
The Node Weight Dependent Traveling Salesperson Problem:
Approximation Algorithms and Randomized Search Heuristics

Jakob Bossek

School of Computer Science

The University of Adelaide, Australia

Katrin Casel

Chair for Algorithm Engineering

Hasso Plattner Institute, Germany

Pascal Kerschke

Department of Information Systems

University of Münster, Germany

Frank Neumann

School of Computer Science

The University of Adelaide, Adelaide, Australia

ABSTRACT
Several important optimization problems in the area of vehicle

routing can be seen as variants of the classical Traveling Salesper-

son Problem (TSP). In the area of evolutionary computation, the

Traveling Thief Problem (TTP) has gained increasing interest over

the last 5 years. In this paper, we investigate the effect of weights

on such problems, in the sense that the cost of traveling increases

with respect to the weights of nodes already visited during a tour.

This provides abstractions of important TSP variants such as the

Traveling Thief Problem and time dependent TSP variants, and

allows to study precisely the increase in difficulty caused by weight

dependence. We provide a 3.59-approximation for this weight de-

pendent version of TSP with metric distances and bounded positive

weights. Furthermore, we conduct experimental investigations for

simple randomized local search with classical mutation operators

and two variants of the state-of-the-art evolutionary algorithm EAX

adapted to the weighted TSP. Our results show the impact of the

node weights on the position of the nodes in the resulting tour.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics;

KEYWORDS
Evolutionary algorithms, dynamic optimization, running time anal-

ysis, theory.

ACM Reference format:
Jakob Bossek, Katrin Casel, Pascal Kerschke, and Frank Neumann. 2020. The

Node Weight Dependent Traveling Salesperson Problem: Approximation

Algorithms and Randomized Search Heuristics. In Proceedings of Genetic
and Evolutionary Computation Conference, Cancun, Mexico, July 8–12, 2020
(GECCO ’20), 9 pages.
https://doi.org/10.1145/3377930.3390243

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’20, July 8–12, 2020, Cancun, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00

https://doi.org/10.1145/3377930.3390243

1 INTRODUCTION
Evolutionary algorithms have been used for many complex opti-

mization problems, but it is very hard to understand the complexity

of the considered problems as well as the performance of evolution-

ary algorithms dependent on important problem characteristics.

Complex optimization problems often involve several interacting

components that determine the value of a solution. Often these

problems are called multi-component problems [4] and the goal is

to compute an overall high quality solution which might be quite

different from good solutions of the underlying silo problems. The

Traveling Thief Problem (TTP) has been introduced in [3] as an

example problem which combines two of the most well studied

NP-hard problems in combinatorial optimization, namely the Trav-

eling Salesperson Problem (TSP) and the Knapsack Problem (KP).

The TTP searches for a TSP tour and a packing plan such that the

overall benefit of the tour is maximized. Here, the overall benefit

is given by the profit of the collected items minus the cost of the

tour which takes into account that costs are increasing with the

weight of the collected items. The problem has obtained significant

attention in the evolutionary computation literature in recent years.

Different types of evolutionary and other heuristic approaches have

been designed for the TTP [10, 11, 26–28] and various types of stud-

ies have been carried out to understand the interaction of the two

underlying subproblems [16, 24, 25]. Furthermore, the TTP has

been subject to various competitions over the last 5 years using a

benchmark set that combines popular classes of benchmarks for

the TSP and KP [21].

The goal of this paper is to study such interactions of having

increasing weights for the TSP from a theoretical perspective. In

the case of TTP, previous studies have focused on the theoretical

investigations of the underlying packing problem when the tour is

kept fixed. An exact approach based on dynamic programming and

a fully polynomial time approximation scheme have been presented

in [18]. These studies show that the underlying packing problem

(althoughNP-hard) is relatively easy to solve by these approaches.

Dealing with the traveling salesperson part of TTP seems to be the

harder problem. The traveling salesperson part of TTP involves

traveling costs that are increasing with the weight of the items

collected. Motivated by the TTP, we study a variant of the TSP,

which we call node weight dependent TSP (W-TSP), where there

are additional weights on the nodes and the cost of a tour increases

with the weight of already visited nodes. Its increased difficulty

in comparison to classical TSP shows that TTP is not just more

difficult than TSP because of the added knapsack problem. W-TSP

https://doi.org/10.1145/3377930.3390243
https://doi.org/10.1145/3377930.3390243

GECCO ’20, July 8–12, 2020, Cancun, Mexico Jakob Bossek, Katrin Casel, Pascal Kerschke, and Frank Neumann

highlights the challenges of solving TTP that do not originate from

packing decisions. Aside from these investigative purposes, W-TSP

is a natural model for many practical applications. For example, it

can be used to model the effect of a vehicle’s loaded weight on its

gas consumption, e.g., in case of flights, liner ship movements or

waste disposal.

The W-TSP is related to other variants of the TSP. Both defini-

tions of the time dependent TSP (TDTSP) also consider change of

costs with respect to the already traveled tour. In [20], the authors

consider traveling costs that depend on the position in the tour

(TDTSP1), a different version (TDTSP2) studied in [15] defines cost

with respect to the distance traveled. The very general form of

time dependence in both versions results in optimization problems

that are very hard to analyze, hence there are few known positive

results. Most studies on the TDTSP1 focus on exact algorithms

based on integer linear programming, e.g. [1]. For the restriction to

distances in {1, 2}, a (2 − 2/3n)-approximation for the TDTSP1 has

been presented in [6]. Furthermore, for TDTSP2 a genetic algorithm

approach has been studied in [23].

Our more restrictive set of weights for W-TSP turns out to be

much closer related to the so-called minimum latency problem

(MLP). This problem was introduced in [2] to model a cost function

for tours from a customer perspective. Formally, the objective is to

minimize the average distance from a given start city to all other

cities in a TSP tour. At first glance, latency may seem very different

from weight dependence, but we will see that these two additional

dependencies on the cost of a TSP tour have useful similarities.

We pay particular attention to the connection of the classical TSP

and the MLP to the W-TSP. Our goal is to examine what types of

successful algorithmic approaches for the TSP can be translated to

the W-TSP.

1.1 Our contribution
We study the W-TSP from a theoretical perspective and are par-

ticularly interested in how the problem changes dependent on the

weights that are part of the input. We start by introducing approxi-

mation algorithms that make use of known methods for the MLP.

Particularly, we investigate the restriction to metric distances and

show that if there is an α-approximation for MLP then there is

a 3α-approximation for W-TSP restricted to all weights equal to

1. By adapting the techniques used to approximate the MLP and

further structural properties, we derive a 3.59-approximation for

metric W-TSP with bounded integer weights. Afterwards, we in-

vestigate the quality of approximations for the {1,2}-TSP and show

how this translates into a 1.75-approximation for {1,2}-W-TSP when

all weights are 1.

