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ABSTRACT. In order to model an efficient learning paradigm, iterative learning algorithms access data one by one, up-
dating the current hypothesis without regress to past data. Past research on iterative learning analyzed for example many
important additional requirements and their impact on iterative learners.

In this paper, our results are twofold. First, we analyze the relative learning power of various settings of iterative
learning, including learning from text and from informant, as well as various further restrictions, for example we show that
strongly non-U-shaped learning is restrictive for iterative learning from informant.

Second, we investigate the learnability of the concept class of half-spaces and provide a constructive iterative algorithm
to learn the set of half-spaces from informant.

1. INTRODUCTION

We are interested in the problem of algorithmically learning a description for a formal language (a computably
enumerable subset of the set of natural numbers) when presented successively all and only the elements of that
language; this is sometimes called inductive inference, a branch of (algorithmic) learning theory. For example, a
learner M might be presented more and more even numbers. After each new number, M outputs a description for a
language as its conjecture. The learner M might decide to output a program for the set of all multiples of 4, as long as
all numbers presented are divisible by 4. Later, when h sees an even number not divisible by 4, it might change this
guess to a program for the set of all multiples of 2.

Many criteria for deciding whether a learner M is successful on a language L have been proposed in the literature.
Gold, in his seminal paper [Gol67], gave a first, simple learning criterion, TxtEx-learning1, where a learner is suc-
cessful iff, on every text for L (a listing of all and only the elements of L) it eventually stops changing its conjectures,
and its final conjecture is a correct description for the input sequence. Trivially, each single, describable language L
has a suitable constant function as a TxtEx-learner (this learner constantly outputs a description for L). As we want
algorithms for more than a single learning task, we are interested in analyzing for which classes of languages L is
there a single learner M learning each member of L. This framework is also sometimes known as language learning
in the limit and has been studied extensively, using a wide range of learning criteria similar to TxtEx-learning (see,
for example, the textbook [JORS99]).

One major criticism of the model suggested by Gold is its excessive use of memory: for each new hypothesis the
entire history of past data is available. Iterative learning is the most common variant of learning in the limit which
addresses memory constraints: the memory of the learner on past data is just its current hypothesis. Due to the padding
lemma, this memory is still not void, but finitely many data can be memorized in the hypothesis.

There is already a quite comprehensive body of work on iterative learning [CK10, CM08, JKMS16, JMZ13,
JORS99]. However, this work focuses on learning from from text, that is, from positive data only. In this paper
we are also interested in the other important paradigm of learning from both positive and negative information. For
example, when learning half-spaces, one could see data declaring that x1, 1y is in the target half-space, further is
x3, 2y, but x1, 10y is not, and so on. This setting is called learning from informant (in contrast to learning from text).

Iterative learning from informant was analyzed by [JLZ07], where various natural restrictions were considered; the
authors focused on the case of learning indexable families (classes of languages which are uniformly decidable). Here
they showed for example that learners can be assumed to be consistent with the data just seen, but not necessarily with

1Txt stands for learning from a text of positive examples; Ex stands for explanatory.
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FIGURE 1. Learning Process when the hypotheses correspond to half-spaces and data is binary labeled.

all previously presented data, both for learning from text and from informant. In this paper we additionally consider
learning of arbitrary classes of computably enumerable languages and of classes with only recursive languages.

In Section 3 we consider two restrictions on learning from informant: learning from text and learning iteratively.
We show that both these restrictions render fewer classes of languages learnable; in fact, the two restrictions yield two
incomparable sets of language classes being learnable, which also shows that learning iteratively from text is weaker
than supposing just one of the two restrictions.

For understanding iterative learners we analyze what normal forms can be assumed about such learners in Section 4.
First we show that, analogously to the case of learning from text (as analyzed in [CM09]), we cannot assume learners
to be total (i.e. always giving an output). However, from [CM07] we know that we can assume iterative text learners to
be canny; we adapt this normal form for the case of iterative learning from informant and show that it can be assumed
to hold for iterative learners generally.

Many works focus on understanding these properties via relating different learning restrictions for the learning
setting at hand; for example, [JKMS16] mapped out all pairwise relations for a group of learning restrictions for
iterative learning from text. A similar map for the case of iterative learning from informant is not known, but we
believe that the normal form of canniness is an important stepping stone to understand iterative learners better and
determine such pairwise relations. In Section 5 we collect all previously known results for such a map, give more
such relations and discuss which questions remain open.

We complement these structural insights with an analysis of the learnability of the language class of half-spaces in
Sections 6 and 7. Fundamental machine learning algorithms for supervised binary classification like support vector
machines and the perceptron use half-spaces as hypothesis space. With a fixed computable kernel function even more
learning tasks can be reduced to classifying with half-spaces. The learnability of linear predictors has been investigated
with respect to other learning models and respective research questions, e.g. PAC-learning [Sha15], Preference-based
Teaching [GRSZ17]. See [SSBD14] for an introduction to this concept class and different implemented learning al-
gorithms. As we are concerned with computable learners, we first formalize the problem by encoding it appropriately.
We then observe that the set of half-spaces forms an indexable family and is therefore learnable by enumeration from
informant by a full-information learner, due to [Gol67]. Our contribution is a geometric and therefore constructive
iterative learning algorithm for the family of half-spaces. The iterative learner patiently waits for data indicating that
he already encountered a locking sequence. Every so-called LOCK-state directly corresponds to a half-space. In a
LOCK state the learner ignores all further consistent data. Hence, our iterative learning algorithm employs the option
to store data as part of the hypothesis in order to wait for helpful data and on the other hand is smart enough to know,
when to stop collecting. In Section 6 we illustrate the algorithm in dimension 2. The general constructive algorithm
and a complete correctness proof for arbitrary dimension can be found in Section 7.

We continue this paper with some mathematical preliminaries in Section 2 before discussing our results in more
detail.

2. ITERATIVE LEARNING FROM INFORMANT

We let N denote the natural numbers including 0 and write 8 for an infinite cardinality. Moreover, for a function
f we write dompfq for its domain and ranpfq for its range. If we deal with (a subset of) a cartesian product, we
are going to refer to the projection functions to the first or second coordinate by pr1 and pr2, respectively. Further,
X ω denotes the finite sequences over X and Xω stands for the countably infinite sequences over X . Additionally,
X¤ω :� X ω Y Xω denotes the set of all countably finite or infinite sequences over X . For every f P X¤ω and
t P N, we let f rts :� tps, fpsqq | s   tu denote the restriction of f to t. Finally, for sequences σ, τ P X ω their
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concatenation is denoted by σaτ and we write σ � τ , if σ is an initial segment of τ , i.e., there is some t P N such
that σ � τ rts. Moreover, we concatenate sequences by writing them consecutively. In our setting, we typically have
X � N or X � N� t0, 1u.

As far as possible, notation and terminology on the learning theoretic side follow [OSW86] and [JORS99], whereas
on the computability theoretic side we refer to [Odi99], [Rog67] and [Köt09].

A language L is a recursively enumerable subset of N. A prediction model f is a function f : N Ñ t0, 1u.
We identify subsets of N with their characteristic functions N Ñ t0, 1u. Hence, there is a one-one correspondence
between recursive languages and recursive binary functions. We denote the characteristic function for L � N by fL.

When considering binary supervised learning, the set of all training data sequences S is the set of all finite se-
quences

σ � ppn0, y0q, . . . , pn|σ|�1, y|σ|�1qq
of consistently binary labeled natural numbers. In case of learning from positive data only, we encounter the set T of
finite sequences τ � pn0, . . . , n|τ |�1q of natural numbers.

In the context of language learning, [Gol67], in his seminal paper, distinguished two major different kinds of
information presentation. A function

I : NÑ N� t0, 1u
is an informant for language L, if there is a surjection n : N Ñ N such that for every t P N holds Iptq �
pnptq, fLpnptqqq. As fL is used to label the range of n, only consistently labeled sequences result. Hence, the range
of I is a complete information about L but I is free to repeat data. Moreover, for an informant I we let

pospIq :� ty P N | Dx P N : pr1pIpxqq � y ^ pr2pIpxqq � 1u and

negpIq :� ty P N | Dx P N : pr1pIpxqq � y ^ pr2pIpxqq � 0u
denote the sets of all natural numbers, about which I gives some positive or negative information, respectively.

A text for language L is a function T : NÑ NYt#u with range L after removing #. The symbol # is interpreted
as pause symbol and added to deal with finite languages. The main difference between an informant and a text for L
is that the informant tells you also that a natural number is not in L.

A set L � tLi | i P Nu of languages is called indexable family if there is a computer program that on input
pi, nq P N2 returns 1 if n P Li and 0 otherwise. Important examples are Fin and CoFin, the set of all finite subsets
of N and the set of all complements of finite subsets of N, respectively.

