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Abstract

Fixed-budget theory is concerned with computing or bounding the fitness value
achievable by randomized search heuristics within a given budget of fitness func-
tion evaluations. Despite recent progress in fixed-budget theory, there is a lack of
general tools to derive such results. We transfer drift theory, the key tool to derive
expected optimization times, to the fixed-budged perspective. A first and easy-to-
use statement concerned with iterating drift in so-called greed-admitting scenarios
immediately translates into bounds on the expected function value. Afterwards, we
consider a more general tool based on the well-known variable drift theorem. Appli-
cations of this technique to the LeadingOnes benchmark function yield statements
that are more precise than the previous state of the art.

1 Introduction

Randomized search heuristics are a class of optimization algorithms which use prob-
abilistic choices with the aim of maximizing or minimizing a given objective function.
Typical examples of such algorithms use inspiration from nature in order to determine the
method of search, most prominently evolutionary algorithms, which use the concepts of
mutation (slightly altering a solution) and selection (giving preference to solutions with
better objective value).

The theory of randomized search heuristics aims at understanding such heuristics by
explaining their optimization behavior. Recent results are typically phrased as run time
results, for example by giving upper (and lower) bounds on the expected time until a
solution of a certain quality (typically the best possible quality) is found. This is called
the (expected) optimization time. A different approach, called fixed-budget analysis,
bounds the quality of the current solution of the heuristic after a given amount of time.
In order to ease the analysis and by convention, in this theoretical framework time
is approximated as the number of evaluations of the objective function (called fitness
evaluations).

In this paper we are concerned with the approach of giving a fixed-budget analy-
sis. This approach was introduced to the analysis of randomized search heuristics by
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Jansen and Zarges [9], who derived fixed-budget results for the classical example func-
tions OneMax and LeadingOnes by bounding the expected progress in each iteration.
A different perspective was proposed by Doerr, Jansen, Witt and Zarges [2], who showed
that fixed-budget statements can be derived from bounds on optimization times if these
exhibit strong concentration. Lengler and Spooner [15] proposed a variant of multiplica-
tive drift for fixed-budget results and the use of differential equations in the context
of OneMax and general linear functions. Nallaperuma, Neumann and Sudholt [17]
applied fixed-budget theory to the analysis of evolutionary algorithms on the traveling
salesman problem and Jansen and Zarges [10] to artificial immune systems. The quality
gains of optimal black-box algorithms on OneMax in a fixed-budget perspective were
analyzed by Doerr, Doerr and Yang [3]. In a recent technical report, He, Jansen and
Zarges [6] consider so-called unlimited budgets to estimate fitness values in particular for
points of time larger than the expected optimization time. A recent survey by Jansen [8]
summarizes the state of the art in the area of fixed-budget analysis.

There are general methods easing the analysis of randomized search heuristics. Most
importantly, in order to derive bounds on the optimization time, we can make use of drift
theory. Drift theory is a general term for a collection of theorems that consider random
processes and bound the expected time it takes the process to reach a certain value - the
first-hitting time. The beauty and appeal of these theorems lie in them usually having
few restrictions but yielding strong results. Intuitively speaking, in order to use a drift
theorem, one only needs to estimate the expected change of a random process - the
drift - at any given point in time. Hence, a drift theorem turns expected local changes
of a process into expected first-hitting times. In other words, local information of the
process is transformed into global information. See [14] for an extensive discussion of
drift theory.

In contrast to the numerous drift theorems available for bounding the optimization
time, there is no corresponding theorem for making a fixed-budget analysis apart from
one for the multiplicative case given in [15]. With this paper we aim to provide sev-
eral such drift theorems, applicable in different settings and with a different angle of
conclusions. In each our main goal is to provide an upper bound on the distance to the
optimum after t iterations, for t less than the expected optimization time. Upper bounds
alone do not allow for a fair comparison of algorithms, since a bad upper bound does
not exclude the possibility of a good performance of an algorithm; for this, we require
lower bounds. However, one of our techniques also allows us to derive lower bounds.
Furthermore, when upper and lower bounds are close together we can conclude that the
derived bounds are correspondingly tight, highlighting the quality of our methods.

We start, in Section 3, by giving a theorem which iteratively applies local drift
estimates to derive a global drift estimate after t iterations. Crucial for this theorem
is that the drift condition is unlimited time, by which we mean that the drift condition
has to hold for all times t, not just (which is the typical case in the literature for drift
theorems) those before the optimum is hit. This theorem is applicable in the case where
there is no optimum (and optimization progresses indefinitely) and in the case that, in
the optimum, the drift is 0. In order to bypass these limitations we also give a variant
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in Section 3 which allows for limited time drift, where the drift condition only needs to
hold before the optimum is hit; however, in this case we pick up an additional error term
in the result, derived from the possibility of hitting the optimum within the allowed time
budget of t. Thus, in order to apply this theorem, one will typically need concentrations
bounds for the time to hit the optimum.

For both these theorems, the drift function (bounding the drift) has to be convex
and greed-admitting, which intuitively says that being closer to the goal is always better
in terms of the expected state after an additional iteration, while search points closer
to the goal are required to have weaker drift. These conditions are fulfilled in many
sample applications; as examples we give analyses of the (1+1) EA on LeadingOnes

and OneMax. Note that these analyses seem to be rather tight, but we do not offer
any lower bounds, since our techniques crucially only apply in one direction (owing to
an application of Jensen’s Inequality to convex drift functions).

In Section 4 we use a potential-based approach and give a variable drift theorem for
fixed-budget analysis. As a special case, where the drift function is constant, we give
an additive drift theorem for fixed-budget analysis and derive a result for (1+1) EA on
LeadingOnes. In general, the approach bounds the expected value of the potential
but not of the fitness. Therefore, we also study how to derive a bound on the fitness
itself, both from above and from below, by inverting the potential function and using
tail bounds on its value. The approach uses a generalized theorem showing tail bounds
for martingale differences, which overcomes a weakness of existing martingale difference
theorems in our specific application. This generalization may be of independent interest.

Our results allow for giving strong fixed-budget results which were not obtainable
before. For the (1+1) EA on LeadingOnes with a budget of t = o(n2) iterations, the
original paper [9] gives a lower bound of 2t/n − o(t/n) for the expected fitness after
t iterations, which we recover with a simple proof in Theorem 6. Our theorem also
allows budgets closer to the expected optimization time, where we get a lower bound of
n ln(1 + 2t/n2)−O(1).

For the (1+1) EA on OneMax, no concrete formula for a bound on the fitness
value after t iterations was known: The original work [9] could only handle RLS on
OneMax, not the (1+1) EA. The multiplicative drift theorem of [15] allows for deriving
a lower bound of n/2 + t/(2e) for t = o(n) using a multiplicative drift constant of
(1 − 1/n)n/n. Since our drift theorem allows for variable drift, we can give a bound of
n/2 + t/(2

√
e) − o(t) for the (1+1) EA on OneMax with t = o(n) (see Theorem 5).

