅 (𝐺),
that computes for every pair of vertices 𝑠, 𝑡 ∈ 𝑉 the length of the

shortest 𝑠-to-𝑡 path on at most 𝑅 edges. Note that our requirement

from the algorithm 𝐴𝑃𝑆𝑃 ≤𝑅 (𝐺) is different than the algorithm in

Corollary 1 in [15]. In [15] the algorithm computes for every 𝑠, 𝑡 ∈ 𝑉

an estimate of the distance 𝑑 (𝑠, 𝑡) that is correct w.h.p. if there ex-
ists a shortest path from 𝑠 to 𝑡 on at most 𝑅 edges. However, the

path returned could potentially contain more than 𝑅 edges. For our

needs, it is important to actually find a path that contains at most

𝑅 edges and that is shortest among all paths of at most 𝑅 edges.

Lemma 5. [See more details in the full version] There is an algo-
rithm, hereafter referred to as APSP≤𝑅 , that computes distances and
paths {𝑑≤𝑅 (𝑠, 𝑡), 𝑃 ≤𝑅 (𝑠, 𝑡)}𝑠,𝑡 ∈𝑉 in 𝑂 (𝑅 ·𝑀𝑛𝜔) time.

The following lemmas were obtained by Grandoni and Vas-

silevska Williams in [15] and we use these lemmas extensively

throughout the paper.

Lemma 6. [See [15]] The SSRP algorithm computes, w.h.p., the
distances {𝑑 (𝑠, 𝑡, 𝑒)}𝑠,𝑡 ∈𝑉 ,𝑒∈𝑃 (𝑠,𝑡) in SSRP(𝑀,𝑛) = 𝑂 (𝑀𝑛𝜔) time
for directed graphs with integer edges weights in [1, 𝑀] and
SSRP([−𝑀,𝑀], 𝑛) = 𝑂 (𝑀

1

4−𝜔 𝑛2+
1

4−𝜔) time for directed graphs with
integer edges weights in [−𝑀,𝑀].

Lemma 7. [See [15]] Given a directed graph 𝐻 with integer edges
weights in [−𝑀,𝑀], let 1 ≤ 𝑋 ≤ 𝑛, a data-structure DSO𝑋 (𝐻) that
given a query (𝑠, 𝑡, 𝑒) computes w.h.p. 𝑑 (𝑠, 𝑡, 𝑒) in 𝑂 (𝑛/𝑋) time, can
be constructed in 𝑂 (𝑀𝑛𝜔 · (𝑋 4−𝜔 +

√
𝑛)) time.

The following lemma was obtained by Weimann and Yuster in

[21].

Lemma 8. [See [21]] Let 1 ≤ 𝑅 ≤ 𝑛 be an integer and 𝐺 be a
directed graph with integer weights in the range [−𝑀,𝑀]. There exists
a data-structure ShortDSO𝑅 (𝐺) supporting one edge/vertex failure,
that given a query (𝑠, 𝑡, 𝑒) the DSO returns a distance ˆ𝑑 (𝑠, 𝑡, 𝑒) and
a path 𝑃 (𝑠, 𝑡, 𝑒) such that it always holds that ˆ𝑑 (𝑠, 𝑡, 𝑒) ≥ 𝑑 (𝑠, 𝑡, 𝑒).
Furthermore, if there exists a replacement path 𝑃 (𝑠, 𝑡, 𝑒) from 𝑠 to
𝑡 in the graph 𝐺 \ {𝑒} that contains at most 3𝑅 edges, then w.h.p.
ˆ𝑑 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑡, 𝑒) and 𝑃 (𝑠, 𝑡, 𝑒) is a replacement path for (𝑠, 𝑡, 𝑒).
The preprocessing time is 𝑂 (𝑅𝑀

1

4−𝜔 𝑛2+
1

4−𝜔) and query time is 𝑂 (1).

Note that for every pair of vertices 𝑠, 𝑡 ∈ 𝑉 , there may be many

different shortest paths from 𝑠 to 𝑡 in the graph 𝐺 . We define the

graph �̃� as follows, such that shortest paths are unique in �̃� .

Definition 2. [The graph �̃� and the unique shortest paths 𝑃
�̃�
(𝑠, 𝑡)]

Let �̃� be the graph obtained from𝐺 by adding small perturbations to
the weights of the edges (e.g., by adding to the weight of every edge a
random real number in the range [0, 1/𝑛)), such that w.h.p. for every

1377

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

pair of vertices 𝑠, 𝑡 ∈ 𝑉 , the shortest path 𝑃
�̃�
(𝑠, 𝑡) in �̃� is unique and

⌊𝑑
�̃�
(𝑠, 𝑡)⌋ = 𝑑 (𝑠, 𝑡).

3 OVERVIEW
In this section, we describe an overview of our DSO with subcu-

bic 𝑂 (𝑀
5−𝜔
9−2𝜔 𝑛

16+𝜔−𝜔2

9−2𝜔) = 𝑂 (𝑀0.62𝑛2.9953) preprocessing time (for

𝜔 = 2.373) and 𝑂 (1) query time for weighted directed graphs with

positive integer weights in the range [1, 𝑀]. In Section 4, we gener-

alize our DSO to handle negative weights as well and in Section 5

we improve the preprocessing time to 𝑂 (𝑀𝑛𝜔+1/2) = 𝑂 (𝑀𝑛2.873)
(for 𝜔 ∈ [2.35, 2.373]).

Following, we describe the different cases we consider for the

query (𝑠, 𝑡, 𝑒) and then present a data structure for each case that

quickly returns an estimation for 𝑑 (𝑠, 𝑡, 𝑒) such that the estimation

is always at least 𝑑 (𝑠, 𝑡, 𝑒) and if we are in the right case then w.h.p

the estimation is 𝑑 (𝑠, 𝑡, 𝑒). Finally, the algorithm answers the query

by returning the minimum estimated distance from all of these

cases. Cases 0-4 are relatively easy to handle given the prior work

of Grandoni and VassilevskaWilliams [15] andWeimann and Yuster

[21], where case 5 is the most technical and difficult part of our

algorithm.

Let 1 ≤ 𝑅 ≤ 𝑛 be a parameter that we will set later on.

Case 0: There exists at least one shortest path from 𝑠 to 𝑡 in 𝐺

that contains at most 𝑅 edges. In other words, this case happens iff

𝑑≤𝑅 (𝑠, 𝑡) = 𝑑 (𝑠, 𝑡) (see Definition 1 of 𝑑≤𝑅 (𝑠, 𝑡)).
Case 1: 𝑒 ∉ 𝑃

�̃�
(𝑠, 𝑡). (see Definition 2 of 𝑃

�̃�
(𝑠, 𝑡)).

Case 2: 𝑒 is among the first or last 𝑅 edges of the unique shortest

path 𝑃
�̃�
(𝑠, 𝑡).

Case 3: There exists a replacement path from 𝑠 to 𝑡 in 𝐺 \ {𝑒}
that contains at most 3𝑅 edges.

Case 4: There exists at least one replacement path 𝑃 (𝑠, 𝑡, 𝑒) for
the triple (𝑠, 𝑡, 𝑒) such that its common prefix

CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡))with the unique shortest path 𝑃

�̃�
(𝑠, 𝑡)

contains at least 𝑅 edges, or its common suffix

CommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡))with the unique shortest path 𝑃

�̃�
(𝑠, 𝑡)

contains at least 𝑅 edges.

Case 5: The complement of the previous cases. The triple (𝑠, 𝑡, 𝑒)
belongs to Case 5 if it does not belong to any of the cases 0-4. We

refer to Case 5 as the 𝑅-critical case, and a triple (𝑠, 𝑡, 𝑒) that belongs
to Case 5 is called an 𝑅-critical query.

Handling 𝑅-critical queries is the most difficult part in our DSO,

and it is our main technical contribution. Let us precisely define

when a query/triple (𝑠, 𝑡, 𝑒) is called an 𝑅-critical query.

Definition 3. Given a path 𝑃 = ⟨𝑣0, . . . , 𝑣𝑘 ⟩ and a positive integer
𝑅 > 0, we denote by 𝑃𝑅 := ⟨𝑣𝑅, . . . , 𝑣𝑘−𝑅⟩ the subpath of 𝑃 obtained
by removing the first and last 𝑅 edges of 𝑃 . If 2𝑅 ≥ |𝑃 | then 𝑃𝑅 is the
empty path.

Definition 4. A query/triple (𝑠, 𝑡, 𝑒) with 𝑠, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝐸 is called
𝑅-critical if the following conditions hold. Not case 0: every shortest
path from 𝑠 to 𝑡 in 𝐺 contains more than 𝑅 edges. Not case 1: 𝑒 ∈
𝑃
�̃�
(𝑠, 𝑡). Not case 2: 𝑒 ∈ 𝑃𝑅

�̃�
(𝑠, 𝑡), i.e., 𝑒 is not one of the first or

last 𝑅 edges of 𝑃
�̃�
(𝑠, 𝑡). This also implies that 𝑃

�̃�
(𝑠, 𝑡) contains at

least 2𝑅 + 1 edges. Not case 3: every replacement path 𝑃 (𝑠, 𝑡, 𝑒) for
the triple (𝑠, 𝑡, 𝑒) contains more than 3𝑅 edges. Not case 4: every
replacement path 𝑃 (𝑠, 𝑡, 𝑒) for the triple (𝑠, 𝑡, 𝑒) satisfies that the prefix

CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) contains less than 𝑅 edges, and the

suffix CommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) contains less than 𝑅 edges.

3.1 Cases 0-4
In this section, we describe how the algorithm handles Cases 0-4.

Using the uniqueness of the shortest paths as a new tool.
Having unique shortest paths in the input graph is an essential

property for our algorithm. However, the given graph 𝐺 might

not satisfy this requirement. A common trick to achieve unique

shortest paths is obtaining a graph �̃� by adding small random

perturbations to the edges of 𝐺 and then break ties according to

�̃� . This approach is problematic in our case as edges in �̃� are not

anymore integers so computing APSP on such a graph might be

too expensive and impossible to do in truly subcubic time (even if

somehow we scale the edge weights in �̃� to be integers then the

maximum edge weight would be too large and computing APSP

would be too expensive again). To overcome this issue, we develop

an algorithm that computes in subcubic time shortest paths in

�̃� for every pair of vertices that their shortest path contains at

least 𝑅 edges for some parameter 𝑅. We use the APSP
≤𝑅

algorithm

described in Lemma 5 that computes distances and shortest paths

on at most 𝑅 edges {𝑑≤𝑅 (𝑠, 𝑡), 𝑃 ≤𝑅 (𝑠, 𝑡)}𝑠,𝑡 ∈𝑉 in 𝑂 (𝑅 ·𝑀𝑛𝜔) time.

Below we describe how to handle the case where the shortest path

from 𝑠 to 𝑡 is on at most 𝑅 edges (Case 0) and for the rest of the

cases, when 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡), we assume (loosely speaking) we

have unique shortest paths as described hereinafter. In other words,

for every 𝑠, 𝑡 ∈ 𝑉 such that 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡) the algorithm finds

w.h.p. the unique shortest path 𝑃
�̃�
(𝑠, 𝑡) as follows.

The partial shortest paths trees {𝑇𝑠 }𝑠∈𝑉 . The algorithm con-

structs partial shortest paths trees {𝑇𝑠 }𝑠∈𝑉 such that w.h.p. 𝑃
�̃�
(𝑠, 𝑡)

is the path in𝑇𝑠 from 𝑠 to 𝑡 when 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡). Loosely speak-
ing, the set {𝑇𝑠 }𝑠∈𝑉 is a set of shortest paths trees in �̃� for shortest

paths that contain more than 𝑅 edges. We briefly describe how to

construct the partial shortest paths trees {𝑇𝑠 }𝑠∈𝑉 .
Let 𝐵 ⊆ 𝑉 be a subset of vertices obtained by choosing every

vertex independently uniformly at random with probability
𝑄 ln𝑛
𝑅

for large enough constant 𝑄 > 0. From every vertex 𝑣 ∈ 𝐵 the

algorithm runs Dijkstra in the graph �̃� and obtains the unique

shortest paths trees {𝑇𝑣}𝑣∈𝐵 (also run Dijkstra from 𝑣 in the graph

�̃�𝑇
with reversed edge directions).

Given the complete shortest paths trees {𝑇𝑣}𝑣∈𝐵 , the algorithm
constructs the partial shortest paths trees {𝑇𝑣}𝑣∈𝑉 as follows. For

every 𝑠 ∈ 𝑉 \ 𝐵 the algorithm initializes 𝑇𝑠 as a tree containing

one vertex which is the root 𝑠 . Next, for every vertex 𝑡 ∈ 𝑉 such

that 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡) the algorithm scans all the vertices 𝑣 ∈ 𝐵

and finds a vertex 𝑣 = argmin𝑣∈𝐵{𝑑�̃� (𝑠, 𝑣) + 𝑑
�̃�
(𝑣, 𝑡)}. The path

𝑃
�̃�
(𝑠, 𝑡) is w.h.p. the path from 𝑠 to 𝑡 in 𝑇𝑣 . Then, the algorithm

scans this path from 𝑡 towards 𝑠 in 𝑇𝑣 . As the algorithm scans this

𝑡-to-𝑠 path, the algorithm adds the subpath that it scans to the tree

𝑇𝑠 , until it reaches a vertex that was already previously added to

𝑇𝑠 and then it stops the scan of the path from 𝑡 towards 𝑠 . It is not

difficult to prove that the algorithm takes 𝑂 (𝑛3/𝑅) time with high

probability.

Handling Case 0. In this case there exists a shortest path from

𝑠 to 𝑡 in 𝐺 that contains at most 𝑅 edges. During preprocessing,

1378

Distance Sensitivity Oracles with Subcubic Preprocessing Time and Fast Query Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

the algorithm constructs the DSO𝑋 (𝐺) data-structure of Grandoni
and Vassilevska Williams [15] according to Lemma 7 and then

uses it to compute the distance 𝑑 (𝑠, 𝑡, 𝑒) for every 𝑠, 𝑡 ∈ 𝑉 such

that 𝑑≤𝑅 (𝑠, 𝑡) = 𝑑 (𝑠, 𝑡) and for every edge 𝑒 ∈ 𝑃 ≤𝑅 (𝑠, 𝑡) (there
are at most 𝑅 edges in 𝑃 ≤𝑅 (𝑠, 𝑡)). The algorithm queries the ora-

cle DSO𝑋 (𝐺) with (𝑠, 𝑡, 𝑒) according to Lemma 7 and stores the

answer in a hash table ℎ0. Given a query (𝑠, 𝑡, 𝑒) the algorithm

checks whether or not (𝑠, 𝑡, 𝑒) is a key of the hash table ℎ0. If so,

the algorithm returns ℎ0 [𝑠, 𝑡, 𝑒] as the answer to the query (𝑠, 𝑡, 𝑒).
According to Lemma 7 it holds that ℎ0 [𝑠, 𝑡, 𝑒] ≥ 𝑑 (𝑠, 𝑡, 𝑒) and w.h.p.

ℎ0 [𝑠, 𝑡, 𝑒] = 𝑑 (𝑠, 𝑡, 𝑒). Next, we analyse the construction time of

the hash table ℎ0. As there are 𝑂 (𝑛2𝑅) triples (𝑠, 𝑡, 𝑒) ∈ 𝑉 ×𝑉 × 𝐸

such that 𝑒 ∈ 𝑃 ≤𝑅 (𝑠, 𝑡), and computing the distance 𝑑 (𝑠, 𝑡, 𝑒) us-
ing DSO𝑋 (𝐺) takes 𝑂 (𝑛/𝑋) time w.h.p. according to Lemma 7,

then constructing the hash table ℎ0 takes 𝑇construct (DSO𝑋 (𝐺)) +
𝑂 (𝑛3𝑅/𝑋) time. Note that according to Lemma 7,𝑇construct (DSO𝑋 (𝐺)) =
𝑂 (𝑀𝑛𝜔 · (𝑋 4−𝜔 +

√
𝑛)).