A learner M from informants (texts) is a (partial) computable function

M : SÑ N pM : TÑ Nq
with the output interpreted with respect to a prefixed hypothesis space H.

Often the hypothesis space is an indexable class or the established W -hypothesis space defined in Subsection 4.
Let L be a collection of languages that we want to learn. We will refer to L as the concept class which will often

be an indexable family. Further, let H � tLi | i P Nu with L � H be a second collection of languages called the
hypothesis space. In general we do not assume that for every L P L there is a unique index i P N with Li � L.
Indeed, ambiguity in the hypothesis space helps memory-resticted learners to remember data.

Let I be an informant (T be a text) for L and H � tLi | i P Nu a hypothesis space. A learner M : S Ñ N
(M : TÑ N) is successful on I (on T ) if it eventually settles on i P N with Li � L. This means that when receiving
increasingly long finite initial segments of I (of T ) as inputs, it will from some time on be correct and not change the
output on longer initial segments of I (of T ).
M learns L if it is successful on every informant I (on every text T ) for L. M learns L if there is a hypothesis

space H such that M learns every L P L. We denote the collection of all L learnable from informant (text) by
rInfExs (rTxtExs). If we fix the hypothesis space, we denote this by a subscript for Ex.

According to [Wie76], [LZ96], [CJLZ99] a learner M is iterative if its output on σ P S (τ P T) only depends on
the last input lastpσq and the hypothesis Mpσ�q after observing σ without its last element lastpσq. In this sense the
learner forgets all prior data and can only refer to the hypothesis which resulted from this data. The collection of all
L learnable by an iterative learner from informant (text) is denoted by rItInfExs (rItTxtExs).
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3. COMPARISON WITH LEARNING FROM TEXT

As every informant incorporates a text for the language presented, we gain rItTxtExs � rItInfExs by ignoring
negative information.

It has been observed in [OSW86] that the superfinite language class FinY tNu is in rInfExszrItInfExs. More-
over, with Lk � 2N Y t2k � 1u and L1k � Lkzt2ku the indexable family L � t2Nu Y tLk, L1k | k P Nu lies in
rTxtExs X rItInfExs but not in rItTxtExs. In [JORS99] the separations are witnessed by the indexable family
tNzt0uu Y tD Y t0u : D P Finu.

We already observed that not every indexable family is learnable by an iterative learner from informant. On
the other hand, learning by enumeration makes every indexable family learnable by an iterative learner from the
informants labeling all natural numbers in the canonical order, see [Gol67].

It can easily be verified that CoFin P rItInfExszrTxtExs and with the next result rItInfExs K rTxtExs,
where K stands for incomparability with respect to set inclusion, meaning (1) there is a concept class learnable from
text but not by an iterative learner from informant and (2) there is a concept class learnable by an iterative learner
from informant but not from text.

Lemma 3.1. There is an indexable family in rTxtExszrItInfExs.
Proof. As there is a computable bijection between N and N�N, we can also consider subsets of N�N as languages.
Denote by LS,D � S � pDY t0uq Y pNzSq � pNzt0uq � N�N the language with DY t0u in all rows numbered by
an s P S and Nzt0u in all other rows. Consider the indexable family

L � tLS,D | S,D P Finu.
L is clearly an indexable family, as there is a computable enumaration of all pairs pS,Dq where S is a finite subset

of N and D is a finite subset of Nzt0u. Moreover, there is a uniform procedure to check whether pn1, n2q is in LS,D.
F P rTxtExs: Maintain full information at step n of the entire sequence T rns read from text. Conjecture

S1 :� tx|px, 0q P T rnsu and D1 :� ty|Dx P S1 : px, yq P T rnsu. S1 will eventually converge to S as all px, 0q will be
received by the learner at some point for all x P S. After S1 � S, we can say that D1 will also converge to D (if it has
not already) because at some point all px, yq will have been received for all x P S.

F R rItInfExs: Suppose an iterative learner M learns F from informants. Let σ be a locking sequence of
M for N � pNzt0uq. Let x0 be such that px0, 0q does not appear in σ. Such an x0 must exist because there are
infinitely many px, 0q but σ is a finite sequence. Define D :� ty|px0, yq P pospσqu. L :� tx0u � pD Y t0uq Y
pNztx0uq � pNzt0uq is then consistent with σ, so let σ1 � σ be a locking sequence for L. Define y0 such that
y0 ¡ max pt0u Y ty|Dx : px, yq P pospσ1q Y negpσ1quq. The element px0, y0q is consistent with N � pNzt0uq if and
only if it is labeled positively and with L if and only if it is labeled negatively. Because σ is a locking sequence for
N� pNzt0uq and ppx0, y0q, 1qq is consistent with it, Mpσppx0, y0q, 1qq �Mpσq � e1 such that We1 � N� pNzt0uq
so by iterativeness ofM we have that if τ :� σppx0, y0q, 1qpσ1�σqwhere σ1�σ is the subsequence of σ1 starting after
σ ends, then Mpτq � Mpσ1q meaning τ is also a locking sequence for L. This is a contradiction because if I is an
informant for L, then J :� Iztppx0, y0q, 0qu is also consistent with L so for all ` ¥ 0 we have MpτJr`sq �Mpσ1q �
e2 such that We2 � L but τJ is an informant for L1 :� tx0u � pD Y tpx0, y0qu Y t0uq Y pNztx0uq � pNzt0uq P F
and L1 � L, a contradiction.

Summing up, we know rItTxtExs � rTxtExs K rItInfExs � rInfExs.
In the following we give a procedure to generate more separating classes in rTxtExszrItInfExs. With the help of

the Boolean function f being defined in Definition 3.2 we obtain from an indexable family L P rInfExszrItInfExs
an indexable family fpLq P rTxtExszrItInfExs.

The idea is to apply the Boolean function f , defined in the following, to an indexable family, a set of informants
and to a hypothesis space being a candidate to witness the learnability. With this notation we can draw conclusions
from the learnability in the setting before applying f to the setting after applying f and vice versa.

Definition 3.2. We refer to the function f : PpNq Ñ PpNq defined by

p2n P fpLq ô n P Lq ^ p2n� 1 P fpLq ô n R Lq
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as the Boolean mapping. For a set of languages L we define fpLq � tfpLq|L P Lu.
Note that for an indexable class L the image fpLq is again an indexable class.
To obtain a result also applicable in other contexts, we generalize the notation. Let I be a set of informants (texts),

for example the ones containing each information only once or infinitely often. M learns L from I if it is successful
on every I P I for L. M learns L from I if it learns every L P L from I. We denote the collection of all L learnable
from I by rIExs.

The idea is to apply the Boolean function f to an indexable family, a set of informants and a hypothesis space
possibly witnessing the learnability. With this notation we can draw conclusions from the learnability in the setting
before applying f to the setting after applying f and vice versa.

Definition 3.3. We refer to the function f : PpNq Ñ PpNq defined by

p2n P fpLq ô n P Lq ^ p2n� 1 P fpLq ô n R Lq
as the Boolean mapping. For a set of languages L we define fpLq � tfpLq|L P Lu. For an informant I for L we
obtain an informant fpIq for fpLq by interweaving I� and I� where

I�ptq �
#
p2nt, 1q if Iptq � pnt, 1q;
p2nt � 1, 1q if Iptq � pnt, 0q.

and I�ptq �
#
p2nt � 1, 0q if Iptq � pnt, 1q;
p2nt, 0q if Iptq � pnt, 0q.

Moreover, the projection of I� to the first coordinate yields a text for fpLq. For a set of informants I we define the
corresponding sets of informants fpIq and texts Tf pIq by

fpIq :� tfpIq | I P Iu and Tf pIq :� tpr1 � I� | I P Iu.
Note that for an indexable class L the image fpLq is again an indexable class.

We will apply the following result to the full set of informants but state it more generally for arbitrary sets of
informants I.

Theorem 3.4. Let I be a set of informants, L � tpospIq|I P Iu a concept class and H an indexable family as
suitable fixed hypothesis space. Consider the Boolean mapping f from Definition 3.2.

If L P rIExHs, then fpLq P rTf pIqExfpHqs.
Moreover, if I is upwards closed with respect to the subsequence relation, then L P rpItqIExHs is equivalent to

fpLq P rpItqfpIqExfpHqs.
Proof. Let f , I, L and H be as stated above.

L P rIExHs ñ fpLq P rTf pIqExfpHqs : Let M be a learner for L from I. Let fpLq P fpLq and T P TtpIq a
text for fpLq. Then there is an informant I P I for L such that T � pr1 � I�. If for every t P N we denote the first
and second coordinate of Iptq by nt and λt, respectively, we obtain T � p2nt � 1 � λtqtPN. Therefore, we can in a
computable way reconstruct Irts from T rts. We define a learner M 1 which simulates M by M 1pT rtsq � MpIrtsq. It
is easy to see that M 1 learns fpLq from Tf pIq.