Note that [15] also gives bounds for values of t closer to the expected optimization time.
Furthermore, we are not only concerned with expected values but also give strong

concentration bounds. We consider the (1+1) EA on LeadingOnes and show that the
fitness after t steps is strongly concentrated around its expectation (see Theorem 10).
The error term obtained is asymptotically smaller than in the previous work [2] and the
statement is also less complex.

Fixed-budget results that hold with high probability are crucial for the analysis
of algorithm configurators [5]. These configurators test different algorithms for fixed
budgets in order to make statements about their appropriateness in a given setting.
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Thus, we believe that this work also contributes to the better understanding of the
strengths and weaknesses of algorithm configurators.

The remainder of the paper is structured as follows. Next we give mathematical pre-
liminaries, covering problem and algorithm definitions as well as some well-known results
from the literature which we require later. In Section 3 we give our direct fixed-budget
drift theorems, as well as its applications to the (1+1) EA on OneMax and Leading-

Ones. In Section 4 we give a variable fixed-budget drift theorem and its corollary for
additive drift. We show how to apply this variable fixed-budget drift theorem to obtain
very strong bounds in Section 5. We conclude in Section 6.

2 Preliminaries

The concrete objective functions we are concerned with in this paper are OneMax and
LeadingOnes, studied in a large number of papers. These two functions are defined
as follows. For a fixed natural number n, the functions map bit strings x ∈ {0, 1}n of
length n to natural numbers such that

OneMax(x) =

n
∑

i=1

xi

is the number of 1s in the bit string x and

LeadingOnes(x) =
n
∑

i=1

i
∏

j=1

xj

is the number of leading 1s in x before the first 0 (if any, n otherwise).
We consider for application only one algorithm, the well-known (1+1) EA given in

Algorithm 1 below.

Algorithm 1: The (1+1) EA for maximizing function f

1 choose x from {0, 1}n uniformly at random;
2 while optimum not reached do
3 y ← x;
4 for i = 1 to n do
5 with probability 1/n: yi ← 1− yi;

6 if f(y) ≥ f(x) then x← y;

For any function f and i ≥ 0, we let f i denote the i-times self-composition of f (with
f0 being the identity).

2.1 Known Results for the (1+1) EA on LeadingOnes

We will use the following concentration result from [2], bounding the optimization time
of the (1+1) EA on LeadingOnes.
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Theorem 1 ([2, Theorem 7]). For all d ≤ 2n2, the probability that the optimization time
of the (1+1) EA on LeadingOnes deviates from its expectation of (1/2)(n2 − n)((1 +
1/(n − 1))n − 1) by at least d, is at most 4 exp(−d2/(20e2n3)).

The following lemma collects some important and well-known results for the opti-
mization process of the (1+1) EA on LeadingOnes.

Lemma 1. Consider the (1+1) EA on LeadingOnes, let xt denote its search point at
time t and Xt = n− LeadingOnes(xt) the fitness distance. Then

(a) E(Xt −Xt+1 | Xt) = (2− 21−Xt)(1− 1/n)n−Xt/n

(b) Pr(Xt+1 6= Xt | Xt;T > t) = (1− 1/n)n−Xt 1
n

(c) For j ≥ 1, Pr(Xt+1 = Xt − j) ≤ 1
n

(

1
2

)j−1

(d) Gt := Xt − Xt+1 is a random variable with support 0, . . . ,Xt and the following
conditional distribution on Gt ≥ 1:

• Pr(Gt = i) = (1/2)i for i < Xt

• Pr(Gt = Xt) = (1/2)Xt−1

For the moment-generating function of this Gt (conditional on Gt ≥ 1) it holds
that

E(eηGt | Xt) =
(eη/2)Xt(1− eη) + (eη/2)

1− eη/2
.

(e) The expected optimization time equals n2−n
2

((

1 + 1
n−1

)n
− 1
)

, which is e−1
2 n2 ±

O(n).

Proof. The proofs of the first three statements can be found in in [2] and [13, Lemma
12 of technical report]. For the first part of the fourth statement, we recall from these
papers that the Xt − 1 bits after the first 0 are uniform and independent. Hence, the
probability of observing i− 1 < Xt of these so-called free-riders is (1/2)i since i− 1 bits
have to be set to 1 and the i-th bit to 0. If i = Xt− 1 then all i bits have to be set to 1,
which has probability (1/2)i.

For the moment-generating function, we write (using the first part of the fourth
statement)

E(eηGt | Xt) =
Xt−1
∑

j=1

(

1

2

)j

eηj +

(

1

2

)Xt−1

eηXt

Since, by the geometric series,

Xt−1
∑

j=1

(

1

2

)j

eηj =
eη/2− (eη/2)Xt

1− eη/2
,
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we have

E(eηGt | Xt) =
eη/2− (eη/2)Xt

1− eη/2
+ 2

(

eη

2

)Xt

=
eη/2− (eη/2)Xt + 2(eη/2)Xt(1− eη/2)

1− eη/2

=
(eη/2)Xt(1− eη) + (eη/2)

1− eη/2
.

The fifth statement is due to [1]. �

3 Direct Fixed-Budged Drift Theorems

In this section we give a drift theorem which gives a fixed-budget result without the
detour via first hitting times. The idea is to focus on drift which gets monotonically
weaker as we approach the optimum, but where being closer to the optimum is still
better in terms of drift. To this end, we make the following definition.

Definition 1. We say that a drift function h : S → R
>0 is greed-admitting if id − h

(the function x 7→ x− h(x)) is monotone non-decreasing.

Intuitively, this formalizes the idea that being closer to the goal is always better (i. e.
greed is good). Greed could be bad, if from one part of the search space, the drift is
much higher than when being a bit closer, so that being a bit closer does not balance
out the loss in drift. Note that any given differentiable h is greed-admitting if and only
if h′ ≤ 1.

Typical drift functions are greed-admitting. For example, if we drift on integers, in
many situations drift is less than 1, while being closer means being at least one step
closer, so being closer is always better in this sense. An example monotone process on
{0, 1, 2} which has a drift which is not greed-admitting is the following: X0 is 2 and the
process moves to any of the states 0, 1, 2 uniformly. State 0 is the target state, from
state 1 there is only a very small probability to progress to 0 (say 0.1). Then it is better
to stay in state 2 than be trapped in state 1, if the goal is to progress to state 0.

We now give two different versions of the direct fixed-budget drift theorem. The first
considers unlimited time, that is, the situation where drift carries on for an arbitrary
time (and does not stop once a certain threshold value is reached). This is applicable
in situations where there is no end to the process (for example for random walks on the
line) or when the drift eventually goes all the way down to 0 so that the drift condition
holds vacuously even when no progress is possibly any more (this is for example the case
for multiplicative drift, where the drift is δ times the current value, which is naturally 0
once 0 has been reached). Note that this is a very strong requirement of the theorem,
leading to a strong conclusion.

A special case of the following theorem is given in [15], where drift is necessarily
multiplicative.
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Theorem 2 (Direct Fixed-Budget Drift, unlimited time). Let Xt, t ≥ 0, be a stochastic
process on S ⊆ R, adapted to a filtration Ft. Let h : S → R

≥0 be a convex and

greed-admitting function such that we have the drift condition

(D-ut) E(Xt −Xt+1 | Ft) ≥ h(Xt).