Handling Case 1. It is relatively easy to check whether or not

𝑒 ∈ 𝑃
�̃�
(𝑠, 𝑡) using an LCA data-structure as in Lemma 3 by, loosely

speaking, checking whether or not 𝑒 is an ancestor of 𝑡 in𝑇𝑠 (see the

full-version for more details). If 𝑒 ∉ 𝑃
�̃�
(𝑠, 𝑡) the algorithm returns

𝑑 (𝑠, 𝑡) as the distance from 𝑠 to 𝑡 in 𝐺 \ {𝑒}. For the rest of this

section assume 𝑒 ∈ 𝑃
�̃�
(𝑠, 𝑡). The preprocessing time of this step is

𝑂 (𝑛2), as it takes 𝑂 (𝑛) time to construct an LCA data-structure of

a single tree 𝑇𝑠 as in Lemma 3 and the algorithm constructs LCA

data-structures for all the trees {𝑇𝑠 }𝑠∈𝑉 .
Handling Case 2. During preprocessing, the algorithm uses the

DSO𝑋 (𝐺) data-structure according to Lemma 7 to compute the

distance 𝑑 (𝑠, 𝑡, 𝑒) for every 𝑠, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝐸 such that 𝑒 is among

the first or last 𝑅 edges of 𝑃
�̃�
(𝑠, 𝑡), and stores all the computed

distances in a hash table ℎ2. Since the DSO𝑋 (𝐺) data-structure was
already computed during the construction of ℎ0 above, it follows

that the time for constructing ℎ2 is 𝑂 (𝑛3𝑅/𝑋), as there are 𝑂 (𝑛2𝑅)
triples (𝑠, 𝑡, 𝑒) where 𝑠, 𝑡 ∈ 𝑉 and 𝑒 is among the first or last 𝑅

edges of 𝑃
�̃�
(𝑠, 𝑡), and according to Lemma 7 computing 𝑑 (𝑠, 𝑡, 𝑒) for

each such triple takes w.h.p.𝑂 (𝑛/𝑋) time using DSO𝑋 (𝐺). Given a

query (𝑠, 𝑡, 𝑒) the algorithm checks whether or not (𝑠, 𝑡, 𝑒) is a key
of the hash table ℎ2. If so, the algorithm returns ℎ2 [𝑠, 𝑡, 𝑒] as the
answer to the query (𝑠, 𝑡, 𝑒). According to Lemma 7 it holds that

ℎ2 [𝑠, 𝑡, 𝑒] ≥ 𝑑 (𝑠, 𝑡, 𝑒) and w.h.p. ℎ2 [𝑠, 𝑡, 𝑒] = 𝑑 (𝑠, 𝑡, 𝑒).
Handling Case 3. To handle the case that there exists a replace-

ment path from 𝑠 to 𝑡 in 𝐺 \ {𝑒} that contains at most 3𝑅 edges,

the algorithm constructs the oracle ShortDSO3𝑅 (𝐺) of Weimann

and Yuster [21] as in Lemma 8. Given a query (𝑠, 𝑡, 𝑒) the algorithm
sets 𝑑3 (𝑠, 𝑡, 𝑒) as the answer of ShortDSO3𝑅 (𝐺) to the query (𝑠, 𝑡, 𝑒).
By Lemma 8, 𝑑3 (𝑠, 𝑡, 𝑒) ≥ 𝑑 (𝑠, 𝑡, 𝑒) and if there exists a replace-

ment path 𝑃 (𝑠, 𝑡, 𝑒) from 𝑠 to 𝑡 in the graph 𝐺 \ {𝑒} that contains
at most 3𝑅 edges, then w.h.p. 𝑑3 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑡, 𝑒). The preprocess-
ing procedure of this step takes 𝑂 (𝑇construct (ShortDSO3𝑅 (𝐺)) =

𝑂 (𝑅𝑀
1

4−𝜔 𝑛2+
1

4−𝜔) time, where the last equality holds from Lemma

8.

Handling Case 4. During preprocessing, for every vertex 𝑣 ∈ 𝐵

(the set 𝐵 as described above) compute SSRP𝐺 (𝑣) according to

Lemma 6 in the graph 𝐺 and SSRP𝐺𝑇 (𝑣) in the graph 𝐺𝑇
with re-

verse edge directions. For every 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝐸 denote by SSRP𝐺 (𝑣, 𝑡, 𝑒)
the estimated distance from 𝑣 to 𝑡 in 𝐺 \ {𝑒} as computed by

SSRP𝐺 (𝑣). Next, for every 𝑠, 𝑡 ∈ 𝑉 the algorithm scans the path

𝑃
�̃�
(𝑠, 𝑡) from 𝑠 towards 𝑡 (and from 𝑡 towards 𝑠) until it finds the

first vertex 𝑣𝑠 (and the last vertex 𝑣𝑡) of 𝑃�̃� (𝑠, 𝑡) that belongs to 𝐵
(if any such vertex exists). During the query, the algorithm com-

putes𝑑4 (𝑠, 𝑡, 𝑒) = min{𝑑 (𝑠, 𝑣𝑠)+SSRP𝐺 (𝑣𝑠 , 𝑡, 𝑒), SSRP𝐺𝑇 (𝑣𝑡 , 𝑠, 𝑒𝑇)+
𝑑 (𝑣𝑡 , 𝑡)}. If there exists at least one replacement path 𝑃 (𝑠, 𝑡, 𝑒) for
the triple (𝑠, 𝑡, 𝑒) such that its common prefix

CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) with the unique shortest path

𝑃
�̃�
(𝑠, 𝑡) contains at least 𝑅 edges then w.h.p. 𝑣𝑠 is on the prefix

part of 𝑃 (𝑠, 𝑡, 𝑒) and then it holds w.h.p. that 𝑑4 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑣𝑠) +
𝑑 (𝑣𝑠 , 𝑡, 𝑒) = 𝑑 (𝑠, 𝑡, 𝑒). Similarly, if there exists at least one replace-

ment path 𝑃 (𝑠, 𝑡, 𝑒) for the triple (𝑠, 𝑡, 𝑒) such that its common suffix

CommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) with the unique shortest path

𝑃
�̃�
(𝑠, 𝑡) contains at least 𝑅 edges then w.h.p. 𝑣𝑡 is on the suffix part

of 𝑃 (𝑠, 𝑡, 𝑒) and then it holds w.h.p. that 𝑑4 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑣𝑡 , 𝑒) +
𝑑 (𝑣𝑡 , 𝑡) = 𝑑 (𝑠, 𝑡, 𝑒). It follows that if (𝑠, 𝑡, 𝑒) belongs to Case 4 (and

not to Cases 0 or 2) then w.h.p.𝑑4 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑡, 𝑒). The preprocess-
ing procedure for handling Case 4 takes𝑂 (𝑛

𝑅
· SSRP(𝑀,𝑛) +𝑛2𝑅) =

𝑂 (𝑛
𝑅
·𝑀𝑛𝜔 +𝑛2𝑅) time, where the last equality holds from Lemma

6.

3.2 Handling Case 5 - an Overview
Roughly speaking Case 5 is when the edge 𝑒 ∈ 𝑃𝑅

�̃�
(𝑠, 𝑡), every

replacement path is relatively long (at least 3𝑅 edges) and for every

replacement path the prefix and suffix parts are relatively short (at

most 𝑅 edges). We say that (𝑠, 𝑡, 𝑒) is 𝑅-critical if it belongs to case

5.

In order to handle all 𝑅-critical queries, we first observe an im-

portant property of all 𝑅-critical queries (𝑠, 𝑡, 𝑒), that is, all 𝑅-critical
queries for fixed 𝑠, 𝑡 ∈ 𝑉 have the same answer 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡))

(see Figure 1). This follows pretty easily from the fact that for all of

these queries (𝑠, 𝑡, 𝑒), we have that 𝑒 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡) and every replace-

ment of (𝑠, 𝑡, 𝑒) has short prefix and suffix and therefore avoids

𝑃𝑅
�̃�
(𝑠, 𝑡) (thus in particular bypass all edges 𝑒 ′ such that (𝑠, 𝑡, 𝑒 ′) is

also 𝑅-critical).

𝒔 t

𝑷෩𝑮
𝑹 𝒔, 𝒕

𝒆𝟏

First R edges of 𝑷෩𝑮 𝒔, 𝒕
Last R edges of 𝑷෩𝑮 𝒔, 𝒕

𝒆𝟐 𝒆ℓ

𝒅 𝒔, 𝒕, 𝒆𝟏 = 𝒅 𝒔, 𝒕, 𝒆𝟐 = … = 𝒅 𝒔, 𝒕, 𝒆ℓ = 𝒅 𝒔, 𝒕, 𝑷෩𝑮
𝑹 𝒔, 𝒕

𝑷෩𝑮 𝒔, 𝒕

Figure 1: All𝑅-critical queries (𝑠, 𝑡, 𝑒1), (𝑠, 𝑡, 𝑒2), . . . , (𝑠, 𝑡, 𝑒ℓ) can
be answered with the same distance 𝑑 (𝑠, 𝑡, 𝑒1) = 𝑑 (𝑠, 𝑡, 𝑒2) =

. . . = 𝑑 (𝑠, 𝑡, 𝑒ℓ) = 𝑑 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). We denote by 𝑃𝑅

�̃�
(𝑠, 𝑡) the sub-

path of 𝑃
�̃�
(𝑠, 𝑡) obtained by discarding the first and last 𝑅

edges of it.

1379

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

Lemma 9. [See Figure 1] Let 𝑠, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃
�̃�
(𝑠, 𝑡) such that (𝑠, 𝑡, 𝑒)

is 𝑅-critical. Then 𝑑𝐺 (𝑠, 𝑡, 𝑒) = 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)).

Proof. We first prove that 𝑑𝐺 (𝑠, 𝑡, 𝑒) ≤ 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). Since

(𝑠, 𝑡, 𝑒) is 𝑅-critical, then by Definition 4 it holds that 𝑒 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡),

and thus𝑑𝐺 (𝑠, 𝑡, 𝑒) = 𝑑𝐺\{𝑒 } (𝑠, 𝑡) ≤ 𝑑𝐺\𝑃𝑅

�̃�
(𝑠,𝑡) (𝑠, 𝑡) = 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡))

as 𝐺 \ 𝑃𝑅
�̃�
(𝑠, 𝑡) ⊆ 𝐺 \ {𝑒} and the distance from 𝑠 to 𝑡 may only

increase when we remove more edges from 𝐺 \ {𝑒}.
For the other direction we prove 𝑑𝐺 (𝑠, 𝑡, 𝑒) ≥ 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)).

Let 𝑃𝐺 (𝑠, 𝑡, 𝑒) be a replacement path for (𝑠, 𝑡, 𝑒). Since (𝑠, 𝑡, 𝑒) is
𝑅-critical, then according to Definition 4 it holds that the pre-

fix CommonPref (𝑃𝐺 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) contains less than 𝑅 edges,

and the suffix CommonSuff (𝑃𝐺 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) contains less than

𝑅 edges. Thus, the replacement path 𝑃𝐺 (𝑠, 𝑡, 𝑒) is disjoint from
𝑃𝑅
�̃�
(𝑠, 𝑡), and 𝑃𝐺 (𝑠, 𝑡, 𝑒) is a path in the graph 𝐺 \ 𝑃𝑅

�̃�
(𝑠, 𝑡) whose

length is 𝑑𝐺 (𝑠, 𝑡, 𝑒). Hence, 𝑑𝐺 (𝑠, 𝑡, 𝑒) ≥ 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
𝐺
(𝑠, 𝑡)). □

This means that in order to handle Case 5, we only need to com-

pute in the preprocessing stage the values𝑑5 (𝑠, 𝑡) = 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡))

for every 𝑠, 𝑡 ∈ 𝑉 . However, computing all these values in subcubic

time turned out to be a non trivial task.

As described in the previous cases, the set 𝐵 is a set of vertices

of expected size 𝑂 (𝑛/𝑅) and the algorithm computes the SSRP

algorithm of Grandoni and Vassilevska Williams [15] from every

vertex 𝑣 ∈ 𝐵 in the graph𝐺 and in the graph𝐺𝑇
. Our goal is to find

the distance 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) (and a shortest path 𝑃 (𝑠, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡))).

It is pretty easy to show that in 𝑅-critical queries the detour part

contains more than 𝑅 edges. To see this, if (𝑠, 𝑡, 𝑒) is an 𝑅-critical

query, then since Case 3 of Definition 4 does not hold then every

replacement path for (𝑠, 𝑡, 𝑒) contains more than 3𝑅 edges and since

Case 4 of Definition 4 does not hold then both the prefix and suffix

parts of every replacement path contain less than 𝑅 edges and thus

it follows that the detour part contains more than 𝑅 edges. Hence,

according to Lemma 2, w.h.p. the detour part contains a vertex 𝑣

from 𝐵 (see Figure 2). We would like to use the vertex 𝑣 in order to

compute 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). Unfortunately, we don’t have the vertex

𝑣 in advance and also we don’t know in advance for which edges

𝑒 , (𝑠, 𝑡, 𝑒) is 𝑅-critical. If we would have magically given an edge

𝑒 such that (𝑠, 𝑡, 𝑒) is 𝑅-critical then by iterating all the vertices in

𝐵, we could have found such a vertex 𝑣 that is on a detour part of

some replacement path for (𝑠, 𝑡, 𝑒). We could have then used 𝑒 and 𝑣

to compute 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). However, iterating over all edges 𝑒 ∈

𝑃𝑅
�̃�
(𝑠, 𝑡) and vertices 𝑣 ∈ 𝐵 for every 𝑠, 𝑡 ∈ 𝑉 is too expensive. Our

next attempt is to estimate some distances between 𝑣 and 𝑡 only (i.e.,

independent of 𝑠) and similarly between 𝑣 and 𝑠 in the reverse graph

𝐺𝑇
such that given 𝑠 and 𝑡 we can quickly (in poly-log time) find

the distance 𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) (and similarly 𝑑𝐺 (𝑠, 𝑣, 𝑃𝑅

�̃�
(𝑠, 𝑡))). We

will then estimate 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = min𝑣∈𝐵{𝑑𝐺 (𝑠, 𝑣, 𝑃𝑅

�̃�
(𝑠, 𝑡)) +

𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡))}. The tricky part is how to estimate the distance

𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) as apriori we don’t know 𝑠 and need to be able to

handle any 𝑠 ∈ 𝑉 .

Given an edge 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, . . . , 𝑣𝑘 = 𝑡⟩, we define the

index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) as the index of the first vertex of the detour part of

𝒗

𝒔 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 t

𝑷෩𝑮
𝑹 𝒔, 𝒕

First R edges of 𝑷෩𝑮 𝒔, 𝒕
Last R edges of 𝑷෩𝑮 𝒔, 𝒕

𝒆

𝑷෩𝑮 𝒔, 𝒕

𝒆𝒊

Figure 2: In this figure (𝑠, 𝑡, 𝑒) is an 𝑅-critical query, 𝑃 (𝑠, 𝑡, 𝑒)
is an arbitrary replacement path for (𝑠, 𝑡, 𝑒), the vertex 𝑣

is on the detour part of 𝑃 (𝑠, 𝑡, 𝑒), the path 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣 =

𝑣0, 𝑣1, . . . , 𝑣5, 𝑣6 = 𝑡⟩ is the unique shortest path from 𝑣 to 𝑡

in �̃� , and 𝑒𝑖 = 𝑒1 = (𝑣1, 𝑣2) is the first common edge of 𝑃
�̃�
(𝑠, 𝑡)

and 𝑃
�̃�
(𝑣, 𝑡) (which is not among the first 𝑅 edges of 𝑃

�̃�
(𝑠, 𝑡)).

some replacement path for (𝑣, 𝑡, 𝑒). When 𝑣, 𝑡 are known from the

context, we abbreviate 𝑖𝑒 := 𝑖
�̃�
(𝑣, 𝑡, 𝑒) and 𝑑𝑒 := 𝑑𝐺 (𝑣, 𝑡, 𝑒). In other

words, 𝑣𝑖𝑒 is the first vertex of the detour part of some replacement

path for (𝑣, 𝑡, 𝑒) and 𝑑𝑒 is the length of such a replacement path. In

Section 3.3 we prove the following lemma.