If I is upwards closed with respect to the subsequence relation, L P rItIExHs ñ fpLq P rItfpIqExfpHqs : The
proof is very similar to the last paragraph. Let M be a learner for L from I. Let fpLq P fpLq and I 1 P fpIq an
informant for fpLq. Then there is an informant I P I for L such that I 1 results from interweaving I� and I�. We
compute Ĩptq � ptxt2 u, pxt � wtq mod 2q from I 1ptq � pxt, wtq and define M 1 by M 1pI 1rtsq � MpĨrtsq. Because Ĩ
contains I as a subsequence, we obtain Ĩ P I. Again, it is easily verified that M 1 learns fpLq from fpIq. Moreover, it
easy to see that M 1 is iterative, in case M is.
fpLq P rItfpIqExfpHqs ñ L P rItIExHs: We proceed in a similar fashion. Let M 1 be a learner for fpLq

from fpIq. Let L P L and I an informant for L. We recursively construct initial segments σt with |σt| � 2t for
the informant fpIq for fpLq from I as follows: σ0 � H; if σt is defined and Iptq � pnt, λtq then let σt�1 �
σtp2nt � 1� λt, 1qp2nt � λt, 0q. Clearly, fpIq � �tPN σt. The learner MpIrtsq �M 1pσtq learns L from I. Finally,
if M 1 is iterative, so is M .

If I is the set of all informants for L, then Tf pIq is the set of all texts for fpLq. fpIq is the set of all informants for
fpLq that have the positive and negative informations in the order given by interweaving.
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Corollary 3.5. Consider the Boolean mapping f from Definition 3.2. Then for indexable concept classes and hypoth-
esis spaces holds: L P rInfExs ñ fpLq P rTxtExs, and L P rItInfExs ð fpLq P rItInfExs.
Proof. For the second implication note that fpLq P rItInfExs ñ fpLq P rIt fpInfqExs ñ L P rItInfExs.

Therefore, every set of languages separating rItInfExs and rInfExs yields a separating class for rItInfExs and
rTxtExs.
Corollary 3.6. Consider the Boolean mapping f from Definition 3.2. Let L be an indexable concept class and require
that learnability is witnessed by indexable hypothesis spaces. Then L P rInfExs implies fpLq P rTxtExs. Moreover,
from fpLq P rItInfExs we can conclude L P rItInfExs.

4. TOTAL AND CANNY LEARNERS

For the rest of this section, without further notation, all results are understood with respect to the W -hypothesis
space defined in the following. We fix a programming system ϕ as introduced in [RC94]. Briefly, in the ϕ-system, for
a natural number p, we denote by ϕp the partial computable function with program code p. We also call p an index
for Wp defined as dompϕpq. In reference to a Blum complexity measure, for all p, t P N, we denote by W t

p � Wp

the recursive set of all natural numbers less or equal to t, on which the machine executing p halts in at most t steps.
Moreover, by s-m-n we refer to a well-known recursion theoretic observation, which gives nice finite and infinite
recursion theorems, like Case’s Operator Recursion Theorem ORT.

Let us discuss Theorem 3.4 for W -indices. For, let p be such that Wp P L. There is an obvious mapping from an
W -index q for fpWpq P fpLq to some p1 with Wp � Wp1 . Unfortunately, it is not possible to map a W -index for a
non-recursive Wp to a W -index for fpWpq.

The question whether excluding partial functions as learners, denoted by R, makes some sets of languages un-
learnable has been investigated. Allowing only total learners does not restrict full-information learning from in-
formant and text, i.e. rRInfExs � rInfExs and rRTxtExs � rTxtExs. On the other hand [CM09] showed
rRItTxtExs � rItTxtExs.

We show that totality restricts iterative learning from informant.

Theorem 4.1. rItInfExszrRItInfExs � ∅.

Proof. Let o be an index for ∅ and define the iterative learner M for all ξ P N�t0, 1u by

Mp∅q � o;

hM ph, ξq �
#
ϕpr1pξq

p0q, else if pr2pξq � 1 and h R ranpindq;
h, otherwise.

We argue that L :� tL � N | L P ItInfExpMq u is not learnable by a total learner from informants. Assume
towards a contradiction M 1 is such a learner.

For a finite informant sequence σ we denote by σ the corresponding canonical finite informant sequence, ending
with σ’s datum with highest first coordinate. Then by padded ORT there are e P N and a strictly increasing computable
function a : N ω Ñ N, such that for all σ P N ω and all i P N

σ0 � ∅;

σi�1 � σi
a

#
papσiq, 1q, if M 1pσiapapσiq, 1qq �M 1pσiq;
∅, otherwise;

(1)

We �
¤
iPN

pospσiq;

ϕapσqpxq �
#
e, if M 1pσapapσq, 1qq �M 1pσq;
indpospσqYtapσqu, otherwise;
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Clearly, we have We P L and thus M 1 also InfEx-learns We. By the Ex-convergence there are e1, t0 P N, where
t0 is minimal, such that We1 � We and for all t ¥ t0 we have M 1p�iPN σirtsq � e1 and hence by (1) for all i with
|σi| ¥ t0

M 1pσiapapσiq, 1qq �M 1pσiq �M 1pσiapapσiq, 0qq.
It is easy to see, that We � pospσiq and We Y tapσiqu P L. On the other hand M 1 is iterative and hence does not

learn We and We Y tapσiqu.

The following definition is central in investigating the learning power of iterative learning from texts, see [CM07]
and [JKMS16]. We transfer it to learning from informants.

Definition 4.2. A learner M from informant is called canny in case for every finite informant sequence σ holds
(1) if Mpσq is defined then Mpσq P N;
(2) for every x P Nzcontentpσq and i P t0, 1u a mind change Mpσapx, iqq � Mpσq implies for all finite

informant sequences τ with σapx, iq � τ that Mpτapx, iqq �Mpτq.
Hence, the learner is canny in case it always outputs a hypotheses and no datum twice causes a mind change of the

learner. Also for learning from informant, the learner can be assumed canny.

Lemma 4.3. For every iterative learner M , there exists a canny iterative learner N such that

InfExpMq � InfExpNq.
Proof. Let f be a computable 1-1 function mapping every finite informant sequence σ to a natural number encoding
a program with Wfpσq �WMpσq if Mpσq P N and Wfpσq � ∅ otherwise. Clearly, σ can be reconstructed from fpσq.
We define the canny learner M 1 by letting

M 1p∅q � fp∅q

hM 1pfpσq, px, iqq �

$'&
'%
fpσapx, iqq, if x R pospσq Y negpσq ^Mpσapx, iqqÓ �MpσqÓ;
fpσq, if Mpσapx, iqqÓ �MpσqÓ _ x P contentpσq;
Ò, otherwise.

M 1 mimics M via f on a possibly finite informant subsequence of the originally presented informant with ignoring
data not causing mind changes of M or that has already caused a mind change.

Let L P InfExpMq and I 1 P InfpLq. As M has to learn L from every informant for it, M 1 will always be defined.
Further, let σ0 � ∅ and

σt�1 �
#
σt

aI 1ptq, if I 1ptq R ranpσtq ^MpσtaI 1ptqqÓ �MpσtqÓ;
σt, otherwise.

Then by induction for all t P N holds M 1pI 1rtsq � fpσtq.
The following function translates between the two settings

rp0q � 0;

rpt� 1q � mintr ¡ rptq | I 1pr � 1q R ranpσrptqqu.
Intuitively, the infinite range of r captures all points in time r at which a datum that has not caused a mind change
so far, is seen and a mind-change of M 1 is possible. Thus the mind change condition is of interest in order to decide
whether σrpt�1q � σrptq. Note that σr � σrptq for all r with rptq ¤ r   rpt� 1q.

Let Iptq � I 1prpt� 1q � 1q for all t P N. Since only already observed data is ommited, I is an informant for L.
We next argue that MpIrtsq � Mpσrptqq for all t P N. As Ir0s � ∅ � σ0, the claim holds for t � 0. Now we

assume MpIrtsq �Mpσrptqq and show MpIrt� 1sq �Mpσrpt�1qq as follows

MpIrt� 1sq �MpIrtsaIptqq �MpσrptqaIptqq.
As by the definitions of I and r we have Iptq � I 1prpt� 1q � 1q R ranpσrptqq there are two cases:

7



(1) If MpσrptqaIptqq �Mpσrptqq, then from σrpt�1q�1 � σrptq and the definition of M 1 we obtain σrpt�1q � σrptq.
Putting both together the claimed equality MpσrptqaIptqq �Mpσrpt�1qq follows.