Define h̃(x) = x− h(x). Thus, the drift condition is equivalent to

(D-ut’) E(Xt+1 | Ft) ≤ h̃(Xt).

We have that, for all t ≥ 0,1

E(Xt | F0) ≤ h̃t(X0)

and, in particular,
E(Xt) ≤ h̃t(E(X0)).

Proof. Note that h̃ is concave, since the second derivative of id − h is −h′′. We have,
using this concavity of for Jensen’s Inequality, for all t,

E(Xt+1 | F0) = E(E(Xt+1 | Ft) | F0)

≤ E(E(h̃(Xt) | Ft) | F0)

= E(h̃(Xt) | F0)

≤ h̃(E(Xt | F0)).

Thus, the claim follows by induction with h̃ being non-decreasing (since h is greed-
admitting). The second statement of the theorem follows with Jensen’s Inequality. �

Now we get to the second version of the theorem, considering the more frequent case
where no guarantee on the drift can be given once the optimum has been found. This
weaker requirement leads to a weaker conclusion.

Theorem 3 (Direct Fixed-Budget Drift, limited time). Let Xt, t ≥ 0, be a stochastic
process on S ⊆ R, 0 = minS, adapted to a filtration Ft. Let T := min{t ≥ 0 | Xt = 0}
and h : S → R

≥0 be a differentiable, convex and greed-admitting function such
that h̃′(0) ∈ ]0, 1] and we have the drift condition

(D-lt) E(Xt −Xt+1 | Ft; t < T ) ≥ h(Xt).

Define h̃(x) = x− h(x). Thus, the drift condition is equivalent to

(D-lt’) E(Xt+1 | Ft; t < T ) ≤ h̃(Xt).

We have that, for all t ≥ 0,

E(Xt | F0) ≤ h̃t(X0) +
h̃(0)

h̃′(0)

and, in particular,

E(Xt) ≤ h̃t(E(X0))−
h̃(0)

h̃′(0)
· Pr(t ≥ T | F0).

1Recall from the preliminaries that f i is the i-times self-composition of a function f .
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Proof. We let m = − h̃(0)

h̃′(0)
. Recall that we assume that 0 < h̃′(0) ≤ 1. We now define a

new process which mimics (Xt)t, but which has to make one additional step down after
reaching 0. In order to have 0 be the target of this new process, we will shift the old
process accordingly. We let Y0 = X0 +m and, for all t ≥ 0,

Yt+1 =























Xt+1 +m, if t+ 1 < T ;

0, else if Yt = 0;

0, else, with probability h̃′(0);

m, otherwise.

Intuitively, Yt behaves like Xt+m, but once Xt hits the optimum, it will stay at m until,
with probability h̃′(0), it jumps to 0. We now give a drift function for this process in
order to apply Theorem 2.

Define h0 such that, for all x ≥ 0,

h0(x) =

{

x · h̃′(0), if x < m;

h(x−m), otherwise.

To see that h0 is convex, note that it is convex on both the parts less than m and
above m; furthermore, the left- and right-derivative in m coincide. Furthermore, h0 is
greed-admitting since it is differentiable with derivative h̃′(0) ≤ 1 for all x ≤ m and with
derivative at most 1 for x > m from h being greed-admitting. We see that E(Yt− Yt+1 |
Ft) ≥ h0(Xt), either by the corresponding statement about (Xt)t and h or by the drift in
case of Yt = m being m · h̃′(0) = −h̃(0) = h(0) = h0(m). Thus, we can apply Theorem 2

and get E(Yt | F0) ≤ h̃0
t
(Y0). By induction we get h̃0

t
(Y0) = h̃0

t
(X0+m) = h̃t(X0)+m.

From Xt ≤ Yt −m · 1[t < T ] we thus get

E(Xt | F0) ≤ E(Yt | F0)−m · Pr(t < T | F0)

≤ h̃0
t
(Y0)−m · Pr(t < T | F0)

= h̃t(X0) +m−m · Pr(t < T | F0)

= h̃t(X0) +m · Pr(t ≥ T | F0).

This concludes the proof. �

With the following theorem we give a general way of iterating a greed-admitting
function, as necessary for the application of the previous two theorems. From this we
can see the similarity of this approach to the method of variable drift theory where the
inverse of h is integrated over, see Theorem 7 and the discussion about drift theory in
general in [14].

Theorem 4. Let h be greed-admitting and let h̃ = id−h. Then we have, for all starting
points n and all target points m < n and all time budgets t,

if t ≥
n−1
∑

i=m

1

h(i)
then h̃t(n) ≤ m.
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Proof. The idea of this proof is that each application of h̃ on some value ≥ i gains at
least h(i), so gaining this amount at least 1/h(i) times decreases a value of at most i+1
to a value of at most i. A simple induction then gives the claimed result. More formally,
for all i and all t ≥ 1/h(i), we have that h̃t(i+1) ≤ i. Thus we inductively get, for all k,
if t ≥∑n−1

i=n−k 1/h(i), then h̃t(n) ≤ n− k. Using the induction statement for k = n−m
gives the result. �

3.1 Application to OneMax

In this section we show how we can apply Theorem 2 by using the optimization of the
(1+1) EA on OneMax as an example (where we have multiplicative drift).

Theorem 5. Let Vt be the number of 1s which the (1+1) EA on OneMax has found
after t iterations of the algorithm. Then we have, for all t,

E(Vt) ≥
{

n
2 + t

2
√
e
−O(1), if t = O(

√
n);

n
2 + t

2
√
e
(1− o(1)), if t = o(n).

Furthermore, for all t, we have E(Vt) ≥ n(1− exp(−t/(en))/2).

Proof. We can apply the unlimited time theorem (Theorem 2) to the (1+1) EA on
OneMax by using the drift function h(x) = (1−1/n)n−x x

n . This function is convex and
greed-admitting, and it also applies in case the process already reached the optimum of
0 (since h(0) = 0). We now need to estimate h̃t.

In order to apply Theorem 4, we estimate as follows (using estimates for the harmonic
sum which use c = o(n)).

n/2
∑

i=n/2−c

1

h(i)
=

n/2
∑

i=n/2−c

(1− 1/n)i−nn

i

≤ n

n/2
∑

i=n/2−c

(1− 1/n)−c−n/2 1

i

≤ n(1− 1/n)−c−n/2

n/2
∑

i=n/2−c

1

i

≤ n exp((c + n/2)/n) (ln(n/2)− ln(n/2− c) +O(1/n))

= n
√
eec/n (− ln ((n/2− c)/(n/2)) +O(1/n))

= n
√
eec/n (− ln(1− 2c/n) +O(1/n))

≤ n
√
e(1 + c/n + c2/n2) (2c/n +O(1/n))

= 2
√
e(1 + c/n + c2/n2) (c+O(1)) .