Our theoretical investigations are complemented by experimen-

tal investigations that systematically investigate the performance

of randomized local search using different mutation operators. Fur-

thermore, we investigate the high performing evolutionary algo-

rithm EAX for the classical TSP and its adaptation to the W-TSP.

We study the effect of increasing weights for the W-TSP and point

out differences that occur in the tours for the TSP and the W-TSP

when using EAX on these two problems. For randomized local

search, we observe that the inversion operator is preferred over

jump operations although even symmetric TSP instances lead to

non symmetric instances for W-TSP. For EAX, the results for n = 50

cities show that the performance when using the best TSP tour

computed by EAX and the best tour for W-TSP might differ by a

factor of up to 2.75 in terms of quality forW-TSP. For the considered

instances having 1000 nodes, we regularly observe a difference by

a factor of 1.75.

The paper is structured as follows. In Section 2, we formally in-

troduce the weighted Traveling Salesperson Problem. In Section 3,

we provide theoretical approximation guarantees for the metric

case and provide improved results for the case where TSP costs

are 1 or 2 in Section 4. In Section 5, we study experimentally dif-

ferent mutation operators for randomized local search as well as

the difference of the quality of solutions for the classical TSP and

weighted TSP obtained by EAX. Finally, we conclude the paper and

point out several promising future research directions.

2 PROBLEM FORMULATION
We consider a version of the symmetric TSP where cities have

additional weights. The cost traveled along an edge depends on

the weight of the cities visited so far and the distance of the edge.

Let π = (π1, . . . πn) be a permutation of the n cities. We assume

that we always start at city 1 for the evaluation of a permutation,

i.e., we have π1 = 1. If this is not the case, we simply rotate the

permutation prior to the fitness evaluation such that city 1 is the

first city in the permutation.

For distance function d and weight functionw on a set of n cities,

we aim to find a permutation π that minimizes the weighted TSP

cost, denoted byW(π), formally given by the expression

W(π) = d(πn ,π1)
©«
n∑
j=1

w(πj)
ª®¬ +

n−1∑
i=1

d(πi ,πi+1)
©«

i∑
j=1

w(πj)
ª®¬ .

We call this optimization problem the node weight dependent

TSP (W-TSP). Note that the standard (unweighted) TSP is the special

case where w(π1) = 1 and w(πi) = 0, 2 ≤ i ≤ n. Generally, the
distance d(πi ,πi+1) is multiplied by the weight at city πi , which
we abbreviate with ω(i) =

∑i
j=1w(πj).

To analyze the properties of W-TSP, we consider the following

variants. With uniform weighted TSP (UWDTSP) we refer to the

restriction that each city (except for the fixed start city) has the

sameweight, formally,wi = a, 2 ≤ i ≤ n, for some fixed value a ≥ 0.

Also, 1-weighted TSP (1W-TSP) denotes the further restriction to

a = 1.

This formal definition of the W-TSP and its variations relates to

known variations of the TSP as follows. Time dependence as defined

in [20], considers a collection of distance values di, j, ℓ , 1 ≤ i, j ≤ n,
1 ≤ ℓ < n with the interpretation that the cost of traveling from

city i to city j in a tour where i is the ℓth city to be visited is di, j, ℓ .
UWDTSP with unit weight a > 0 can be modeled by such a time

dependent formulation by setting di, j, ℓ = d(i, j)(n − ℓ + 1)a. For
the general W-TSP however, the cost of a transition in the weight

dependent TSP does not only depend on its position in the tour,

but also on the cities that were previously visited (their respective

weights to be precise), hence a form of dependency that can not

purely be modeled in relation to the position in the tour.

Another definition of time dependence given in [15] defines for

the transition from i to j, a cost that varies with respect to the

The Node Weight Dependent Traveling Salesperson Problem GECCO ’20, July 8–12, 2020, Cancun, Mexico

time that has passed (i.e. the traveling cost) until the tour reaches

city i . This version of time dependence is similar to our weight

dependence in the sense that it also models distance variation with

respect to the partial tour traversed before reaching a city.With time

dependence however, distance and time dependence are inherently

entangled while weight dependence retains a stronger separation

between distance and weight-effects.

1W-TSP has an interesting relationship with the minimum la-

tency problem (MLP) introduced in [2]. We give a formal definition

for the MLP and discuss the relevant known results in more detail

in the next section.

3 APPROXIMATION ALGORITHMS
In this section we considerW-TSP restricted to distances that satisfy

the triangle inequality. We call this variant metric W-TSP. Without

this restriction, the W-TSP, like most variants of the TSP, can not be

approximated within any constant factor; this immediately follows

from the standard reduction from the NP-hard Hamiltonian cycle

problem.

Aside from these complexity theoretic reasons, restriction to

metric distances is a standard assumption for the TSP. Sometimes,

triangle inequality is also indirectly implied by the objective of find-

ing a shortest tour that visits each city at least once, first introduced

by [9] as graphical TSP.

3.1 Connections to the Minimum Latency
Problem

We explore the connection between the 1W-TSP and the MLP. For-

mally, the Minimum Latency Problem (also called delivery-man,
school-bus driver, or traveling repairman problem) models the task

to find, for a given set of cities with distance function d and a fixed

start city p, a path starting at p which visits all cities and minimizes

the sum of waiting times. Formally, with a solution again modeled

as a permutation π = (π1, . . . ,πn) with p = π1, MLP minimizes

L(π) =
n∑
i=2
ℓ(πi) =

n∑
i=2

i−1∑
j=1

d(πj ,πj+1)

The shorthand ℓ(i) describes the latency of city πi as it models

the distance passed until city πi is reached. Although the MLP asks

for a path and not a round-trip, it is possible to relate it to 1W-TSP

in case of metric distances.

For 1W-TSP, the cost of a permutation π = (π1, . . . ,πn) can
be rewritten to W(π) = nd(πn ,π1) +

∑n−1
i=1 id(πi ,πi+1). Rewriting

the summation to compute the latency of a permutation yields the

following connection to 1W-TSP:

L(π) =
n−1∑
i=1

(n − i)d(πi ,πi+1) =
n−1∑
j=1

jd(πn−j ,πn−j+1)

=W(πn ,πn−1, . . . ,π1) − nd(π1,πn)

Reversing the order of a permutation reveals a strong connection

between latency and W-TSP. As already observed by [2], combined

with a shift to start both tours at the fixed start city π1, it follows
that the cost of a node weighted TSP tour can be interpreted as the

sum of a reversed latency tour and a classic TSP tour, formally:

L(π) =W(π1,πn , . . . ,π2) −
n−1∑
i=1

d(πi ,πi+1) − d(π1,πn)

Since all distances are non-negative, this relation shows that the

optimum value for MLP gives a lower bound for the optimum for

1W-TSP. Triangle inequality implies d(π1,πn) ≤
∑n−1
i=1 d(πi ,πi+1),

which together with the rough bound L(π) ≥
∑n−1
i=1 d(πi ,πi+1)

yields:

W(π1,πn , . . . ,π2) ≤ L(π) + 2
n−1∑
i=1

d(πi ,πi+1) ≤ 3L(π)

In the worst case, this relation is tight as seen by the example below,

where L(1, 2, 3) = x + 2ε and W(1, 3, 2) = x + 2x + 2ε which

for large x and small ε yields the worst-case factor of 3 between
1W-TSP and MLP (observe that the respective permutations are

optimum solutions).