(2) If MpσrptqaIptqq � Mpσrptqq, the definition of M 1 yields σrpt�1q � σrptq
aIptq. Hence the claimed equality

also holds in this case.
We now argue that M 1 explanatory learns L from I 1. In order to see this, first observe σrpt�1q � σrptq if and only if

MpI 1rt� 1sq �MpI 1rtsq for every t P N. This is because

σrpt�1q � σrptq ôMpσrptqaIptq q �Mpσrptqq
ôMpIrtsaIptqq �MpIrtsq
ôMpIrt� 1sq �MpIrtsq.

As I is an informant for L, the learner M explanatory learns L from I . Hence there exists some t0 such that
WMpIrt0sq � L and for all t ¥ t0 holds MpIrtsq � MpIrt0sq. With this follows σrptq � σrpt0q for all t ¥ t0.
As for every r there exists some t with rptq ¤ r and σr � σrptq, we obtain σr � σrpt0q for all r ¥ rpt0q. We
conclude M 1pI 1rtsq � fpσtq � fpσrpt0qq for all t ¥ rpt0q and by the definition of f finally Wfpσrpt0qq

�WMpσrpt0qq
�

WMpIrt0sq � L.

5. ADDITIONAL REQUIREMENTS

In the following we review additional properties one might require the learning process to have in order to consider
it successful. For this, we employ the following notion of consistency.

As in [LZZ08] according to [BB75] and [Bār77] for A � N we define

Conspf,Aq :ô pospfq � A ^ negpfq � NzA
and say f is consistent with A or f is compatible with A.

Learning restrictions incorporate certain desired properties of the learners’ behavior relative to the information
being presented. We state the definitions for learning from informant here.

Definition 5.1. Let M be a learner and I an informant. We denote by ht � MpIrtsq the hypothesis of M after
observing Irts and write

(1) ConvpM, Iq ([Ang80]), ifM is conservative on I , i.e., for all s, twith s ¤ t the consistency ConspIrts,Whsq
implies hs � ht.

(2) DecpM, Iq ([OSW82]), if M is decisive on I , i.e., for all r, s, t with r ¤ s ¤ t the semantic equivalence
Whr �Wht implies the semantic equivalence Whr �Whs .

(3) CautpM, Iq ([OSW86]), if M is cautious on I , i.e., for all s, t with s ¤ t holds  Wht �Whs .
(4) WMonpM, Iq ([Jan91],[Wie91]), if M is weakly monotonic on I , i.e., for all s, t with s ¤ t holds

ConspIrts,Whsq ñ Whs �Wht .
(5) MonpM, Iq ([Jan91],[Wie91]), if M is monotonic on I , i.e., for all s, t with s ¤ t holds

Whs X pospIq �Wht X pospIq.
(6) SMonpM, Iq ([Jan91],[Wie91]), if M is strongly monotonic on I , i.e., for all s, t with s ¤ t holds Whs �

Wht .
(7) NUpM, Iq ([BCM�08]), if M is non-U-shaped on I , i.e., for all r, s, t with r ¤ s ¤ t the semantic success

Whr �Wht � pospIq implies the semantic equivalence Whr �Whs .
(8) SNUpM, Iq ([CM11]), if M is strongly non-U-shaped on I , i.e., for all r, s, t with r ¤ s ¤ t the semantic

success Whr �Wht � pospIq implies the syntactic equality hr � hs.
(9) SDecpM, Iq ([KP14]), if M is strongly decisive on I , i.e., for all r, s, t with r ¤ s ¤ t the semantic

equivalence Whr �Wht implies the syntactic equality hr � hs.

It is easy to observe that ConvpM, Iq implies SNUpM, Iq and WMonpM, Iq; SDecpM, Iq implies DecpM, Iq
and SNUpM, Iq; SMonpM, Iq implies CautpM, Iq,DecpM, Iq,MonpM, Iq, WMonpM, Iq and finally DecpM, Iq
and SNUpM, Iq imply NUpM, Iq.
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The text variants can be found in [JKMS16] where all pairwise relations �, � or K between the sets rItTxtδExs
(iterative learners from text) for δ P ∆, where ∆ � tConv,Dec,Caut,WMon,Mon,SMon,NU,SNU,SDecu,
are depicted. The complete map of all pairwise relations between the sets rInfδExs (full-information learners from
informant) for δ P ∆ can be found in [AKS18]. For iterative learning from informants this complete map is not
known. We sum up the current status in the following.

Recall the indexable family L � t2NuYtLk, L1k | k P Nuwith Lk � 2NYt2k�1u and L1k � Lkzt2ku, separating
rItTxtExs from rTxtExs. Clearly, L P rRItInfConvSDecMonExs. With a locking sequence argument we
can observe rItInfSMonExs � rItInfδExs for all δ P ∆ztSMonu.

If we denote by Inf can the set of all informants labelling the natural numbers according to their canonical order, we
obtain Fin Y tNu P rRItInf canConsConvSDecMonExs and thus in contrast to full-information learning from
informant rItInf canExs � rItInfExs, see [AKS18].

Theorem 4.1 can be restated as.

Theorem 5.2. rItInfConvSDecSMonExszrRItInfExs � ∅.

It has been observed that requiring a monotonic behavior of the learner is restrictive.

Theorem 5.3. [LZ92] There exists an indexable family in rItInfMonExs � rItInfExs.

It is easy to see that requiring a cautious behavior of the learner is also restrictive.

Theorem 5.4. There exists an indexable family in rItInfCautExs � rItInfExs.
Proof. The indexable family tNu Y tNztxu | x P Nu is clearly not cautiously learnable but conservatively, strongly
decisively and monotonically learnable by a total iterative learner from informant.

Corollary 5.5. rItInfCautExs K rItInfMonExs

Moreover, requiring a conservative learning behavior is also restrictive.

Theorem 5.6. [JLZ07] There exists an indexable family in rItInfConvExs � rItInfExs.
Indeed, they provide an indexable family in rItInfCautWMonNUDecExszrItInfConvExs and an index-

able family in rRItTxtCautConvSDecExszrItInfMonExs.

Hence the map differs from the map on iterative learning from text in [JKMS16] as Caut is restrictive and also
from the map of full-information learning in [AKS18] from informant as Conv is restrictive too. It has been open
how WMon, Dec, NU, SDec and SNU relate to each other and the other requirements. We show that also SNU
restricts ItInfEx with an intricate ORT-argument.

Theorem 5.7. rItInfSNUExs � rItInfExs
Proof. Let M be a learner as follows, where the initial hypothesis is o, an index forH. We consider input data x with
given label ` P t0, 1u.

@e, x, ` : hM pe, px, `qq �

$'&
'%
e, if e � o^ ` � 0;

padpϕxp0q, xq, else if e � o^ ` � 1;

padpϕypxe1, x, `yq, yq, else, with e � padpe1, yq.
Let L be what M learns and suppose M 1 learns L also SNU.
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We define strictly increasing computable functions a, b, e1, e2 : NÑ N and e0 P N by ORT. Thereby, we interpret
a and b as data streams and for all k, t the numbers e0, e1pxk, tyq and e2pxk, tyq as hypotheses. We start with defining
a and b by letting for all i, k P N

ϕapiqpzq �

$''''''''&
''''''''%

e1pxk, kyq, if z � xe0, bpkq, 1y;
e0, else if z � 0_ z � xe0, x, `y;
e1pxk, tyq, else if z � xe1pxk, syq, aptq, 1y ^ t ¥ s^W t

e0rks �W s
e0rks;

e2pxk, kyq, else if z � xe1pxk, syq, aptq, 0y ^ t ¥ k;

e2pxk, tyq, else if z � xe2pxk, syq, aptq, `y ^ t ¥ s^W t
e0rks �W s

e0rks;
e, else if z � xe, x, `y;

ϕbpkqpzq �

$''''''&
''''''%

e1pxk, kyq, if z � 0;

e1pxk, tyq, else if z � xe1pxk, syq, aptq, 1y ^ t ¥ s^W t
e0rks �W s

e0rks;
e2pxk, kyq, else if z � xe1pxk, syq, aptq, 0y ^ t ¥ k;

e2pxk, tyq, else if z � xe2pxk, syq, aptq, `y ^ t ¥ s^W t
e0rks �W s

e0rks;
e, else if z � xe, x, `y;

Before we define We0 , We1pxk,tyq and We2pxk,tyq, note that, while M sees only negatively labeled data, it sticks to o
as hypothesis. Once a positive a-datum is seen, it sticks to e0 as hypothesis. The first positive bpkq-datum makes it
change its mind to e1pxk, kyq. Any negative a-datum after the positive bpkq-datum leads to e2pxk, kyq. As the second
coordinate in xk, ty will tell us which canonical informant sequence W t

e0rks we consider, we enlarge it whenever
neccessary in order to guarantee W t

e0rks �We0rks in the limit.
We give the definitions of what to list into We0 , We1pxk,tyq and We2pxk,tyq as algorithms.
In We0 we enumerate all apiq on which M 1 changes its mind when labeled positively while M 1 observes the

canonical informant for We0 . For convenience, in the definition of We0 we let ap�1q � �1 and denote by ru,ws the
set of all integers v with u ¤ v ¤ w.

eÐ initial hypothesis of M 1;
for i � 0 to8 do

if h�M 1pe, rapi� 1q � 1, apiq � 1s � t0uapapiq, 1qq Ó� e then
eÐ hM 1pe, rapi� 1q � 1, apiq � 1s � t0uapapiq, 1qq;
list apiq into We0 ;

end
else if h�M 1pe, rapi� 1q � 1, apiq � 1s � t0uapapiq, 0qq Ó� e then

eÐ hM 1pe, rapi� 1q � 1, apiq � 1s � t0uapapiq, 0qq;
end

end
Algorithm 1: The definition of e0 in the ORT-argument.