For c == (
√
n) the last term is at most 2

√
ec+O(1) and for c = o(n) it is 2

√
ec(1+o(1)).

Thus, we get the claimed bounds with Theorem 4. Regarding the “furthermore” clause,
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we argue more directly about h̃t by observing that, for all x, h̃(x) ≤ (1 − 1/(en))x and
thus, by a straightforward induction (similar to the proof of [15, Theorem 1]) we get,
for all x, t, h̃t(x) ≤ (1 − 1/(en))tx ≤ e−t/(en)x. This gives the desired result with initial
state n/2. �

3.2 Application to LeadingOnes

In this section we want to use Theorem 3 to the progress of the (1+1) EA on Leading-

Ones. The result is summarized in the following theorem.

Theorem 6. Let Vt be the number of leading 1s which the (1+1) EA on LeadingOnes

has found after t iterations of the algorithm. We have, for all t,

E(Vt) ≥











2t
n −O(1), if t = O(n3/2);
2t
n · (1− o(1)), if t = o(n2);

n ln(1 + 2t
n2 )−O(1), if t ≤ e−1

2 n2 − n3/2.

Proof. For the derivation of fitness drift of the (1+1) EA on LeadingOnes, see the
first item of Lemma 1. We want to use Theorem 3 to get our fixed-budget result.

However, in order to make our analysis, we artificially change the fitness value of the
all-1s string to n+1 (rather than n). The result of this change is in the expected fitness
gain: if any fitness is gained at all, the total gain is usually (for plain LeadingOnes)
1 plus the number of “free rider” bits, additional bits after the first that happen to be
set to 1. There cannot be an arbitrary number of them (since the bit string is finite
– of size n), so the total expected number of bits gained is slightly less than 2: it is
2 − (1/2)n−1−x. By artificially changing the fitness value of the perfect string to n + 1
we now have an expected value increase of at least 2, as long as the best bit string has
not been found (conditional on making an improvement at all).

Note that this change of the fitness value of the all-1s string changes the final result
only by at most 1, which is consumed by the O-notation.

Thus, we can use the drift function

h : [0, n]→ R
>0, x 7→

(

1− 1

n

)n−x 2

n
.

We have that h is greed-admitting (since the drift changes only very little, it would
have to change by more than 1 between two distance 1 states) and convex (since the
exponential function is convex). Note that without the artificial change mentioned above
the actual drift would not have been convex.

We let h̃(x) = x− h(x). We want to aplly Theorems 3 so we note that

h̃(0) = −
(

1− 1

n

)n 2

n
= −Θ(1/n)

and

h̃′(0) = 1 +

(

1− 1

n

)n 2

n
ln(1− 1/n) = 1− o(1).
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In order to estimate the t-fold application of h̃ on 0 we use Theorem 4. Let c = n−m.
We have

n−1
∑

i=m

1

h(i)
=

n−1
∑

i=m

(

1− 1

n

)i−n n

2

=
n

2

c
∑

j=1

(

1− 1

n

)−j

=
n

2

(

(

1− 1
n

)−c−1 − 1

1/(1 − 1/n)− 1
− 1

)

=
n(n− 1)

2

(

(

1− 1

n

)−c−1

− 1− 1

n− 1

)

≤ n(n− 1)

2

(

exp

(

c+ 1

n

)

− 1− 1

n− 1

)

.

From this we already get the third and most general claimed bound using the concentra-
tion bound given in Theorem 1 with an appropriate d = Θ(n3/2), where the probability
of having reached the optimum is some constant.

We can continue the estimates as

≤ n(n− 1)

2

(

c+ 1

n
+

(

c+ 1

n

)2

− 1

n− 1

)

≤ n− 1

2

(

c+ 1 +
(c+ 1)2

n
− 1

n− 1

)

.

This term is at most (c+ 1)n/2 + o(n) for c = o(
√
n); and cn/2 + O(n) for c = Θ(

√
n)

and (1 + o(1))cn/2 for c = o(n).
We use Theorem 1 again to see that the (1+1) EA on LeadingOnes is done in

o(n2) steps with probability at most exp(−n), which suffices to get the first two desired
bounds with the help of Theorems 3 and 4. �

4 Variable Drift Theorem for Fixed Budget

We now turn to an alternative approach to derive fixed-budget results via drift analysis.
Our method is based on variable drift analysis that was introduced to the analysis
of randomized search heuristics by Johannsen [11]. Crucially, variable drift analysis
applies a specific transformation, the so-called potential function g, to the state space.
Along with bounds on the hitting times, we obtain the following theorem estimating the
expected value of the potential function after t steps. Subsequently, we will discuss how
this information can be used to analyze the untransformed state.

Theorem 7. Let Xt, t ≥ 0, be a stochastic process, adapted to a filtration Ft, on
S := {0} ∪R≥xmin for some xmin > 0. Let T := min{t ≥ 0 | Xt = 0} and h : S → R

>0 be
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a non-decreasing function such that E(Xt−Xt+1 | Ft; t < T ) ≥ h(Xt). Define g : S → R

by

g(x) :=

{

xmin
h(xmin)

+
∫ x
xmin

1
h(z) dz if x ≥ xmin

0 otherwise
.

Then it holds that

E(g(Xt) | F0) ≤ g(X0)−
t−1
∑

s=0

Pr(s < T ).

Proof. Since h is non-decreasing, g is concave. We claim that the drift of the g-value is
bounded from below by 1, formally

E(g(Xt)− g(Xt+1) | Ft; t < T ) ≥ 1 (1)

To prove the claim, we use standard arguments from the proof of the variable drift
theorem for expected hitting times. Expanding the definition of g, we obtain

E(g(Xt)− g(Xt+1) | Ft; t < T ) =

∫ Xt

xmin

1

h(z)
dz

− E

(
∫ Xt+1

xmin

1

h(z)
dz | Ft

)

.

By Jensen’s inequality and the concavity of g, we have

E(g(Xt)− g(Xt+1) | Ft; t < T ) ≥
∫ Xt

xmin

1

h(z)
dz −

∫ E(Xt+1|Ft)

xmin

1

h(z)
dz,

which, since E(Xt+1 | Ft; t < T ) ≤ Xt − h(Xt), is at least

∫ Xt

Xt−h(Xt)

1

h(z)
dz ≥

∫ Xt

Xt−h(Xt)

1

h(Xt)
dz = 1,

where the inequality used that h(z) in non-decreasing.
We proceed by estimating E(g(Xt)) in an inductive fashion. By the law of total

probability,

E(g(X1) | F0) = g(X0)− Pr(0 < T ) (g(X0)− E(g(X1) | F0; 0 < T ))

so with (1),
E(g(X1) | F0) ≤ g(X0)− Pr(T > 0).

Noting that

E(g(Xt) | F0)

= E(g(Xt−1)− E(g(Xt−1)− g(Xt) | Ft−1; t− 1 < T ) | F0),
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we get by the induction hypothesis and (1) that

E(g(Xt) | F0) ≤ E(g(Xt−1) | F0)− Pr(t− 1 < T )

≤ g(X0)−
t−2
∑

s=0

Pr(s < T )− Pr(t− 1 < T )

altogether

E(g(Xt) | F0) ≤ g(X0)−
t−1
∑

s=0

Pr(s < T ).

as suggested. �

4.1 Additive Drift as Special Case

A special case of variable drift is additive drift, when the drift function h is constant.