Lemma 10. [Proof in Section 3.3] One can compute a set of indices
{𝑖
�̃�
(𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) in 𝑂 (𝑀𝑛3/𝑅) time.

The algorithm constructs a table T𝑣,𝑡 (𝐺) that consists of pairs
(𝑖𝑒 , 𝑑𝑒) for some of the edges 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑣𝑘−𝑅). This table will be

used later on to compute 𝑃 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) for a given vertex 𝑠 ∈ 𝑉 .

The pair (𝑖𝑒 , 𝑑𝑒) in the table is as follows. 𝑑𝑒 = 𝑑𝐺 (𝑣, 𝑡, 𝑒) and
the index 𝑖𝑒 is the index of the first vertex in the detour part of

some replacement path for (𝑣, 𝑡, 𝑒). For every edge 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑣𝑘−𝑅)

such that all replacement paths 𝑃 (𝑣, 𝑡, 𝑒) satisfy that the detour

part enters 𝑃
�̃�
(𝑣, 𝑡) in the last 𝑅 edges (we will later show how

to check it), the algorithm adds the pair (𝑖𝑒 , 𝑑𝑒) to a table T𝑣,𝑡 (𝐺).
The algorithm then sorts the table according the first entry of

the pair (𝑖𝑒 , 𝑑𝑒), i.e., according to 𝑖𝑒 . We will later show the fol-

lowing. First, for every entry in the table (𝑖𝑒 , 𝑑𝑒) we have that

𝑑𝑒 = 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)). Second, assume that there is

a triple (𝑠, 𝑡, 𝑒) such that (𝑠, 𝑡, 𝑒) is 𝑅-critical and 𝑣 is on the detour

of some replacement path for (𝑠, 𝑡, 𝑒) then (𝑖𝑒 , 𝑑𝑒) is an entry of the

table such that 𝑑𝑒 = 𝑑 (𝑣, 𝑡, 𝑒) and 𝑖𝑒 is the index of the first vertex
of the detour part of some replacement path for (𝑣, 𝑡, 𝑒). Third, the
entries of the table are monotone (i.e., if (𝑖𝑒 , 𝑑𝑒) and (𝑖𝑒′, 𝑑𝑒′) are
entries of the table such that 𝑖𝑒 ≥ 𝑖𝑒′ then 𝑑𝑒 ≤ 𝑑𝑒′).

Next, we briefly explain how given a vertex 𝑠 the algorithm

uses the table to compute 𝑃 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). Note that due to the

uniqueness of shortest paths in �̃� we have that the paths 𝑃
�̃�
(𝑣, 𝑡)

and 𝑃
�̃�
(𝑠, 𝑡) have some common suffix (and are disjoint up to this

common suffix). Let 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣0, ..., 𝑣𝑘 ⟩ be the

first common edge of 𝑃
�̃�
(𝑣, 𝑡) and 𝑃

�̃�
(𝑠, 𝑡) (see figure 2). Assume

that 𝑒𝑖 is not among the first or last 𝑅 edges of 𝑃
�̃�
(𝑠, 𝑡) (we handle

these cases in the full version, but for simplicity we omit it from

this overview).

In order to estimate the distance 𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) the algorithm

does the following. The algorithmfinds themaximum entry (𝑖𝑒′, 𝑑𝑒′)

1380

Distance Sensitivity Oracles with Subcubic Preprocessing Time and Fast Query Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

in the table such that 𝑖𝑒′ ≤ 𝑖 (as the table is sorted then finding

this pair can easily be done using a binary search) and returns

𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑𝑒′ . If no such entry exists in the table the algo-

rithm returns 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = ∞.

We want to show that the distance 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) returned for

the pair (𝑠, 𝑡) is correct in the following sense. For every 𝑒 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡)

we have 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (𝑣, 𝑡, 𝑒). Second, if there exists an edge

𝑒 such that (𝑠, 𝑡, 𝑒) is 𝑅-critical and 𝑣 is on the detour part of some

replacement path for (𝑠, 𝑡, 𝑒) then 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑 (𝑣, 𝑡, 𝑒).

To see the first requirement, if there is no entry (𝑖𝑒′, 𝑑𝑒′) in
the table T𝑣,𝑡 (𝐺) such that 𝑖𝑒′ ≤ 𝑖 then the algorithm returns

𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = ∞ and it trivially holds that 𝑑 ′(𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) ≥

𝑑 (𝑣, 𝑡, 𝑒). Otherwise, the algorithm returns 𝑑𝑒′ such that (𝑖𝑒′, 𝑑𝑒′) is
an entry of the table and 𝑖𝑒′ < 𝑖 . Let 𝑃 (𝑣, 𝑡, 𝑒 ′) be the replacement

path that the entry (𝑖𝑒′, 𝑑𝑒′) represents. By the properties of the table
we mentioned above we have that 𝑃 (𝑣, 𝑡, 𝑒 ′) avoids 𝑃

�̃�
(𝑣𝑖𝑒′ , 𝑣𝑘−𝑅).

If 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) then we show that 𝑃 (𝑣, 𝑡, 𝑒 ′) avoids also 𝑒 and there-

fore 𝑑𝑒′ ≥ 𝑑 (𝑣, 𝑡, 𝑒). To see that, observe that 𝑒 ∈ 𝑃
�̃�
(𝑣𝑖 , 𝑣𝑘−𝑅) (as

𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) is the first common edge of 𝑃
�̃�
(𝑣, 𝑡) and 𝑃

�̃�
(𝑠, 𝑡) and

𝑒 is a common edge of 𝑃𝑅
�̃�
(𝑠, 𝑡) and 𝑃

�̃�
(𝑣, 𝑡)). Furthermore as 𝑖𝑒′ < 𝑖

then 𝑒 appears along the path 𝑃
�̃�
(𝑣, 𝑡) between 𝑣𝑖𝑒′ and 𝑣𝑘−𝑅 , and

since 𝑃 (𝑣, 𝑡, 𝑒 ′) avoids 𝑃
�̃�
(𝑣𝑖𝑒′ , 𝑣𝑘−𝑅) then 𝑃 (𝑣, 𝑡, 𝑒 ′) avoids also 𝑒 .

Otherwise 𝑒 ∉ 𝑃
�̃�
(𝑣, 𝑡) and the distance the algorithm returns is a

distance of some path from 𝑣 to 𝑡 and therefore at least 𝑑 (𝑣, 𝑡). We

get 𝑑𝑒′ ≥ 𝑑 (𝑣, 𝑡) = 𝑑 (𝑣, 𝑡, 𝑒), as required.
We are left showing the second part. Assume there exists an edge

𝑒 such that (𝑠, 𝑡, 𝑒) is 𝑅-critical and 𝑣 is on the detour part of some

replacement path for (𝑠, 𝑡, 𝑒). As (𝑠, 𝑡, 𝑒) is 𝑅-critical then according

to the properties of the table T𝑣,𝑡 (𝐺) it follows that (𝑖𝑒 , 𝑑𝑒) is an
entry of the table T𝑣,𝑡 (𝐺), 𝑑𝑒 = 𝑑 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) and there ex-

ists a replacement path 𝑃 (𝑣, 𝑡, 𝑒) such that 𝑖𝑒 is the index of the first

vertex of the detour part of 𝑃 (𝑣, 𝑡, 𝑒). We claim that 𝑖𝑒 < 𝑖 . Assume

by contradiction that 𝑖𝑒 ≥ 𝑖 then 𝑃
�̃�
(𝑠, 𝑡) [𝑠, 𝑣𝑖] ◦ 𝑃 (𝑣, 𝑡, 𝑒) [𝑣𝑖 , 𝑡] is

also a replacement path for (𝑠, 𝑡, 𝑒) whose common prefix with

𝑃
�̃�
(𝑠, 𝑡) contains at least 𝑅 edges (as 𝑒𝑖 ∈ 𝑃𝑅

�̃�
(𝑠, 𝑡)), contradicting

the assumption that (𝑠, 𝑡, 𝑒) is 𝑅-critical. Recall that (𝑖𝑒′, 𝑑𝑒′) is the
entry in the table T𝑣,𝑡 (𝐺) whose index 𝑖𝑒′ ≤ 𝑖 is maximal. It follows

that both 𝑖𝑒′, 𝑖𝑒 ≤ 𝑖 and since 𝑖𝑒′ is the maximal index in the table

T𝑣,𝑡 (𝐺) such that 𝑖𝑒′ ≤ 𝑖 then 𝑖𝑒 ≤ 𝑖𝑒′ . By the properties of the

table T𝑣,𝑡 (𝐺) it follows that the entries of the table are monotone

and thus 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑𝑒 ≥ 𝑑𝑒′ = 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). As we have al-

ready proved that 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (𝑣, 𝑡, 𝑒) then it follows that

𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑 (𝑣, 𝑡, 𝑒).

The remaining of this overview is organized as follows. In Section

3.3, we describe how to compute the indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒). In Section 3.4,

we present more formally the construction of the tables T𝑣,𝑡 (𝐺) and
in Section 3.5 we show how to use these tables to efficiently compute

the distances 𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). We summarize the algorithm for

handling Case 5 in Section 3.6.

3.3 The Indices 𝑖�̃� (𝑣, 𝑡, 𝑒)
In this section, we first precisely define the set of indices

{𝑖
�̃�
(𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) and then prove Lemma 10 by describ-

ing an algorithm that efficiently computes this set of indices.

Let 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 = 𝑡⟩ and let 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡) be an

edge.

Definition 5 (The set of paths P
�̃�
(𝑣, 𝑡, 𝑒)). We define the set

of paths P
�̃�
(𝑣, 𝑡, 𝑒) to contain all the replacement paths 𝑃 (𝑣, 𝑡, 𝑒)

that consists of a common prefix CommonPref (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡))

with the shortest path 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑡 in �̃� , a disjoint detour

Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)) and a common suffix

CommonSuff (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)) with the shortest path 𝑃

�̃�
(𝑣, 𝑡) from

𝑣 to 𝑡 in �̃� .

Definition 6 (The index 𝑖
�̃�
(𝑃 (𝑣, 𝑡, 𝑒))). Let 𝑃 (𝑣, 𝑡, 𝑒) ∈

P
�̃�
(𝑣, 𝑡, 𝑒). We define the index 𝑖

�̃�
(𝑃 (𝑣, 𝑡, 𝑒)) as the maximum index

0 ≤ 𝑖 ≤ 𝑘 such that 𝑣𝑖 ∈ CommonPref (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)) and

𝑣𝑖+1 ∉ CommonPref (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)).

In other words, CommonPref (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)) =

⟨𝑣 = 𝑣0, . . . , 𝑣𝑖
�̃�
(𝑃 (𝑣,𝑡,𝑒)) ⟩. This also implies that 𝑣𝑖

�̃�
(𝑃 (𝑣,𝑡,𝑒)) is the

last vertex of the prefix CommonPref (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)), and

𝑣𝑖
�̃�
(𝑃 (𝑣,𝑡,𝑒)) is also the first vertex of the detour

Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)).

Definition 7 (The index 𝑖
�̃�
(𝑣, 𝑡, 𝑒)). We define the index

𝑖
�̃�
(𝑣, 𝑡, 𝑒) as an arbitrary index chosen from the group

{𝑖
�̃�
(𝑃 (𝑣, 𝑡, 𝑒)) | 𝑃 (𝑣, 𝑡, 𝑒) ∈ P

�̃�
(𝑣, 𝑡, 𝑒)}.

In the following section we prove that given the distances

{𝑑𝐺 (𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃
�̃�
(𝑣,𝑡) and {𝑑𝐺 (𝑠, 𝑣, 𝑒)}𝑠∈𝑉 ,𝑣∈𝐵,𝑒∈𝑃

�̃�
(𝑠,𝑣) ,

one can compute efficiently the indices {𝑖
�̃�
(𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) .

Before we explain how to compute the indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒) we first

note that computing the distances {𝑑𝐺 (𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃
�̃�
(𝑣,𝑡)

and {𝑑𝐺 (𝑠, 𝑣, 𝑒)}𝑠∈𝑉 ,𝑣∈𝐵,𝑒∈𝑃
�̃�
(𝑠,𝑣) , can simply be done by invok-

ing SSRP𝐺 (𝑣) in the graph 𝐺 for all 𝑣 ∈ 𝐵 and SSRP𝐺𝑇 (𝑣) in the

graph 𝐺𝑇
for all 𝑣 ∈ 𝐵.

3.3.1 An Efficient Algorithm for Computing the Indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒)

for Graphs with Positive Integer Edge Weights. In this section, we

prove that given the distances {𝑑𝐺 (𝑥,𝑦)}𝑥,𝑦∈𝑉 ,
{𝑑𝐺 (𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) and {𝑑𝐺 (𝑠, 𝑣, 𝑒)}𝑠∈𝑉 ,𝑣∈𝐵,𝑒∈𝑃

�̃�
(𝑠,𝑣) ,

one can compute w.h.p. the indices {𝑖
�̃�
(𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) in

𝑂 (𝑀𝑛3/𝑅) time.

We first precisely define the input and output of this problem.

Input. The distances {𝑑𝐺 (𝑥,𝑦)}𝑥,𝑦∈𝑉 ,
{𝑑𝐺 (𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) and {𝑑𝐺 (𝑠, 𝑣, 𝑒)}𝑠∈𝑉 ,𝑣∈𝐵,𝑒∈𝑃

�̃�
(𝑠,𝑣) .

Output. For every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) such that 𝑒 is not

among the last 𝑅 edges of 𝑃
�̃�
(𝑣, 𝑡), the algorithm computes the

index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) as per Definition 7. The output needs to be correct

with high probability.

Remark: Given a vertex 𝑣 ∈ 𝐵, the SSRP𝐺 (𝑣) algorithm of

Grandoni and Vassilevska Williams [15] computes the distances

{𝑑 (𝑣, 𝑡, 𝑒)}𝑡 ∈𝑉 ,𝑒∈𝑃
�̃�
(𝑣,𝑡) in𝑂 (𝑀𝑛𝜔) time. We believe that it is possi-

ble to apply small changes to the SSRP𝐺 (𝑣) algorithm of Grandoni

and Vassilevska Williams [15] so that the algorithm also computes

and stores the indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒) using prior work. However, such an

algorithm would significantly depend on prior work from multiple

1381

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

papers (e.g., [15], [22], [24], [4]) and will require multiple changes

and the description of multiple algorithms. We therefore, in order

to be more self-contained, describe in this section a self-contained

reduction that does not rely on any prior work.

Computing the Indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒) - a Self-Contained Reduc-

tion
Our algorithm is based on the following observation (that is also

stated in the following lemma). Let 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, . . . , 𝑣𝑘 = 𝑡⟩

and let 𝑒 = (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝑃
�̃�
(𝑣, 𝑡) be an edge that is not among the

last 𝑅 edges of 𝑃
�̃�
(𝑣, 𝑡) (i.e., 𝑖 < 𝑘 − 𝑅). Given a vertex 𝑢 ∈ 𝐵 such

that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) and 𝑢 is not on the subpath

of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 , one can compute the index 𝑖

�̃�
(𝑣, 𝑡, 𝑒) in

𝑂 (1) time. In other words, if we are given another vertex 𝑢 ∈ 𝐵

such that 𝑢 is either on the detour part or on the suffix part of

some replacement path then we can use 𝑢 to compute 𝑖
�̃�
(𝑣, 𝑡, 𝑒)

as follows. We can perform a binary search to find the maximum

index 𝑗 such that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣, 𝑣 𝑗) + 𝑑 (𝑣 𝑗 , 𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒). In the

following lemma we show that we can set 𝑖
�̃�
(𝑣, 𝑡, 𝑒) to be 𝑗 . We will

later show that we can find w.h.p such a vertex 𝑢 using sampling.