As M learns We0 , also M 1 has to learn it. Let I be the canonical informant for We0 and k be such that M 1pIrisq �
M 1pIrksq for all i ¥ k and WM 1pIrksq �We0 .

For all k, t, t1 with W t
e0rks �W t1

e0rks holds We1pxk,tyq �We1pxk,t1yq and We2pxk,tyq �We2pxk,t1yq.

We will now argue that for t minimal with W t
e0rks � Irks every possible outcome of Algorithm 2 is contradictory.

(1) If all stages s are visited, then We1pxk,tyq � We2pxk,tyq contains essentially all apiq with i ¥ k. Hence M
will eventually output the correct hypothesis e1pxk, tyq while M 1 makes infinitely many mind changes on a
suitable informant I 1. More precisely, the informant I 1 starts with Irkspbpkq, 1q and afterwards enumerates
all apiq with i ¥ k in the order they were listed into We1pxk,tyq.

(2) If the first while loop does not terminate for some stage s, then We1pxk,tyq and We2pxk,tyq are different. As
We2pxk,tyq is finite, M learns it by changing its mind on some negative a-datum. On the other hand We1pxk,tyq

contains all apiq with i ¥ k and M learns it by not changing its mind. Let es�1 denote the current value
10



Input: xk, ty;
eÐM 1pW t

e0rkspbpkq, 1qq;
iÐ k;
list bpkq and the positive information in W t

e0rks into We1 and We2 ;
for s � 0 to8 do

while hM 1pe, papiq, 1qq � e and hM 1pe, papiq, 0qq � e do
list apiq into We1 ;
iÐ i� 1;

end
list all of what is already listed in We1 into We2 ;
if hM 1pe, papiq, 1qq � e then

list apiq into We1 and We2 ;
eÐ hM 1pe, papiq, 1qq;

end
else

j Ð i;
iÐ i� 1;
while hM 1pe, papiq, 1qq � e do

list apiq into We1 and We2 ;
iÐ i� 1;

end
list apiq into We1 and We2 ;
list apjq into We1 and We2 ;
eÐ h�M 1pe, papiq, 1qpapjq, 1qq;

end
iÐ i� 1;

end
Algorithm 2: The definition of e1pxk, tyq and e2pxk, tyq in the ORT-argument.

of variable e when entering the stage s. By the case assumption, M 1 does not perform a mind-change on
any further positive or negative a-datum. Therefore, we must have We1pxk,tyq � Wes�1 � We2pxk,tyq, a
contradiction.

(3) If the second while loop does not terminate for some stage s, then We1pxk,tyq � We2pxk,tyq contains all apiq
with i ¥ k but apjsq. This is learned by M from any informant (though with different final hypotheses,
depending on the informant). Again, we let es�1 denote the current value of e when entering stage s. By
the choice of k for all j ¥ k holds M 1pIrksapapjq, 1qq � M 1pIrksq and M 1pIrksapapjq, 0qq � M 1pIrksq.
Hence M 1 on the informant

I2 � Irkspapjsq, 0qpbpkq, 1qppapiq, 1qqi¥k,i�js
for We1pxk,tyq outputs es�1 and therefore es�1 must be correct. On the other hand es�1 cannot be correct,
since M 1 is SNU and changing its mind on the negative information papjsq, 0q in the informant

I3 � Irkspbpkq, 1qppapiq, 1qqi jspapjsq, 0qppapiq, 1qqi¡js
for We1pxk,tyq.

We are now attempting to clarify in which sense precisely Conv is a restriction and more specifically, where
exactly and how often there are separations in the implication chains Conv ñ WMon ñ T, Conv ñ SNU ñ
NU ñ T and SDec ñ Dec ñ NU ñ T. In the following we provide a lemma that might help to investigate
WMon, Dec and NU.
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Definition 5.8. Denote the set of all unbounded and non-decreasing functions by S, i.e.,

S :� t s : NÑ N | @x P N Dt P N : sptq ¥ x and @t P N : spt� 1q ¥ sptq u.
Then every s P S is a so called admissible simulating function.

A predicate β � P� I is semantically delayable, if for all s P S, all I, I 1 P I and all learners M,M 1 P P holds:
Whenever we have pospI 1rtsq � pospIrsptqsq, negpI 1rtsq � negpIrsptqsq and WM 1pI 1rtsq � WMpIrsptqsq for all t P N,
from βpM, Iq we can conclude βpM 1, I 1q.
Lemma 5.9. Let δ be a semantic learning restriction, i.e. δ P tCaut,Dec,WMon,Mon,SMon,NUu. Then δ
is semantically delayable.

Lemma 4.3 can be generalized as follows.
Lemma 5.10. For every iterative learner M and every semantically delayable learning restriction δ, there exists a
canny iterative learner N such that InfδExpMq � InfδExpNq.
Proof. We add δ in front of Ex in the proof of Lemma 4.3. Further, we define a simulating function (Definition 5.8)
by

sptq � maxts P N | rpsq ¤ tu.
It is easy to check that s is unbounded and clearly it is non-decreasing. Then by the definitions of I and s we
have pospIrsptqsq � pospI 1rrpsptqqsq � pospI 1rtsq and similarly negpIrsptqsq � negpI 1rtsq for all t P N. As
M 1pI 1rtsq � fpσtq and Mpσrpsptqqq �MpIrsptqsq for all t P N, in order to obtain WM 1pI 1rtsq �WMpIrsptqsq it suffices
to show Wfpσtq � WMpσrpsptqqq. Since Wfpσtq � WMpσtq for all t P N, this can be concluded from σt � σrpsptqq. But
this obviously holds because rpsptqq ¤ t   rpsptq � 1q follows from the definition of s.

Finally, from δpM, Iq we conclude δpM 1, I 1q.
Two other learning restrictions that might be helpful to understand the syntactic learning criteria SNU, SDec and

Conv better are the following.

Definition 5.11. Let M be a learner and I an informant. We denote by ht � MpIrtsq the hypothesis of M after
observing Irts and write

(1) LocConvpM, Iq ([JLZ07]), if M is locally conservative on I , i.e., for all t the mind-change ht � ht�1

implies ConspIptq,Whtq.
(2) WbpM, Iq ([KS16]), if M is witness-based on I , i.e., for all r, s, t with r   s ¤ t the mind-change hr � hs

implies pospIrssq XWhtzWhr � ∅ _negpIrssq XWhrzWht � ∅.

Hence, in a locally conservative learning process every mind-change is justified by the datum just seen. Moreover,
a in witness-based learning process each mind-change is witnessed by some false negative or false positive datum.
Obviously, LocConvñ Conv and Wbñ Conv.

As for learning from text, see [JKMS16], we gain that every concept class locally conservatively learnable by an
iterative learner from informant is also learnable in a witness-based fashion by an iterative learner.

Theorem 5.12. rItInfLocConvExs � rItInfWbExs
Proof. Let L be a concept class learned by the iterative learner M in a locally conservative manner. As we are
interested in a witness-based learner N , we always enlarge the guess of M by all data witnessing a mind-change in
the past. As we want N to be iterative, this is done via padding the set of witnesses to the hypothesis and a total
computable function g adding this information to the hypothesis of M as follows:

Wgppadph,xMCyqq � pWh Y posrMCsq znegrMCs;
Np∅q � gppadpMp∅q, x∅yqq;

hN pgppadph, xMCyqq, ξq �

$'''&
'''%
gppadph, xMCyqq, if hM ph, ξq � h_

ξ PMC;

gppadphM ph, ξq,
xMC Y tξuyqq, otherwise.
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Clearly,N is iterative. Further, wheneverM is locked on h andWh � L, sinceMC is consistent with L, we also have
Wgppadpfphq,xMCyqq � L. As N simulates M on an informant omitting all data that already caused a mind-change
beforehand, N does explanatory learn L. As M learns locally conservatively and by employing g, the learner N acts
witness-based.