Theorem 8. Let Xt, t ≥ 0, be a stochastic process, adapted to a filtration Ft, on
S := R

≥0. Let T := min{t ≥ 0 | Xt = 0} and δ ∈ R
>0 be such that E(Xt−Xt+1 | Ft; t <

T ) ≥ δ. Then we have

E(Xt | F0) ≤ X0 − δ
t−1
∑

s=0

Pr(s < T ).

The theorem is a corollary to Theorem 7 by using xmin = δ, the smallest value for
which the condition of a drift of at least δ can still be obtained, and thus the smallest
value (other than 0) that the process can attain.

As a sample application, we can now derive an estimate of the best value found by
the (1+1) EA on LeadingOnes within t steps, using the concentration result from [2]
given in Theorem 1.

Theorem 9. Let Vt be the number of leading 1s which the (1+1) EA on LeadingOnes

has found after t iterations of the algorithm. Then, for all t ≤ e−1
2 n2 − n3/2 log(n), we

have

E(Vt) ≥
2t

en
−O(1).

Proof. We drift on the potential which assigns each bit string its number of leading
ones, except for the all-1 string which has a potential of n + 1. A quick computation
shows that this leads to an expeced increase in potential of 2, conditional on the potential
increasing at all (without the “+1” for the all-1-string, it would have been slightly less
than 2). We use drift on this potential, which is, for all current potential values x < n,
now lower bounded by

(

1− 1

n

)x 2

n
≥ 2

en
.

Thus, the result follows with Theorem 8 and the concentration bound given in Theorem 1.
�
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Note that the result was proven very easily with a direct application of the additive
version of the fixed-budget drift theorem in combination with a strong result on concen-
tration. The price paid for this simplicity is that the lead constant in this time bound
is not tight, as can be seen by comparing with the results given in Theorem 6.

5 Variable Drift and Concentration Inequalities

The expected g(Xt)-value derived in Theorem 7 is not very useful unless it allows us to
make conclusions on the underlying Xt-value. The previous application in Section 4.1
only gives tight bounds in case that the drift is more or less constant throughout the
search space. This is not the case for OneMax and LeadingOnes where the drift
increases with the distance to the optimum (e. g., for OneMax the drift is Θ(1/n) at
distance 1 and Θ(1) as distance n/2; for LeadingOnes the drift can vary by a term of
roughly e). Hence, looking back into Theorem 7, we now are interested in characterizing
g(Xt) more precisely than just in terms of expected value. If we manage to establish
concentration of g(Xt) then we can (after inverting g) derive a maximum of the Xt-value
that holds with sufficient probability. Our main result achieved along this path is the
following one.

Theorem 10. Let Vt be the number of leading 1s which the (1+1) EA on LeadingOnes

has found after t iterations. Then for t = ω(n log n) and t ≤ (e− 1)n2/2− cn3/2
√
log n,

where c is a sufficiently large constant the following statements hold. (a) With probability
at least 1− 1/n3,

−n ln
(

1− 2t/n2 +O(
√

t log n/n3/2)
)

≤ Vt

−n ln
(

1− 2t/n2 −O(
√

t log n/n3/2)
)

≥ Vt.

(b) E(Vt) = −n ln(1− 2t/n2 +O(
√
t log n/n3/2)).

To compare with previous work, we note that the additive error is O(
√
t log n/n1/2).

This is asymptotically smaller than the additive error term of order Ω(n3/2+ε) that
appears in the fixed-budget statements of [2] and moreover, it depends on t. Also, we
think that the formulation of our statement is less complex than in that paper.

The proof of Theorem 10 overcomes several technical challenges. The first idea is
to apply established concentration inequalities for stochastic processes. Since (after a
reformulation discussed below) the process of g-values describes a (super)martingale, it
is natural to take the method of bounded martingale differences. However, since there
is no ready-to-use theorem for all our specific martingales, we present a generalization
of martingale concentration inequalities in the following subsection Section 5.1. The
concrete application is then given in Sections 5.2 onwards.

5.1 Tail Bounds for Martingale Differences

The classical method of bounded martingale differences [16] considers a (super)martingale
Yt, t ≥ 0, and its corresponding martingale differences Dt = Yt+1 − Yt. Given certain
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boundedness conditions for Dt (e. g., that |Dt| ≤ c for a constant c almost surely), it
is shown that the sum of martingale differences

∑t−1
i=0 Di = Yt − Y0 does not deviate

much from its expectation Y0 (resp. is not much bigger in the case of supermartingales).
This statement remains essentially true if Dt is allowed to have unbounded support but
exhibits a strong concentration around its expected value. Usually, this concentration
is formulated in terms of a so-called subgaussian (or, similarly, subexponential) property
[4, 12]. Roughly speaking, this property requires that the moment-generating function
(mgf.) of the differences can be bounded as E(eλDt | Ft) ≤ eλ

2ν2
t
/2 for a certain param-

eter νt and all λ < 1/bt, where bt is another parameter. In particular, the bound has to
remain true when λ becomes arbitrarily small.

In one of our concrete applications of the martingale difference technique, the in-
equality E(eλDt | Ft) ≤ eλ

2ν2
t
/2 is true for certain values of λ below a threshold 1/b∗, but

does not hold if λ is much smaller than 1/b∗. We therefore show that the concentration
of the sums of martingale differences to some extent remains true if the inequality only
holds for λ ∈ [1/a∗, 1/b∗] where a∗ > b∗ is another parameter. The approach uses well-
known arguments for the proof of concentration inequalities. Here, we were inspired by
the notes [18], which require the classical subexponential property, though.

Theorem 11. Let Yt, t ≥ 0, be a supermartingale, adapted to a filtration Ft, and let
Dt = Yt+1 − Yt be the corresponding martingale differences. Assume that there are
0 < b2 < b1 ≤ ∞ and a sequence νt, t ≥ 0, such that for λ ∈ [1/b1, 1/b2] it holds that
E(eλDt | Ft) ≤ eλ

2ν2
t
/2. Then for all t ≥ 0 it holds that

Pr(Yt − Y0 ≥ d) ≤







e−d/(2b2) if d ≥
∑

t−1
i=0 ν2

i

b2

e−d2/(2
∑

t−1
i=0 ν2

i
) if

∑
t−1
i=0 ν2

i

b1
≤ d <

∑
t−1
i=0 ν2

i

b2

The theorem holds analogously for submartingales with respect to the tail bound Pr(Yt −
Y0 ≤ −d).