Lemma 11. Let 𝑒 = (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝑃
�̃�
(𝑣, 𝑡). One can compute the in-

dex 𝑖
�̃�
(𝑣, 𝑡, 𝑒) in𝑂 (1) time, given a vertex𝑢 ∈ 𝐵 such that 𝑑 (𝑣, 𝑡, 𝑒) =

𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) and 𝑢 does not belong to the subpath of 𝑃
�̃�
(𝑣, 𝑡)

from 𝑣 to 𝑒 .

Proof. Let 0 ≤ 𝑗 ≤ 𝑖 be the maximum index such that the

following equation holds.

𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣, 𝑣 𝑗) + 𝑑 (𝑣 𝑗 , 𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) (1)

Note that such an index 𝑗 exists, since according to the assump-

tions of the lemma it holds that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒).
Therefore, 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) = 𝑑 (𝑣, 𝑣) + 𝑑 (𝑣,𝑢, 𝑒) +
𝑑 (𝑢, 𝑡, 𝑒) = 𝑑 (𝑣, 𝑣0) + 𝑑 (𝑣0, 𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) (recall that 𝑣0 = 𝑣). That

is, Equation 1 holds for 𝑗 = 0. According to Equation 1, it fol-

lows that there exists a replacement path 𝑃 (𝑣, 𝑡, 𝑒) = ⟨𝑣0, . . . , 𝑣 𝑗 ⟩ ◦
𝑃 (𝑣 𝑗 , 𝑢, 𝑒) ◦ 𝑃 (𝑢, 𝑡, 𝑒) for (𝑣, 𝑡, 𝑒). Since 0 ≤ 𝑗 ≤ 𝑖 is the maximum

index such that Equation 1 holds, then 𝑣 𝑗+1 ∉ 𝑃 (𝑣, 𝑡, 𝑒). Hence,
𝑖
�̃�
(𝑃 (𝑣, 𝑡, 𝑒)) = 𝑗 .

Next, we explain how to find the index 𝑗 in 𝑂 (log𝑛) time us-

ing a binary search. Since 0 ≤ 𝑗 ≤ 𝑖 is the maximum index

such that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣, 𝑣 𝑗) + 𝑑 (𝑣 𝑗 , 𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒), it follows
that for every 𝑗 ′ ≤ 𝑗 the following equality holds 𝑑 (𝑣, 𝑡, 𝑒) =

𝑑 (𝑣, 𝑣 𝑗 ′) +𝑑 (𝑣 𝑗 ′, 𝑢, 𝑒) +𝑑 (𝑢, 𝑡, 𝑒) and for every 𝑗 ′ such that 𝑗 < 𝑗 ′ ≤ 𝑖

the following inequality holds 𝑑 (𝑣, 𝑡, 𝑒) > 𝑑 (𝑣, 𝑣 𝑗 ′) + 𝑑 (𝑣 𝑗 ′, 𝑢, 𝑒) +
𝑑 (𝑢, 𝑡, 𝑒). Due to this monotonicity property, if we have access to

the distances 𝑑 (𝑣, 𝑣 𝑗 ′), 𝑑 (𝑣 𝑗 ′, 𝑢, 𝑒), 𝑑 (𝑢, 𝑡, 𝑒) then we can use a bi-

nary search on the index 𝑗 ′ whose boundaries are 0 ≤ 𝑗 ′ ≤ 𝑖

to find the index 𝑗 = 𝑖
�̃�
(𝑣, 𝑡, 𝑒). Since 𝑢 ∈ 𝐵 then 𝑑 (𝑢, 𝑡, 𝑒) ∈

{𝑑𝐺 (𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃
�̃�
(𝑣,𝑡) and

𝑑 (𝑣 𝑗 ′, 𝑢, 𝑒) ∈ {𝑑𝐺 (𝑠, 𝑣, 𝑒)}𝑠∈𝑉 ,𝑣∈𝐵,𝑒∈𝑃
�̃�
(𝑠,𝑣) , and obviously𝑑 (𝑣, 𝑣 𝑗 ′) ∈

{𝑑𝐺 (𝑥,𝑦)}𝑥,𝑦∈𝑉 . Hence, we are given all the distances

𝑑 (𝑣, 𝑣 𝑗 ′), 𝑑 (𝑣 𝑗 ′, 𝑢, 𝑒) and 𝑑 (𝑢, 𝑡, 𝑒). □

The Procedure For Computing 𝑖
�̃�
(𝑣, 𝑡, 𝑒)

In this section, we describe the procedure for computingw.h.p. all

the indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒) for every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡) such that 𝑒

is not among the last 𝑅 edges of 𝑃
�̃�
(𝑣, 𝑡) in𝑂 (𝑀𝑛3/𝑅) time (w.h.p.).

More precisely, we show how to find for every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , 𝑒 ∈
𝑃
�̃�
(𝑣, 𝑡) a vertex 𝑢 ∈ 𝐵 such that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒)

and 𝑢 does not belong to the subpath of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 , we

then use Lemma 11 to compute the index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) in 𝑂 (1) time.

Our algorithm for computing the indices 𝑖
�̃�
(𝑣, 𝑡, 𝑒) is as follows.

First, for every 𝑆 ∈ {𝑅 · 20, 𝑅 · 21, . . . , 𝑅 · 2 ⌊log
𝑛
𝑅
⌋ }, the algorithm

samples a random subset 𝐵𝑆 ⊆ 𝐵 obtained by choosing every

vertex of 𝐵 independently at random with probability
𝑄𝑅𝑀
𝑆

for

large enough constant 𝑄 > 0. Note that the expected size of 𝐵𝑆 is

|𝐵 | ∗ 𝑄𝑅𝑀
𝑆

, and the expected size of 𝐵 is 𝑂 (𝑛/𝑅), thus the expected
size of 𝐵𝑆 is 𝑂 (𝑀𝑛/𝑆).

For every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) such that 𝑒 is not among the

last 𝑅 edges of 𝑃
�̃�
(𝑣, 𝑡), the algorithm finds the scale 𝑆 ∈ {𝑅 · 20, 𝑅 ·

2
1, . . . , 𝑅 · 2 ⌊log

𝑛
𝑅
⌋ } such that 𝑆 ≤ |𝑃

�̃�
(𝑒, 𝑡) | ≤ 2𝑆 (in other words,

𝑒 is among the last 2𝑆 edges of 𝑃
�̃�
(𝑣, 𝑡) but not among the last 𝑆

edges of 𝑃
�̃�
(𝑣, 𝑡)).

The algorithm scans all the vertices of 𝐵𝑆 until it finds a vertex

𝑢 ∈ 𝐵𝑆 such that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) and 𝑢 is not con-

tained in the subpath of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 (we explain how to

check efficiently if 𝑢 is contained in the subpath of 𝑃
�̃�
(𝑣, 𝑡) from

𝑣 to 𝑒 as in the analysis of Lemma 14). If the algorithm does not

find such a vertex 𝑢 ∈ 𝐵𝑆 (for which 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) +𝑑 (𝑢, 𝑡, 𝑒)
with 𝑢 that is not contained in the subpath of 𝑃

�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒)

then the algorithm fails (we prove in Lemma 13 that the algorithm

does not fail w.h.p.). If the algorithm finds such a vertex 𝑢 ∈ 𝐵𝑆 ,

then, according to Lemma 11, given𝑢 it finds in𝑂 (1) time the index

𝑖
�̃�
(𝑣, 𝑡, 𝑒).
Next, we analyze the correctness and running time of the above

procedure. The following auxiliary lemma follows easily as edge

weights are between 1 and𝑀 .

Lemma 12. Let 𝑃 (𝑣, 𝑡, 𝑒) ∈ P
�̃�
(𝑣, 𝑡, 𝑒). The subpath

Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡))◦

CommonSuff (𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)) of 𝑃 (𝑣, 𝑡, 𝑒) contains at least

|𝑃
�̃�
(𝑒, 𝑡) |/𝑀 edges.

Proof. Let 𝑣 𝑗 be the first vertex of the detour

Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)). Let 𝑃 (𝑣 𝑗 , 𝑡, 𝑒) be the subpath of 𝑃 (𝑣, 𝑡, 𝑒)

from 𝑣 𝑗 to 𝑡 . That is, 𝑃 (𝑣 𝑗 , 𝑡, 𝑒) =
Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃

�̃�
(𝑣, 𝑡)) ◦ CommonSuff (𝑃 (𝑣, 𝑡, 𝑒), 𝑃

�̃�
(𝑣, 𝑡)). We

need to prove that |𝑃 (𝑣 𝑗 , 𝑡, 𝑒) | ≥ |𝑃
�̃�
(𝑒, 𝑡) |/𝑀 .

Since the weight of every edge is in the range [1, 𝑀], it follows
that𝑀 · |𝑃 (𝑣 𝑗 , 𝑡, 𝑒) | ≥ 𝑤 (𝑃 (𝑣 𝑗 , 𝑡, 𝑒)) ≥ 𝑤 (𝑃

�̃�
(𝑣 𝑗 , 𝑡)) ≥ |𝑃

�̃�
(𝑣 𝑗 , 𝑡) | ≥

|𝑃
�̃�
(𝑒, 𝑡) |, where the last inequality holds as 𝑒 appears after 𝑣 𝑗 along

𝑃
�̃�
(𝑣 𝑗 , 𝑡). Hence, |𝑃 (𝑣 𝑗 , 𝑡, 𝑒) | ≥ |𝑃

�̃�
(𝑒, 𝑡) |/𝑀 . □

In the following lemma, we prove the correctness of our proce-

dure.

Lemma 13. For every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) such that 𝑒 is not

among the last 𝑅 edges of 𝑃
�̃�
(𝑣, 𝑡), the above procedure computes

w.h.p. the index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) as per Definition 7. In addition, w.h.p. the

algorithm does not fail.

Proof. Recall that 𝐵 ⊂ 𝑉 is a random subset of 𝑉 where each

vertex is chosen independently uniformly at random with probabil-

ity 𝑄1 ln𝑛/𝑅. Furthermore, 𝐵𝑆 ⊂ 𝐵 is a random subset of 𝐵 where

each vertex is chosen independently uniformly at random with

1382

Distance Sensitivity Oracles with Subcubic Preprocessing Time and Fast Query Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

probability
𝑅𝑀𝑄2

𝑆
. It follows that 𝐵𝑆 ⊂ 𝑉 is a random subset of 𝑉

where each vertex is chosen independently uniformly at random

with probability
𝑄𝑀 ln𝑛

𝑆
where 𝑄 = 𝑄1𝑄2.

Let 𝑃 (𝑣, 𝑡, 𝑒) ∈ P
�̃�
(𝑣, 𝑡, 𝑒) be a replacement path for (𝑣, 𝑡, 𝑒)

whose prefix part contains the maximum number of edges. Since

𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) such that 𝑒 is not among the last 𝑅 edges of 𝑃

�̃�
(𝑣, 𝑡)

then there exists a scale 𝑆 ∈ {𝑅 · 20, 𝑅 · 21, . . . , 𝑅 · 2 ⌊log
𝑛
𝑅
⌋ } such

that 𝑆 ≤ |𝑃
�̃�
(𝑒, 𝑡) | ≤ 2𝑆 . Then according to Lemma 12 the sub-

path Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡)) ◦ CommonSuff (𝑃 (𝑣, 𝑡, 𝑒), 𝑃

�̃�
(𝑣, 𝑡))

of 𝑃 (𝑣, 𝑡, 𝑒) contains at least |𝑃
�̃�
(𝑒, 𝑡) |/𝑀 ≥ 𝑆/𝑀 edges. Hence, ac-

cording to Lemma 2 it holds w.h.p. that at least one of the vertices

of 𝑢 ∈ 𝐵𝑆 hits the subpath

Detour(𝑃 (𝑣, 𝑡, 𝑒), 𝑃
�̃�
(𝑣, 𝑡))◦CommonSuff (𝑃 (𝑣, 𝑡, 𝑒), 𝑃

�̃�
(𝑣, 𝑡)). Since

𝑢 is, w.h.p., a vertex on the detour or the suffix part of 𝑃 (𝑣, 𝑡, 𝑒),
it follows that w.h.p. 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) and 𝑢 is not

contained in the subpath of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 . As the algorithm

scans the set of vertices in 𝐵𝑠 , it would therefore find w.h.p. a vertex

𝑢 such that 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) + 𝑑 (𝑢, 𝑡, 𝑒) and 𝑢 is not contained

in the subpath of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 . Thus, according to Lemma 11

the algorithm computes w.h.p. the index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) as per Definition

7. It follows that w.h.p. the algorithm does not fail. □

Next, we analyze the running time of our procedure, which

completes the proof of Lemma 10.

Lemma 14. The above procedure takes 𝑂 (𝑀𝑛3/𝑅) time with high
probability.

Proof. Since 𝐵𝑆 ⊂ 𝑉 is a random subset of𝑉 where each vertex

is chosen independently uniformly at random with probability

𝑄𝑀 ln𝑛
𝑆

for large enough constant 𝑄 > 0 (as explained in the proof

of Lemma 13) then |𝐵𝑆 | = 𝑂 (𝑀𝑛/𝑆) in expectation and with high

probability.

In the algorithm above we mentioned that it is possible to check

efficiently for a vertex 𝑢 ∈ 𝐵𝑆 whether or not 𝑢 is contained on

the subpath of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 , and that one can efficiently

compute the scale 𝑆 ∈ {𝑅 · 20, 𝑅 · 21, . . . , 𝑅 · 2 ⌊log
𝑛
𝑅
⌋ } such that

𝑆 ≤ |𝑃
�̃�
(𝑒, 𝑡) | ≤ 2𝑆 . There are many ways to implement it, one way

to do so is as follows.

For every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 the algorithm creates a hash table ℎ𝑣,𝑡
as follows. Let 𝑃

�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, . . . , 𝑣𝑘 = 𝑡⟩, the hash tables ℎ𝑣,𝑡

maps every vertex 𝑣𝑖 to the index 𝑖 (for every 0 ≤ 𝑖 ≤ 𝑘) and
every edge (𝑣𝑖 , 𝑣𝑖+1) to the index 𝑖 (for every 0 ≤ 𝑖 < 𝑘). In other

words, for every 0 ≤ 𝑖 ≤ 𝑘 it holds that ℎ𝑣,𝑡 [𝑣𝑖] = 𝑖 and for every

0 ≤ 𝑖 < 𝑘 it holds that ℎ𝑣,𝑡 [(𝑣𝑖 , 𝑣𝑖+1)] = 𝑖 . Now, 𝑢 is contained in

the subpath of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 iff the hash table ℎ𝑣,𝑡 contains 𝑢

and ℎ𝑣,𝑡 [𝑢] ≤ ℎ𝑣,𝑡 [𝑒]. Furthermore, the scale 𝑆 can be obtained by

observing that |𝑃
�̃�
(𝑒, 𝑡) | = 𝑘 − ℎ𝑣,𝑡 [𝑒], and then finding the scale

𝑆 ∈ {𝑅 · 20, 𝑅 · 21, . . . , 𝑅 · 2 ⌊log
𝑛
𝑅
⌋ } such that 𝑆 ≤ |𝑃

�̃�
(𝑒, 𝑡) | ≤ 2𝑆 can

be done in constant time by a simple mathematical formula. For

every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 creating the hash table ℎ𝑣,𝑡 takes linear time, so

for all 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 creating all the hash tables {ℎ𝑣,𝑡 }𝑣∈𝐵,𝑡 ∈𝑉 takes

𝑂 (𝑛3/𝑅) time.