1 2 3

ε x

x

In general this connection only yields that any α-approximation for

metric MLP can be used to approximate metric 1W-TSPwith ratio

3α . A direct application of the techniques used for MLP allows to

derive better approximation results for 1W-TSP.

Over the past 25 years, approximation algorithms for MLP have

been gradually improved from the initial 144-approximation in [2]

to the currently best 3.59-approximation in [7]. All such approx-

imations have the same underlying idea of appending a certain

set of tours starting and ending at the fixed start city. These tours

are approximate solutions to k-MST, the problem of finding a mini-

mum cost tree spanning k vertices which is an obvious lower bound

on the latency of the k-th vertex in an optimal MLP tour. These

constructions hence always calculate with the cost of a tour that

returns to the start, so they can also be interpreted as a solution

to 1W-TSP. The basic idea of our following approximation is to

alter the procedure that picks the approximate solutions to the

k-MST problem according to the objective of 1W-TSP. The formal

description with technical details of this idea are given in the proof

below.

Theorem 3.1. Metric 1-weighted TSP can be approximated within
a ratio of at most 3.59 in polynomial time.

Proof. We adapt the strategy in [7] as follows. Consider a given

metric instance of 1W-TSP with distance d on n cities. First assume

that we have tours Tk that are a 2-approximation to the k-MST

problem, for each 1 ≤ k ≤ n; which we will also refer to as good
k-tours. As a first difference to the approximation for latency, in

this set of good k-tours, we construct as n-tour a 1.5-approximate

solution to TSP, calculated from the algorithm of [8], to have a

certain approximation ratio for the last tour.

As already mentioned, the final solution is constructed by ap-

pending a subset of the good k-tours. To find a good sequence to

build this final solution, we also create an auxiliary graph H that

contains a node for each good tourTk and weights on directed arcs

that reflect the cost produced by appending these tours in a solution,

GECCO ’20, July 8–12, 2020, Cancun, Mexico Jakob Bossek, Katrin Casel, Pascal Kerschke, and Frank Neumann

and search for a shortest path fromT1 toTn . To now reflect the cost

of the 1W-TSP instead of the MLP, we change the cost of a path

from the node corresponding to Ti to the node corresponding to Tj

for any 1 ≤ i < j ≤ n in the weighted graph H to (n − i+j
2
+ 1)c(Tj),

where c(Tj) denotes the cost of the tour Tj . This additional cost of
c(Tj) compared to the construction used for the latency problem

gives exactly the cost of latency plus TSP tour, hence the cost for

the 1W-TSP.

Consider, like in the original approach, appending the following

set of subtours. For some c > 1 letTni be the good tour of length at

most 2bci that contains the largest number of vertices, with b set

to be cU , for a random variable U uniformly distributed between

0 and 1. Append these tours Tni for i = 1, 2, . . . in this order for

all values of i for which 2bci is strictly smaller than c(Tn), then
appendTn as the last tour. Skipping multiple occurrences of cities in

this tour then yields a valid solution to 1W-TSP. With c = 3.59, the

bounds on the latency of each city in the resulting tour remains 3.59

with exactly the calculations as presented in [7]. For the additional

TSP-cost, we claim that the constructed tour is at most 3.07 times

as long as an optimal TSP tour. Let j and d be such that d ≤ 1 and

that the cost of an optimal TSP tour is dc j . Regardless of the value
of b, the last tour appended by the algorithm is the n-path created

by Christofides’ algorithm, so it has a cost of at most 1.5dc j . Similar

to the computations for the latencies, the other appended tours

depend on the relation between d and b.
If d < b, the algorithm appends (aside from the n-tour), j − 1

tours, up to cost 2bc j−1, with combined cost of at most

2

j−1∑
ℓ=1

bcℓ <
2bc j

c − 1

.

If d > b, the algorithm appends j tours, up to cost 2bc j , with
combined cost

2

j∑
ℓ=1

bcℓ <
2bc j+1

c − 1

.

With expectation over U , the expected length of the tour up to Tn
is at most:∫

1

logc d

2cU c j

c − 1

dU +

∫
logc d

0

2cU c j+1

c − 1

dU =
2dc j

ln c

Overall, the expected ratio between the constructed tour and an

optimal TSP tour is at most 1.5 + 2

ln c < 3.07.

At last, the primal-dual procedure described in [7] only gives a

set of good k-tours for a subset of {1, . . . ,n}, not for the whole set
as we assumed in the beginning. Exactly as shown for the latency

problem, the tours for the missing values of k can be replaced by

phantom tours which then are replaced by existing ones since our

distance function shows the same behaviour as the original one

with respect to the interpolation used for the phantom tours. □

3.2 Bounded Integer Weights
So far, we only derived approximation results for the W-TSP for the

restriction to all weights equal to 1 with the help of the MLP. While

there exist generalizations of MLP, there are no known approxima-

tion results which translate to W-TSP. In [12], a variation of the

MLP with a service time at each city which adds to the latency of

the following city has been investigated. Considering the reverse

tour, this is very different from W-TSP. Weights other than 1 in a

reverse tour could however be interpreted as the importance of a

city, given as multiplicative factor on the penalty of its waiting cost.

To the best of our knowledge, this generalization of the MLP has

not been studied.

In order to generalize the approximation for 1W-TSP to different

weights, we exploit structural properties of optimal solutions. This

approach yields the following result.

Lemma 3.2. For any α > 1, an α-approximation for metric 1-
weighted TSP can be used to derive an α-approximation for metric
weighted TSP with polynomially bounded, non-zero, integer weights.

Proof. Consider an instance of W-TSP given by distances d and

polynomially bounded non-negative integer weightsw on n cities.

Create an instance of 1W-TSP by includingw(i) copies of city i , for
each city i ∈ {1, . . . ,n}. Denote for the new instance formally the

set of cities by {{i1, . . . , iw (i)} : 1 ≤ i ≤ n}. We further define the

distances
ˆd for the transformed instances by

ˆd(ir , js) =

{
0, if i = j

d(i, j), else

Observe that this definition yields a metric distance. Further, since

the weights are polynomially bounded, this construction is poly-

nomial. Denote by r the number of cities in this new instance, and

assign the weight 1 to each of these cities.