Proof. We consider the mgf. of the sum St :=
∑t−1

i=0 Di. Using the usual Chernoff-type
approach, we have for all λ ≥ 0 that

Pr(St ≥ d) = Pr(eλSt ≥ eλd) ≤ e−λdE(eλSt | F0)

To bound the last mgf., we note that by the law of total expectation,

E(eλSt | F0) = E
(

eλ
∑

t−2
i=0 Di · E(eλDt−1 | Ft−1) | F0

)

≤ E(eλSt−1 | F0)e
λ2ν2

t−1/2,

where the last inequality used the assumption from the theorem, which is valid after we
assume 1/b1 ≤ λ ≤ 1/b2. Iterating this argument, we obtain

E(eλSt | F0) ≤ eλ
2
∑

t−1
i=0 ν2

i
/2,
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hence
Pr(St ≥ d) ≤ e−λdeλ

2
∑

t−1
i=0 ν2

i
/2.

In the following, we write Vt :=
∑t−1

i=0 ν
2
i . We now distinguish between the two cases for

d displayed in the lemma. If d ≥ Vt/b2, this leads to

Pr(St ≥ d) ≤ e−λdeλ
2db2/2,

which, choosing λ := 1/b2, yields

Pr(St ≥ d) ≤ e−d/b2+(1/b2)2db2/2 = e−d/(2b2).

If Vt/b1 ≤ d < Vt/b2 we choose λ := d/Vt ∈ [1/b1, 1/b2). Then

Pr(St ≥ d) ≤ e−λd+λ2Vt/2 = e
− d

Vt
d+ d

2

V 2
t

Vt

2 = e−d2/(2Vt),

which, after substituting Vt, proves the theorem. �

5.2 Preparing an Upper Tail Bound via the Martingale Difference
Method

We now return to Theorem 7 and would like to show concentration of g(Xt) in order
to show a bound for Xt that holds with sufficiently high probability. Note that by the
statement of the theorem, we immediately have that Yt := g(Xt) +

∑t−1
s=0 Pr(T > s)

is a supermartingale. By bounding the probability of Yt ≥ d for arbitrary t ≥ 0 and
d ≥ 0, i. e., establishing concentration of the supermartingale Yt via Theorem 11, and
inverting g, we will obtain a bound on the probability of the event g(Xt) ≥ E(g(Xt)).

As we want to prove Theorem 10, the application is again the (1+1) EA on the
LeadingOnes function, so Xt = n − LeadingOnes(xt) is the fitness distance of the
LeadingOnes-value at time t from the target.

Defining h(Xt) := E(Xt −Xt+1 | Xt) according to Lemma 1 and g(Xt) = 1/h(1) +
∫ Xt

1 1/h(z) dz according to Lemma 7, we will establish the following bound on the
moment-generating function (mgf.) of the drift of our concrete g.

Lemma 2. Let T denote the optimization time of the (1+1) EA on LeadingOnes. If
λ ≤ 1/(2en) then E(eλ(g(Xt+1)−g(Xt)+Pr(T>t)) | Xt) = eO(λ2n).

Proof. We write Yt = g(Xt) +
∑t−1

s=0 Pr(T > s) and Dt = Yt+1 − Yt = g(Xt+1) −
g(Xt) + Pr(T > t). Without loss of generality the process stops from time T on so that
g(Xt+1) − g(Xt) = 0 for all t ≥ T . Hence, conditional on T ≤ t we have E(eλDt) =
eλ0+0 = 1 ≤ eλ

2n. We now consider the interesting case that T > t. Then

E(eλDt | Xt) = E(eλ(g(Xt+1)−g(Xt)+1) | Xt)

since Pr(T > t) = 1 on our condition. To bound this mgf., we shall exploit that

g(Xt+1)− g(Xt) ≤
Xt+1 −Xt

h(Xt)
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(by the concavity of g, noting that the difference is negative). Hence, g(Xt+1) − g(Xt)
is stochastically dominated by Xt+1−Xt

h(Xt)
.

Applying the law of total probability with respect to an improving step (using the
second item from Lemma 1) and writing Gt = Xt −Xt+1, we obtain

E(eλ(g(Xt+1)−g(Xt)+1) | Xt) ≤
(

1− 1

n

)n−Xt 1

n
E(e

λ

h(Xt)
(−Gt)+λ | Xt)

+

(

1−
(

1− 1

n

)n−Xt 1

n

)

eλ (2)

We will write η = λ
h(Xt)

in the following and assume 0 ≤ η = o(1), which implies the same

for λ. Using the well-known inequalities 1+x+x2 ≥ ex ≥ 1+x and 1−x+x2 ≥ e−x ≥ 1−x
for 0 ≤ x ≤ 1, we obtain the following bound on (2):

E(eλ(g(Xt+1)−g(Xt)+1) | Xt)

≤
(

1− 1

n

)n−Xt 1

n
(1 + λ+ λ2)E(e−ηGt | Xt)

+

(

1−
(

1− 1

n

)n−Xt 1

n

)

(1 + λ+ λ2). (3)

The most challenging part is now to bound E(e−ηGt | Xt) (still conditional on Gt ≥ 1)
in such a way that we obtain an estimate depending on λ only. We use the shorthand
Xt = i from now on. From Lemma 1 and again using the inequalities with ex we have

E(e−ηGt | Xt;Gt ≥ 1) =
(e−η/2)i(1− e−η) + (e−η/2)

1− e−η/2

≤ (1−η+η2

2 )i(1− (1− η)) + 1−η+η2

2

1− (1/2)(1 − η + η2)

=
(1−η+η2

2 )iη + 1−η+η2

2

(1/2) + η/2− η2/2

≤ (12 )
i−1η + 1− η + η2

1 + η − η2

≤
(

1

2

)i−1

η +
1− η + η2

1 + η − η2

=

(

1

2

)i−1

η + 1− 2η − 2η2

1 + η − η2

= 1 +

(

1

2

)i−1

η − 2η +O(η2)
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We are now ready to substitute h(i) = (1 − 1/n)n−i(1/n)(2 −
(

1
2

)i−1
) (Lemma 1) in

η = λ/h(i) and obtain from the preceding estimate that

E(e−ηGt | Xt;Gt ≥ 1) ≤ 1 + η

(

(

1

2

)i−1

− 2

)

+O(η2)

= 1 +
λn
(

1− 1
n

)i−n

2−
(

1
2

)i−1

(

(

1

2

)i−1

− 2

)

+O(η2)

= 1− λn

(

1− 1

n

)i−n

+O(λ2n2),

where the last inequality used 1/h(i) = O(n). Plugging this back into (3), we have

E(eλ(g(Xt+1)−g(Xt)+1) | Xt = i)

=

(

1− 1

n

)n−i 1

n
(1 + λ+ λ2)

(

1− λn

(

1− 1

n

)i−n

+O(λ2n2)

)

+

(

1−
(

1− 1

n

)n−i 1

n

)

(1 + λ+ λ2)

= 1 + λ+ λ2 − λ+O(λ2n) ≤ eλ
2+O(λ2n) = eO(λ2n) (4)

for λ ≤ 1/(2en). The restriction on λ follows from the fact that η ≤ 1 has to be ensured,
which follows for λ ≤ 1/(2en) from the bound h(x) ≤ 2en. �

Looking into Theorem 11 the required subexponential property of the martingale
difference Dt has been proven with ν = O(

√
n) and λ ≤ 1/(2en) = 1/b∗. Before we

formally apply this lemma, we also establish concentration in the other direction.