The algorithm scans the set 𝐵𝑆 to find a vertex 𝑢 ∈ 𝐵𝑆 such that

𝑑 (𝑣, 𝑡, 𝑒) = 𝑑 (𝑣,𝑢, 𝑒) +𝑑 (𝑢, 𝑡, 𝑒) and𝑢 is not contained in the subpath

of 𝑃
�̃�
(𝑣, 𝑡) from 𝑣 to 𝑒 . This takes 𝑂 (|𝐵𝑆 |) time, and the size of 𝐵𝑆

is 𝑂 (𝑀𝑛/𝑆) with high probability. Then, given the vertex 𝑢 ∈ 𝐵𝑆 ,

according to Lemma 11, the algorithm finds in 𝑂 (1) time the index

𝑖
�̃�
(𝑣, 𝑡, 𝑒).
Therefore, for each edge 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡) that is among the last 2𝑆

edges of 𝑃
�̃�
(𝑣, 𝑡) but not among the last 𝑆 edges of 𝑃

�̃�
(𝑣, 𝑡), one

can compute the index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) in 𝑂 (𝑀𝑛/𝑆) time. It follows that

computing the indices {𝑖
�̃�
(𝑣, 𝑡, 𝑒)} for all the 𝑆 edges which are

among the last 2𝑆 edges of 𝑃
�̃�
(𝑣, 𝑡) but not among the last 𝑆 edges

of 𝑃
�̃�
(𝑣, 𝑡) takes 𝑂 (𝑀𝑛) time. As there are only 𝑂 (log𝑛) scales 𝑆

(we take 𝑆 from the group 𝑆 ∈ {𝑅 · 20, 𝑅 · 21, . . . , 𝑅 · 2 ⌊log
𝑛
𝑅
⌋ }), then

for a fixed vertex 𝑡 ∈ 𝑉 , one can compute the indices {𝑖
�̃�
(𝑣, 𝑡, 𝑒)}

for all the edges 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) in 𝑂 (𝑀𝑛) time. Therefore, one can

compute the indices {𝑖
�̃�
(𝑣, 𝑡, 𝑒)} for every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡)

in total 𝑂 (𝑀𝑛3/𝑅) time. □

3.4 Constructing the Tables {T𝑣,𝑡 (𝐺)}𝑣∈𝐵,𝑡 ∈𝑉
Let 𝑃

�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 = 𝑡⟩. The algorithm constructs the

table T𝑣,𝑡 (𝐺) as follows. Initialize T𝑣,𝑡 (𝐺) to be an empty table. For

every edge 𝑒 ∈ 𝑃
�̃�
(𝑣0, 𝑣𝑘−𝑅) the algorithm inserts the pair (𝑖𝑒 , 𝑑𝑒)

with 𝑖𝑒 := 𝑖
�̃�
(𝑣, 𝑡, 𝑒) and 𝑑𝑒 := 𝑑𝐺 (𝑣, 𝑡, 𝑒) to the table T𝑣,𝑡 (𝐺) iff

𝑑𝐺 (𝑣, 𝑣𝑘−𝑅, 𝑒) + 𝑑𝐺 (𝑣𝑘−𝑅, 𝑡) > 𝑑𝐺 (𝑣, 𝑡, 𝑒). Next, the algorithm sorts

all the pairs of T𝑣,𝑡 (𝐺) in ascending order of the first element 𝑖𝑒 . It

is easy to prove that 𝑑𝐺 (𝑣, 𝑣𝑘−𝑅, 𝑒) +𝑑𝐺 (𝑣𝑘−𝑅, 𝑡) > 𝑑𝐺 (𝑣, 𝑡, 𝑒) iff the

suffix part of every replacement path for (𝑣, 𝑡, 𝑒) contains less than
𝑅 edges. The distance 𝑑𝑒 := 𝑑𝐺 (𝑣, 𝑡, 𝑒) was already computed, as

𝑣 ∈ 𝐵 and the algorithm already computed SSRP𝐺 (𝑣) as described
in Lemma 6 and its output contains w.h.p. the distance 𝑑𝐺 (𝑣, 𝑡, 𝑒).
The index 𝑖𝑒 := 𝑖

�̃�
(𝑣, 𝑡, 𝑒) is computed using Lemma 10. We prove

several properties of the table T𝑣,𝑡 (𝐺).

Lemma 15. Let 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, . . . , 𝑣𝑘 = 𝑡⟩. One can construct

the table T𝑣,𝑡 (𝐺) in 𝑂 (𝑛) time such that the following properties
hold (w.h.p.): (1) For every entry (𝑖𝑒 , 𝑑𝑒) ∈ T𝑣,𝑡 (𝐺) it holds w.h.p.
that 𝑑𝑒 = 𝑑𝐺 (𝑣, 𝑡, 𝑒) = 𝑑𝐺 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) and there exists a

replacement path for (𝑣, 𝑡, 𝑒) such that 𝑖𝑒 = 𝑖
�̃�
(𝑣, 𝑡, 𝑒) is the index of

the first vertex of its detour part. (2) For every edge 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑣𝑘−𝑅),

if there exists a vertex 𝑠 ∈ 𝑉 such that (𝑠, 𝑡, 𝑒) is R-critical and 𝑣 is on
the detour part of at least one replacement path of (𝑠, 𝑡, 𝑒), then w.h.p.
(𝑖𝑒 , 𝑑𝑒) ∈ T𝑣,𝑡 (𝐺). (3) The entries of the table are monotone (i.e., if
(𝑖𝑒 , 𝑑𝑒) and (𝑖𝑒′, 𝑑𝑒′) are entries of the table such that 𝑖𝑒 ≥ 𝑖𝑒′ then
𝑑𝑒 ≤ 𝑑𝑒′).

Proof. Let (𝑖𝑒 , 𝑑𝑒) be an entry of the table T𝑣,𝑡 (𝐺). By construc-

tion and by Lemma 10 it follows that w.h.p. there exists a replace-

ment path 𝑃 (𝑣, 𝑡, 𝑒) for (𝑣, 𝑡, 𝑒) such that 𝑖𝑒 = 𝑖
�̃�
(𝑣, 𝑡, 𝑒) is the index

of the first vertex of its detour part.

Next, we prove that w.h.p. 𝑑𝑒 = 𝑑𝐺 (𝑣, 𝑡, 𝑒) =
𝑑𝐺 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)). Let 𝑣 𝑗 be the last vertex of the detour part of

𝑃 (𝑣, 𝑡, 𝑒). As 𝑃 (𝑣, 𝑡, 𝑒) is a replacement path for (𝑣, 𝑡, 𝑒) that departs
from 𝑃

�̃�
(𝑣, 𝑡) in the vertex 𝑣𝑖𝑒 and re-enters 𝑃

�̃�
(𝑣, 𝑡) in the vertex

𝑣 𝑗 it clearly follows that 𝑒 ∈ 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣 𝑗) and that 𝑃 (𝑣, 𝑡, 𝑒) is disjoint

from 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣 𝑗).

By the construction of T𝑣,𝑡 (𝐺) it holds that 𝑑 (𝑣, 𝑣𝑘−𝑅, 𝑒)+
𝑑 (𝑣𝑘−𝑅, 𝑡) > 𝑑 (𝑣, 𝑡, 𝑒), therefore the suffix part of every replacement

path of (𝑣, 𝑡, 𝑒) contains less than 𝑅 edges. Hence, in particular it

must be that 𝑗 ≥ 𝑘 − 𝑅 and thus 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅) ⊆ 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣 𝑗). Since

𝑃 (𝑣, 𝑡, 𝑒) is disjoint from 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣 𝑗) and 𝑃�̃� (𝑣𝑖𝑒 , 𝑣𝑘−𝑅) ⊆ 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣 𝑗)

1383

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

it follows that 𝑃 (𝑣, 𝑡, 𝑒) is also disjoint from 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅). As 𝑃 (𝑣, 𝑡, 𝑒)

is disjoint from 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅) then 𝑑𝐺 (𝑣, 𝑡, 𝑒) = 𝜔 (𝑃 (𝑣, 𝑡, 𝑒)) ≥

𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)), where the last inequality holds as 𝑃 (𝑣, 𝑡, 𝑒) is

a path in𝐺 \𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅), and 𝑑𝐺 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) is the length

of a shortest path in 𝐺 \ 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅).

By the construction of T𝑣,𝑡 (𝐺) it holds that 𝑒 is not among the

last 𝑅 edges of 𝑃
�̃�
(𝑠, 𝑡). As 𝑒 ∈ 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣 𝑗) is not among the last 𝑅

edges of 𝑃
�̃�
(𝑠, 𝑡) then 𝑒 ∈ 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅). Since 𝑒 ∈ 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)

then 𝑑 (𝑣, 𝑡, 𝑒) ≤ 𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) as the distance from 𝑣 to 𝑡

may only increase when we remove more edges from 𝐺 \ {𝑒}. We

proved that w.h.p.𝑑 (𝑣, 𝑡, 𝑒) ≥ 𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) and𝑑 (𝑣, 𝑡, 𝑒) ≤

𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)), and thus it follows thatw.h.p.𝑑𝑒 = 𝑑 (𝑣, 𝑡, 𝑒) =

𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)).

Next, let 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑣𝑘−𝑅) and assume that there exists a ver-

tex 𝑠 ∈ 𝑉 such that (𝑠, 𝑡, 𝑒) is R-critical and 𝑣 is on the detour

part of a replacement path 𝑃 (𝑠, 𝑡, 𝑒). We next prove that w.h.p.

(𝑖𝑒 , 𝑑𝑒) ∈ T𝑣,𝑡 (𝐺). We claim that the suffix part of every replacement

path of (𝑣, 𝑡, 𝑒) contains less than 𝑅 edges. Assume by contradiction

that there exists a replacement path 𝑃 ′(𝑣, 𝑡, 𝑒) for (𝑣, 𝑡, 𝑒) whose suf-
fix part contains at least 𝑅 edges, then 𝑃 ′(𝑠, 𝑡, 𝑒) := 𝑃 (𝑠, 𝑡, 𝑒) [𝑠, 𝑣] ◦
𝑃 ′(𝑣, 𝑡, 𝑒) is a replacement path for (𝑠, 𝑡, 𝑒) whose suffix part con-

tains at least 𝑅 edges, contradicting the assumption that (𝑠, 𝑡, 𝑒) is
𝑅-critical. Thus, assume that the suffix part of every replacement

path of (𝑣, 𝑡, 𝑒) contains less than 𝑅 edges. It is easy to prove that

in this case 𝑑𝐺 (𝑣, 𝑣𝑘−𝑅, 𝑒) + 𝑑𝐺 (𝑣𝑘−𝑅, 𝑡) > 𝑑 (𝑣, 𝑡, 𝑒) and thus w.h.p.

the algorithm added the entry (𝑖𝑒 , 𝑑𝑒) into the table T𝑣,𝑡 (𝐺).
Finally, we prove the following monotonicity property on the en-

tries of the table T𝑣,𝑡 (𝐺). Let 𝑒 = (𝑣𝑖 , 𝑣𝑖+1) and 𝑒 ′ = (𝑣 𝑗 , 𝑣 𝑗+1) (0 ≤
𝑖, 𝑗 < 𝑘 − 𝑅) be two edges such that both (𝑖𝑒 , 𝑑𝑒) and (𝑖𝑒′, 𝑑𝑒′) are
entries of the table T𝑣,𝑡 (𝐺). We assume that 𝑖𝑒 ≥ 𝑖𝑒′ and prove that

𝑑𝑒 ≥ 𝑑𝑒′ . We already proved in this lemma that 𝑑𝑒 = 𝑑𝐺 (𝑣, 𝑡, 𝑒) =
𝑑𝐺 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) and𝑑𝑒′ = 𝑑𝐺 (𝑣, 𝑡, 𝑒 ′) = 𝑑𝐺 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒′ , 𝑣𝑘−𝑅)).

As we assume that 𝑖𝑒 ≥ 𝑖𝑒′ then 𝑃�̃� (𝑣𝑖𝑒 , 𝑣𝑘−𝑅) ⊂ 𝑃
�̃�
(𝑣𝑖𝑒′ , 𝑣𝑘−𝑅) and

thus 𝑑𝑒 = 𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) ≤ 𝑑𝐺 (𝑣, 𝑡, 𝑃

�̃�
(𝑣𝑖𝑒′ , 𝑣𝑘−𝑅)) = 𝑑𝑒′ as

the distance from 𝑣 to 𝑡 may only increase when we remove more

edges from 𝐺 \ 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅).

□

3.5 Computing the Distances
{𝑑 ′(𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡))}𝑣∈𝐵,𝑠,𝑡 ∈𝑉

Note that due to uniqueness of shortest paths in �̃� we have that

the paths 𝑃
�̃�
(𝑣, 𝑡) and 𝑃

�̃�
(𝑠, 𝑡) have some common suffix (and are

disjoint up to this common suffix). In order to estimate the distance

𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) the algorithm does the following. Let 𝑃

�̃�
(𝑣, 𝑡) =

⟨𝑣0, ..., 𝑣𝑘 ⟩ and let 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) be the first common edge of 𝑃
�̃�
(𝑣, 𝑡)

and 𝑃
�̃�
(𝑠, 𝑡) (see figure 2). In the remaining of this section assume

that 𝑒𝑖 is not among the first or last 𝑅 edges of 𝑃
�̃�
(𝑠, 𝑡) (we handle

these end cases in the full version, but for simplicity we omit it

from the overview). If there is no entry (𝑖𝑒′, 𝑑𝑒′) in the table T𝑣,𝑡 (𝐺)
such that 𝑖𝑒′ ≤ 𝑖 then return 𝑑 ′(𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) = ∞. Otherwise, let

(𝑖𝑒′, 𝑑𝑒′) be the maximum entry in the table such that 𝑖𝑒′ ≤ 𝑖 (as

the table is sorted then finding this pair can easily be done using a

binary search). Return 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑𝑒′ .

Next, we sketch the proof of correctness. We prove the following

lemma for the more general and difficult case that 𝑒, 𝑒𝑖 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡) ∩

𝑃
�̃�
(𝑣, 𝑡), in the full version we also handle the easier cases that 𝑒𝑖 ∉

𝑃𝑅
�̃�
(𝑠, 𝑡) and/or 𝑒 ∉ 𝑃

�̃�
(𝑣, 𝑡). We claim that when 𝑒, 𝑒𝑖 ∈ 𝑃𝑅

�̃�
(𝑠, 𝑡) ∩

𝑃
�̃�
(𝑣, 𝑡) then the last 𝑅 edges of 𝑃

�̃�
(𝑠, 𝑡) and 𝑃

�̃�
(𝑣, 𝑡) are the same.

To see that, note that by the uniqueness of shortest paths in �̃� ,

it follows that 𝑃
�̃�
(𝑠, 𝑡) ∩ 𝑃

�̃�
(𝑣, 𝑡) is a common suffix of 𝑃

�̃�
(𝑠, 𝑡)

and 𝑃
�̃�
(𝑣, 𝑡) that contains 𝑒, 𝑒𝑖 and as 𝑒𝑖 ∈ 𝑃𝑅

�̃�
(𝑠, 𝑡) thus the suffix

CommonSuff (𝑃
�̃�
(𝑣, 𝑡), 𝑃

�̃�
(𝑠, 𝑡)) contains more than 𝑅 edges.

Lemma 16. Let 𝑒 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡) ∩ 𝑃

�̃�
(𝑣, 𝑡) and let 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1)

be the first edge of 𝑃
�̃�
(𝑣, 𝑡) ∩ 𝑃

�̃�
(𝑠, 𝑡) and assume 𝑒𝑖 ∈ 𝑃𝑅

�̃�
(𝑠, 𝑡).

The following conditions hold: (1) 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (𝑣, 𝑡, 𝑒). (2) If

(𝑠, 𝑡, 𝑒) is 𝑅-critical and 𝑣 is on the detour part of some replacement
path for (𝑠, 𝑡, 𝑒) then 𝑑 ′(𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) = 𝑑 (𝑣, 𝑡, 𝑒).

proof sketch. We first prove that 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (𝑣, 𝑡, 𝑒).

As 𝑒, 𝑒𝑖 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡) ∩ 𝑃

�̃�
(𝑣, 𝑡) and 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) is the first edge of

𝑃
�̃�
(𝑣, 𝑡) ∩ 𝑃

�̃�
(𝑠, 𝑡) it follows that 𝑒 appears between 𝑣𝑖 and 𝑣𝑘−𝑅

along 𝑃
�̃�
(𝑣, 𝑡). If there is no entry (𝑖𝑒′, 𝑑𝑒′) in the table T𝑣,𝑡 (𝐺) such

that 𝑖𝑒′ ≤ 𝑖 then 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = ∞ and thus it trivially holds

that 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (𝑣, 𝑡, 𝑒). Assume that there exists at least

one entry (𝑖𝑒′, 𝑑𝑒′) in the table T𝑣,𝑡 (𝐺) such that 𝑖𝑒′ ≤ 𝑖 and let

(𝑖𝑒′, 𝑑𝑒′) be the entry in the table whose index 𝑖𝑒′ ≤ 𝑖 is maximal.