Observe that any permutation (π1, . . . ,πn) for the original in-
stance can be translated to a permutation of the same weighted cost

for the new instance by replacing πj with πj = i by the sequence

i1, . . . , iw (i). In particular, the optimum value for the new instance

is smaller or equal to the optimum value of the original one.

Conversely, we can use a permutation of the new instance to

create a permutation of the same or even smaller cost for the original

instance as follows. Let (π1, . . . ,πr) a permutation for the new

instance. We claim that this permutation can be altered such that all

copies of an original city occur consecutively together which allows

to extract a permutation to the original instance by replacing the

grouped copies by the single original city. Assume that for some 1 <

i ≤ n, the cities i1, . . . , iw (i) do not occur (in some arbitrary order)

as one consecutive block in the sequence (π1, . . . ,πr). Let 1 ≤ x ≤

w(i) be such that ix occurs last, among all cities in {i1, . . . , iw (i)},

in the sequence (π1, . . . ,πr). Consider altering the sequence, by

moving all cities in {i1, . . . , iw (i)} \ {ix } to be visited right after

ix . All edges after ix have the exact same cost, since neither the

weight nor the cities have changed. All edges among the cities in

{i1, . . . , iw (i)} are zero, so they add no cost at all. All edges before

the block {i1, . . . , iw (i)} now are attached with equal or less weight

than before, since the weight of the shifted cities is postponed.

Further, triangle inequality implies that jumping over the gaps

previously filled with cities in {i1, . . . , iw (i)} does not increase the

tour cost. Repeating this procedure yields a permutation that can

be translated to the original instance and has the same or smaller

cost.

Overall, it follows that an α-approximate solution for metric W-

TSP with bounded non-negative integer weights can be computed

by creating a new instance of metric 1W-TSP, running the assumed

The Node Weight Dependent Traveling Salesperson Problem GECCO ’20, July 8–12, 2020, Cancun, Mexico

α-approximation on it, and then translating the resulting permu-

tation to the original instance (this can be done in linear time by

scanning the permutation in reverse and skipping duplicates). □

Combined with Theorem 3.1, this result gives the following.

Theorem 3.3. Metric weighted TSP with polynomially bounded,
non-zero, integer weights can be approximated within a ratio of at
most 3.59 in polynomial time.

4 1-WEIGHTED TSP{1,2}
We now consider the further restriction to distance values 1 and

2. For the classical TSP, this is one of the most studied restrictions,

usually called {1,2}-TSP, as this problem can be seen as a gener-

alization of the Hamiltonian cycle problem and is therefore still

NP-hard. Different approximation algorithms have been devel-

oped for the {1,2}-TSP and we investigate how to make use of those

when investigating 1W-TSP with distances 1 and 2. We refer to this

restriction by 1-weighted TSP{1,2}, 1W-TSP{1,2} for short.

A (2 − 2/3n)-approximation algorithm for a restriction to dis-

tances 1 and 2 on the related time dependent TSP has been presented

in [6]. Although 1W-TSP is a special case of TDTSP1, this result can

not be used to derive an equivalent approximation for 1W-TSP{1,2},

since edge-cost restriction for our problem does not translate to

edge-cost restriction to 1 and 2 in the representation as TDTSP1; ob-

serve that the costs of 1 and 2 have to be multiplied by the weights,

which, even with the restriction to all weights being 1, gives a range

of time dependent distances between 1 and 2n.
We first consider the case where the input allows for a TSP tour

of cost n. First observe that for this case, an optimal tour for 1W-

TSP has cost

∑n
i=1 = n(n + 1)/2. Let k be the number of 2-edges

introduced into the tour by an approximate solution. The tour has

the highest possible costs if these edges are at the end of the tour.

Compared to the optimal tour the cost increase by

n + (n − 1)+ . . . + (n − (k − 1)) = kn −k(k − 1)/2 = k(n − (k − 1)/2)

Let π be an α = (1+c)-approximation, c ≥ 0 for the {1,2}-TSP. Let

k ≤ cn be the number of 2-edges in π . The resulting approximation

ratio for 1W-TSP{1,2} is at most 1 + k(n − (k − 1)/2)/(n(n + 1)/2) ≤
1+ (2kn−(k2−k)/2)/(n2). Setting k = cn, we get 1+ (2cn2−(c2n2−
cn)/2)/(n2) = 1 + (2c − c2/2) + o(1).

Assume that we use the 7/6-approximation for {1,2}-TSP given in

[19], then we have c = 1/6 and therefore a 1+ (2/6− 1/72)+o(1) =
95/72 + o(1) approximation for the weight dependent TSP.

We can improve our results by considering the π also in reverse

order. Formally, for π = (π1, . . . ,πn) we also consider the tour

π ′ = (π1,πn , . . . ,π2). One of these two tours has at least k/2 edges
of cost 2 at positions 1, . . . ,n/2 which gives, for the better of these

tours, an addition to the optimum of at most

kn/2 + kn/4 − 2

k/2−1∑
i=1

i = kn/2 + kn/4 − k2/4 + k/2

With k = cn the approximation ratio is hence bounded by

1 + (cn2/2 + cn2/4 − (cn)2/4 + cn/2)/(n2/2)

= 1 + 1.5c − c2/2 + o(1)

For c = 1/6, this gives a ratio of 89/72 + o(1).

We now extend these observations to the general case where

the optimal solution can include edges of cost 2. Let π∗
be an

optimal solution for the classical {1,2}-TSP of cost OPT = n + u.
π∗

has exactly u edges of cost 2. An α = (1 + c)-approximation

algorithm for the {1,2}-TSP produces a tour π of TSP-cost at most

(1+c)(n+u) = n+cn+ (1+c)u which has at most k = cn+ (1+c)u
edges of cost 2. Note k ≤ n.

A lower bound on the value of an optimal solution for the 1W-

TSP{1,2} is obtained by assuming that the u edges of the optimal

TSP tour appear at the beginning of the weighted TSP tour. Hence,

we can bound the value of an optimal solution of 1W-TSP{1,2} by

n∑
i=1

i +
u∑
i=1

i = n(n + 1)/2 + u(u + 1)/2

We now estimate the weighted tour value of the approximate tour

π and its reversal π ′
more precisely. Recall that both tours contain

at most k = cn + (1 + c)u ≤ n edges of cost 2. Each edge of cost 2

that adds an addition of cost n ≤ r ≤ 1 to π (addition compared

to n(n + 1)/2), adds a cost of n − r + 1 to π ′
. Summing up, if all

costs of edges of length 2 in π cause an addition of R, then these

edges produce an additional cost of k(n + 1) −R for π ′
. In the worst

case, R is equal to k(n + 1)/2, which results in a worst-case cost of

(n(n + 1) + k(n + 1))/2 for the better of the two options.