6. LEARNING HALF-SPACES IN THE EUCLIDEAN PLANE

An important concept class for many machine learning algorithms are binary classifiers given by half-spaces. We
will define the language class of halfspaces, show that they from an indexable family and provide a hypothesis space
and constructive algorithm making them learnable by an iterative learner from informant.

Definition 6.1 (Coding, Halfspace, C). For an integer x P Z and natural number i P N we write i � xxy if i is the
code of x in the sense of a computable bijection with computable inverse, for example:

Z 0 �1 1 �2 2 �3 3 �4 4 . . .
N 0 1 2 3 4 5 6 7 8 . . .

Moreover, for a computable bijection N�NÑ N with computable inverse, d ¡ 0 and natural numbers i, i0, i1, . . . , id P
N we write

i � xi0, i1y, if i is the image of the vector pi0, i1q;
i � xi0, i1, . . . , idy, if i is the image of the vector pxi0, . . . , id�1y, idq.

We say that i encodes the vector pi0, i1q or pi0, i1, . . . , idq, respectively.
Let d ¡ 0. For a0, a1, . . . , ad P Z the corresponding halfspace is given by

Hxxa0y,xa1y,...,xadyy � txxx1y, . . . , xxdyy | a0 ¥
ḑ

i�1

aixiu.

LetA � txxa0y, 0y | a0 P Zu be the set of all i encoding a vector of integers pa0, a1, . . . , adq with a1 � . . . � ad � 0.
The concept class of all halfspaces is defined as C � tHi | i P NzAu.
Lemma 6.2 (C is indexable). The concept class of halfspaces C is an indexable family.

Proof. We describe the uniform decision procedure for C. Given i and n first decode a0, a1, . . . , ad, x1, . . . , xd P Z
such that i � xxa0y, xa1y, . . . , xadyy and n � xxx1y, . . . , xxdyy. Then check whether a0 ¥ a1x1 � . . . � adxd and
return 1 if the inequality is true and 0 otherwise.

Due to [Gol67] every indexable family is conservatively and consistently learnable by an iterative learner. There-
fore, we immediately obtain.

Corollary 6.3 (C P rInfExs). The concept class of halfspaces C is learnable from informant by enumeration.

We now state the main result of this section.

Theorem 6.4 (C P rItInfExs). The concept class of halfspaces C is learnable by an iterative learner.

For the rest of this section we sketch the argument for d � 2 and refer the interested reader to Section 7 for a
general proof.

With the help of the following definition, we can give another uniform decision procedure for H, to which the
iterative learner will refer. This procedure allows the iterative learner to store a finite amount of information as part of
its current hypothesis.

Definition 6.5 (LOCK property for u,v,x,y P Z�Z). Let u,v,x,y lie on the two-dimensional integer grid, Z�Z.
The four points u,v,x,y have the LOCK-property if

(1) u � v and x � y,
(2) the lines through u,v and x,y are parallel, in particular distinct,
(3) the lines through u,v and x,y are of minimal distance with respect to the integer grid, i.e. there is no parallel

line passing through an integral point and strictly between them,
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(4) there is a point on the line segment between u,v, such that the corresponding points with the same first/second
coordinate on the line through x,y lie on the line segment between x,y.

Note that 4. implies that
5. the minimal distance is realized between the line segments uv and xy.

Lemma 6.6. Let a1, a2 P Z such that gcdpa1, a2q � 1. Then the minimal distance between distinct lines with normal
vector pa1, a2q passing through integral points is 1?

a21�a
2
2

.

Proof. We denote by |a| the distance between a and 0, e.g. |2| � |�2| � 2. The minimal horizontal/vertical distances
between two lines with normal vector pa1, a2q passing through integral points are 1

|a1|
and 1

|a2|
, respectively. From

this follows that the minimal distance between the lines is as claimed.

As we encode integers and vectors (of vectors) of integers into natural numbers, we transfer the definition of the
LOCK property to natural numbers.

Definition 6.7 (LOCK Property for j P N). Let j P N. Extract four points u,v,x,y on the two-dimensional integer
grid from j. (As u � pu1, u2q, . . . ,y � py1, y2q P Z � Z, this can be done with a repeated application of the
computable inverse by assuming j � xxxu1y, xu2yy, xxv1y, xv2yy, xxx1y, xx2yy, xxy1y, xy2yyy.) We say that j has the
LOCK property, if u,v,x,y have the LOCK property.

We now describe the uniform decision procedure to which the iterative learner will refer.
Basically, the first coordinate of the input tells whether the learner thinks it is finished or is in data collection mode.

If it thinks it is finished, it interprets the coordinate as 4 points on the integer grid. If these four points are candidates
for defining the prediction model to be learned, then the decision procedure computes a halfspace from them. It then
checks whether the point given by the second coordinate of the input fits the halfspace. If the four points are no valid
candidates or the learner is in data collection mode, the decision procedure will treat it as a hypothesis for the upper
halfplane (second coordinate ¥ 0), which simply serves as a dummy hypothesis.

More formally, assume the input of the decision procedure are natural numbers i, n P N. If i � 2j � 1 for j P N,
this is interpreted as maybe being finished. Then the procedure checks whether j has the LOCK property. If it does,
the decision procedure computes a0, a1, a2 for the halfspace given by `u,v, while assuming that x,y are not in the
halfspace. (For the definition of u,v,x,y, see Definition 6.7.) Next, it extracts z � pz1, z2q P Z�Z such that for the
second input n holds n � xxz1y, xz2yy. Finally, the procedure checks whether a0 ¥ a1z1 � a2z2 and returns 1 if the
inequality is true. In all other cases the decision procedure returns 1 if z2 ¥ 0.

Note that for every odd number 2j � 1, with j P N having the property LOCK, the prediction model f2j�1 repre-
sents the unique halfspace La0,a1,a2 with normal vector pa1, a2q, gcdpa1, a2q � 1, and displacement a0 corresponding
to `u,v and pa1, a2q pointing towards x,y.

Moreover, all prediction models fi for i even or i � 2j � 1 with j not having property LOCK refer to L0,0,�1 �
txxz1y, xz2yy | z2 ¥ 0u.

Now, we define the iterative learner M for C. Initialize with 0.
If the learner is in data collection mode, check whether the stored data together with the new datum contains points

u,v positively labeled and x,y negatively labeled with u,v,x,y having property LOCK. If not, simply add the
new datum to the stored data and stay in data collection mode. If yes, switch to the maybe finished mode and store
witnessing u,v,x,y.

If the learner is in maybe finished mode, i.e. its last hypothesis is 2j�1, check whether the new datum is consistent
with the halfspace corresponding to L2j�1. If not, the learner switches to the data collection mode and stores

xxuy, 1y, xxvy, 1y, xxxy, 0y, xxyy, 0y
and the new datum σp|σ| � 1q. If yes, the learner repeats its last hypothesis 2j � 1 and therefore forgets the current
datum.

Formally, M is initialized with the hypothesis 0 standing for L0,0,�1. Let σ P S, |σ| ¡ 0. Then σ� denotes σ
without its last element σp|σ| � 1q � pxwy, λq.
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If Mpσ�q � 2j is even, the learner extracts from j two numbers s, w. With the interpretation of s to be w’s length,
it extracts from w the stored data

pxw1y, λ1q, . . . , pxwsy, λsq P N� t0, 1u.
The learner now considers the setW � tw,w1, . . . ,wsu. Now, if there are u,v PW positively labeled and x,y PW
negatively labeled with the property LOCK, the learner outputs the hypothesis

2xxuy, xvy, xxy, xyyy � 1.

If there are no such witnesses for the property LOCK, especially if s   3, it outputs

2xs� 1, xxxw1y, λ1y, . . . , xxwsy, λsy, xxwy, λyy,
i.e., appends the new datum to the array of stored labeled data.

If Mpσ�q � 2j � 1 is odd, the learner extracts u,v,x,y from j and checks whether the new datum pxwy, λq is
consistent with the halfspace corresponding to the four points. If not, the learner switches to data collection mode by
outputting

2x5, xxxuy, 1y, xxvy, 1y, xxxy, 0y, xxyy, 0y, xxwy, λyy.
Otherwise, it repeats its last hypothesis

2j � 1.

The learner converges for the following reasons:
If the learner is first locked on a halfspace with positive/negative slope, then all other slopes corresponding to

locking hypotheses will be positive/negative, due to (4). This holds due to the size of the overlap of the defining
positive/negative line segments of a locking hypothesis. In more detail, because a1 and a2 are greater or equal 1, 1

a1
is less or equal to a2.

If the halfspace L to be learned is vertical or horizontal, the learner will never reach a locking hypothesis 2j � 1
with f2j�1 not corresponding to L.

Due to (6) the sequence of locking distances is strictly decreasing and bounded from below by the minimal distance
corresponding to the halfspace L to be learned. Hence the learner will never lock on a hypothesis with the same
corresponding normal vector pa1, a2q with gcdpa1, a2q � 1 as a previously discarded locking hypothesis again and
there are only finitely many choices for pa1, a2q due to the lower bound on the value of the distance function given by
Lemma 6.6.