By construction we have that 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑𝑒′ and according

to Lemma 15 it holds w.h.p. that 𝑑𝑒′ = 𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒′ , 𝑣𝑘−𝑅)) ≥

𝑑 (𝑣, 𝑡, 𝑒) where the last inequality holds since 𝑒 appears between

𝑣𝑖 and 𝑣𝑘−𝑅 along 𝑃
�̃�
(𝑣, 𝑡) and 𝑖𝑒′ ≤ 𝑖 . Thus, 𝑑 ′(𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) ≥

𝑑 (𝑣, 𝑡, 𝑒).
Next, we assume that (𝑠, 𝑡, 𝑒) is 𝑅-critical and 𝑣 is on the de-

tour part of at least one replacement path 𝑃 (𝑠, 𝑡, 𝑒) and prove that

𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑 (𝑣, 𝑡, 𝑒). According to Lemma 15 it holds w.h.p.

that (𝑖𝑒 , 𝑑𝑒) ∈ T𝑣,𝑡 (𝐺), 𝑑𝑒 = 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑𝐺 (𝑣, 𝑡, 𝑃
�̃�
(𝑣𝑖𝑒 , 𝑣𝑘−𝑅)) and

there exists a replacement path 𝑃 (𝑣, 𝑡, 𝑒) ∈ P(𝑣, 𝑡, 𝑒) such that

𝑖𝑒 is the index of the first vertex of the detour part of 𝑃 (𝑣, 𝑡, 𝑒).
We claim that 𝑖𝑒 < 𝑖 . Assume by contradiction that 𝑖𝑒 ≥ 𝑖 then

𝑃
�̃�
(𝑠, 𝑡) [𝑠, 𝑣𝑖] ◦𝑃 (𝑣, 𝑡, 𝑒) [𝑣𝑖 , 𝑡] is also a replacement path for (𝑠, 𝑡, 𝑒)

whose common prefix with 𝑃
�̃�
(𝑠, 𝑡) contains at least 𝑅 edges (as

𝑒𝑖 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡)), contradicting the assumption that (𝑠, 𝑡, 𝑒) is 𝑅-critical.

Recall that (𝑖𝑒′, 𝑑𝑒′) is the entry in the table T𝑣,𝑡 (𝐺) whose index
𝑖𝑒′ ≤ 𝑖 is maximal. It follows that both 𝑖𝑒′, 𝑖𝑒 ≤ 𝑖 and since 𝑖𝑒′ is the

maximal index in the table T𝑣,𝑡 (𝐺) such that 𝑖𝑒′ ≤ 𝑖 then 𝑖𝑒 ≤ 𝑖𝑒′ .

According to Lemma 15 the entries of the table are monotone and

thus 𝑑 (𝑣, 𝑡, 𝑒) = 𝑑𝑒 ≥ 𝑑𝑒′ = 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). As we have already

proved that 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (𝑣, 𝑡, 𝑒) then it follows that w.h.p.

𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑 (𝑣, 𝑡, 𝑒).

□

3.6 The Algorithm for Handling Case 5
To sum up, we briefly describe the algorithm for handling case 5.

The goal is to compute (and store), for every 𝑠, 𝑡 ∈ 𝑉 such that

𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡) the distance 𝑑5 (𝑠, 𝑡) which is an estimation of

the distance 𝑑𝐺 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)).

1384

Distance Sensitivity Oracles with Subcubic Preprocessing Time and Fast Query Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

• For every 𝑣 ∈ 𝐵 compute SSRP𝐺 (𝑣) according to Lemma 6

in the graph𝐺 and SSRP𝐺𝑇 (𝑣) in the graph𝐺𝑇
with reverse

edge directions in 𝑂 (𝑛
𝑅
· SSRP(𝑀,𝑛)) = 𝑂 (𝑛

𝑅
·𝑀𝑛𝜔) time.

• Compute the set of indices {𝑖
�̃�
(𝑣, 𝑡, 𝑒)}𝑣∈𝐵,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑣,𝑡) as

in Lemma 10 in 𝑂 (𝑀𝑛3/𝑅) time.

• For every 𝑣 ∈ 𝐵, 𝑡 ∈ 𝑉 , let 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 = 𝑡⟩,

the algorithm constructs the table T𝑣,𝑡 (𝐺) in 𝑂 (𝑛) time as

follows. Initialize T𝑣,𝑡 (𝐺) to be an empty table. For every

edge 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑣𝑘−𝑅) with 𝑑𝐺 (𝑣, 𝑣𝑘−𝑅, 𝑒) + 𝑑𝐺 (𝑣𝑘−𝑅, 𝑡) >

𝑑𝐺 (𝑣, 𝑡, 𝑒) the algorithm inserts the pair (𝑖𝑒 , 𝑑𝑒) such that

w.h.p. 𝑑𝑒 := 𝑑𝐺 (𝑣, 𝑡, 𝑒) as computed by the SSRP𝐺 (𝑣) algo-
rithm, and the index 𝑖𝑒 := 𝑖

�̃�
(𝑣, 𝑡, 𝑒) as computed by the

algorithm described in Lemma 10. Next, the algorithm sorts

all the pairs of T𝑣,𝑡 (𝐺) in ascending order of the first element

𝑖𝑒 .

• For every 𝑠, 𝑡 ∈ 𝑉 such that 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡) and for

every 𝑣 ∈ 𝐵 the algorithm computes in 𝑂 (1) time an es-

timate 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) of the distance 𝑑𝐺 (𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) as

follows. Using a binary search, find the minimum index

0 ≤ 𝑖 ≤ 𝑘 such that 𝑣𝑖 is the first common vertex of 𝑃
�̃�
(𝑠, 𝑡)

and 𝑃
�̃�
(𝑣, 𝑡). To see that, as shortest paths in �̃� are unique,

then 𝑖 can be found using a binary search on the vertices

of 𝑃
�̃�
(𝑣, 𝑡) = ⟨𝑣0, . . . , 𝑣𝑘 ⟩ by searching for minimum index

𝑖 such that 𝑣𝑖 also belongs to the path 𝑃
�̃�
(𝑠, 𝑡), and in each

iteration of the binary search the algorithm tests whether or

not a node 𝑣𝑖 belongs to the path 𝑃
�̃�
(𝑠, 𝑡) in constant time

using the LCA data-structures (see more details in the full

version). Next, using another binary search, find the entry

(𝑖𝑒′, 𝑑𝑒′) in the table T𝑣,𝑡 (𝐺) such that 𝑖𝑒′ ≤ 𝑖 is maximal (as

the table is sorted then finding this pair can easily be done

using a binary search). Set 𝑑 ′(𝑣, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑𝑒′ .

We run the above procedure also in the graph 𝐺𝑇
with re-

versed edge directions which computes the distances

𝑑 ′
𝐺𝑇 (𝑣, 𝑠, 𝑃𝑅�̃�𝑇

(𝑡, 𝑠)). For clarity, denote by𝑑 ′(𝑠, v, 𝑃𝑅
�̃�
(𝑠, 𝑡)) :=

𝑑 ′
𝐺𝑇 (𝑣, 𝑠, 𝑃𝑅�̃�𝑇

(𝑡, 𝑠)).
• Finally, for every 𝑠, 𝑡 ∈ 𝑉 such that 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡), the
algorithm computes and stores 𝑑5 (𝑠, 𝑡) as follows 𝑑5 (𝑠, 𝑡) =
min𝑣∈𝐵{𝑑 ′(𝑠, v, 𝑃𝑅

�̃�
(𝑠, 𝑡)) + 𝑑 ′(𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡))}.

We summarize the correctness of the algorithm in the following

lemma.

Lemma 17. The following conditions hold: (1) For every edge 𝑒 ∈
𝑃𝑅
�̃�
(𝑠, 𝑡) it holds that 𝑑5 (𝑠, 𝑡) ≥ 𝑑 (𝑠, 𝑡, 𝑒). (2) If there exists an edge 𝑒

such that (𝑠, 𝑡, 𝑒) is 𝑅-critical (i.e., (𝑠, 𝑡, 𝑒) belongs to Case 5) then it
holds that 𝑑5 (𝑠, 𝑡, 𝑒) = 𝑑𝐺 (𝑠, 𝑡, 𝑒) with high probability.

Proof. To see the first requirement, let 𝑒 ∈ 𝑃𝑅
�̃�
(𝑠, 𝑡), by reversing

edge directions it holds that 𝑒𝑇 ∈ 𝑃𝑅
𝐺𝑇

(𝑡, 𝑠). For every 𝑣 ∈ 𝐵 it

holds by Lemma 16 on the graph 𝐺𝑇
that 𝑑 ′

𝐺𝑇 (v, 𝑠, 𝑃𝑅𝐺𝑇 (𝑡,𝑠)) ≥
𝑑𝐺𝑇 (v, 𝑠, 𝑒𝑇) = 𝑑𝐺 (𝑠, 𝑣, 𝑒) and according to Lemma 16 on the graph

𝐺 it holds that 𝑑 ′(v, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) ≥ 𝑑 (v, 𝑡, 𝑒). Hence, 𝑑5 (𝑠, 𝑡) =

min𝑣∈𝐵{𝑑 ′(𝑠, v, 𝑃𝑅𝐺 (𝑠, 𝑡)) + 𝑑 ′(v, 𝑡, 𝑃𝑅
𝐺
(𝑠, 𝑡))} ≥ min𝑣∈𝐵{𝑑 (𝑠, 𝑣, 𝑒) +

𝑑 (𝑣, 𝑡, 𝑒)} ≥ 𝑑 (𝑠, 𝑡, 𝑒) where the last inequality holds by the triangle
inequality in the graph 𝐺 \ {𝑒}.

We are left showing the second part. Let 𝑒 be an edge such that

(𝑠, 𝑡, 𝑒) is 𝑅-critical. According to the definition of an 𝑅-critical

query the detour part of any replacement path 𝑃 (𝑠, 𝑡, 𝑒) contains
at least 𝑅 edges, and according to Lemma 2 it holds with high

probability that at least one of the vertices 𝑣 ∈ 𝐵 belongs to the

detour of 𝑃 (𝑠, 𝑡, 𝑒). Furthermore, according to Lemma 9 it holds that

𝑑 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)). Hence, it holds with high probability

that𝑑 (𝑠, 𝑡, 𝑒) = 𝑑 (𝑠, 𝑡, 𝑃𝑅
�̃�
(𝑠, 𝑡)) = 𝑑 (𝑠, 𝑣, 𝑃𝑅

𝐺
(𝑠, 𝑡))+𝑑 (𝑣, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) =

𝑑 ′(v, 𝑠, 𝑃𝑅
�̃�
(𝑠, 𝑡))+𝑑 ′(v, 𝑡, 𝑃𝑅

�̃�
(𝑠, 𝑡)) ≥ 𝑑5 (𝑠, 𝑡) where the last equality

holds due to Lemma 16. We get that 𝑑5 (𝑠, 𝑡) ≥ 𝑑 (𝑠, 𝑡, 𝑒) and w.h.p.

𝑑 (𝑠, 𝑡, 𝑒) ≥ 𝑑5 (𝑠, 𝑡) so w.h.p. 𝑑5 (𝑠, 𝑡) = 𝑑 (𝑠, 𝑡, 𝑒). □

4 HANDLING NEGATIVE WEIGHTS - AN
OVERVIEW

There are twomain technical issues with handling negative weights.

The first is that the best known SSRP algorithm for negative weights

is substantially slower than the one for positive weights. The second

issue is that computing the index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) as described in Lemma

10 heavily relies on the assumption that edge weights are positive

integers in the range [1, 𝑀], so that a path of length ℓ contains at

least ℓ/𝑀 edges. This is not true in the presence of non-positive

weights.

We redefine the cases that the algorithm handles slightly dif-

ferently (mainly in order to handle the issue that we now need

𝑂 (log𝑛) different scales for computing the SSRP algorithms). The

main difference in the algorithm is in handling Case 5 and in par-

ticular in constructing the tables T𝑣,𝑡 (𝐺).
We next describe the different cases when handling negative

weights. We then highlight the main differences in the construction

of the tables in Case 5. We refer the reader to the full version for a

complete description of our DSO for negative weights.

Cases 0-3 are essentially the same as in the DSO for positive

weights. The one slight difference is that in the computation of the

partial shortest paths trees {𝑇𝑠 }𝑠∈𝑉 our algorithm invokes Dijkstra,

which does not work well in graphs with negative edge weights. To

overcome this issue we simply use the known method of feasible

price function [16] (see more details in the full version).

Case 0: There exists at least one shortest path from 𝑠 to 𝑡 in 𝐺

that contains at most 𝑅 edges. In other words, this case happens iff

𝑑≤𝑅 (𝑠, 𝑡) = 𝑑 (𝑠, 𝑡).
Case 1: 𝑒 ∉ 𝑃

�̃�
(𝑠, 𝑡).

Case 2: 𝑒 is among the first or last 𝑅 edges of the unique shortest

path 𝑃
�̃�
(𝑠, 𝑡).

Case 3: There exists a replacement path from 𝑠 to 𝑡 in 𝐺 \ {𝑒}
that contains at most 3𝑅 edges.

Case 4’: Let 𝛼 = 𝛼 (𝑠, 𝑡, 𝑒) ∈ S = {𝑅 · 20, 𝑅 · 21, . . . , 𝑅 · 2 ⌊log
𝑛
𝑅
⌋ }

be the minimum integer such that |𝑃
�̃�
(𝑠, 𝑒) | ≤ 2𝛼 (𝑠, 𝑡, 𝑒) and 𝛽 =

𝛽 (𝑠, 𝑡, 𝑒) ∈ S be the minimum integer such that |𝑃
�̃�
(𝑒, 𝑡)) | ≤

2𝛽 (𝑠, 𝑡, 𝑒). We say that (𝑠, 𝑡, 𝑒) belongs to Case 4’ if one of the fol-

lowing conditions hold.

(a) There exists 𝑃 (𝑠, 𝑡, 𝑒) ∈ P
�̃�
(𝑠, 𝑡, 𝑒) such that

|CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) | ≥ 𝛼 ; Or,

(b) There exists 𝑃 (𝑠, 𝑡, 𝑒) ∈ P
�̃�
(𝑠, 𝑡, 𝑒) such that

|CommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) | ≥ 𝛽 ; Or,

1385

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

(c) There exists 𝑃 (𝑠, 𝑡, 𝑒) ∈ P
�̃�
(𝑠, 𝑡, 𝑒) such that

(|Detour(𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) | ≤ |CommonPref (𝑃 (𝑠, 𝑡, 𝑒), 𝑃

�̃�
(𝑠, 𝑡)) |

or

|Detour(𝑃 (𝑠, 𝑡, 𝑒), 𝑃
�̃�
(𝑠, 𝑡)) | ≤ |CommonSuff (𝑃 (𝑠, 𝑡, 𝑒), 𝑃

�̃�
(𝑠, 𝑡)) |).

Case 5’: The complement of the previous cases. The triple

(𝑠, 𝑡, 𝑒) belongs to Case 5’ if it does not belong to any of the cases

0-3 and 4’. We refer to Case 5’ as the negative-critical case, and a

triple (𝑠, 𝑡, 𝑒) that belongs to Case 5’ is called a negative-critical

query.