Compared to the above bound on the optimal solution, this re-

sults in an approximation ratio of at most:

n(n + 1) + k(n + 1)

n(n + 1) + u(u + 1)

=
n(n + 1) + cn2 + cn + (1 + c)u + (1 + c)un

n(n + 1) + u(u + 1)

≤ 1 + c + (1 + c)/2 ≤ 1.5α

where the last step uses that
un

(n(n+1)+u(u+1)) is monotonically

increasing in u and attains its maximum for u = n. We summarize

these results in the following theorem.

Theorem 4.1. Using an α -approximation for {1,2}-TSP to compute
a TSP tour π , π or its reverse tour π ′ is a 1.5α -approximation for the
1-weighted TSP{1,2}.

Using the (7/6)-approximation for the {1,2}-TSP, we get a 1.75-

approximation for the 1W-TSP{1,2}.

5 RANDOMIZED SEARCH HEURISTICS
In this section, we consider randomized search heuristics forW-TSP.

We start by investigating variants of randomized local search and

examine the use of popular mutation operators traditionally used

for the classical TSP. Afterwards, we examine EAX as a state-of-

the-art solver for the TSP and its adaptation to weighted TSP.

5.1 Problem instances
We consider a rich set of artificially generated metric TSP instances

with different integer node weights. The instance generation ap-

proach is performed in two steps. First, n ∈ {25, 50, 100, 500, 1 000}

nodes are placed in the Euclidean plane (bounded to [0, 1 000]2)

utilizing different node placement generators. In this study we

consider Random Uniform Euclidean (rue) placement, i.e., node

GECCO ’20, July 8–12, 2020, Cancun, Mexico Jakob Bossek, Katrin Casel, Pascal Kerschke, and Frank Neumann

c2 / netgen / d = 8.00 c2 / rue / d = 7.00 c2 / tspgen / d = 10.00 c4 / netgen / d = 5.00 c4 / rue / d = 9.00 c4 / tspgen / d = 3.00

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Node weight 0 1 2 3 4 5 6 7 8 9 10

Figure 1: Examples of generated problem instances. Point size and color change with increasing node weight.

Algorithm 1: Randomized Local Search (RLS)

1 Choose a permutation π of the given n cities uniformly at

random.

2 Produce π ′
from π by mutation.

3 IfW(π ′) ≤ W(π), set π := π ′
.

4 If not termination condition, go to 2).

coordinates are sampled uniformly at random within the bound-

ing box. Moreover, we consider so-called netgen placement with

two distinct clusters of points sampled from a bivariate Gaussian

distribution around the cluster centers. Further, we consider tsp-
gen placement. Here, points are initially placed according to rue

placement and subsequently altered in an iterative manner by a

sequence of mutation operations [5]. The second step deals with the

assignment of node weights. Here we consider three different con-

figurations as described in the following. Note thatw1 = 1 across

all cases for the fixed start node p = 1, whereas three different

configurations are considered forwi (with 2 ≤ i ≤ n):

• C1:wi = d with d ∈ {0.0, 0.1, . . . , 1.0},

• C2:wi ∈ {1, . . . ,d} with d ∈ {2, . . . , 10} and

• C3:wi ∈ {0, . . . ,d} with d ∈ {1, 2, . . . , 10}.

To account for randomness in node placement and weight as-

signment we generate ten instances for each combination, which

add up to 45 000 instances
1
(see Fig. 1 for examples).

5.2 Performance of the RLS variants
We first consider randomized local search (RLS) shown in Algo-

rithm 1. It starts with a permutation π of the given n cities chosen

uniformly at random. In each iteration a new permutation π ′
is

produced from the current permutation π by a simple mutation.

The new permutation π ′
replaces π if its weighted tour length is

not larger than the one of π . We investigate popular mutation op-

erators for permutation problems in this context, namely inversion,

exchange, and jump operations [22]. Inversion operators usually

achieve a high performance for the classical symmetric TSP as it

only results in the update of the cost of two edges in the cost func-

tion. For weighted TSP the situation is different as weighted tours

are not symmetric and the question arises whether inversion is still

1
The total number of instances results from 30 different configurations (see details

of C1 to C3), five instance sizes (n), ten replications due to node placement and ten

replications for the weight-to-node assignments.

a good operator when considering weighted TSP. We run RLS with

the three aforementioned mutation operators. Per instance, 30 inde-

pendent runs are performed with a stopping condition of 1 000 · n
function evaluations. The performance is measured as follows: let

π be the final solution of algorithm A on instance I and let π∗
be

the best, i.e., shortest, tour found in all runs of all algorithms on I .
We measure the performance as the relative deviation from π∗

, i.e.,

perf(π) =

(
W(π)

W(π∗)
− 1

)
· 100 ≥ 0. (1)

Note that this value is 0 if W(π) =W(π∗). This measure allows

to aggregate over instance sizes.

The results of our experiments comparing the three operators on

the three instance classesC1,C2, andC3 are shown in Table 1. Here

we report the mean, standard deviation, the median and results of

pairwise Wilcoxon-Mann-Whitney tests with Bonferroni p-value
adjustment of the performance values defined in Eq. 1 split by

class and d-value. It can be observed that the RLS variant using

the inversion operation outperforms the other two variants for

almost all settings. Comparing RLS using exchange operations with

RLS using jump operations, we can see that jump operations are

preferable over exchanges for the class C1 whereas exchanges are

preferable over jumps for the classes C2 and C3.

5.3 Performance of EAX
Next we investigate the adaptation of the evolutionary TSP solver

EAX [17]. EAX is an evolutionary algorithm which uses a powerful

edge assembly crossover operator to produce high-quality offspring

individuals and a sophisticated population diversity mechanism.

This algorithm has shown state-of-the-art performance in inex-

act TSP-solving in various studies [13, 14, 17]. We modified the

algorithm to enable handling of node weights and consider two

different fitness functions that guide the evolutionary search pro-

cess: the classical TSP fitness function (ignoring node weights) and

a fitness function based on the weighted TSP costs W(π). In the

following we use the abbreviations EAX and W-EAX for brevity.

Our main interest is the difference of tour lengths obtained by runs

of EAX and W-EAX, respectively, depending on the structure of

the weighted TSP instances under consideration.