5.3 Preparing a Lower Tail Bound

We will now complement the upper tail bound for g that we prepared in the previous
subsection with a lower tail bound. The aim is again to apply Theorem 11, this time
with respect to the sequence Yt = g(Xt) +

∑t−1
s=0 Pr(T > s) + r(t, n), where Xt = n −

LeadingOnes(xt) is still the fitness distance of the LeadingOnes-value at time t from
the target and r(t, n) is an “error term” that we will prove to be O(1/n) if g(Xt) > log n.
Moreover, r(t, n) = 0 if g(Xt) = 0. The first step is to prove that Yt is a submartingale,
i. e., E(Yt+1 | Yt) ≥ Yt. Afterwards, we bound the mgf. of Dt = Yt − Yt−1 = g(Xt+1) −
g(Xt) + Pr(T > t) + r(t, n).

Lemma 3. The sequence Yt = g(Xt)+
∑t−1

s=0 Pr(T > s)+ r(t, n) is a submartingale with
r(t, n) = O(1/n) for Xt > log n.

Proof. We first note that nothing is to show if g(Xt) = 0. Hence, we assume g(Xt) > 0
in the following. From Section 5 we know that E(g(Xt)− g(Xt+1) | Xt) ≥ 1. Basically,
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this holds since the function g is concave and the slope at point Xt equals 1/h(Xt), so
that g scales the drift of the Xt-process at this point, which is h(Xt), by a factor of
1/h(Xt). We will next show that the error incurred by estimated the drift of g via the
slope 1/h(Xt) is small. The approach is similar to [7], who analyzed this kind of error
with respect to the drift function of the (1+1) EA on OneMax.

We claim that if Xt ≥ log n then

E(g(Xt)− g(Xt+1) | Xt) ≤ 1 +O(1/n).

To prove the claim, we show

E(g(Xt)− g(Xt+1) | Xt)−
E(Xt −Xt+1 | Xt)

h(Xt)
= O(1/n)

instead. Substituting the definition of g and noting that Xt+1 ≤ Xt, this is equivalent
to

E

(

∫ Xt

Xt+1

1/h(i) di
∣

∣

∣
Xt

)

− E(Xt −Xt+1 | Xt)

h(Xt)

and, due to the discrete state space, it is also equivalent to

E





Xt
∑

i=Xt+1

1

h(i)

∣

∣

∣
Xt



− E(Xt −Xt+1 | Xt)

h(Xt)
.

By the definition of expectation, this difference equals

Xt
∑

j=1

Pr(Xt+1 = Xt − j)





Xt
∑

k=Xt−j+1

1

h(k)
− j

h(Xt)





≤
Xt
∑

j=1

Pr(Xt+1 = Xt − j)

(

j

h(Xt − j + 1)
− j

h(Xt)

)

, (5)

where we used that h is non-decreasing. After an index manipulation (formally, writing
j′ = j − 1), we are left with the task of bounding

(

1

h(Xt − j′)
− 1

h(Xt)

)

for j′ ≥ 1 (since for j′ = 0 the difference is 0). Writing the difference as

h(Xt)− h(Xt − j′)
h(Xt)h(Xt − j′)

and using the bounds

(1− 1/n)n−i

2n
≤ h(i) =

(1− 1/n)n−i

(2− (1/2)i−1)n
≤ n(1 + 1/n)(1 − 1/n)n−i

2n
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according to Lemma 1 for i ≥ log n, we obtain for Xt ≥ 2 log n and j′ ≤ log n that

h(Xt)− h(Xt − j′)
h(Xt)h(Xt − j′)

≤
4n2

(

1 + 1
n

)

(

(

1− 1
n

)n−Xt −
(

1− 1
n

)n−Xt+j′
)

2n
(

1− 1
n

)n−Xt+n−Xt+j′

=
2n
(

1 + 1
n

) (

1− 1
n

)n−Xt

(

1−
(

1− 1
n

)j′
)

(

1− 1
n

)n−Xt+n−Xt+j′

≤ 2e

(

1 +
1

n

)2

j′,

where the last inequality used Bernoulli’s inequality and the estimate (1 − 1/n)n ≥
e−1(1− 1/n).

Together with the estimate Pr(Xt+1 = Xt − j) ≤ 1
n

(

1
2

)j−1
from Lemma 1 and

recalling the index transformation, we bound (5) from above by

Xt
∑

j=1

1

n

(

1

2

)j−1

j2e(1 + 1/n)2(j − 1) = O(1/n)

as suggested. �

Recall that the aim is to apply Theorem 11 with respect to the submartingale se-
quence Yt = g(Xt) +

∑t−1
s=0 Pr(T > s) + r(t, n). To this end, we shall bound the mgf. of

Dt = Yt − Yt−1 = g(Xt+1)− g(Xt) + Pr(T > t) + r(t, n) in the following way.

Lemma 4. The mgf. of Dt = Yt−Yt−1 = g(Xt+1)− g(Xt)+Pr(T > t)+ r(t, n) satisfies
E(eλDt | Xt) = eO(λ2n) for all λ ∈ [1/n2, 1/(2en)].

Proof. Without loss of generality the process stops from time T on so that g(Xt+1) −
g(Xt) = 0 for all t ≥ T . Hence, conditional on T ≤ t we have E(eλDt) = eλ0+0 = 1 ≤
eλ

2ν2/2. We now consider the interesting case that T > t. Then

E(eλDt | Xt) = E(eλ(g(Xt+1)−g(Xt)+1+r(t,n)) | Xt)

since Pr(T > t) = 1 on our condition. This mgf. differs from the one investigated in
Lemma 2 and its proof only by the factor eλr(t,n). Adjusting (4) accordingly and plugging
in r(n) = r(t, n) = O(1/n), we obtain

E(eλDt | Xt = i) (6)

= (1− 1/n)n−i 1

n
(1 + λ(1 + r(n)))

+ λ2(1 + r(n))2)
(

1− λn(1− 1/n)i−n +O(λ2n2)
)

+

(

1− (1− 1/n)n−i 1

n

)

(1 + λ(1 + r(n)) + λ2(1 + r(n))2)

= 1 + λ+ λ2 + λr(n) + λ2(2r(n) + r2(n))− λ+O(λ2n)

≤ eλ
2+O(λ/n)+O(λ2/n)+O(λ2n) = eO(λ/n+λ2n),
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for λ ≤ 1/(2en). Since λ/n ≤ λ2n for λ ≥ 1/n2, we have E(eλDt | Xt = i) = eO(λ2n) for
all λ ∈ [1/n2, 1/(2en)]. �

Hence, we can satisfy the assumptions of Theorem 11 with b2 = 2en and b1 = n2. We
will apply this theorem in the following subsection, where we put everything together.