Handling Case 4’. To handle Case 4’, recall that in the case of

positive weights, Case 4 was defined as the case that either the

prefix or the suffix parts of at least one replacement path contains

at least 𝑅 edges. Let 𝑣𝑠 be the first vertex of 𝐵 along 𝑃
�̃�
(𝑣, 𝑡) and

let 𝑣𝑡 be the last vertex of 𝐵 along 𝑃
�̃�
(𝑣, 𝑡), then in the case of

positive weights the algorithm computes 𝑑4 (𝑠, 𝑡, 𝑒) = min{𝑑 (𝑠, 𝑣𝑠) +
SSRP𝐺 (𝑣𝑠 , 𝑡, 𝑒), SSRP𝐺𝑇 (𝑣𝑡 , 𝑠, 𝑒𝑇) + 𝑑 (𝑣𝑡 , 𝑡)}.

However, in the presence of negative edge weights we do not

have an estimation of SSRP𝐺 (𝑣, 𝑡, 𝑒) and SSRP𝐺𝑇 (𝑠, 𝑣, 𝑒𝑇) for every
𝑣 ∈ 𝐵. In order to handle this issue we use 𝑂 (log𝑛) different scales
for computing the SSRP algorithms. For every 𝑆 ∈ S, let 𝐵𝑆 ⊂ 𝑉

be a random set of vertices obtained by choosing every vertex in-

dependently uniformly at random with probability
𝑄 ln𝑛
𝑆

for large

enough constant 𝑄 > 0. Let 𝑆 ∈ S, 𝑣 ∈ 𝐵𝑆 we use the SSRP
3𝑆
𝐺
(𝑣) al-

gorithm described by Grandoni and VassilevskaWilliams in Lemma

8 in [15] that computes correctly w.h.p. all the replacement path

distances of paths from 𝑣 in𝐺 with at most 3𝑆 vertices. For increas-

ing 𝑆 ∈ S, each execution of the modified SSRP
3𝑆
𝐺
(𝑣) algorithm

becomes more expensive, but this is compensated by the smaller

number of executions (i.e., 𝑂 (𝑛/𝑆)).
Furthermore, the algorithmfinds and stores the vertexfirst

𝑆

�̃�
(𝑠, 𝑡) ∈

𝐵𝑆 that is the first vertex of 𝐵𝑆 along 𝑃
�̃�
(𝑠, 𝑡) when traversed from 𝑠

to 𝑡 , and the vertex last𝑆
�̃�
(𝑠, 𝑡) ∈ 𝐵𝑆 that is the last vertex of 𝐵𝑆 along

𝑃
�̃�
(𝑠, 𝑡) when traversed from 𝑠 to 𝑡 (or sets them to null if no such

vertices exist). In the full version we describe how to efficiently com-

pute the vertices first
𝑆

�̃�
(𝑠, 𝑡) and last

𝑆

�̃�
(𝑠, 𝑡). Given a query (𝑠, 𝑡, 𝑒)

such that 𝑑≤𝑅 (𝑠, 𝑡) > 𝑑 (𝑠, 𝑡), the algorithm computes 𝑑4′ (𝑠, 𝑡, 𝑒) =
min

𝑆 ∈S,𝑣∈{first𝑆 (𝑠,𝑡,𝑒),last𝑆 (𝑠,𝑡,𝑒) }{SSRP
3𝑆
𝐺𝑇

(𝑣, 𝑠, 𝑒) + SSRP3𝑆
𝐺
(𝑣, 𝑡, 𝑒)}.

Handling Case 5’. The main technical complicated part of han-

dling Case 5’ is in the construction of the tables T𝑣,𝑡 (𝐺) in the

presence of negative edge weights. In contrary to the case of posi-

tive weights where the SSRP𝐺 (𝑣) algorithm computes replacement

paths on arbitrary number of edges, in the case of negative weights

the SSRP
3𝑆
𝐺
(𝑣) algorithm is guaranteed to compute correctly the

length of replacement paths on at most 3𝑆 edges (w.h.p.). We now

associate each table with two additional parameters 𝛽 and 𝑆 such

that 𝛽, 𝑆 ∈ S, where 𝛽 and 𝑆 represent that we are looking for

replacement paths on roughly 𝑆 edges whose suffix part contains

less than 𝛽 edges. For every 𝛽, 𝑆 ∈ S and 𝑣 ∈ 𝐵𝑆 the algorithm

constructs a table T 𝛽,𝑆
𝑣,𝑡 (𝐺) whose properties are somewhat sim-

ilar to the properties of the table T𝑣,𝑡 (𝐺) in the case of positive

weights, but the construction algorithm is different than in the case

of positive weights.

Ideally, for every 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡) such that the suffix part of ev-

ery replacement path for (𝑣, 𝑡, 𝑒) contains less than 𝛽 edges, we

would like to compute the entry (𝑖𝑒 , 𝑑𝑒) such that 𝑑𝑒 = 𝑑 (𝑣, 𝑡, 𝑒)

and 𝑖𝑒 = 𝑖
�̃�
(𝑣, 𝑡, 𝑒) is the index of the first vertex of the detour part

of some replacement path for (𝑣, 𝑡, 𝑒). However, the computation

of the index 𝑖
�̃�
(𝑣, 𝑡, 𝑒) as done in the case of positive weights in

Lemma 10 heavily relies on the fact that a path of length ℓ contains

at least ℓ/𝑀 edges. This is not true in the presence of non-positive

weights. To overcome this difficulty, we describe a different algo-

rithm that computes 𝑖𝑒 := 𝜌
�̃�
(𝑣, 𝑡, 𝑒) where 𝜌

�̃�
(𝑣, 𝑡, 𝑒) is defined as

the maximum number of edges in a prefix of a replacement path for

(𝑣, 𝑡, 𝑒). In Section 5.5 of the full version we describe an algorithm

that computes 𝜌
�̃�
(𝑣, 𝑡, 𝑒) correctly w.h.p. in 𝑂 (𝑛/𝑅) time as stated

in the following lemma.

Lemma 18. [Proof in the full version] Let 𝑆 ∈ S, 𝑣 ∈ 𝐵𝑆 , 𝑡 ∈ 𝑉 , 𝑒 ∈
𝑃
�̃�
(𝑣, 𝑡), there exists an algorithm that computes in 𝑂 (𝑛/𝑅) time an

integer 𝑖𝑒 := 𝜌
�̃�
(𝑣, 𝑡, 𝑒) such that w.h.p. 𝑖𝑒 the maximum number of

edges in a prefix of a replacement path for (𝑣, 𝑡, 𝑒).

Even though we are looking for replacement paths 𝑃 (𝑣, 𝑡, 𝑒) on
at most 𝑆 edges, it could be that the original shortest path 𝑃

�̃�
(𝑣, 𝑡)

contains Ω(𝑛) edges, and so computing the entry (𝑖𝑒 , 𝑑𝑒) for every
edge 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡) in 𝑂 (𝑛/𝑅) time is too expensive. Let 𝑃 ≤𝑆 (𝑣, 𝑡) be

the shortest 𝑣-to-𝑡 path on at most 𝑆 edges, note that for every 𝑒 ∉

𝑃 ≤𝑆 (𝑣, 𝑡) it holds that 𝑃 ≤𝑆 (𝑣, 𝑡) is a shortest path on at most 𝑆 edges

from 𝑣 to 𝑡 that avoids 𝑒 . As we are looking for replacement paths on

at most 𝑆 edges then we can return 𝑃 ≤𝑆 (𝑣, 𝑡) in case 𝑒 ∉ 𝑃 ≤𝑆 (𝑣, 𝑡).
We thus only need to compute the entries (𝑖𝑒 , 𝑑𝑒) for the𝑂 (𝑆) edges
in 𝑃

�̃�
(𝑣, 𝑡) ∩ 𝑃 ≤𝑆 (𝑣, 𝑡). However, for large 𝑆 it is not known how to

efficiently compute the paths {𝑃 ≤𝑆 (𝑣, 𝑡)}𝑆 ∈S,𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 . Note that
it is crucial for our algorithm that for each path 𝑃 ≤𝑆 (𝑣, 𝑡) not only
that its length is at most the length of the shortest 𝑣-to-𝑡 path on

at most 𝑆 edges, but also that 𝑃 ≤𝑆 (𝑣, 𝑡) contains only 𝑂 (𝑆) edges.
In the full version we describe an algorithm that, loosely speaking,

efficiently computes APSP with 𝑂 (𝑆) edges. We compute a set of

paths {𝑃 ≤̃𝑆
𝐺

(𝑣, 𝑡)}𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 such that𝑤 (𝑃 ≤̃𝑆
𝐺

(𝑣, 𝑡)) ≤ 𝑑≤𝑆 (𝑣, 𝑡) and
|𝑃 ≤̃𝑆
𝐺

(𝑣, 𝑡) | ≤ 3𝑆 . In other words, we compute a path that contains

at most 3𝑆 edges, whose length is shorter or has equal length as

the shortest 𝑣-to-𝑡 path on at most 𝑆 edges. The notation 𝑃 ≤̃𝑆
𝐺

(𝑣, 𝑡)
stands for a shortest 𝑣-to-𝑡 path with approximately 𝑆 edges.

Lemma 19. [Proof in the full version] Let 𝐺 be a weighted graph
with integer edge weights in the range [−𝑀,𝑀], let 𝑆 > 0 be an
integer parameter and let 𝐵𝑆 ⊆ 𝑉 be a set of𝑂 (𝑛/𝑆) vertices. One can
compute in 𝑂 (𝑀𝑛𝜔+1/2) time a set of distances {𝑑 ≤̃𝑆

𝐺
(𝑣, 𝑡)}𝑣∈𝐵𝑆 ,𝑡 ∈𝑉

and a set of paths {𝑃 ≤̃𝑆
𝐺

(𝑣, 𝑡)}𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 such that 𝑑 ≤̃𝑆
𝐺

(𝑣, 𝑡) :=
𝑤 (𝑃 ≤̃𝑆

𝐺
(𝑣, 𝑡)) ≤ 𝑑≤𝑆 (𝑣, 𝑡) and |𝑃 ≤̃𝑆

𝐺
(𝑣, 𝑡) | ≤ 3𝑆 .

5 FURTHER IMPROVING THE
PREPROCESSING TIME

The runtime of the construction algorithm of the 𝐷𝑆𝑂 described

above (including computing 𝐴𝑃𝑆𝑃 , 𝐴𝑃𝑆𝑃 ≤𝑅
, the partial shortest

paths trees {𝑇𝑠 }𝑠∈𝑉 , {𝐿𝐶𝐴(𝑇𝑠)}𝑠∈𝑉 , the hash tables ℎ0 and ℎ2, and

the data-structures 𝐷𝑆𝑂3, 𝐷𝑆𝑂4 and 𝐷𝑆𝑂5) takes 𝑂 (𝑛/𝑅 ·𝑀𝑛𝜔 +
𝑅𝑀

1

4−𝜔 𝑛2+
1

4−𝜔 + 𝑀𝑛𝜔 · (𝑋 4−𝜔 +
√
𝑛) + 𝑛3 𝑅

𝑋
+ 𝑀𝑛3/𝑅) time. The

exponent of 𝑛 is minimized when 𝑅 = 𝑀
4−𝜔
9−2𝜔 𝑛

𝜔2−6𝜔+7
2𝜔−9 and 𝑋 =

𝑀
−1

9−2𝜔 𝑛
4−𝜔
9−2𝜔 , then the preprocessing time is 𝑂 (𝑀

5−𝑤
9−2𝜔 𝑛

16+𝜔−𝜔2

9−2𝜔),

1386

Distance Sensitivity Oracles with Subcubic Preprocessing Time and Fast Query Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

which is subcubic for 𝜔 ∈ [2, 2.373]. For 𝜔 = 2.373 we get subcubic

preprocessing 𝑂 (𝑀0.62𝑛2.9953) time.

In this section, we outline how to improve the preprocessing

time of our DSO to 𝑂 (𝑀𝑛𝜔+1/2) for 𝜔 ∈ [2.35, 2.373]. The main

idea is to improve the running time of computing the SSRP
3𝑆
𝐺
(𝑣)

algorithm for all 𝑆 ∈ S, 𝑣 ∈ 𝐵𝑆 . More precisely, instead of com-

puting independently every instance of the SSRP
3𝑆
𝐺
(𝑣) algorithm

we develop a new algorithm referred to as BATCH-SSRP algorithm,

that computes together and more efficiently the set of distances

{SSRP3𝑆
𝐺
(𝑣, 𝑡, 𝑒)}𝑆 ∈S,𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑠,𝑡)

In Section 4, for a particular 𝑆 ∈ S and 𝑣 ∈ 𝐵𝑆 the algorithm com-

puted SSRP
3𝑆
𝐺
(𝑣) using the algorithm described by Grandoni and

VassilevskaWilliams in Lemma 8 in [15] in𝑂 (𝑀𝑛𝜔+𝑆𝑀
1

4−𝜔 𝑛1+
1

4−𝜔)
time, therefore, for all 𝑆 ∈ S (|S| = 𝑂 (log𝑛)) and 𝑣 ∈ 𝐵𝑆 (|𝐵𝑆 | =
𝑂 (𝑛/𝑆) w.h.p.) computing SSRP

3𝑆
𝐺
(𝑣) takes w.h.p.

𝑂 (𝑛/𝑅 ·𝑀𝑛𝜔 +𝑀
1

4−𝜔 𝑛2+
1

4−𝜔) time. In this section we improve the

runtime of this part to 𝑂 (𝑀𝑛𝜔+1/2 + 𝑛3/𝑅).
Let S1 = {𝑆 | 𝑆 ∈ S AND 𝑆 ≤

√
𝑛} and let S2 = {𝑆 | 𝑆 ∈

S AND 𝑆 >
√
𝑛}. Note that for every 𝑆 ∈ S2 there is a small number

of vertices in 𝐵𝑆 (at most 𝑛/𝑆 = 𝑂 (
√
𝑛)) and therefore it would

be efficient enough to invoke the SSRP
3𝑆
𝐺
(𝑣) algorithm for every

𝑣 ∈ 𝐵𝑆 as in Lemma 8 in [15] in𝑂 (|𝐵𝑆 | · (𝑀𝑛𝜔 +𝑀
1

4−𝜔 𝑆 ·𝑛1+
1

4−𝜔)) =
𝑂 (𝑀𝑛𝜔+1/2 + 𝑀

1

4−𝜔 𝑛2+
1

4−𝜔) = 𝑂 (𝑀𝑛𝜔+1/2) time, where the first

equality holds since |𝐵𝑆 | = 𝑂 (𝑛/𝑆) = 𝑂 (
√
𝑛) (as 𝑆 ∈ S2).

However, the size of 𝐵𝑆 for 𝑆 ∈ S1 is too large and therefore to

compute the values

{SSRP𝑆
𝐺
(𝑣, 𝑡, 𝑒)}𝑆 ∈S1,𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑠,𝑡) we take a different approach.