We then performed ten independent runs on each instance with

both fitness functions resulting in a total of 900 000 experiments

which were strongly parallelized on a high performance computing

cluster. EAX was run with a time-limit of five seconds for instances

The Node Weight Dependent Traveling Salesperson Problem GECCO ’20, July 8–12, 2020, Cancun, Mexico

Table 1: Tabular values of mean (best values hightlighted in boldface), standard deviation (std),median and results of pairwise
statistical tests (stat). Results are split by instance classes C1, C2, C3 and the value of d . The notation in the stat columns
reads as follows: X+ indicates that the algorithm is significantly better with respect to the Wilcoxon Mann-Whitney test at a
significance level of α = 0.05 than algorithm X .

RLS[Exchange] (1) RLS[Inversion] (2) RLS[Jump] (3)

Class d mean std median stat mean std median stat mean std median stat

0.0 104.06 76.33 67.01 4.35 3.46 3.45 1
+
, 3
+

42.93 18.75 43.64 1
+

0.1 65.07 33.61 56.57 16.80 11.96 14.87 1
+
, 3
+

45.46 25.87 41.13 1
+

0.2 64.11 33.34 55.08 17.98 12.70 16.07 1
+
, 3
+

49.37 28.32 45.35 1
+

0.3 64.02 33.42 55.59 18.71 13.09 16.82 1
+
, 3
+

51.05 29.59 47.26 1
+

0.4 64.14 33.59 56.07 18.96 13.29 16.93 1
+
, 3
+

52.20 29.96 48.74 1
+

0.5 63.63 33.31 54.75 19.28 13.64 17.30 1
+
, 3
+

52.53 30.19 49.61 1
+

0.6 63.35 33.37 54.87 19.23 13.58 17.27 1
+
, 3
+

53.06 30.34 49.91 1
+

0.7 63.51 33.42 54.84 19.36 13.65 17.24 1
+
, 3
+

53.49 30.67 50.86 1
+

0.8 63.57 33.76 54.33 19.69 13.78 17.75 1
+
, 3
+

53.59 30.69 50.69 1
+

0.9 63.56 33.51 54.66 19.60 13.81 17.47 1
+
, 3
+

53.96 30.88 51.21 1
+

C1

1.0 63.80 33.49 55.59 19.87 13.91 17.89 1
+
, 3
+

54.12 31.01 51.69 1
+

2.0 61.57 31.99 54.80 21.90 15.07 19.86 1
+
, 3
+

62.10 36.99 57.16

3.0 59.51 29.71 53.82 3
+ 23.24 15.91 21.60 1

+
, 3
+

64.72 37.78 60.14

4.0 58.32 29.56 52.09 3
+ 23.88 16.18 22.25 1

+
, 3
+

66.73 38.96 62.06

5.0 57.19 28.54 52.56 3
+ 24.41 16.63 22.86 1

+
, 3
+

67.13 38.33 62.97

6.0 56.65 28.39 51.93 3
+ 24.73 16.69 23.52 1

+
, 3
+

67.95 39.00 63.89

7.0 55.71 28.24 51.30 3
+ 25.08 16.92 23.86 1

+
, 3
+

67.52 39.08 63.26

8.0 55.26 27.69 50.93 3
+ 25.09 16.86 23.89 1

+
, 3
+

68.20 38.69 64.59

9.0 55.07 27.59 50.13 3
+ 25.56 17.07 24.41 1

+
, 3
+

68.21 38.87 63.55

C2

10.0 54.56 27.10 50.02 3
+ 25.18 17.16 23.90 1

+
, 3
+

68.40 38.82 64.13

1.0 39.04 19.34 39.78 2
+
, 3
+

41.42 26.42 43.21 3
+

62.55 32.41 62.50

2.0 44.24 21.58 43.80 3
+ 34.33 21.70 35.35 1

+
, 3
+

65.49 34.24 64.71

3.0 46.26 22.64 45.26 3
+ 32.80 21.06 33.07 1

+
, 3
+

67.80 34.84 66.98

4.0 47.58 23.46 46.25 3
+ 31.08 19.97 31.53 1

+
, 3
+

68.87 36.08 67.77

5.0 48.32 23.69 46.79 3
+ 30.02 19.39 30.05 1

+
, 3
+

69.28 36.56 67.93

6.0 48.55 24.43 46.12 3
+ 28.90 19.06 28.40 1

+
, 3
+

69.27 37.44 67.23

7.0 49.51 24.38 47.72 3
+ 28.70 18.80 28.42 1

+
, 3
+

69.94 37.59 68.83

8.0 49.93 24.34 48.29 3
+ 29.07 19.02 28.85 1

+
, 3
+

70.23 37.19 68.23

9.0 50.45 24.28 48.58 3
+ 28.96 19.30 28.42 1

+
, 3
+

70.60 37.48 68.79

C3

10.0 50.09 24.68 48.16 3
+ 28.50 18.73 28.17 1

+
, 3
+

70.22 37.74 68.05

with up to 100 nodes and three minutes for larger instances to

keep the computational costs reasonable. These values may seem

small at first glance, however, studies in [13] revealed that EAX is

able to solve even large TSP instances – with thousands of nodes

– to optimality within few seconds. Note that after completion of

each run – regardless of the fitness function used internally as a

driver – the final tour was evaluated by means of the weighted

TSP fitness function. For evaluation we calculate the weighted

tour length ratios, i.e., the weighted tour length obtained by EAX

divided by the respective weighted tour length obtained by W-EAX

for each instance and run. Note that values greater than 1 indicate

an advantage of W-EAX over EAX. Fig. 2 shows the distributions of

weighted tour length ratios separated by instance size, configuration

and maximum weight d .
As expected we observed all ratios being greater than 1 with

median values at about 1.15 across all combinations. Frequently,

large outliers reached ratios up to 1.75 for instances with at least 100

nodes and even > 2.5 for smallern. However, in general, no patterns
can be identified with respect to configuration or maximal node

weight. The sole exception is configuration C1 and n ∈ {25, 50}

where we observe a slightly increasing trend in median ratios with

increasing d ∈ {0.0, 0.1, . . . , 1.0} (see top-left boxplots in Fig. 2).

This trend vanishes for n ≥ 100 as a high number of nodes already

imposes a large cumulative weight when considering only a part

of any tour. In contrast, comparing node placement, we observe

strong differences. While the ratios are lowest when the nodes are

placed uniformly at random (rue), with values below 1.15 for large

instances with at least 500 nodes, ratios become increasingly larger

with increasing instance structure. For n = 1 000 nodes, ratios on

tspgen instances go up to about 1.5 while on netgen instances –

with strongly segregated clusters – ratios reach values up to 1.8

with a median of about 1.2. Hence, more than 50% of the ratios are

higher than the maximal ratio in case of rue placement.