The learner will finally learn L because for every locking hypothesis 2j � 1 not corresponding to L, there are
infinitely many positively and infinitely many negatively labeled points in Z � Z, labeled with respect to L, and not
consistent with L2j�1. Hence, having discarded finitely many is not be problematic.

For every halfspace L and every informant for L, the observations immediately yield the success of the iterative
learning algorithm.

7. PROOF FOR THE LEARNABILITY OF HALF-SPACES IN ARBITRARY DIMENSION

We now formaly define the concepts involved for arbitrary dimension d ¡ 0.

Definition 7.1. A hyperplane H in a d-dimensional space is described by an equation

(2)
ḑ

i�1

ai � xi � a0 � 0

that is satisfied by all its points p � px1, . . . , xdq. In this equation a1, . . . , ad are called the slope coefficients and a0

is the displacement.

Lemma 7.2. Let H be a hyperplane in a d dimensional space with rational slope coefficients, that is, any point
p � px1, . . . , xdq on H satisfies

°d
i�1 ri � xi � r0 � 0 where the ri are rational numbers. The points on H then also

satisfy an equation
°d
i�1 ai �xi�a0 � 0 where the coefficients a1, . . . , ad are integers such that gcdpai, . . . , adq � 1.

a0 is also an integer if and only if H passes through an integral point.
Proof. This is achieved by multiplying the equation

°d
i�1 ri � xi � r0 � 0 by lcmpq1, . . . , qdq and dividing it by

gcdpp1, . . . , pdq where ri � pi{qi is a reduced fraction meaning gcdppi, qiq � 1. Since qi � lcmpq1, . . . , qdq the ai’s
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turn out integers. To see that gcdpai, . . . , adq � 1 assume there is an integer c that divides pi
gcdpp1,...,pdq

� lcmpq1,...,qdq
qi

for all i. Because of prime decomposition, we might assume that c is prime. By definition of greatest common divisor,
it can not be that c � pi

gcdpp1,...,pdq
for all i. This means there exists a j such that c � pj

gcdpp1,...,pdq
so by primality of c

we must have c � lcmpq1,...,qdq
qj

. This in turn means by the definition of least common multiple that there exists a k such

that c � qk. Now let ql be divisible by the highest power of c. This means c � lcmpq1,...,qdq
ql

and of course that c � ql.
Since fractions were reduced we have gcdppl, qlq � 1 meaning c � pl. This implies c � pl

gcdpp1,...,pdq
and therefore

c � pl
gcdpp1,...,pdq

� lcmpq1,...,qdq
ql

contrary to assumption.
For the last statement, note that if there are integer xi satisfying the equation, by integrality of a1, . . . , ad we get

that a0 must be integer. For the converse, suppose that a0 is an integer. Since gcdpa1, . . . , adq � 1 there are by
Bezout’s identity integral coefficients y1, . . . , yd such that

°d
i�1 yi � ai � 1. Setting xi � a0 � yi we have the desired

coordinates of an integral point on the hyperplane H .

Definition 7.3. A hyperplane with defining equation
°d
i�1 ai � xi � a0 � 0 where the coefficients a1, . . . , ad are

integers such that gcdpai, . . . , adq � 1 is said to be in integral reduced form.

Definition 7.4. The j�distance of a point p to a hyperplane H is the distance of p to a point q on the plane H that
has all coordinates but the jth equal to those of p. If such a q does not exist the j�distance is undefined (or 1

0 ).

Lemma 7.5. Let H be a hyperplane with slope coefficients ai in integral reduced form which passes through an
integral point. The smallest j�distance to H of an integral point not on H is equal to 1{aj . Furthermore, such
“j�closest” points to H not on the hyperplane can be found on both sides of H .
Proof. Rewriting the defining equation for H we get for the j�th coordinate

(3) xj � � 1

aj

�
ḑ

i�1,�j

ai � xi � a0

�
.

Define b � gcdpta1, . . . , aduztajuq. This means that by Bezout’s identity there are integers yi such that
°d
i�1,�j ai �

yi � m � b for any integer multiple m of b. Since gcdpa1, . . . , adq � 1 we must have gcdpb, ajq � 1, meaning there is

an integer m such that m � b mod aj� 1 or equivalently, there exist integers m and n such that m � b � n � aj � 1. So if
the yi were the values s.t.

°d
i�1,�j ai �yi � m �b, we have by setting the integer valued coordinates xi � p�1�a0q �yi

that xj � � 1
aj
rp�1� a0q � n � aj � 1� a0 � a0s � pa0 	 1q � n	 1

aj
. The integral points having ith coordinates xi

(in each case) for i � j and jth coordinate equal to p�a0� 1q �n have j�distance 1
aj

to plane H on the two different
sides of it. One can easily see that a smaller j�distance is not possible for integral points due to equation 3 for the
jth coordinate of points on H .

Lemma 7.6. Assume we have pairwise orthogonal vectors vi for i � 1, . . . , d in a d�dimensional space, and let
H be the hyperplane passing through the heads of these vectors when their tails are placed on the origin. Then the

vector h from the origin to H and orthogonal to it is equal to
°d

i�1 vi{v
2
i°d

i�1 1{v2i
.

Proof. By definition we must have pvi�hq�h � 0 for all i. This implies |h|2 � h�vi for all i. If we expand h in the basis
of the vi we have h � ph1, . . . , hdq and so hi|vi| � |h|2 for all i � 1, . . . , d. This means h � |h|2 � p 1

|vi|
, . . . , 1

|vd|
q.

Taking the inner product with itself we get |h|2 � |h|4 �°d
i�1 1{v2

i ñ |h|2 � 1{°d
i�1 1{v2

i which proves the statement.

Corollary 7.7. The vector h as in lemma 7.6 has norm 1b°d
i�1 1{v2i

.

Proof. Follows from lemma 7.6.
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Theorem 7.8. LetH be a hyperplane with integral slope coefficients ai in integral reduced form which passes through
an integral point. The closest parallel hyperplanes to it passing through different integral points have a distance of

1{
b°d

k�1 a
2
k to it.

Proof. By lemma 7.5 the distance along the jth axis to these hyperplanes is equal to 1{aj . By corollary 7.7 the
orthogonal distance between two closest such parallel hyperplanes will be�

ḑ

k�1

1

1{a2
k

��1{2

�
�

ḑ

k�1

a2
k

��1{2

Definition 7.9. The integral half grid problem consists of a ground set Gd � Zd, the integral grid in d dimensions,
and a class of half-spaces LIhg which consists of a half-space for every hyperplane with rational slope coefficients.
For every pr1, . . . , rd,∆0q where r1, . . . , rd P Q and ∆0 P R the language Lpr1,...,rd,∆0q P LIhg consists of all points
p � px1, . . . , xdq P Zd such that

°d
i�1 ri �xi�∆0 ¥ 0. The problem is now for a learner to identify a target Lt P LIhg

in the limit.

Lemma 7.10. In the integral half grid problem there is a one to one correspondence between languages in LIhg
and the elements of Zd�1. Specifically, after putting the defining equations of hyperplanes corresponding to all
languages L P LIhg in integral reduced form, the one to one correspondence will be between distinct languages
(half-spaces) of LIhg and equivalence classes of the coefficients defined by taking the integer part of the displacements
pa1, . . . , ad, ta0uq. In particular, if two languages L,L1 P LIhg have coefficients in integral reduced form a and a1

such that ai � a1i for 1 ¤ i ¤ d and ta0u � ta10u then these two languages are identical L � L1.
Proof. For any integral point p � px1, . . . , xdq satisfying

°d
i�1 ai � xi � a0 ¥ 0 we may take integer parts from both

sides to obtain
°d
i�1 ai � xi � ta0u ¥ 0. Conversely, it is clear that since ta0u ¤ a0, that

°d
i�1 ai � xi � ta0u ¥ 0

implies
°d
i�1 ai � xi � a0 ¥ 0.

Definition 7.11. A basic set in d-dimensional space is a set of d affine-independent integral points, i.e. C �
tc0, . . . , cd�1u s.t. the vectors ci � c0 for i � 1, . . . , d� 1 are linearly independent. The unique (d� 1-dimensional)
hyperplane Hc passing through the points of C is simply called C’s hyperplane and C is a basic set for HC . A basic
cell convpCq is the convex hull of points in a basic set C. Two basic sets C and C 1 are parallel if their hyperplanes
are, they are facing each other if they are parallel and there is a line segment orthogonal to their hyperplanes meeting
their cells, that is, there are points p P convpCq and p1 P convpC 1q such that rp, p1s is orthgonal to HC and HC1 . Two
basic sets are adjacent if they are facing each other and their hyperplanes are distinct but as close as possible, having
the distance from theorem 7.8.