For every 𝑆 ∈ S1 the algorithm samples 𝑋𝑆 = 𝑆 ·𝐶 · log𝑛 random

graphs {𝐺1, . . . ,𝐺𝑋𝑆
}, where 𝑋𝑆 = 𝑆 · 𝐶 log𝑛 (for large enough

constant 𝐶 > 0) and where each 𝐺𝑖 is obtained from 𝐺 by in-

dependently removing each edge with probability
1

𝑆
(similar to

the random graphs obtained in [21]). Then, the algorithm com-

putes the STSP algorithm of Grandoni and Vassilevska Williams

(see Theorem 4 from [15], given two subsets of nodes 𝑆,𝑇 ⊆ 𝑉 ,

the STSP algorithm computes w.h.p. all the distances between

pairs (𝑠, 𝑡) ∈ 𝑆 × 𝑇 in 𝑂 (𝑀𝑛𝜔 + |𝑆 | · |𝑇 | · (𝑀𝑛)
1

4−𝜔) time) with

𝑆 = 𝐵𝑆 and 𝑇 = 𝑉 in every graph 𝐺𝑖 . I.e., the algorithm computes

the distances 𝑑𝐺𝑖
(𝑣, 𝑡) for every (𝑣, 𝑡) ∈ 𝐵𝑆 × 𝑉 , 1 ≤ 𝑖 ≤ 𝑋𝑠 in

𝑂 (𝑋𝑆 · (𝑀𝑛𝜔 + 𝑛2/𝑆 · (𝑀𝑛)
1

4−𝜔)) = 𝑂 (𝑆𝑀𝑛𝜔 + 𝑛2 · (𝑀𝑛)
1

4−𝜔) =

𝑂 (𝑀𝑛𝜔+1/2 + 𝑛2 · (𝑀𝑛)
1

4−𝜔) time (where the last equality holds

as 𝑆 ∈ S1 and thus 𝑆 ≤
√
𝑛). For every edge 𝑒 ∈ 𝐸 the algo-

rithm computes the set of indices 𝐹𝑆𝑒 ⊆ {1, . . . , 𝑋𝑆 } such that

{𝐺𝑖 | 𝑖 ∈ 𝐹𝑆𝑒 } are all the graphs that do not contain 𝑒 . Weimann

and Yuster [21] proved that |𝐹𝑆𝑒 | = 𝑂 (log𝑛). It is easy to compute

𝐹𝑆𝑒 for every 𝑒 in 𝑂 (𝑋𝑆 |𝐸 |) = 𝑂 (𝑆 |𝐸 |) time which is dominated by

𝑂 (𝑆 · 𝑀𝑛𝜔) time. For every 𝑆 ∈ S1, 𝑣 ∈ 𝐵𝑆 , 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃
�̃�
(𝑣, 𝑡)

the algorithm computes SSRP
3𝑆
𝐺
(𝑣, 𝑡, 𝑒) = min{𝑑𝐺𝑖

(𝑣, 𝑡) | 𝑖 ∈ 𝐹𝑆𝑒 }
in 𝑂 (𝑛3/𝑆) ≤ 𝑂 (𝑛3/𝑅) time (here we used the fact that 𝑆 ≥ 𝑅

and w.h.p. |𝐵𝑆 | = 𝑂 (𝑛/𝑆) and |𝐹𝑆𝑒 | = 𝑂 (1)). Summing the run-

ning time for every 𝑆 ∈ S1 ∪ S2 we get that the total process-

ing time for computing {SSRP𝑆
𝐺
(𝑣, 𝑡, 𝑒)}𝑆 ∈S,𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑠,𝑡) is

𝑂 (𝑀𝑛𝜔+1/2 +𝑀
1

4−𝜔 𝑛2+
1

4−𝜔 + 𝑛3/𝑅) = 𝑂 (𝑀𝑛𝜔+1/2 + 𝑛3/𝑅).

It remains to analyze the total preprocessing time of our DSO.

Following this improvement, the preprocessing time of the DSO

reduces to 𝑂 (𝑀𝑛𝜔+1/2 + 𝑅𝑀
1

4−𝜔 𝑛2+
1

4−𝜔 + 𝑀𝑛𝜔 · (𝑋 4−𝜔 +
√
𝑛) +

𝑛3 𝑅
𝑋

+ 𝑀𝑛3/𝑅). For 𝜔 ∈ [2.35, 2.373], the above running time is

minimized when 𝑅 = 𝑂 (𝑛2.5−𝜔), 𝑋 = 𝑂 (𝑛5−2𝜔) and then the total

preprocessing time is𝑂 (𝑀𝑛𝜔+1/2). For𝜔 = 2.373 the preprocessing

time is 𝑂 (𝑀𝑛2.873).

6 SPACE ANALYSIS
In this section, we prove that the space of our DSO is𝑂 (𝑛2.5) (where
the size is measured in words, assuming any relevant distance can

be stored in one word).

The following data-structures that are stored as part of our DSO

require 𝑂 (𝑛2𝑅) space. The distances {𝑑 (𝑠, 𝑡), 𝑑≤𝑅 (𝑠, 𝑡)}𝑠,𝑡 ∈𝑉 are

stored using 𝑂 (𝑛2) space, the hash table ℎ0 requires 𝑂 (𝑛2𝑅) space
(as it contains 𝑂 (𝑛2𝑅) triples (𝑠, 𝑡, 𝑒) such that 𝑠, 𝑡 ∈ 𝑉 , and 𝑒 is

one of the edges of a shortest path 𝑃 ≤𝑅 (𝑠, 𝑡) that contains at most

𝑅 edges), the hash table ℎ2 requires 𝑂 (𝑛2𝑅) space (as it contains
𝑂 (𝑛2𝑅) triples (𝑠, 𝑡, 𝑒) such that 𝑠, 𝑡 ∈ 𝑉 and 𝑒 is among the first or

last 𝑅 edges of 𝑃
�̃�
(𝑠, 𝑡)), the data structures {𝐿𝐶𝐴(𝑇𝑠)}𝑠∈𝑉 require

𝑂 (𝑛2) space, the data structure 𝐷𝑆𝑂3 uses 𝑂 (𝑛2𝑅) space (as 𝐷𝑆𝑂3

is constructed by sampling 𝑂 (𝑅) random graphs {𝐺𝑖 }, where each
𝐺𝑖 is obtained from 𝐺 by independently removing each edge with

probability
1

𝑅
, and for every graph𝐺𝑖 we store the result of running

APSP in𝐺𝑖 using𝑂 (𝑛2) space per graph𝐺𝑖), the vertices first
𝑆

�̃�
(𝑠, 𝑡)

and last
𝑆

�̃�
(𝑠, 𝑡) for all 𝑠, 𝑡 ∈ 𝑉 , 𝑆 ∈ S are stored using 𝑂 (𝑛2) space,

and the data structure 𝐷𝑆𝑂5 requires𝑂 (𝑛2) space (as for every pair
𝑠, 𝑡 ∈ 𝑉 we store 𝑂 (1) distances).

In addition, the algorithm stores for every 𝑆 ∈ S and 𝑣 ∈ 𝐵𝑆
the output of SSRP

3𝑆
𝐺
(𝑣) and SSRP3𝑆

𝐺𝑇
(𝑣) algorithms in the graph𝐺

and in the graph 𝐺𝑇
, which requires 𝑂 (𝑛3/𝑅) space. The 𝑂 (𝑛3/𝑅)

space is too large, and in the following we mitigate it to 𝑂 (𝑛2.5)
space.

The idea is not to explicitly store all the

{SSRP𝑆
𝐺
(𝑣, 𝑡, 𝑒)}𝑆 ∈S,𝑣∈𝐵𝑆 ,𝑡 ∈𝑉 ,𝑒∈𝑃

�̃�
(𝑠,𝑡) values, but instead use a vari-

ant of the data-structure described in Section 5 to construct a data-

structure that requires 𝑂 (𝑛2.5) space such that given 𝑆 ∈ S, 𝑣 ∈
𝐵𝑆 , 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃

�̃�
(𝑠, 𝑡) one can compute SSRP

𝑆
𝐺
(𝑣, 𝑡, 𝑒) in𝑂 (1) time

using this data structure.

As in Section 5, for every 𝑆 ∈ S2 the preprocessing algorithm

simply invokes the SSRP
𝑆
𝐺
(𝑣) algorithm for every 𝑣 ∈ 𝐵𝑆 using

the algorithm described by Grandoni and Vassilevska Williams in

Lemma 8 in [15] and stores the𝑂 (𝑛2) computed distances for every

invocation of the SSRP
𝑆
𝐺
(𝑣) algorithm, this requires 𝑂 (|𝐵𝑆 | · 𝑛2) =

𝑂 (𝑛2.5) space, where the last equality holds since |𝐵𝑆 | = 𝑂 (𝑛/𝑆) =
𝑂 (

√
𝑛) (as 𝑆 ∈ S2).

For every 𝑆 ∈ S1, the preprocessing algorithm computes the

STSP algorithm using the algorithm of Grandoni and Vassilevska

Williams (see Theorem 4 in [15]) with 𝑆 = 𝐵𝑆 and 𝑇 = 𝑉 in every

graph𝐺𝑖 ∈ {𝐺1, . . . ,𝐺𝑋𝑆
}, (where the graphs {𝐺1, . . . ,𝐺𝑋𝑆

} are de-
fined as in Section 5), i.e., computes and stores the distances𝑑𝐺𝑖

(𝑣, 𝑡)
for every (𝑣, 𝑡) ∈ 𝐵𝑆 × 𝑉 , 1 ≤ 𝑖 ≤ 𝑋𝑠 using 𝑂 (𝑋𝑆 · |𝐵𝑆 | · |𝑉 |) =

𝑂 (𝑆 · 𝑛/𝑆 · 𝑛) = 𝑂 (𝑛2) space. For every edge 𝑒 ∈ 𝐸 the algorithm

also computes and stores the set of indices 𝐹𝑆𝑒 ⊆ {1, . . . , 𝑋𝑆 } such

1387

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik and Sarel Cohen

that {𝐺𝑖 | 𝑖 ∈ 𝐹𝑆𝑒 } are all the graphs that do not contain 𝑒 using

𝑂 (𝑚) space (as |𝐹𝑆𝑒 | = 𝑂 (1)).
During query time, given 𝑆 ∈ S1, 𝑣 ∈ 𝐵𝑆 , 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡)

the algorithm computes SSRP
𝑆
𝐺
(𝑣, 𝑡, 𝑒) = min{𝑑𝐺𝑖

(𝑣, 𝑡) | 𝑖 ∈ 𝐹𝑆𝑒 }
in 𝑂 (1) time (here we used the fact that |𝐹𝑆𝑒 | = 𝑂 (1)). Given 𝑆 ∈
S2, 𝑣 ∈ 𝐵𝑆 , 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑃

�̃�
(𝑣, 𝑡) the algorithm simply restores the

precomputed distance SSRP
𝑆
𝐺
(𝑣, 𝑡, 𝑒).

We get that the total space used by the DSO is 𝑂 (𝑛2𝑅 + 𝑛2.5).
Since we have 𝑅 = 𝑂 (

√
𝑛) it follows that our DSO requires 𝑂 (𝑛2.5)

space.

REFERENCES
[1] [n.d.].

[2] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. 2012. Fully Dynamic Approxi-

mate Distance Oracles for Planar Graphs via Forbidden-set Distance Labels. In

Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing
(STOC). 1199–1218. https://doi.org/10.1145/2213977.2214084

[3] Ittai Abraham, Shiri Chechik, Cyril Gavoille, and David Peleg. 2010. Forbidden-set

distance labels for graphs of bounded doubling dimension. In PODC. 192–200.
[4] Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. 1992. Witnesses for Boolean

Matrix Multiplication and for Shortest Paths. In 33rd Annual Symposium on
Foundations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October
1992. 417–426. https://doi.org/10.1109/SFCS.1992.267748

[5] Surender Baswana, Utkarsh Lath, and Anuradha S. Mehta. 2012. Single Source

Distance Oracle for Planar Digraphs Avoiding a Failed Node or Link. In Proceed-
ings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 223–232. http://dl.acm.org/citation.cfm?id=2095116.2095136

[6] Michael A Bender and Martin Farach-Colton. 2000. The LCA problem revisited.

In Latin American Symposium on Theoretical Informatics. Springer, 88–94.
[7] Aaron Bernstein and David Karger. 2008. Improved Distance Sensitivity Oracles

via Random Sampling. In Proceedings of the Nineteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). 34–43. http://dl.acm.org/citation.cfm?

id=1347082.1347087

[8] Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. 2019. Exact

Distance Oracles for Planar Graphs with Failing Vertices. (2019). To appear.

[9] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. 2017. (1 + 𝜖)-

Approximate 𝑓 -sensitive Distance Oracles. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona, Spain) (SODA
’17). 1479–1496. http://dl.acm.org/citation.cfm?id=3039686.3039782

[10] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2012. f-

Sensitivity Distance Oracles and Routing Schemes. Algorithmica 63, 4 (2012),

861–882. https://doi.org/10.1007/s00453-011-9543-0

[11] Bruno Courcelle and Andrew Twigg. 2007. Compact Forbidden-Set Routing. In

STACS. 37–48. https://doi.org/10.1007/978-3-540-70918-3_4

[12] Bruno Courcelle and Andrew Twigg. 2010. Constrained-Path Labellings on

Graphs of Bounded Clique-Width. Theory Comput. Syst. 47, 2 (2010), 531–567.
http://springerlink.metapress.com/content/b3268gtk313180q0/

[13] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ra-

machandran. 2008. Oracles for Distances Avoiding a Failed Node or Link. SIAM J.
Comput. 37, 5 (Jan. 2008), 1299–1318. https://doi.org/10.1137/S0097539705429847

[14] Ran Duan and Seth Pettie. 2009. Dual-failure Distance and Connectivity Ora-

cles. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 506–515. http://dl.acm.org/citation.cfm?id=1496770.1496826

[15] Fabrizio Grandoni and Virginia Vassilevska Williams. 2012. Improved Distance

Sensitivity Oracles via Fast Single-Source Replacement Paths. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, USA, October 20-23, 2012. 748–757. https://doi.org/10.1109/FOCS.2012.17

[16] Donald B. Johnson. 1977. Efficient Algorithms for Shortest Paths in Sparse

Networks. J. ACM 24, 1 (Jan. 1977), 1–13. https://doi.org/10.1145/321992.321993

[17] Neelesh Khanna and Surender Baswana. 2010. Approximate Shortest Paths

Avoiding a Failed Vertex: Optimal Size Data Structures for Unweighted Graphs.

In 27th International Symposium on Theoretical Aspects of Computer Science, STACS.
513–524. https://doi.org/10.4230/LIPIcs.STACS.2010.2481

[18] François Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In

Proceedings of the 39th International Symposium on Symbolic and Algebraic Com-
putation (Kobe, Japan) (ISSAC ’14). ACM, New York, NY, USA, 296–303.

[19] Avi Shoshan and Uri Zwick. 1999. All Pairs Shortest Paths in Undirected Graphs

with Integer Weights. In In IEEE Symposium on Foundations of Computer Science.
605–614.

[20] Jan van den Brand and Thatchaphol Saranurak. 2019. Sensitive Distance and

Reachability Oracles for Large Batch Updates. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November
9-12, 2019. 424–435. https://doi.org/10.1109/FOCS.2019.00034

[21] Oren Weimann and Raphael Yuster. 2013. Replacement Paths and Distance

Sensitivity Oracles via Fast Matrix Multiplication. ACM Trans. Algorithms 9, 2
(2013), 14. https://doi.org/10.1145/2438645.2438646

[22] Virginia Vassilevska Williams. 2011. Faster Replacement Paths. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011. 1337–1346. https:

//doi.org/10.1137/1.9781611973082.102

[23] Virginia Vassilevska Williams. 2012. Multiplying Matrices Faster Than

Coppersmith-winograd. In Proceedings of the Forty-fourth Annual ACM Sym-
posium on Theory of Computing (New York, New York, USA) (STOC ’12). ACM,

New York, NY, USA, 887–898. https://doi.org/10.1145/2213977.2214056

[24] Uri Zwick. 2002. All Pairs Shortest Paths Using Bridging Sets and Rectangular

Matrix Multiplication. J. ACM 49, 3 (2002), 289–317.

1388

https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1109/SFCS.1992.267748
http://dl.acm.org/citation.cfm?id=2095116.2095136
http://dl.acm.org/citation.cfm?id=1347082.1347087
http://dl.acm.org/citation.cfm?id=1347082.1347087
http://dl.acm.org/citation.cfm?id=3039686.3039782
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1007/978-3-540-70918-3_4
http://springerlink.metapress.com/content/b3268gtk313180q0/
https://doi.org/10.1137/S0097539705429847
http://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1145/321992.321993
https://doi.org/10.4230/LIPIcs.STACS.2010.2481
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1137/1.9781611973082.102
https://doi.org/10.1137/1.9781611973082.102
https://doi.org/10.1145/2213977.2214056

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview
	3.1 Cases 0-4
	3.2 Handling Case 5 - an Overview
	3.3 The Indices i(v,t,e)
	3.4 Constructing the Tables { Tv,t(G) }v B, t V
	3.5 Computing the Distances { d'(v,t,PR(s,t)) }v B, s,t V
	3.6 The Algorithm for Handling Case 5

	4 Handling Negative Weights - an Overview
	5 Further Improving the Preprocessing Time
	6 Space Analysis
	References