Fig. 3 shows exemplary tours obtained by EAX,W-EAX and – for

comparison – RLS with inversion mutation. The tours are shown for

four instances of class C2 (top row) and class C3 (bottom row). We

can make the following observation: since the variation operator of

EAX was not modified, the resulting tours of both EAX andW-EAX

are free of crossings. However, for the weighted TSP, optimal tours

do not necessarily need to avoid crossings. As for instance shown in

the fifth column of Fig. 3 (top row), RLS often finds solutions with

many crossings, resulting in much shorter tours than produced by

both EAX variants.

Additionally, for the weighted TSP – in particular in the presence

of segregated cluster structures – it is often beneficial that long

edges are included early in the permutation, as a later considera-

tion would be associated with (the burden of) a huge amount of

accumulated node weights. Once again, this is observable in the

fifth column of Fig. 3: RLS places long edges early in the tour to

quickly reach the top left cluster (top row) or the isolated node

(bottom row), and then leave it just as quickly again. In case of

netgen instances an even stronger effect of long inter-cluster edges

GECCO ’20, July 8–12, 2020, Cancun, Mexico Jakob Bossek, Katrin Casel, Pascal Kerschke, and Frank Neumann

config: c1

group: netgen

config: c1

group: rue

config: c1

group: tspgen

config: c2

group: netgen

config: c2

group: rue

config: c2

group: tspgen

config: c3

group: netgen

config: c3

group: rue

config: c3

group: tspgen

s
iz

e
: 5

0
s
iz

e
: 1

0
0

0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

1.0

1.5

2.0

2.5

1.0

1.2

1.4

1.6

1.8

Max. Weights

R
a

tio
 o

f
W

e
ig

h
te

d
 T

o
u

r
L

e
n

g
th

s
(c

la
s
s
ic

 E
A

X
 /
 w

e
ig

h
te

d
 E

A
X

)

Figure 2: Ratios between the best tour lengths found by classical TSP and weighted TSP function. Each instance was optimized
with EAX – which internally used the weighted or classical TSP fitness function, respectively – and all resulting tours have
been assessed using the weighted fitness. We show results for n ∈ {50, 1000} due to space limitations, but patterns for omitted
data are similar.

1

1

1

1

1

1

1

1

1

1

1

1

c3 / rue / n=25

EAX (201682.59)

c3 / rue / n=25

RLS (185027.00)

c3 / rue / n=25

W−EAX (195494.98)

c3 / tspgen / n=25

EAX (189716.38)

c3 / tspgen / n=25

RLS (103000.04)

c3 / tspgen / n=25

W−EAX (123343.43)

c2 / rue / n=50

EAX (707547.11)

c2 / rue / n=50

RLS (660784.25)

c2 / rue / n=50

W−EAX (616909.35)

c2 / tspgen / n=50

EAX (677169.26)

c2 / tspgen / n=50

RLS (451667.98)

c2 / tspgen / n=50

W−EAX (522113.06)

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

0

250

500

750

1000

Node weight 0 1 2 3 4 5 6 7 8 9 10

Figure 3: This plot shows weighted TSP tours determined by EAX, W-EAX and RLS[Inversion], respectively, for four selected,
yet representative problem instances. The start node π1 = 1 is highlighted and the direction of the tour is indicated by arrows.

can be expected. Here, W-EAX manages – due to the weighted TSP

fitness function – to cumulate less weight in the respective clusters

before they are left in order to reach another cluster. This explains

why ratios increase with increasing cluster segregation.

6 CONCLUSIONS
Motivated by different complex variants of the traveling salesper-

son problem, we have introduced the node weight dependent TSP

called W-TSP which captures aspects of important complex TSP

variants such as the time dependent TSP or the traveling thief prob-

lem. We have pointed out the relation of W-TSP to the TSP and

how the weights on the nodes impact the structure of the prob-

lem. Our insights provided the tools for designing approximation

algorithms for the metric version of the problem. Furthermore,

we have shown that approximation algorithms for the {1, 2}-TSP

can be used as the basis for approximation algorithms for W-TSP

when also considering the reverse tour. Our experimental studies

show that, on almost all considered settings and a wide range of

instances, inversion mutation is superior to exchange and jump

operators when adopted by randomized local search. Furthermore,

experimental investigations on the state-of-the-art TSP solver EAX

show that the weights lead to significantly different results when

comparing W-TSP to the classical TSP. For future work, it would

be interesting to study other state-of-the-art heuristics for the TSP

and how to adapt them to W-TSP. In order to systematically judge

the performance of such approaches, it would be highly beneficial

to have efficient exact solvers for W-TSP.

ACKNOWLEDGEMENTS
Frank Neumann has been support through a Humboldt Fellowship

for Experienced Researchers by Alexander von Humboldt Founda-

tion. Katrin Casel was funded by the Federal Ministry of Education

and Research of Germany in the framework of KI-LAB-ITSE (project

number 01IS19066).

The Node Weight Dependent Traveling Salesperson Problem GECCO ’20, July 8–12, 2020, Cancun, Mexico

REFERENCES
[1] Louis-Philippe Bigras, Michel Gamache, and Gilles Savard. 2008. The Time-

Dependent Traveling Salesman Problem and SingleMachine Scheduling Problems

with Sequence Dependent Setup Times. Discrete Optimization 5, 4 (2008), 685 –

699.

[2] Avrim Blum, Prasad Chalasani, Don Coppersmith, William R. Pulleyblank, Prab-

hakar Raghavan, and Madhu Sudan. 1994. The Minimum Latency Problem. In

Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing.
ACM, 163 – 171.

[3] Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. 2013. The

Travelling Thief Problem: The First Step in the Transition from Theoretical

Problems to Realistic Problems. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC). IEEE, 1037 – 1044.

[4] Mohammad Reza Bonyadi, Zbigniew Michalewicz, Markus Wagner, and Frank

Neumann. 2019. Evolutionary Computation for Multicomponent Problems: Op-

portunities and Future Directions. In Optimization in Industry, Present Practices
and Future Scopes, Shubhabrata Datta and J. Paulo Davim (Eds.). Springer, 13 – 30.

https://doi.org/10.1007/978-3-030-01641-8_2

[5] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neu-

mann, and Heike Trautmann. 2019. Evolving Diverse TSP Instances by Means of

Novel and Creative Mutation Operators. In Proceedings Foundations of Genetic
Algorithms (FOGA). ACM Press, 58 – 71. https://doi.org/10.1145/3299904.3340307

[6] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. 2004. Online and Offline

Algorithms for the Time-Dependent TSP with Time Zones. Algorithmica 39, 4
(2004), 299 – 319.

[7] Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. 2003.

Paths, Trees, and Minimum Latency Tours. In Proceedings of the 44th Symposium
on Foundations of Computer Science (FOCS). IEEE Computer Society, 36 – 45.