5.4 Main Concentration Result – Putting Everything Together

In the previous subsections we have derived (w. r. t. LeadingOnes) that the sequence

∆
(ℓ)
t = g(Xt)− g(Xt+1)+

∑t−1
s=0 Pr(T > s) is a supermartingale and the sequence ∆

(h)
t =

g(Xt)− g(Xt+1)+
∑t−1

s=0 Pr(T > s)+ r(t, n), where r(t, n) = O(1/n), is a submartingale.

We also know from Theorem 7 that E(g(Xt) | F0) ≤ g(X0) −
∑T−1

s=0 Pr(T > s). Hence,

using Theorem 11 with respect to the ∆
(ℓ)
t -sequence, choosing b1 = ∞ and b2 = 2en

according to our analysis of the mgf., we obtain (since ν2 = O(n)) the first statement
of the following theorem. Its second statement follows by applying Theorem 11 with

respect to the ∆
(h)
t -sequence, choosing b2 = 2en and b1 = n2.

Theorem 12.

Pr
(

g(Xt) ≥ E(g(Xt)) + d
)

≤
{

e−d/(4en), if d ≥ Ct;

e−Ω(d2/(tn)), otherwise,

where C = ν2/(4en) = O(1). Moreover,

Pr
(

g(Xt) ≤ E(g(Xt))− d− tr(t, n)
)

≤
{

e−d/(4en), if d ≥ Ct;

e−Ω(d2/(tn)), if C′t
n ≤ d < Ct;

where C = ν2/(4en) = Θ(1) and C ′ = ν2/n = Θ(1).

As mentioned above, Theorem 7 gives us an upper bound on E(g(Xt)) but we would
like to know an upper bound on E(Xt). Unfortunately, since g is concave, it does not
hold that E(Xt) ≤ g−1(E(g(Xt))). However, using the concentration inequalities above,
we can show that E(Xt) is not much bigger than the right-hand side of this wrong
estimate. Given t > 0, we choose a d∗ > 0 for the tail bound such that Pr(g(Xt) >
E(g(Xt)) + d∗) ≤ 1/n3. If g(Xt) ≤ E(g(Xt)) + d∗, the concavity of g implies that
the E(Xt)-value is maximized if g(Xt) takes the value E(g(Xt)) + d∗ with probability

E(g(Xt))
E(g(Xt))+d∗ and is 0 otherwise. Since g(Xt) = O(n2), we altogether have

E(Xt) ≤
1

n3
O(n2) + g−1(E(g(Xt)) + d∗)

E(g(Xt))

E(g(Xt)) + d∗

= g−1(E(g(Xt)) + d∗)
E(g(Xt))

E(g(Xt)) + d∗
+ o(1).

We will now make this concrete and conclude by presenting the proof of our main
theorem from this section.
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Proof of Theorem 10. First of all, we need some handy estimates for g(a) = 1
h(1) +

∑a
1

1
h(i)di. Since i is an integer, we can also integrate over 1/h(⌈i⌉) instead and obtain

g(a) =
a
∑

i=1

1

h(i)
=

a
∑

i=1

(2− (1/2)i−1)−1(1− 1/n)i−nn

using the expression from Lemma 1. So,

g(a) ≤ n

2

a
∑

i=1

(1− 1/n)i−n =
n

2
(n− 1)(1 − 1/n)−n

(

1−
(

1− 1

n

)a)

.

Also, since 2− (1/2)i−1 ≥ 2− 2/n for i ≥ log n, we have

g(a) ≥
(

1− 1

n

) a
∑

i=logn+1

1

2
(1− 1/n)i−n

≥ (n− 1)2

2
(1− 1/n)−n

(

1−
(

1− 1

n

)a)

− 2n log n

≥ en2

2

(

1−
(

1− 1

n

)a)

− 3n log n, (7)

where the last bound holds for sufficiently large n.
Let Xt := n − Vt be the fitness distance at time t. Using Theorem 12 with d =

c∗
√
tn lnn, where c∗ is a sufficiently large constant, and noting that d < Ct by our

assumption on t (for n large enough), we have

Pr
(

g(Xt) ≥ E(g(Xt)) + d
)

≤ e−Ω(d2/(tn)) ≤ 1/n3.

So, if we have a bound on E(g(Xt)), we will obtain a bound on E(Xt) via the inverse
of g computed above.

We define T ∗ = e−1
2 n2 and note that this reflects the expected optimization time

E(T ) of the (1+1) EA on LeadingOnes up to a relative error of 1 +O(1/n) according
to Lemma 1. Since t ≤ T ∗ − cn3/2

√
log n, we obtain from Theorem 1 by choosing c

sufficiently large that Pr(T ≤ t) ≤ 1/n3. Hence, from Theorem 7, E(g(Xt)) ≤ e−1
2 n2 −

t+O(1/n).
Altogether,

Pr

(

g(Xt) ≥
e− 1

2
n2 − t+O(

√

tn log n)

)

≤ 1

n3
.

We now invert g, more precisely the lower bound (7) since g is increasing and we
want to bound the pre-image from above. Hence, we obtain that

z = g(a) ≥ en2

2

(

1−
(

1− 1

n

)a)

− 3n log n
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implies

a(z) ≤
ln(1− 2z+6n logn

en2 )

ln(1− 1/n)
.

Using z = e−1
2 n2 − t+O(

√
tn log n), we finally have

Xt ≤
ln(1− (e−1)n2−2t+O(

√
tn logn)+6n logn

en2 )

ln(1− 1/n)

=
ln(1/e − 2t/(en2) +O(

√
t log n/n3/2))

ln(1− 1/n)

=
−1 + ln(1− 2t/n2 +O(

√
t log n/n3/2))

ln(1− 1/n)

with probability at least 1−n−3. Estimating ln(1−1/n) = −1/n±O(1/n2) and moving
the error term into the logarithm, the lower bound on Vt = n −Xt from the first claim
follows of the theorem after straightforward manipulations.

The upper bound on Vt is proved almost analogously. We use the ∆(h) sequence
instead of the ∆(ℓ) sequence and note that the r(t, n) terms vanish in theO(

√
t log n/n3/2)

errors. The only requirement that has to be met additionally is that Lemma 3 only holds
for Xt > log n. However, by a straightforward change of Theorem 1 by choosing c as a
sufficiently large constant we have not only Pr(T ≤ t) ≤ 1/n3 but also Pr(min{s | Xs ≤
log n} ≤ t) ≤ 1/n3.

For the expected value, we note that Xt ≤ n, so by the law of total probability, and
again estimating ln(1− 1/n) = −1/n ±O(1/n2), the claim follows. �

6 Conclusions

We have described two general approaches that derive fixed-budget results via drift anal-
ysis. The first approach is concerned with iterating drifts either in an unbounded time
scenario, or, using bounds on hitting times, in the scenario that the underlying process
stops at some target state. Applying this approach to the OneMax or LeadingOnes

functions, we obtain strong lower bounds on the expected fitness value after a given num-
ber of iterations. The second approach is based on variable drift analysis and tail bounds
for martingale differences. Exemplified for the LeadingOnes function, this technique
allows us to derive statements that are more precise than the previous state of the art.
We think that our drift theorems can be useful for future fixed-budget analyses.
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