Lemma 7.12. Suppose a language (half-space) L P LIhg is determined by a hyperplane H with coefficients a in
integral reduced form such that all grid points p � px1, . . . , xdq P L satisfy

°d
i�1 ai � xi � a0 ¥ 0. We then have in

addition to all grid points in L satisfying
°d
i�1 ai � xi � ta0u ¥ 0 as stated in lemma 7.10, that all grid points not

contained in this halfspace q � py1, . . . , ydq P Lc satisfy
°d
i�1 ai � yi � ta0u� 1 ¤ 0 or equivalently,

ḑ

i�1

p�aiq � yi � p�ta0u� 1q ¥ 0.

Furthermore, both these inequalities are tight in the sense that they are satisfied with equality for elements of L and
Lc respectively.
Proof. According to lemma 7.10 we must have for every q � py1, . . . , ydq P Lc that

°d
i�1 ai � yi � ta0u   0.

Since the coordinates of q are integral we have
°d
i�1 ai � yi P Z and because Z X R 0 � Z¤�1 we must have°d

i�1 ai � yi � ta0u ¤ �1 proving the statement.
For the second statement, notice that the a coefficients are in integral reduced form meaning gcdpa1, . . . , adq � 1

so that by Bezout’s identity there are integral coordinates pz1, . . . , zdq such that
°d
i�1 ai �zi � k for any integer k P Z.
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Definition 7.13. For a hyperplaneH described by an integral reduced form
°d
i�1 ai �xi�a0 � 0 we define its positive

tangent H� as the halfspace described by the inequality
°d
i�1 ai � xi � ta0u ¥ 0 and and its negative tangent H� as

the halfspace described by the inequality
°d
i�1p�aiq � xi � p�ta0u� 1q ¥ 0.

Corollary 7.14. If a hyperplane H separates points in L from points in Lc of the integral grid which we could see as
positive and negative points, the hyperplanes tangent to the positive and negative points are exactly the boundaries of
H� and H� as in definition 7.13.
Proof. Follows from lemma 7.12.

Definition 7.15. We will be considering a hypothesis space consisting of sets of positive and negative data points H �
ttpp, sq|p P Zd, s P t�,�uuu. A locked state is achieved when for a hypothesis H � tpp, sq : p P Zd, s P t�,�uu a
subset C� of the positive points of H and a subset C� of the negative points of H form adjacent basic sets such that
all other data points retained in the hypothesis are separated based on sign by the hyperplanes of these two cells HC�

and HC� meaning HC� is the boundary of a half-space HC�
� and HC� is the boundary of a half-space HC�

� such that
H� XH� � H and for all pp,�q P H we have p P H� and for all pq,�q P H we have q P H�. The distance of a
locked state d is the distance between HC� and HC� .

Definition 7.16. The violation of a locked states happens by receiving a data point pp, sq that does not respect separa-
tion by the hyperplanes of the adjacent basic sets, meaning it is on the other side of these hyperplanes than data points
of the same sign as it, either p P HC�

� for data point pp,�q or q P HC�
� for data point pq,�q. Remember that there

are no integral points strictly between hyperplanes of adjacent basic sets by definition of their respective hyperplanes
being as close as possible.

Initialize H ÐH, State Ð Open;
Receive new data point pp, sq : p P Zd, s P t�,�u;
if State � Open then

H Ð H Y pp, sq;
if H is a locked state then

State Ð Locked ;
Apply convention: either do nothing or discard all previous data not required for this locked state;

end
else if State � Locked then

if p violates the locked state then
State Ð Open;
H Ð H Y pp, sq;

end
end

Algorithm 3: Iterative learner of integral half-spaces from informants

Lemma 7.17. If d is the distance of a locked state at some point in algorithm 3 which is afterwards violated by a data
point and d1 is the distance of a later locked state we have d ¡ d1. That is, the distance of locked states is strictly
decreasing.
Proof. Assume H� and H� are the half-spaces of the first locked state of distance d and H 1

� and H 1
� are the half-

spaces of the second locked state of distance d1. The sign indices indicate in both cases the signs of the data points of
the corresponding basic cells. Since all data points respect the separation by the two hyperplanes in the new locked
state including the points of the basic cells of the first locked state, we have the distance of any positive point and any
negative point in the first locked state is at least d1. This gives us that d ¥ d1 because by definition of adjacency the
previous locked state had basic sets facing each other, meaning there were points p and q in the associated basic cells
of distance d where p was a convex combination of positive points and q a convex combination of negative points.
Since all positive points are now in H 1

� and all negative points are in H 1
� the same holds for convex combinations of

each label of points and thus d ¥ d1. If we were to have equality d � d1 that would mean that the facing points p and
q from the basic cells of the first locked state are situated exactly on the boundaries ofH 1

� andH 1
�, and because rp, qs
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is orthogonal to the boundaries of H� and H�, we must have H� � H 1
� and H� � H 1

� which would contradict the
first locked state ever being violated in the first place thereby proving d  d1.

Definition 7.18. The target distance dt is the orthogonal distance between the tangentsHt
� andHt

� for the hyperplane
Ht associated with the target language (half-space) Lt.

Lemma 7.19. The distance of any locked state is bounded from below by the target distance.
Proof. Similar to the proof of lemma 7.17 since all data points respect separation by Ht

� and Ht
�.

Lemma 7.20. If the learner of algorithm 3 is in state Open it will eventually go into Locked .
Proof. In the Open state all incoming data points are received and aggregated and none is refused. By whatever
convention for the Locked state in which we may have discarded previous data points, we have two cases:

(1) The learner eventually goes into a locked state with tangents different from that of the target’s
(2) Not case 1

In the second case, assume all previously received data points (which there are finitely many of) are contained in a
bounded ball B. Even if all preveious points were discareded based on convention in line 3 of algorithm 3, there will
still be infinitely many data points on Ht

� and Ht
� further away from B which will be received and eventually create

adjacent basic cells which force the learner into the Locked state with the true target tanget hyperplanes.

Lemma 7.21. If two languages (half-spaces) L,L1 P LIhg are distinct, there will be grid points in their symmetric
difference L∆L1 arbitrarily distant from any compact set B.
Proof. For this we make a case distinction:

(1) L and L1 have identical slope coefficients
(2) L and L1 don’t have identical slope coefficients

In the first case, distinction of the two half-spaces can only mean their displacements in integral reduced form having
different integer parts. We know there exists at least one point p0 labeled differently by the two languages. There are
infinitely many integral translation vectors δ � pδ1, . . . , δdq P Zd that satisfy

°d
i�1 ai � δi � 0 and for each one of

them p0 � δ would also be labeled differently by L and L1.
In the second case, consider the two vectors a � pa1, . . . , adq and a1 � pa11, . . . , a1dq of the coefficients of the

two half-spaces in integral reduced form. They are in integral reduced form but different which implies a ∦ a1. This
enables us to find an integral vector b such that b.a and b.a1 are both nonzero and of opposite signs. W.l.o.g. assume
we have a point p0 classified by L as positive and by L1 as negative and that b.a ¡ 0 while b.a1   0 (otherwise take
�b). Now all points p0 �m � b for m P N will be classified as positive by L and negative by L1.

Lemma 7.22. If the learner from algorithm 3 goes into a Locked state with tangent hyperplanes other than that of
the target’s, the Locked state will eventually be violated.
Proof. If all previously received data points (which there are finitely many of) are contained in a bounded ballB, there
will still be infinitely many data points further away from B corresponding to the true target Ht. But by lemma 7.21
any two distinct hyperplanes will label some points differently arbitrarily distant from any compact set B. Therefore,
a new data point labeled inconsistently with the separation of the current Locked state will eventually be received by
the learner, violating the Locked state and causing the learner to transition to state Open .

Lemma 7.23. The learner from algorithm 3 goes into finitely many Locked states in total.
Proof. By lemma 7.17 the distance of locked states strictly decrease and by lemma 7.19 they are bounded from
below. By lemma 7.8 these distances can only assume certain discrete values and the total set of combinations of
the slope coefficients providing distances at least that of the target distance dt is finite because they need to satisfy°d
i�1 a

2
i ¤ 1{dt2.
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Theorem 7.24. The learner from algorithm 3 identifies the target (tanget) hyperplane in a finite number of steps.
Proof. By lemma 7.20 it will never remain in an Open state indefinitely, and by lemma 7.22 it will eventually come out
of any Locked state which does not correspond to the target. But by lemma 7.23 the learner goes into state Locked
only finitely many times, so it must eventually go into a Locked state that does correspond to the target. By algorithm
3 the hypothesis remains constant as long as the learner remains in Locked state, so if the Locked state refers to the
half grid it corresponds to, algorithm 3 is able to learn the class of integral half grids in the limit.
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