[8] Nicos Christofides. 1976. Worst-Case Analysis of a New Heuristic for the Trav-
elling Salesman Problem. Technical Report 388. Graduate School of Industrial

Administration, Carnegie Mellon University.

[9] Gérard Cornuéjols, Jean Fonlupt, and Denis Naddef. 1985. The Traveling Sales-

man Problem on a Graph and Some Related Integerpolyhedra. Mathematical
Programming 33, 1 (1985), 1 – 27.

[10] Mohamed El Yafrani and Belaïd Ahiod. 2016. Population-based vs. Single-solution

Heuristics for the Travelling Thief Problem. In Genetic and Evolutionary Compu-
tation Conference (GECCO). ACM, 317 – 324.

[11] Hayden Faulkner, Sergey Polyakovskiy, Tom Schultz, and Markus Wagner. 2015.

Approximate Approaches to the Traveling Thief Problem. InConference on Genetic
and Evolutionary Computation (GECCO). ACM, 385 – 392.

[12] Raja Jothi and Balaji Raghavachari. 2007. Approximating the k-Traveling Re-

pairman Problem with Repairtimes. Journal of Discrete Algorithms 5, 2 (2007),
293 – 303.

[13] Pascal Kerschke, Lars Kotthoff, Jakob Bossek, Holger H Hoos, and Heike Traut-

mann. 2018. Leveraging TSP Solver Complementarity through Machine Learning.

Evolutionary Computation 26, 4 (2018), 597 – 620. https://doi.org/10.1162/evco_

a_00215

[14] Lars Kotthoff, Pascal Kerschke, Holger H. Hoos, and Heike Trautmann. 2015. Im-

proving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm

Selection. In Proceedings of the 9th International Conference on Learning and Intel-
ligent Optimization (LION) (Lecture Notes in Computer Science (LNCS)), Clarisse
Dhaenens, Laetitia Jourdan, and Marie-Eléonore Marmion (Eds.), Vol. 8994.

Springer, 202 – 217. https://doi.org/10.1007/978-3-319-19084-6_18

[15] Chryssi Malandraki and Mark S. Daskin. 1992. Time Dependent Vehicle Routing

Problems: Formulations, Properties and Heuristic Algorithms. Transportation
Science 26, 3 (1992), 185 – 200.

[16] Yi Mei, Xiaodong Li, and Xin Yao. 2016. On Investigation of Interdependence

Between Sub-Problems of the Travelling Thief Problem. Soft Computing 20, 1

(2016), 157 – 172.

[17] Yuichi Nagata and Shigenobu Kobayashi. 2013. A Powerful Genetic Algorithm

Using Edge Assembly Crossover for the Traveling Salesman Problem. INFORMS
Journal on Computing 25, 2 (2013), 346 – 363. https://doi.org/10.1287/ijoc.1120.

0506

[18] Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie, and Jun-

hua Wu. 2018. A Fully Polynomial Time Approximation Scheme for Packing

While Traveling. In 4th International Symposium on Algorithmic Aspects of Cloud
Computing (ALGOCLOUD), Revised Selected Papers (LNCS), Vol. 11409. Springer,
59 – 72. https://doi.org/10.1007/978-3-030-19759-9_5

[19] Christos H. Papadimitriou and Mihalis Yannakakis. 1993. The Traveling Salesman

Problem with Distances One and Two. Math. Oper. Res. 18, 1 (1993), 1–11. https:
//doi.org/10.1287/moor.18.1.1

[20] Jean-Claude Picard and Maurice Queyranne. 1978. The Time-Dependent Trav-

eling Salesman Problem and Its Application to the Tardiness Problem in One-

Machine Scheduling. Operations Research 26, 1 (1978), 86 – 110.

[21] Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew

Michalewicz, and Frank Neumann. 2014. A Comprehensive Benchmark Set

and Heuristics for the Traveling Thief Problem. In Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO). ACM, 477 – 484. https:

//doi.org/10.1145/2576768.2598249

[22] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. 2004. The analysis of

evolutionary algorithms on sorting and shortest paths problems. J. Math. Model.
Algorithms 3, 4 (2004), 349–366. https://doi.org/10.1007/s10852-005-2584-0

[23] Leonard J. Testa, Albert C. Esterline, Gerry V. Dozier, and Abdollah Homaifar.

2000. A Comparison of Operators for Solving Time dependent Traveling Salesman

ProblemsUsingGenetic Algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). 995–1102.

[24] Markus Wagner, Marius Lindauer, Mustafa Mısır, Samadhi Nallaperuma, and

Frank Hutter. 2017. A Case Study of Algorithm Selection for the Traveling

Thief Problem. Journal of Heuristics 24, 3 (07 Apr 2017), 295 – 320. https:

//doi.org/10.1007/s10732-017-9328-y

[25] Junhua Wu, Sergey Polyakovskiy, and Frank Neumann. 2016. On the Impact

of the Renting Rate for the Unconstrained Nonlinear Knapsack Problem. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
ACM, 413 – 419. https://doi.org/10.1145/2908812.2908862

[26] Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann. 2018.

Evolutionary Computation Plus Dynamic Programming for the Bi-Objective Trav-

elling Thief Problem. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO). ACM, 777 – 784. https://doi.org/10.1145/3205455.3205488

[27] Junhua Wu, Markus Wagner, Sergey Polyakovskiy, and Frank Neumann. 2017.

Exact Approaches for the Travelling Thief Problem. In Proceedings of the 11th
International Conference on Simulated Evolution and Learning (SEAL). Springer,
110 – 121.

[28] Mohamed El Yafrani and Belaïd Ahiod. 2018. Efficiently Solving the Traveling

Thief ProblemUsing Hill Climbing and Simulated Annealing. Information Sciences
432 (2018), 231–244.

https://doi.org/10.1007/978-3-030-01641-8_2
https://doi.org/10.1145/3299904.3340307
https://doi.org/10.1162/evco_a_00215
https://doi.org/10.1162/evco_a_00215
https://doi.org/10.1007/978-3-319-19084-6_18
https://doi.org/10.1287/ijoc.1120.0506
https://doi.org/10.1287/ijoc.1120.0506
https://doi.org/10.1007/978-3-030-19759-9_5
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1007/s10852-005-2584-0
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1145/2908812.2908862
https://doi.org/10.1145/3205455.3205488

	Abstract
	1 Introduction
	1.1 Our contribution

	2 Problem Formulation
	3 Approximation Algorithms
	3.1 Connections to the Minimum Latency Problem
	3.2 Bounded Integer Weights

	4 1-Weighted TSP{1,2}
	5 Randomized Search Heuristics
	5.1 Problem instances
	5.2 Performance of the RLS variants
	5.3 Performance of EAX

	6 Conclusions
	References

